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Abstract

Production innovations are occurring faster than ever. Manufacturing workers thus need to frequently learn new methods and
skills. In fast changing, largely uncertain production systems, manufacturers with the ability to comprehend workers’ behavior and
assess their operation performance in near real-time will achieve better performance than peers. Action recognition can serve this
purpose. Despite that human action recognition has been an active field of study in machine learning, limited work has been done
for recognizing worker actions in performing manufacturing tasks that involve complex, intricate operations. Using data captured
by one sensor or a single type of sensor to recognize those actions lacks reliability. The limitation can be surpassed by sensor fusion
at data, feature, and decision levels. This paper presents a study that developed a multimodal sensor system and used sensor fusion
methods to enhance the reliability of action recognition. One step in assembling a Bukito 3D printer, which composed of a sequence
of 7 actions, was used to illustrate and assess the proposed method. Two wearable sensors namely Myo-armband captured both
Inertial Measurement Unit (IMU) and electromyography (EMG) signals of assembly workers. Microsoft Kinect, a vision based
sensor, simultaneously tracked predefined skeleton joints of them. The collected IMU, EMG, and skeleton data were respectively
used to train five individual Convolutional Neural Network (CNN) models. Then, various fusion methods were implemented to
integrate the prediction results of independent models to yield the final prediction. Reasons for achieving better performance using
sensor fusion were identified from this study.
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1. Introduction

Action recognition involves automatically detecting and recognizing purposeful motions by analyzing relevant hu-
man subject data obtained from multitudinous sensors [1]. Along with vigorous applications of action recognition in
assisted living [2, 3, 4, 5] , human machine interaction [3, 6, 7], and healthcare [3, 4, 6, 8], it is also increasingly being
used in manufacturing for quantifying and evaluating worker performance [9], understanding worker’s operational
behavior [10], enabling adaptive and incessant support to workers in assembly lines [11], and executing maintenance
work [12]. Though a robust and reliable system of action recognition is greatly needed by various industrial appli-
cations, limited research has been dedicated to this endeavor [13]. Particularly, on the way to Smart Manufacturing,
worker-centric assembly is becoming an inevitable part of production system [14]. About 40% of cost and 70% of
production time involved with assembly still require the manual operation from workers [11]. Action recognition, if
it can be reliably and timely achieved, would provide an ability to quickly identify workers’ needs for assistance or
on the job training, thus helping reduce production time and cost [11]. Henceforth, a highly reliable system of action
recognition is of paramount interest in assembly operation.

Recognizing actions that workers take in performing complex, labor-intensive assembly tasks is not trivial due to a
variety of reasons, such as varying time length of actions, kinematic complexity, anthropomorphic variation, viewpoint
variation, occlusion, cluttered background, execution rate, and camera motion [15]. Following the increasing trend of
demands for neoteric and customized products [16], more intricate and complex operations have been introduced
to assembly processes, which magnifies the challenge of action recognition in assembly [17]. Data obtained by one
sensor or a single type of sensors are becoming less reliable for recognizing those actions. Data from multiple types
of sensors may complement each other, making sensor fusion a way of creating synergy [1, 18]. The fusion of meta
classifiers constructed from multiple sources of sensor data has been found to increase the efficiency and accuracy of
recognition system to a great extent [19]. Yet a fundamental understanding of fusion mechanisms is needed to better
guide sensor fusion in practices.

With the immense advancements in microelectromechanical technology, micro sensors, and wireless communica-
tion technology, action recognition using wearable sensors (e.g., accelerometer, gyroscope, and magnetometer) has
become a hot research topic [3, 7]. Their popularity is getting increased because of various attractive features such
as easy to carry, inexpensive, wireless, privacy preservation, and low computational cost [2, 3, 20]. Wearable sen-
sors based on different technologies are not equally good in capturing all human actions because each sensor type is
specifically designed for capturing certain data. For example, a 3-axial accelerometer measures the acceleration along
3 orthogonal axes. A 3-axial gyroscope provides the orientation and rotation movement of sensed object with pitch,
roll and yaw angles. A magnetometer measures the local Earth magnetic field vector. Sensor fusion is a straightforward
way to take advantage of these technologies to advance action recognition.

