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Abstract Advanced manufacturing techniques such
as extrusion-based methods have enabled the fabri-
cation of ceramic composites with ordered inclusion
phases (i.e. the size and position of the inclusion
can be precisely controlled) to improve their overall
strength and toughness. Conventional theories, simu-
lation approaches, and experimental methods for ana-
lyzing fracture in composites with randomly dispersed
inclusion phases (resulting in homogeneous, isotropic
effective properties) become inadequate at understand-
ing and designing composites with ordered inclusions
for enhancing effective properties such as toughness.
In addition, existing methods for analyzing fracture
in composites can be computationally expensive and
pose challenges in accurately capturing experimentally
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observed fracture growth. For example, extended finite
element and phase-field methods are computationally
expensive in evaluating the large design space of pos-
sible inclusion arrangements enabled by the new man-
ufacturing techniques. In this work, a closed-form ana-
lytical model for themixed-mode stress intensity factor
in a composite with selected inclusion arrangements
is presented, which expedites the analysis for vari-
ous composite designs. Moreover, the fracture initia-
tion calculation is adapted to approximate crack prop-
agation with computational efficiency. The accuracy of
this model for predicting fracture initiation is validated
by linear elastic fracture mechanics analysis using the
finite element method. The prediction of fracture prop-
agation is validated using a phase-field model, as well
as a 4-point bending experiment. Finally, the model
is applied to analyze three different composite inclu-
sion arrangements to study the effect of various mate-
rial combinations and geometries on the overall tough-
ness of the composite; a complete sampling of (and
optimization) over the entire design space, however, is
beyond the scope of this work. The relative increase
in crack length (compared to a homogeneous mate-
rial) is used as a metric to compare the relative tough-
ness of three different composite designs. Within these
designs, using the fast-running approximate method,
the effect of the ratio of inclusion radius to inclu-
sion spacing, and the elastic mismatch on the resulting
crack length are compared to determine the compos-
ite arrangements that result in the greatest toughness
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enhancement for selectedmaterial properties. In partic-
ular, a multi-phase cubic array resulted in the greatest
toughness enhancement of the designs considered.

Keywords Patterned inclusion · Fracture · Ceramic
composite · Analytical approximation

1 Introduction

Ceramic materials exhibit many useful properties such
as high strength, stiffness, melting temperatures, and
chemical stability. However, the fundamental problem
preventing their widespread use in structural applica-
tions is their low fracture toughness. The brittle nature
of ceramics renders such structures susceptible to com-
plex crack paths. Thus, the failure of ceramic struc-
tures is difficult to predict. As a result, the safety of
ceramic structures is often given by probability distri-
bution functions (Danzer 1992; Evans andWiederhorn
1984). Uncertainty in the failure strength of such struc-
tures requires large safety factors that increase cost,
require more material, and increase weight. Due to
these issues, a longstanding goal has been to find ways
of increasing the toughness of ceramics.

One approach to increase toughness, which is often
found in nature, is to create ceramic composites and
hierarchical structures (Gao et al. 2003; Ritchie et al.
2009). This approach has been explored in experi-
ments (D’Angio’ et al. 2018) and theoretical anal-
ysis (Faber and Evans 1983a, b; Miller et al. 1998)
to determine how inclusion phases at different scales
affect overall strength and toughness. The introduction
of secondary phases and hierarchy leads to toughen-
ing mechanisms such as crack deflection, interface de-
bonding, and fracture branching.

Currently, particulate ceramic composites are gener-
ally manufactured using the process of powder sinter-
ing where secondary phase particles are mixed with the
matrixmaterial. After sintering, the secondary particles
form a random distribution of inclusions. One limita-
tion of this process is that the precise arrangement of the
inclusions, which affects crack propagation, cannot be
controlled. To overcome this limitation, co-extrusion
techniques have been developed that enable the posi-
tion andgeometry of inclusions to be tailored (Hoy et al.
1998). This method will be adapted to create ceramic
composites with precisely positioned cylindrical inclu-
sions with specified radii. With the ability to carefully

control composite geometry parameters (such as inclu-
sion spacing and the periodic pattern) enabled by this
manufacturing technique, a wide range of composites
can be created that result in different fracture behavior.
However, with the large design space, an efficient and
sufficiently accurate method is necessary to feasibly
search for optimal composite arrangements.

To analyze fracture initiation and propagation in dif-
ferent composite arrangements, we developed an ana-
lytical model for themixed-mode stress intensity factor
of a kinked crack within a multi-phase composite with
multiple inclusions, which was validated with exper-
iments and was compared with linear elastic fracture
mechanics (for initiation) and phase-field simulations
(for propagation). Our approach combines the previ-
ous analytical models for the mode I (Li and Chen
2002) and mode II (Yang et al. 2004) stress inten-
sity factors of a straight crack near an inclusion and
a model for the local mode I and II stress intensity fac-
tors of a kinked crack tip under far-field mode I and II
loading (He and Hutchinson 1989). Using this model
and an incremental crack extension method (described
later), the toughness of several different composite
arrangements was computed based on a crack length
metric.

