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Abstract—Widespread event detection is a fundamental net-
work function that has many important applications in cy-
bersecurity, traffic engineering, and distributed data mining.
This paper introduces a new probabilistic threshold-based event
detection problem, which is to find all events that appear in
any w-out-of-a monitors with probabilistic guarantee on false
positives, where o is the total number of monitors and the
threshold w(< a) is a positive integer parameter that can be
arbitrarily set, according to specific application requirements.
We develop an efficient threshold filter solution and its improved
versions, which combine Bloom filters, counting Bloom filter,
threshold filter and compressed filters in a series of encoding and
filtering steps, providing tradeoff between detection accuracy
and communication overhead. We theoretically optimize the
system parameters in the proposed solutions to minimize the
communication overhead under the constraint of probabilistic
detection guarantee. Extensive simulations demonstrate the prac-
tical viability of the proposed solutions in their ability of finding
widespread events in a large network with few false positives
and low communication overhead.

[. INTRODUCTION

Detection of widespread events across a network is a
fundamental function that has many important applications
in cybersecurity, traffic engineering, and trend monitoring
[11, 2], [3], [4], [5]. During an outbreak of Internet worms
[6], knowing which subnets have detected infection will
enable coordinated defense and monitoring of how infection is
spreading. During a large-scale DDoS attack such as the 2016
Mirai attack [7], knowing which subnets are out of Internet
service and which are not would help diagnosis quickly nar-
row down toward the critical failing points that brought down
service access. With a distributed deployment of honeypots
that catch intrusion attempts [1], knowing multiple attempts
at different honeypots sets distributed attacks from target-
ed ones. Generally speaking, widespread attacking events
should raise alerts at higher levels for immediate attention
and prioritized responses. Significance of widespread event
detection goes beyond security applications. In a network
that experiences frequent congestions, knowing whether this
is a single point of congestion or a widespread problem
at multiple routers provides guideline on how to expand
link capacities and restructure network topology in order to
relieve congestion. A global Internet search company may also
benefit from detecting which phrases were widely searched
at its servers distributed at different geographical locations.
Profiling widespread interest over time helps the company
learn various trends among the Internet users in terms of
news development, commercial product popularity, political
opinions, etc.
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There are two system models for widespread event detec-
tion: the coordinator model [4] and the peer-to-peer model
[5]. The coordinator system model consists of a central coor-
dinator and a set of distributed monitors, and the P2P model
does not have a coordinator. The monitors may be intrusion
detection systems (IDS), firewalls, honeypots, routers, or
servers, each producing logs about events that have happened
locally. For example, some of the logs produced from the
intrusion detection systems (i.e., monitors) may be designed
for distributed worm detection as follows: At the end of every
reporting period, each IDS sends the coordinator all (source
address, destination port) pairs that it sees in the packet
stream. Here, each address/port pair is an event. If many
IDSes observe the same pair, this “widespread” event signals
a possible distributed scanning. If this event persists over time
with more and more other similar events (i.e., scanners) join
in, it signals a possible ongoing worm propagation [6]. In
another example, servers of an Internet search company may
want to compare their search records to find popular search
phrases. Here, servers are monitors and search phrases are
events.

In the coordinator model [4], monitors report their data
to the coordinator, which process the received data and
communicate the results back to the monitors in order to help
them identify widespread events. It takes one round trip delay.
In the P2P model [5], the monitors exchange data amongst
themselves to find widespread events. It takes numerous round
trips, each round having some monitor pairs to exchange their
data. Technically, all prior solutions [4], [S] are designed to
only detect the widespread events that are observed by all
monitors, which seriously limits their practical use. In the
previous example of distributed scanning detection, we do not
have to observe a source/port pair at all monitors. If it appears
in an unusually large number of monitors, an anomaly alert
could be issued. Similarly, we do not have to see a search
phrase appears in all search servers in order to declare that it
is popular.

This paper introduces a generalized problem called
threshold-based event detection, which is to find all events that
appear in any w out of @ monitors, where a is the total number
of monitors and the threshold w(< a) is a positive integer
parameter that can be arbitrarily set, according to specific
application requirements. The prior art [4] is a special case
of the generalized problem with w = a, and their simplified
solutions cannot be used to solve the general problem, which
requires us to resort different techniques to deal with false
positives and control communication overhead.

We focus on the coordinator system model in this paper
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to avoid long delay from the P2P model where monitors
exchange data in many sequential rounds. The coordinator
model takes only one round of communication between all
monitors and the coordinator. However, as all monitors report
their data to the same coordinator, it creates a communication
bottleneck [4]. Consider the previous example where every
IDS sends the coordinator its source/port pairs, which can
number in millions, and this is just one type of events that
IDS will report. With a large number of IDSes, the combined
traffic volume to the coordinator can be overwhelming. In
the Internet search example, as all servers send their sets of
search records to the coordinator, the combined traffic can
again be overwhelming. Transmitting all raw event data to the
coordinator may cause tremendous network traffic, strain its
access link, and thus degrade the performance of widespread
event detection.