Recognition of assembly actions was mostly done using a single classifier. For example, a hidden Markov model
(HMM) was used to classify 9 activities involved in a wood workshop [12], and 21 gestures of bicycle repairing
tasks [21]. Stiefmeier et al. [13] proposed a string-matching-based segmentation and classification method to identify
46 quality checking activities in car assembly. A k-nearest neighbor (k-NN) algorithm was used to classify 4 basic
assembly tasks [22]. Tao et al. [9] collected data on 6 assembly actions and trained a Convolutional Neural Network
(CNN) for action classification. Some exceptions have been noticed, which integrated results from multiple classifiers.
For example, hierarchical with equal weights [23], hierarchical with variable weights upon classification performance
[18, 24], majority voting [25], naive Bayesian [25], and the combination of both hierarchical and majority voting [19]
have been proposed for the decision level fusion. Sensor fusion comes into effect at not only the decision level, but
the data level and feature level. For example, features from both time and frequency domains were concatenated to
recognize 11 child activities [26].

This paper presents a study of developing a sensor fusion based system for recognizing human actions in perform-
ing assembly tasks. The study aimed to advance the fundamental understanding of sensor fusion through exploiting
opportunities of sensor fusion at all levels (data, feature, and score level) and discovering fusion mechanisms that
can effectively enhance the ability of action recognition. Therefore, the rest of the paper is organized as the following.
Section 2 presents the approach to creating the proposed system of action recognition based on sensor fusion, followed
by Section 3 that presents an example for illustrating the implementation and assessment of the proposed approach.
Findings from the study and needed future work are summarized at the end, in Section 4.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2020.01.288&domain=pdf
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Nomenclature

ADS action-level data segment
EMG electromyography
IMU inertial measurement unit
LOO leave one out
TTS train test split
i index of body joints
j index of joint angles
k index of actions
m index of models/sensor units
n index of workers
l/u/v indices of ADSs in the overall dataset, training dataset, and testing dataset
Aj features of joint angle j
Dm,n sensor data of worker n obtained by sensor unit m
Ijoint index set of body joints
Iangle index set of joint angles
Iaction index set of actions
Imodel index set of models
Iworker index set of workers
Ji coordinates of joint i
Li distance feature of joint i
Mm CNN model trained using the data obtained by sensor unit m
Naction the number of actions
Nworker the number of workers
Nm,n the number of ADSs extracted from dataset Dm,n

Rm,k the accuracy of model m on predicting action k
S m the set of ADSs using sensor unit m
S tn/ts

m the ADSs dataset for training/testing model Mm

xm,l/u/v ADS obtained from sensor unit m
ym,l/u/v the ground truth of ADSs obtained from sensor unit m

2. The Approach

The approach to creating the multimodal sensor system and using sensor fusion to achieve reliable recognition of
assembly actions is presented below. The proposed method of this paper is not restricted to a specific set of actions
in a particular assembly process. Therefore, the method can be generalized for recognizing assembly actions at any
workstation of an assembly line wherein the involvement of workers is an inevitable part of the process.

2.1. The multimodal sensor system

This study used two Myo armbands developed by the Thalmic Labs (https://developerblog.myo.com/) and one
Kinect developed by Microsoft (https://developer.microsoft.com/en-us/windows/kinect) to form the multimodal sen-
sor system. The Myo armband is a wearable device that consists of 8 surface electromyography (EMG) sensors and
a 9-axis inertial measurement unit (IMU) that consists of a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis
magnetometer. The IMU of Myo armband provides the spatial data (i.e., orientation and motion) of the armband in
13 channels: orientation (7 channels, including quaternions and Euler angles), angular velocities (3 channels), and
accelerations (3 channels). Sampling frequencies of the EMG sensors and IMU are 200 Hz and 50 Hz, respectively.
Kinect, an infrared light range-sensing sensor, contains an RGB camera (640 × 480 pixels @ 30 Hz), a 3D depth
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sensor, and a four-microphone array. This study used a Kinect to track the 3D Cartesian coordinates of 17 skeletal
joints of workers, as Fig. 1(a) shows. The sampling frequency of Kinect is 30 Hz. As Fig. 1(b) illustrates, the two

a. b.

Fig. 1. The multimodal sensor system: (a) tracked skeletal joints and (b) setup of the sensor system.

Myo armbands were worn at the left and right forearm regions of a worker, respectively. The EMG and IMU signals
of each armband were transmitted to a laptop via the Bluetooth communication unit. The Kinect was used to monitor
the assembly operation by the worker, and stored the RGB images and the skeletal joints data of the worker.

2.2. Data preparation

Workers sensed by the multimodal sensor system are indexed by n and the total number of workers is Nworker.
Sensor data of these workers were collected for either training action recognition models or testing the models. Sensor
data were pre-processed and turned into data with a structure suitable for the convolutional neural network (CNN)
model chosen by this study. The data preparation involves four procedures, which are presented below.

2.2.1. Sensor data fusion
The IMU signals of each armband were collected and saved as a time series dataset with 13 channels (3 for

acceleration, 3 for velocity, and 7 for orientation), as Fig. 2(a) illustrates. The dataset obtained from the armband worn
on the right arm of any worker n, denoted by DR−IMU,n, provides information on the orientation and motion of the
worker’s right hand. Information of the left hand is given by the the other dataset, DL−IMU,n, obtained from the left
hand armband.

a b

Fig. 2. Data Fusion: (a) IMU time series data of 13 channels, DL/R−IMU,n; (b) EMG time series data of 8 channels, DL/R−EMG,n.

The EMG signals of each armband on worker n, collected by eight independent EMG sensors, were similarly
turned into a 8-channel time series dataset, illustrated in Fig. 2(b). With two armbands, two datasets were obtained,
DR−EMG,n and DL−EMG,n, which capture muscle activities of the right arm and left arm, respectively.
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2.2.2. Skeletal feature calculation and feature fusion
Coordinates of skeletal joints are spatial data containing the information of human configuration and motion [10].

This study turned the coordinates of joints into two types of skeletal features and used the time series of the features
to model worker assembly actions.

Let the spine shoulder (joint #3 in Fig. 1(a)) be the reference point or the origin of human skeleton. The distance
from each joint to the origin was calculated as a distance feature. Yet distance features may vary with workers who
are different in the height, size, arm length, and the location from the camera. To make distance features invariant to
aforesaid factors, distance features were further normalized by dividing them by the vertical distance between spine
shoulder (joint #3) and spine base (joint #5). Let Ji be the location coordinate of the ith joint sensed by the Kinect,
i ∈ I joint = {1, . . . , 17}. The normalized distance feature Li is computed as:

Li =
||Ji − J3||2
||J5 − J3||2

, ∀ i ∈ I joint\{3, 5}. (1)

Eq. (1) indicates L3 and L5 were excluded, which are equal to 0 and 1, respectively.
Joint coordinates were further used to calculate joint angles between any two connected limbs [27]. Provided with

the 17 joints, there are 16 joint angles in total, indexed by j, j ∈ Iangle = {1, . . . , 16}. Let b j and b′j be the orientations
of the two limbs forming the jth skeletal angle, the angle feature Aj is calculated as

Aj = arccos
b j

T b′j
||b j||2||b′j||2

, ∀ j ∈ Iangle. (2)

The orientation of any limb, such as b j in (2), can be calculated from the coordinates of joints on the two ends of the
limb.

Skeletal distance features and joint angle features of any worker n were further fused, becoming a skeletal feature
vector with 31 channels, [L1, L2, L4, L6, . . . , L17, A1, . . . , A16]. The time series data of this 31-channel feature vector is
the Kinect dataset, DKinect,n, illustrated in Fig. 3.

Fig. 3. Time series of skeletal features including both distance features and joint angle features.

2.2.3. Segmentation of action-level time series data
Consider an assembly operation that requires a worker to sequentially take Naction actions indexed by k. Throughout

the operation, the multimodal sensor system continuously captured five sets of time series data aforementioned, Dm,n,
for m ∈ Imodel = {L-EMG, R-EMG, L-IMU, R-IMU, Kinect} and for any n ∈ Iworker = {1, . . . ,Nworker}. Each dataset
Dm,n is long time series data covering Naction actions. In this study, a sliding window technique was applied to extract
meaningful short segments of time series data from the long time series datasets {Dm,n}. In the remainder of the paper,
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the extracted segments are named action-level time series data segments (ADSs). These ADSs were used to train and
test CNN models for action recognition. The selection of a window length is vital. ADSs of very short time span do
not contain sufficient information to fully recognize the performed actions. Those of very long time span may contain
data of more than one action [28]. Successive windows were overlapped to better handle the transition from one action
to another. The length of sliding window and the overlapping degree largely depend on sensor data and actions to be
recognized [28]. Given the appropriately selected window length and overlapping degree, in total Nm,n ADSs were
extracted from Dm,n, indexed by l. Let xn,m,l denote an ADS extracted from dataset Dm,n, and yn,m,l be the ground truth
that identifies the action of worker n corresponding to this ADS.