To reduce communication overhead, we relax the problem
from exact widespread event detection to probabilistic detec-
tion, such that we do not have to send raw data but instead
minimize communication through lossy encoding and com-
pression. Our probabilistic detection requires that all events
that appear in any w-out-of-a monitors must be detected with
zero false negative, while there may be a small number of
false positives, meaning that an event appearing in fewer than
w monitors may also be reported, with a probability smaller
than e, which is a system parameter that can be set arbitrar-
ily small, allowing tradeoff between detection accuracy and
communication cost. We believe widespread event detection
with probabilistic guarantee is acceptable to most applications.
In the previous examples, as long as we can successfully
detect all distributed scanners and find all real popular search
phrases, a small number of false positives are nuisance but
will not nullify the usefulness of the system.

The contributions of this paper are summarized as follows.

e We introduce a generalized threshold-based formulation
for widespread event detection with probabilistic guarantee.
To the best of our knowledge, this is the first work on the
generalized widespread event detection problem, with the
prior art being a special case (with w = a).

e We develop an efficient threshold filter solution and
its improved variants, which perform distributed computation
between monitors and a coordinator, combining Bloom filters,
counting Bloom filter, threshold filters and compressed filters
in a series of encoding and filtering steps, which together
reduce communication overhead between the monitors and
the coordinator significantly, while ensuring probabilistically
guaranteed event detection.

e We mathematically reveal the tradeoff between detection
accuracy and communication overhead, prove that the proba-
bilistic guarantee is achieved, and theoretically optimizes the
system parameters in the proposed threshold filter solutions
to minimize the communication overhead.

e We perform extensive simulations to demonstrate that
our solutions achieve probabilistic guarantee of threshold-
based widespread detection with high efficiency and low
communication cost.
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II. SYSTEM MODEL AND PROBLEM STATEMENT
A. System Model

We consider a distributed network monitoring system con-
sisting of a number a of distributed monitors and a central
coordinator. These monitors are deployed at selected vantage
points in the network. They independently monitor and record
events, which can be customized depending on applications
as suggested in the introduction. The monitors report infor-
mation of their event sets to the coordinator at a pre-defined
frequency or upon query. The coordinator is responsible for
collecting, combining and synthesizing data from different
monitors to form a global view. It then informs the monitors
of the combined information for further actions. This general
model has been adopted in many prior work on distributed
monitoring [8], [9], [10], [11].

B. Problem Definition

Let X = {x1,29,...,2,} be the set of monitors, and E;
the set of events observed by monitor z;, 1 < i < a. Let E,
be the union of all event sets, i.e., F/, = U?:l F;. Consider an
arbitrary event e € I,. The number of monitors that observe
the event is called the frequency of the event, denoted as f(e).
An event e is called a w-widespread event if it is observed by
w or more monitors, i.e., f(e) > w, where w is a threshold
value set by the user based on specific application needs, and
it is distributed by the coordinator to all monitors.

The threshold-based widespread event detection problem
is for each monitor z;, 1 < ¢ < a, to find all w-widespread
events in its event set £; so that it may react accordingly based
on pre-set policies, e.g., blocking the source addresses in dis-
tributed scanning, logging the traffic of widespread activities
for further analysis, or placing the results of widespread web
searches in cache for quicker response. Let IV; be the set of
w-widespread events in F;,

W, ={e:e€ E; f(e) > w}. (1)

The sets of w-widespread events at different monitors may not
be identical because any w-widespread event may be observed
by some monitors but not others. We denote the union of W;,
1<i<a,as W,.

Exactly finding W; for each monitor can be very expensive
when there are many monitors and each monitor has numer-
ous events. If the function of widespread event detection is
performed frequently for real-time reaction and all monitors
need to send their events (or event identifiers) to the coordi-
nator for precise identification, the communication overhead
can be extraordinarily high, particularly for the coordinator.
Now if we relax the requirement by performing detection
approximately, we may be able to reduce the overhead to a
small fraction of the brute-force approach of sending the raw
event sets to the coordinator. As have been argued earlier,
many applications can tolerate inaccurate identification of
w-widespread events. For example, if there are false pos-
itives where some non-widespread events are classified as
widespread, the applications of logging widespread activities
or caching widespread web searches should work fine as
long as the false positive ratio is made sufficiently small.
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Even for applications that require precise identification of w-
widespread events, an approximation solution may still help
as it can be used as a pre-processing step to filter out most
non-widespread events and thus allow the monitors to only
transmit the much-reduced approximate sets of widespread
events to the coordinator.

Let W; be the approximate w-widespread event set iden-
tified at monitor z;. This paper considers the probabilistic
threshold-based widespread detection, which aims to find W;
at each monitor x; with probabilistic guarantee that consists
of the following two requirements:

o Completeness requirement: ¥i € [1,a], W; C W
We require every member in W; must belong to the approx-
imate w-widespread event set W;. That is, for an arbitrary
monitor x;, it must find all w-widespread events.

o False positive ratio requirement: Yi € [l,a], Ve €

E; — W;, ¢ = Prob{e € W;} is the false positive
ratio at monitor z;. Let lrgaéca{ai} be the worst-

case false positive ratio. We require that ¢ < £*, where

e* € (0,1) is a false positive upper bound pre-defined

based on application needs.
For an event at monitor x; that is not w-widespread, the
false positive ratio ¢; is the probability that this event is mis-
classified to W;, which should be upper-bounded by ¢*. For
example, when £* is set to 0.01, we require that the false
positive ratios of all monitors are less than 0.01. Clearly,
a smaller value of ¢ (< £*) means more accurate detection
results.