2.2.4. Oversampling to balance the sample sizes among actions
ADSs extracted from the dataset Dm,n were samples of multiple actions. Among the Nm,n ADSs, Nm,n,k ADSs were

samples of action k. Nm,n,k can dramatically vary from one action to another due to the fact that different actions
possess different cycle times in a manufacturing assembly. For instance, grabbing a tool might take much less time
compared to tightening a screw using an Allen key. The very imbalanced sample sizes across different actions would
imapct the performance of classification algorithms [29]. To overcome this issue, this study adopted an oversampling
technique to balance the sample distribution among actions through a random replication of minority class instances
[30]. After applying the oversampling technique, all the actions a worker took have the same number of ADSs, equal
to maxk∈Iaction {Nm,n,k}. Consequently, the total number of ADSs for any action k, collected from the Nworker workers, is∑

n∈Iworker
maxk∈Iaction {Nm,n,k}, m ∈ Im.

2.3. CNN models for action recognition and model fusion

Let S m = {xm,l} denote the set of ADSs (indexed by l) that were collected from the Nworker workers and covered
all actions they took. S m was split into two mutually exclusive subsets: S tn

m = {xm,u} and S ts
m{xm,v}, where u and v are

indices of ADSs in these two datasets, respectively. A CNN model Mm was trained using S tn
m , and S ts

m was used to test
the model. In total five models were trained: ML−EMG, MR−EMG, ML−IMU , MR−IMU , and MKinect.

For any v, there were five ADSs obtained by the five different sensor units, respectively. Therefore, worker actions
can be predicted by five independent models as well as by a combination of these models. For an ADS xm,v, the pre-
diction made by model Mm is a probability distribution on Iaction, denoted by Pm,v and ||Pm,v||1 = 1. Model fusion was
used in this study to attempt to improve the prediction performance. Table 1 lists four methods of model fusion con-
sidered in this study. AF1, AF2, and AF3 in Table 1 are based the average fusion method that averages the predictions
of various independent models. WF is a weighted average of predictions, which is discussed below.

Table 1. Methods of model fusion.

Fusion Model Name Index Set of Models for Fusion Fusion Method

AF1 IAF1 = {L−IMU , R−IMU } 1
2
∑

m∈IAF1 Pm,v

AF2 IAF2 = {L−IMU , R−IMU , Kinect} 1
3
∑

m∈IAF2 Pm,v

AF3 IAF3 = {L−IMU , R−IMU , L−EMG , R−EMG , Kinect} 1
5
∑

m∈IAF3 Pm,v

WF IWF = IAF3
1
5
∑

m∈IWF wm · Pm,v

The five CNN models may not be equally good at predicting all the actions of assembly operation. For example,
tightening a screw using fingers may be predicted better by MR−EMG or MR−IMU than does MKinect because EMG
and IMU data should be more capable than skeletal features in capturing fine motions. A weighted fusion method
emphasizing the strength of each model in recognizing specific actions was proposed. In this study a modification
factor assigned to the prediction of action k made by model m, wm,k, was determined using the corresponding recall,
Rm,k. For any action k, the five CNN models were divided into two tiers according to their recall values: models with
the top two recall values were in the first tier and their predictions were amplified by multiplying the modification
factor wm,k that is greater than 1. The remaining three were in the second tier and their predictions are remained
unchanged; that is, the modification factor for tier models is 1. Let wm = [wm,1, . . . ,wm,Naction ] be the vector of the
modification factors for model m. In the last line of Table 1 wm · Pm,v is the modified prediction of model Mm,
obtained by performing the element-wise multiplication between wm and Pw,v.
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obtained by performing the element-wise multiplication between wm and Pw,v.
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3. An Illustrative Example

3.1. The experiment setup

The workstation for assembling a Bukito 3D printer was set up in a lab. The study used one step of the assembly
process, named “putting on the handle” in the product assembly instruction manual, as an example to illustrate and
assess the proposed approach to creating the action recognition system. This step of assembly includes seven actions
shown in Fig. 4. To capture the between-subjects variability, five subjects were recruited to perform the assembly.
Their ages were ranged from 18 to 55 years. The multimodal sensor system for sensing workers in this assembly
task was set up in the way shown in Fig. 1(b). The Allen key set, screw box, tool box, and Bukito kit were tools and
material involved in this assembly. To count the randomness of human actions (i.e., the within-subject variability), the
five subjects were asked to repeat the assembly for 10 times.

Fig. 4. Sequential actions for “putting on the handle” in assembling a Bukito 3D printer.