Since all monitors communicate with the coordinator, the
communication amount of traffic received/sent by the coordi-
nator is a primary performance concern. Therefore, we strive
to reduce the communication of the coordinator. Meanwhile,
we should also reduce the communication and computation
overhead at each monitor.

We formulate two optimization goals in our solutions.
For the first one, given an upper bound of communication
overhead that the system can tolerate, we minimize the worst-

case false positive ratio at any monitor, i.e., ¢ = max {¢;}.
1<i<a

For the second one, given a preset accuracy requirement £,
we minimize the total amount of communication overhead.

C. Naive Solution

As we mentioned earlier, a naive solution to calculate
W; for each monitor x; is using raw data transmission.
Each monitor stores the observed events locally and transmit
those events to the coordinator at the end of each reporting
period. The coordinator combines all received data, identifies
the w-widespread events for each monitor, and then notifies
each monitor its w-widespread event set. Suppose b bits are
required to represent each event. Then the total amount of data
that the coordinator receives from all monitors is >_;_, b|E;],
and the total amount of data that the coordinator sends to all
monitors is Y i, b|W;|. Therefore, the total communication
overhead for the coordinator is > ¢, b(|E;|+|W;|). When the
number of events in each monitor or the number of monitors
is large, this solution incurs significant network traffic at the
coordinator, which is not applicable in practice.
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III. RELATED WORK

The emergence of large-scale cooperative monitoring sys-
tems has drawn much research attention over the recent years.
Some researches focus on applying specific aggregate func-
tions for the data collected from distributed monitors, includ-
ing threshold function [8], [9], discovering top-k [12], heavy
hitters and quantiles [13], [14], and set expression cardinality
estimation [15], [16]. Other research focuses on monitoring
distributed data streams [10], [11]. Also related is distributed
database join. Mackert et al. proposed Bloomjoin [17] to re-
duce communication cost for joining two distributed data sets.
Michael et al. [18] studied the intersection of multiple lists
in a distributed system without a central coordinator, where
a series of two-list join is performed sequentially among
distributed lists. This sequential approach takes long time
when there are a lot of lists. Chen et al. [5] performs sequential
joins among event monitors arranged in a hypercube structure.
Most related is the work by Cai et al. [4] on widespread event
detection. However, their techniques are limited to detect
widespread events that are observed at all monitors. To the
best of our knowledge, we are the first to introduce and solve
the probabilistic threshold-based widespread event detection
problem, where widespread events are defined based on a
parameter w that can be set based on application needs.

IV. THRESHOLD FILTER SOLUTION

We present a threshold filter solution (TFS) as the starting
point for solving the probabilistic threshold-based widespread
event detection.

A. Bloom Filter and Counting Bloom Filter

A Bloom filter [19] is a bit array used to encode mem-
berships of a set. In our context, to encode an event in the
set from a monitor, we pseudo-randomly select k bits in the
filter through & hash functions, and set these bits to ones. For
membership lookup of a given event, we map it to k bits in
the filter using the same hash functions. If all k bits are ones,
we classify that this event belongs to the set; otherwise it is
not in the set.

A Bloom filter does not have false negative, meaning that
it never mis-classifies a member event in the set as a non-
member. But it may have false positive, meaning that it may
mis-classify a non-member as a member. The probability for
this to happen is called false positive ratio, which should be
made sufficiently small. Let n be the number of events in
the set, and m be the number of bits in the filter. The false
positive ratio Py is

11— —

En\ * —kn\ k
Pf_(l (1--) )~(1 )@
It is well known that when k = In2 - %, Py is minimized
to (3)* = (0.6185) % . For example, when m = 8n, the false
positive ratio is minimized to 0.02 when k takes the optimal
value of 5. Under the optimal k value, each bit in the filter
has a 50% probability to be 0.

A counting Bloom filter [20], [21] replaces each bit in
Bloom filter with a counter, which is initialized to zero. When
encoding an event, we hash the event to k counters and
increase those counters by one.

1
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Fig. 1: An example of the threshold filter solution.
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B. Main Idea

Bloom filters provide compact representation of event sets.
Sending them instead of raw data from monitors to the coordi-
nator helps reduce communication overhead. Counting Bloom
filters use counters to keep event multiplicity information,
which is what the widespread event detection needs. One
idea is for each monitor z; to encode its event set F; in
a counting-Bloom filter and for all monitors to send their
counting-Bloom filters to the coordinator, which combines the
filters into a single counting-Bloom filter for £, by adding
the corresponding counters in all received filters. However,
this approach is not very communication-efficient because
the size of a counting-Bloom filter is multiple times that of
a Bloom filter, depending on the counter size which has to
accommodate the largest counter value in the whole filter.

To ensure communication efficiency, our approach will
not use a separate counting Bloom filter at each monitor.
Instead we let each monitor z; use a simple Bloom filter
BF; to encode F; and send the filter to the coordinator. After
receiving such Bloom filters from all monitors, the coordinator
combines them into a single counter filter A by adding the
corresponding bits in the received filters. A will be different
from the counting-Bloom filter (CB) for E;, which we will
show through an example. The coordinator then turns A back
into a bit filter called the threshold filter 7', which is then
filtered by BF; before being sent to monitor x; for detecting
all w-widespread events in Fj.

C. Design Details

At the end of each reporting period or upon query from
the coordinator, every monitor x; encodes its event set £; in
a Bloom filter BF; of m bits, and then sends BFj to the
coordinator. Figure 1 gives an example with k = 2, a =
3, w = 2, and W, = {e;}. The value of m controls the
communication overhead. We will discuss how to set its value
in the next section where we analyze the system parameters.

When the coordinator receives all a Bloom filters
{BF;,1 < i < a}, it combines them into a single counter
array A by adding them up: A[j] = 37 | BF;[j],1 <j <m,
where A[j] refers to the jth counter in A and BF;[j] refers to
the jth bit in the filter BF;. A is different from the counting-
Bloom filter (CB) for the union E, of {BF;,1 < i < a},
which is also shown in the middle of Figure 1 under A.

Next the coordinator converts the counter array A into a bit
array called master threshold filter T' as follows: If A[j] > w,
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T[j] = 1; otherwise, T[j] = 0, where T[j] refers to the jth
bit of 7', 1 < j < m. The intuition is that a w-widespread
event will set the same k bits at the Bloom filters from w
or more monitors. When we add the filters to form A, those
corresponding counters will be at least w. When we convert
those counters back to ones (to save space and communication
overhead), the resulting bit array would become a filter that
encodes the set W, of all w-widespread events. Unfortunately,
T is not exactly a Bloom filter for W, because a bit in 7" may
be set to one by “noise” in A, instead of by events in W,,
which will be explained at the end of this section. That is, T°
may have more ones than the Bloom filter for W,, which is
shown as BF'(W,.) below T in the example of Figure 1.

Finally, the coordinator produces an individual threshold
filter 'I;; for each monitor x; by performing bitwise AND on
T and BFj;. It then sends 7} to monitor x;. The idea is that
we shall remove ones in 7" where the corresponding bits in
BF; are zeros, meaning that no event in F; is mapped to
those bits. Compare 7" and 7} in Figure 1. The 7th bit in 7" is
one, but after bitwise AND with BFj, the bit becomes zero
as no event in E; = {el,e2} is mapped to this bit. Upon
receiving 7}, monitor z; performs membership lookup for all
its events in E;. An event is classified as a w-widespread
event if its & bits in 7; (which the event is hashed to) are all
ones; we denote such classified events as a subset W, € E;.
Note that the false positive ratio of filter 7; is denoted as ¢;
in Section II-B.

For example, in Figure 1, when z; looks up for e; and e in
filter 77, it will find that only e; is a member /gnd thus Wy =
{e1}, which is correct. Similarly, xo finds Wy :/\{61763},
including a false positive e3, and z3 finds that W3 = {},
which is also correct.

Following the structure of TFS, it is straightforward to
show by the following proposition that 7; does not cause
false negative, i.e., W; C W;, which means the completeness
requirement is met.

Proposition 1: Ve € W; e € /I/IZ- after execution of TFS,
forl1 <i<a.

Proof: For an arbitrary event e in W;, it must be observed
in w’ monitors, where w < w’ < a. Denote these w’ monitors
as T, Ti,,---,T;,,. The k bits that e maps to will all be
ones in Bloom filters BF; , BF,,..., BF; ,. Thereby the
corresponding & counters in the counter array A must all be
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at least w’. Since w’ > w and e € E;, those k counters will
be converted to ones in the corresponding k bits in the master
threshold filter 7', as well as in its threshold filter 7;. When
the monitor z; performs the membership lookup for the event
e, it will find | all k bits for e are set to ones in 7Tj, and thus
include it in W;. |

The false positive ratio requirement will be met by setting
the system parameters m and k appropriately in the next sec-
tion, where m controls the communication overhead. Setting
these Bloom-filter parameters is tricky as we show below
that the intuitive thought of using optimal Bloom filters BF;,
1 <4 < a, as described in Section IV-A, may result in poor
performance.

We use simulations to test the performance of TFS under
optimal Bloom filters BF;, 1 < i < a. The number a of
monitors is set to 10. The number n of events in each monitor
is set to 10,000. We set the length m of each Bloom filter BF;
to 8n or 15n. We use the optimal k value for each filter, i.e.,
k =1In2- ™. The event frequency f(e), e € E, follows a
zipf distribution in [1, a]. The simulation is repeated for 100
times to obtain statistical results.

We never observe any false negative in the simulations,
which confirms Proposition 1 empirically. Figure 2 presents
the performance of TFS, where x-axis shows the threshold
value w from 2 to 10, and the y-axis shows the worst-case
false positive ratio €, which is the largest among ¢;, 1 <7 < a,
i.e., the false positive ratio of individual threshold filter 7;.
The figure shows that € becomes larger when w becomes
smaller. For example, with m = 8n, as w decreases from 10
to 2, € increases from near zero to 0.86. Clearly, optimizing
BF; does not necessarily make 7; perform well, particularly
for a small w, which means we need to set the parameters of
BF; differently.

We provide an intuitive explanation of the above obser-
vation. For optimal BF; with k& = In2 -, the probability
for any of its bits to be one (or zero) is 0.5. When we add
BF;, 1 < i < a, to produce A, any counter in A has an
average value of 4, which represents a pervasive noise level
in A. Now consider the k counters for an event that is not
w-widespread, if the threshold w is small, the noise in those
counters (at a level of 5) can easily go beyond the threshold,
causing a false positive, since the corresponding k bits in T;
are all ones (with those k& counters greater than or equal to
w). Intuitively, we will need to reduce the value of k for BF;
and thus the probability for bits in BF; to be ones, in order
to reduce the noise level in A and thus the number of ones
in 7', which in turn helps reduce the false positive ratios of
individual threshold filters 7T;.