3.2. Data preparation

Time series sensor datasets were created by following the method described in section 2.2. Then, ADSs were
segmented from these datasets using a sliding window that can cover 2 seconds of time series data. Any two successive
ADSs have a 50% ovelap. The time to complete an action varies significantly among the 7 actions so that the number
of ADSs varied largely from one action to another, as Table 2 illustrates. The oversampling method was applied to
create evenly distributed ADSs across the seven actions.

Table 2. The sample size of ADSs (before/after oversampling)

.

Subjects Action-1 Action-2 Action-3 Action-4 Action-5 Action-6 Action-7

Subject-1 26/122 46/122 46/122 70/122 44/122 122/122 50/122
Subject-2 30/128 24/128 66/128 72/128 62/128 128/128 64/128
Subject-3 10/100 18/100 44/100 24/100 36/100 100/100 30/100
Subject-4 10/78 16/78 32/78 64/78 30/78 78/78 30/78
Subject-5 22/134 30/134 60/134 74/134 68/134 134/134 56/134

3.3. Training CNN models for action recognition

Five CNN models {Mm|m ∈ Imodel} for classifying actions were independently trained. The model Mm was trained
to automatically extract discriminative features of worker actions from the dataset S st

m. ADSs were normalized to
be within the range [−1, 1] before being fed to the network. The proposed CNN architecture is illustrated in Fig. 5.
Parameters for individual CNNs are also summarized in this figure. The Leave One Out (LOO) validation method
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Fig. 5. The proposed CNN architecture.

was performed to evaluate the strength of individual CNN models in recognizing human actions in assembly. Each
time, data of four subjects were used for training the CNN models and data of the remaining one subject were used to
assess the prediction accuracy of the models. The LOO validation was performed five times and each time the subject
for testing was rotated to a different worker. Consequently, all the ADSs were tested. Given the testing result, the
prediction accuracy of each model on each task was calculated, shown in Fig. 6(a). For each action, the two models of
the first tier are labeled with their accuracy values in Fig. 6. Accordingly, the vector of prediction modification factors,
wm, was determined for each model m, shown in Fig. 6(b).

a

b

Fig. 6. Evaluation of model strength: (a) prediction accuracy, and (b) prediction modification factors wm,k .

3.4. Assessment of sensor fusion methods

The five CNN models and the four fusion methods based on these models were assessed using two cross validation
methods: the LOO and the Train-Test Split (TTS). In use of the TTS method, 50% of ADSs of every subject were
used for training and the remaining 50% were used for testing. Fig. 7 shows the prediction accuracy of the five
individual CNN models and the four fusion methods evaluated by both LOO and TTS methods. Among the five
individual models, the prediction accuracy of MR−IMU was similar to that of MKinect, and they outperformed the other
three models. AF1, the average fusion of ML−IMU and MR−IMU , had higher accuracy than did each individual model.
AF2, which adds MKinect to AF1, further increased the accuracy by 6.7% and 8.2% in the LOO and TTS evaluations,
respectively. Compared to AF2, the average fusion of all five CNN models, AF3, only improved the accuracy by 0.6%
in the LOO evaluation. The proposed weighted average fusion, WF, outperformed AF3 by increasing the accuracy
by 1.5% in the LOO evaluation and 2.7% in the TTS evaluation. It was noticed that AF3 in the TTS evaluation had
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a lower accuracy (81.9%) than AF2 (84.3%). The weighted average fusion WF overcame the limitation of AF3 and
achieved the highest accuracy (84.6%).

Fig. 7. Evaluation of prediction accuracy.

4. Conclusions and Future Work

In this study, we propose a multimodal sensor system and weighted fusion method in developing a robust and
reliable action recognition system. The study shows that, EMG and IMU data perform well in recognizing fine actions
involved with finger motion i.e., insert screw, tighten screw manually. On the other hand skeletal data does better
in recognizing coarse actions involved with arm motion i.e., take the handle, give back the tool. Moreover, we have
shown that reliability of the recognition system can be enhanced by fusing the aforesaid information at data, feature
and score levels to complement the information and applying oversampling technique to overcome the limitation of
unbalanced dataset. Furthermore, we also proposed a new weighted fusion method, that emphasizes each model’s
strength in recognizing specific actions and put modification factor to the predictions accordingly in decision making
which improves the result. The effectiveness of our proposed sensor system and weighted fusion method has been
verified with an illustrative example of assembling a Bukito 3D printer in lab setting.

The study of this paper builds a foundation for important future work. For instance, exploring other fusion methods
to further improve the accuracy; scaling up the current work by applying the proposed approach to the recognition of
assembly actions on various workstations of an assembly line.
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