V. OPTIMAL THRESHOLD FILTER SOLUTION
In this section, we analyze the optimal parameter setting,
and the resulting optimal threshold filter solution is OTFS.
A. Parameter Optimization

There are two types of optimization. The first is to choose
the optimal number k£ of hash functions that minimize the
worst-case false positive ratio of the threshold filters 77,
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Fig. 2: False positive ratios of TFS under optimal BF;.

subject to a given size m of BF;, 1 <17 < a, which is set to
limit the communication overhead between the monitors and
the coordinator. This optimization problem is fundamentally
different from setting the optimal k£ for a Bloom filter to
minimize the same filter’s false positive ratio. We are setting
the k value for BF; to minimize the worst-case false positive
ratio of 73, 1 < ¢ < a. The second optimization is to choose
the optimal number & of hash functions that minimizes the
size m of BF;, i.e., the communication overhead between
the monitors and the coordinator, subject to an upper bound
¢* for the false positive ratios of 7, 1 <1 < a.

The second optimization is to choose the optimal number
k that minimizes the size m of BF}, i.e, the communication
overhead between the monitors and the coordinator, subject
to an upper bound ¢* for the false positive ratios of 7;, 1 <
1< a.

1) First Optimization OTFS-I: Let n* = 1r£17a<xa{|E,\}, and
p; denote the probability that a bit in BF; is 0, 1 < i < a.
According to [22], we have

1.\ kE; _ klE)
pi=(1- )" xe 3)
m
Let p* be the value of p; when |E;| = n*. That is,
. 1\ kn~ _ kn*
p:(l——)nze m “4)
m
Clearly, p* is the minimum value of p;,
pi>pt, V1<i<a ®)

Consider an arbitrary event e whose frequency f(e) is smaller
than w. We analyze the worst-case probability € for it to be
mis-classified as a w-widespread event. Event e is hashed
to the same k bits in 7; and BF;, 1 < ¢ < a. False
positive happens when these k bits in 7; are all ones, i.e.,
the corresponding k& counters in A are greater than or equal
to w. Consider an arbitrary one of these k bits, and let j be
the bit index. Let P be the probability of A[j] > w. It is easy
to see that when P is maximized,

e = Pk, (6)

Alj] is the sum of BF;[j], 1 < i < a. Because e appears at
f(e) monitors, the corresponding Bloom filters have ones at
index j, which means A[j] is at least f(e). Let II be the set of
Bloom filters from monitors where e does not appear. Hence,
P is the probability for at least w — f(e) filters in II to have
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one at index j, each happening with a probability 1 —p;. P is
maximized under the following conditions: i) f(e) = w — 1,
i.e., it suffices for any filter in II to have one at index j; ii)
p; = p*, i.e., the probability for any filter in II to have one
at index j takes the maximum value 1 — p* from (5). That is,
the worst case happens when all event sets have the same size
n*. Under these conditions, the probability for all (a —w+1)
filters in II to have zero at index j is (p*)*~**+!. Hence, in
the worst case,

P=1-— (p*)afwjtl. (7)
From (6) and (7), we have
e=(1-0)", ®)

where we define joint differential o« = a — w + 1.

Upon query from the coordinator, all monitors report their
event sizes |E;|, 1 < i < a, to the coordinator, which
finds the maximum event set size n*. If the coordinator has
a communication constraint that limits the amount of the
traffic between itself and the monitors, it sets the value of
m such that the total traffic, m - a bits, does not exceed the
constraint. We can assume that m > n*, which is reasonable
for any Bloom filter of practical use because otherwise the
false positive ratio would be too high (62% or more). The
coordinator finds the optimal value k that minimizes the false
positive ratio € of 7; in (8) as fgllows: Since p* = e by
definition, we have k = %‘(”) Apply it to (8), we have ¢
as a function of p*,

—mln(p*)
F

(")) ©)
Let 8 = —In(p*) - In(1 — (p*)®). Since m > n*, in order to
minimize ¢ in (9), we shall minimize /3. Taking derivative of
B with respect to p*, we have

a8 _
dp*

e=(1- = (671“(7’*)‘1"(1*(1)*)“))%.

@) n ((p*)*) = (1-(p")*) m (1-(")*)

p*-(1=(p*)*) ’ 10

dB
dp*
from the symmetry of the expression of
check that ;;ﬁ is negative for 0 < (p*)* < 3

for 2 < (p*)® < 1. Hence, /3 (also ¢) is minimized when

. *\oo 1
is 0 when (p*)* = 3. Furthermore,

ap
dp* k

It is easy to check that

it is easy to

and positive

(p*)* = 3. Because k = %’1@*), we have the optimal
value for £ as
m
k=In2 - — (11)
Applying it to (8), we have the optimal false positive ratio ¢,
1ipo. m
e = (@, (12)

In practice, we must use at least of one hash function. Hence,

m
k = max{1, [In2 om/*J}' (13)
The optimal threshold filter solution that chooses &k by (13),
subject to the value of m, is named as OTFS-I, which attempts
to minimize the worst-case false positive ratio of 7;, 1 < i <
a. After finding the value k, the coordinator sends m and k
to all monitors, which will construct BF;, 1 < i < a.
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Fig. 3: False positive ratios of TFS and OTFS with m = 30n*.

2) Second Optimization OTFS-II: Suppose the coordinator
sets an upper bound e* for the false positive ratio of 73,
1 < ¢ < a. Under this requirement, we want to find the
optimal value % that minimizes the size m of BF;, ie.,
the communication overhead between the monitors and the
coordinator. The optimal threshold filter solution that achieves
the above goal is OTFS-II, whose parameters are set as
follows. From earlier analysis, we know that under any value
of m, the best possible false positive ratio is given by (12)
under the optimal £ in (11). Replacing ¢ in (12) with its upper
bound £*, we derive the minimum value of m for such a false
positive ratio,

alne* |
=~ " (14)
Applying (14) to (11), we have
k=—Ine*/In2. (15)
Because k£ must be a positive integer, we set
k =max{l, |—Ine*/In2|}. (16)

The coordinator sends the computed m and & to all monitors.

B. Numerical Results

We use simulations to compare TFS using optimal BF;
(Section 1V) and OTFS-I. We set the value m to be 15n*.
Figure 3 presents the average false positive ratios of individual
threshold filters 7; with respect to the threshold w. Clearly,
OTFS-I outperforms TFS with much smaller false positive
ratios. When the threshold w decreases, the false positive ratio
moves up, which is also expected from (12). When w is very
small (such as 3), the false positive ratio is 0.18 when m =
30n*. To reduce the ratio, we will have to further raise m (thus
the communication overhead). Can we increase m without
causing higher communication overhead? This is what the
compressed threshold filter solution will do next.

VI. COMPRESSED THRESHOLD FILTER SOLUTION
A. Motivation

Consider OTFS-I. Its number of hash functions, computed
from (11) as k = In2- <, is smaller than that of an optimal
Bloom filter, i.e., K = In2 - 7% for encoding n* events.
For an optimal Bloom filter, each bit has an equal chance
to be one or zero. The filter cannot be further compressed.

The communication overhead for its transmission is m bits.
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However, BF; in OTFS-I is constructed with a smaller value
of k. Hence, BF; is not an optimal Bloom filter. In fact, each
of its bits has a greater chance to be zero, which means the
filter can be compressed to reduce communication overhead
[23].

Suppose we have a constraint for the communication over-
head to be bounded by 2az, where z is per-filter overhead.
If we send the filters BF; uncompressed, then m = z, which
is the case in the previous section. But if we compress the
filters before sending, we disconnect m from the overhead,
and can therefore increase it to reduce the false positive ratio;
see Figure 3. Similar to OTFES, there are also two types of
optimization. The first is to choose the optimal values of &
and m that minimize the worst-case false positive ratio of the
individual threshold filters 7}, subject to a given maximum
size z of BF; after compression, 1 < ¢ < a. The second
optimization is to choose the optimal values of k and m that
minimizes the maximum size z of BF; after compression,
subject to an upper bound ¢ for the false positive ratios of 73,
1 <7 < a. The size m of BF; before compression can be
much larger than z.

We point out that the idea of compressed Bloom filters
was proposed in [23], but our work is completely different.
We optimize the performance of threshold filters 7; when
the Bloom filters BF; are compressed before transmission.
Threshold filter is a new concept in this paper, not in [23].

B. Design of CTFS

Upon query from the coordinator, all monitors report their
event sizes | F;|, 1 < i < a, to the coordinator, which finds the
maximum event set size n*. Depending on which optimization
will be used, the coordinator determines the values of the
system parameters k£ and m (see the next subsection). It then
sends k and m to all monitors. Each monitor z; encodes its
event set F; in a Bloom filter BF; of m bits, and compresses
the filter before transmitting it to the coordinator. Upon receipt
of all compressed filters, the coordinator decompresses them
to recover BF;, 1 < i < a. It adds them to produce A and then
the master threshold filter 7" as described in Section IV-C. It
produces individual threshold filters 7; by performing bitwise
AND on 7" and BF;. It compresses 1; before sending it to
monitor x;. 7; has no more ones than BF; (which contains
more zeros than ones); in fact, all bits of ones in 7; must be
ones in BF;. Therefore, the size of 7; will be no greater than
that of BF; after compression. After monitor x; receives its
compressed threshold filter, it decompresses it to recover T;.
Monitor z; performs membership lookup for all its events in
F;. An event is classified as a w-widespread event if its &
bits in 7; (which the event is hashed to) are all ones.

CTES is similar to OTFS except for the compression
/ decompression component. This seemly small difference
in operation has significant impact on performance. CTFS
performs much better than OTFS under the same overhead
constraint or the same false positive requirement. Technical-
ly, the addition of compression / decompression makes the
optimization problems much harder, which we will address
next.
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C. Parameter Optimization

From the compression limit in Shannon’s source coding
theorem [24], for an m-bit Bloom filter BF; in which each
bit has a probability p; to be 0, it can be compressed down
to mH (p;) bits, where p; is given by (3) and H(p;) =
—p;logy(pi) — (1 — pi)logy(1 — p;) is the binary entropy
function. In the worst case, mH (p;) is maximized to mH (p*)
when p; takes the minimum value p* as specified in (4).

1) First Optimization CTFS-1: Given the maximum event-
set size n* and an upper bound z for the size of any
compressed filter, we want to decide the values of k£ and m
that minimize &, subject to mH (p*) < z, where z > n*. We
know that a larger filter size m helps reduce false positive.
So we choose the largest value by letting

oz
H(p*)’
Combining it with (9) for the worst-case false positive ratio
of threshold filters, we have

a7

-5 _lp®) Q- | =
e= (1)) = (e )T g
— In(p*)-In(1—(p")*) e
= (&P (wogam o+ (- rma=n)) -
Define v to be the exponent inside the parentheses,
In(p*) - In(1 — (p*)“
R (") - In(1 = (p")°) o)

p*In(p*) + (1 —p*)In(1 —p*)’
Since z > n* and logy(e) > 0, in order to minimize e, we
shall minimize the exponent . Appendix A of the supplement
material [25] shows that v decreases as p* increases when
a > 1. To minimize v, we need to maximize p*. Initially,
let’s assume that p* can take any value from O to 1. The
proof of the following lemma can be found in Appendix A
of the supplement material [25].

Lemma 1: Given any value a > 1, v is minimized in the
limiting case to —1 as p* goes to 1.

Theorem 1: For an arbitrary value o > 1, the minimal false
positive ratio ¢ is (0.5)7.

Proof: According to Lemma 1, ~ is minimized in the
limiting case as p* goes to 1. The value of ¢ is minimized
when v is minimized. In this limiting case, v goes to -1, and
£ goes to ¢ P lomE = (0.5)7 . |

In theory, we can achieve a false positive to (0.5)=* by
approaching p* to 1. However, P* cannot take arbitrary
values. It is a function of integer k. In order for p* to approach
to 1, according to (4), k should approach to zero, which is
not possible. In practice, if we set k& to its smallest value
of 1, p* takes its maximum practically-possible value e~ ,
which in turn minimizes ~y (and thus ¢), since v monotonically
decreases as p* increases. Consequently, with the use of
compressed filters, the optimal value of k should be set to
one, for the optimization problem of minimizing the false
positive ratio of threshold filters under the constraint of per-
filter communication overhead of z bits. A small value for
k has an additional benefit that construction of the Bloom
filters BF; and lookup of the threshold filters 7} require
fewer hash operations, which saves computation overhead.
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Although compression and decompression require additional
computation, they are one-time cost, and there are extremely
efficient algorithms to do so [26].

With £ 1, we can compute the optimal value of
m, together with the corresponding value of p*, from the
equations of (17) and (4). Applying k£ = 1 to (4), we have

n*

pr=e"m. (20)
Applying (17) to (20) to eliminate m, we have
pt = e~ H(PY)/z 1)

We can solve the above equation numerically for the value of
p*. We then apply this value back to (17) for the optimal value
of m. We use CTFS-I to denote the compressed threshold filter
solution that uses the optimal values of k£ and m as computed
above. Applying the computed value of p* to (18), we can
find the worst-case false positive ratio of the threshold filters
under the optimal values of k and m.

2) Second Optimization CTFS-II: Given the maximum
event-set size n* and an upper bound £* for the false positive
ratios of the threshold filters, we want to decide the values of
k and m that minimize the worst-case compressed filter size
z for transmission. From (17) and (4), we have the worst-case
filter size after compression as

2= —kn*H(p")/In(p"). 22)
Replacing ¢ in (8) with £*, we have
kE=lne*/In(1 — (p*)°). (23)
Applying (23) to (22), we have
_ p n(p*) + (1 —p*)In(1 - p") 24

n*logy elne™.

In(p*) - In(1 — (p*)*)

According to (19), the fraction term on the right is % Hence,

z= %n* logy elne. (25)
The value of ~ is negative. We know earlier that it decreases
as p* increases. Hence, its absolute value increases as p*
increases. To minimize z, we want to maximize the absolute
value of 7, which means maximizing the value of p*. The
values of p* and k are connected through (8), for a given value
of ¢*. According to (8), in order to maximize p*, we shall
minimize k to its smallest possible value of one. Applying
k=1 and (4) to (8), we simplify it to

0471*

S =1—(p)*=1—e . (26)

m=—an*/In(l —e"). (27)

Applying (27) and k£ =1 to (4), we can find the value of p*
under the optimal values of m and k:

*

p =ec

1;1(1“75) (28)
Finally, applying this p* value and k£ = 1 to (22), we will
get the minimized filter size z after compression in the worst
case.
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VII. SIMULATIONS

In this section, we evaluate the performance of OTFS and
CTFS through simulations. Since this is the first work on
threshold-based widespread event detection, there is no prior
work to compare with. Therefore, we will use our baseline
approach, TFS with optimal Bloom filters BF; (Section IV),
as a benchmark for comparison. The most related work [4]
is a special case of our generalized solution. In fact, when
w = a, the proposed solution reduces nicely to [4]. Namely,
the two will have the same performance. However, the method
in [4] cannot handle any case of w < a.

A. Simulation Settings

We consider two types of optimization as described in
Section V and Section VI. The first optimization is to min-
imize the worst-case false positive ratio € of the threshold
filters when per-filter transmission overhead is bounded by
m for OTFS and z for CTFS. The second optimization is
to minimize the communication overhead concentrated at
the coordinator, subject to a preset false-positive ratio upper
bound e*.

The default number of monitors a is set to 10 though we
will vary it for scalability study. The number |E;| of events
at each monitor is randomly chosen from [100000, 500000]
with max value n* = 500000. Each event has a 64-bit unique
identifier. The frequency f(e) of event e € E, follows a zipf-
like distribution in [1, a]. When studying the first optimization,
we vary the per-filter overhead bound m (z), with m for
TFS/OTFS and z for CTFS. We compare the average false
positive ratio of all monitors under different solutions, includ-
ing TES with optimal Bloom filters, OTFS-I and CTFS-I, with
respect to m (z). For the second optimization, we vary the
false-positive ratio upper bound £*, and compare the overall
communication overhead at the coordinator under different
solutions, including OTFS-II and CTFS-II, with respect to
e*. TFS with optimal Bloom filters is not included here
because it cannot guarantee a false positive upper bound.
Each simulation is repeated for 100 times to obtain statistical
results.

B. Performance w.rt. Per-filter Overhead Bound

In the first set of simulations, we compare the perfor-
mance of TFS, OTFS-I and CTFS-I with respect to the per-
filter transmission overhead bound m (z), where m is for
TES/OTFS-I and z is for CTFS-I. The simulation results for
threshold w = 3 and w = 8 are given in Figure 4, where
z-axis shows the per-filter transmission overhead bound m
(z) in units of n*. Since similar comparisons are observed for
other threshold values w, we omit those to save space.

Figure 4a and Figure 4c compare the average false positive
ratios of TFS, OTFS-I and CTFS-I when w = 3 and w = §,
respectively. OTFS and CTFS are based on TFS, thereby they
all meet the completeness requirement in Section II-B. Thus,
a smaller false positive ratio means more accurate detection.
When the threshold value is large (e.g., w = 8 as shown in
Figure 4c), all solutions can achieve very accurate detection
with false positive ratios consistently below 0.01. When the
threshold value is relatively small (e.g., w = 3 as shown
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Fig. 6: Performance comparison of OTFS-II and CTFS-II with respect to false positive ratio bound ¢*

in Figure 4a), the false positive ratios of TFS and OTFS-I
become large, while that of CTFS-I stays small, ranging from
0.0004 to 0.03, which is expected because compression makes
CTFS-I more effective in information transfer for the same
communication overhead. One can also see that the accuracy
of our solutions all improve when m (2) increases, which is
consistent with our earlier theoretical analyses.

Figure 4b and Figure 4d compare the actual communication
overhead of different solutions. Clearly, CTFS-I incurs much
less communication overhead than TFS and OTFS-I under the
same per-filter bound. This is because CTFS-I compresses
filters before transmission, and the compression ratios vary
with different sparsity in the filters. More sparse filters will
have higher compression ratios, thereby saving more com-
munication overhead. These results demonstrate the superior
performance of CTFS-L
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C. Detection Accuracy w.r.t. Number of Monitors

Next, we evaluate the performance of CTFS-I with respect
to different number of monitors, a. We vary a from 10 to 20
to 40. The results are presented in Figure 5. From the figure,
under the same threshold w, the detection accuracy (i.e., false
positive ratio) becomes slightly worse as a increases. For
example, in Figure 5b, when w 8 and z 10n*, the
false positive ratio is 0.0002 when a = 10, 0.0008 when
a = 20, and 0.0028 when a = 40. Intuitively, a larger number
of monitors will incur more noise in the filter A, which will
cause more false positives, as explained in Section I'V-C.

D. Performance w.r.t. False Positive Ratio Bound

In the last set of simulations, we compare the performance
of OTFS-II and CTFS-II with respect to the false-positive
ratio bound ¢*. The simulation results with w 3 and
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w = 8§ are shown in Figure 6, where £* varies from 0.005
to 0.05. Figure 6b and Figure 6d present the average false
positive ratios among all monitors. We can see that the average
false positive ratios for OTFS-II and CTFS-II are smaller
than the preset upper bound, which conforms to their design
goals. Figure 6a and Figure 6¢ compare the communication
overhead of the two solutions, where the overhead is defined
as the amount of data that is received and sent by the
coordinator. CTFS-II incurs far less communication overhead
than OTFS-II under every threshold value w. For example,
when w = 3 and ¢ = 0.03, the overhead of CTFS-II is
only 38Mb, far less than 583Mb of OTFS-II, thanks to its
communication reduction by compression. This confirms the
superior performance of CTFS-II as its compression design
intends to achieve.

VIII. CONCLUSION

In this paper, we introduce and formalize a new problem
of probabilistic threshold-based widespread event detection
in large networks. We first propose a threshold filter solution
(TFS) based on highly compact Bloom filters, from which
we develop two improved solutions, optimal threshold filter
solution (OTFS) and compressed threshold filter solution
(CTFS). OTFS theoretically optimizes the communication
cost by selecting appropriate parameters for Bloom filters.
CTES further introduces compression and decompression for
transmitting Bloom filters. We not only theoretically analyze
their performance, but also perform extensive simulations
to complement the theoretic analysis. The simulation results
demonstrate that our solutions can efficiently provide accurate
threshold-based widespread event search results with low
communication cost.
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