2 Mixed mode stress intensity factor of a kinked
crack near inclusions

In the following, we analyze the mixed-mode stress
intensity factor at a kinked crack tip in the vicinity of
two nearby inclusions as shown in Fig. 1. The approach
is general and can be applied to different composite
arrangements with more than two inclusions (as will be
shown later), but as a starting example, we restrict to
the geometry in Fig. 1. In particular, the change in stress
field due to inclusions decays to the far-field stress away
from the inclusions. It is therefore a reasonable assump-
tion that only the two nearest inclusions (in a possible
array of inclusions) will significantly affect the crack.
As will be seen in subsequent sections, experiments
will be performed on notched specimens in a 4-point
bending configuration. In our analysis, we zoom in on
the crack tip in the specimen assuming a far-field load-
ing is applied (due to 4-point bending), which results in
amode I and II stress intensity factor in a homogeneous
material with a straight crack, K1 and K2, respectively.
We now assume there is a kinked crack with length,
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Fig. 1 Illustration of a the 4-point bending geometry and b the
geometry of a kinked crack between two inclusions in a specimen
subjected to far field mixed loading (zoomed in region near the
notch in the 4-point bending specimen)

a, at an angle, ω, relative to the initial straight crack.
The radius and angle from the center of the two circular
inclusions (relative to the tip of the kinked crack seg-
ment) are (r1, θ1) and (r2, θ2), respectively. The radius
of the inclusions (assumed equal) is R and their sepa-
ration distance is D as shown in Fig. 1b.

2.1 Mode I stress intensity factor on a straight crack
in a 4-point bending test

As a first step, we assume a moment, M , is applied
to the 4-point bending specimen. To analyze the influ-
ence of the inclusions on the stress intensity factor, we
first compute the stress intensity factor at the notch in
the specimen due to the applied moment (assuming at
this point the specimen is homogeneous without inclu-
sions). For a 4-point bending experiment with a single
edge notched specimen, the stress intensity factors (in
mode I and mode II) due to the applied global loading
on a straight crack without a kink is given by Anderson
(2005),

K1 = 6M

B W 3/2

√
2 tan
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2

)

cos
(
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2

)

×
(
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2

))4
)

,

K2 = 0,

(1)

where B is the depth of the specimen, W is the width
of the specimen, and ā = a/W is the ratio of the notch
length to the width of the specimen as shown in Fig. 1a.

2.2 Approximate stress intensity factor of a kinked
crack

Next, the stress intensity factor of a kinked crack tip
(added to the initial straight notch crack) is determined
in order to mimic material defects at the crack tip.
Due to the presence of nearby inclusions, the crack
will prefer to propagate in a certain direction, which
is initiated by small-scale defects that we approxi-
mate as an infinitesimal kink. The mode I and II stress
intensity factors at a kinked crack in a linear elastic,
isotropic, homogeneous material are, respectively, of
the form (He and Hutchinson 1989)

KI = Re[c + d]K1, KI I = Im[c − d]K1, (2)

where K1 is the mode-I stress intensity factors due to
the applied global loading on a straight crack without a
kink given in (1), which is in turn related to the applied
moment to the specimen. The parameters c and d are
functions of the kink angle, ω, for an infinitesimal kink
length (see Appendix 1). Note that we have proceeded
by assuming an initial straight crack and setting K2 = 0
in the result of He and Hutchinson (1989) to obtain (2).

2.3 Influence of a nearby inclusion on a straight crack

We now consider the influence of the inclusions on
the stress intensity factors (mode I and II) of the
kinked crack. Here we follow the analysis of Li and
Chen (2002) and Yang et al. (2004) who derived an
approximate form for the change in the mode I and II
stress intensity factors, respectively, around a straight
crack due to the presence of a nearby inclusion. Their
approach is based on the influence of a perturbation
in material properties on the stress intensity factor of a
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straight crack (Lambropoulos 1986). For circular inclu-
sions, the changes in stress intensity factor in mode I
and II (for the i = 1, 2 inclusion) are, respectively,

ΔKIi = KI

(
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ri

)2 (
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,

(3)

where R is the (equal) radius of the inclusions, ri is the
distance of the i th inclusion from the crack tip, θi is
the angle of the i th inclusion relative to the crack (cf.
Fig. 1). Note that the integral results in Li and Chen
(2002) and Yang et al. (2004) have been simplified by
assuming the inclusion radius R is small compared to
the distance between the inclusion and crack tip, ri , to
obtain (3); the original integral expression is computed
by evaluating the integrand at the center of the inclusion
and multiplying it by the inclusion area. It should also
be noted that here we assume the kink length, while
small compared to the initial crack, may not be small
compared to the distance to the inclusions. Hence, the
radius to the inclusions, ri , is taken relative to the tip of
the kinked crack (not the tip of the initial straight crack).
Likewise, the angles of the inclusions are taken relative
to the axis of the kinked portion of the crack as shown in
Fig. 1b. The coefficientsC1,C2,C3, andC4 are defined
based on material properties (included in Appendix 1).

Once the change in stress intensity factor (for mode
I and II) due to the i th inclusion is determined, ΔKIi

and ΔKI I i , the total stress intensity factor at the crack
tip is found by adding to the stress intensity factor of
the straight crack in a homogeneous material,

KI,total = KI +
n∑

i=1

ΔKIi ,

KI I,total = KI I +
n∑

i=1

ΔKI I i , (4)

where n is the number of inclusions. Only two inclu-
sions are shown in Fig. 1b (n = 2), but more can be
included as necessary.

Finally, to establish a criterion for crack propaga-
tion, the energy release rate for the composite system
is defined as (assuming the crack is inside the matrix)

J =
(
KI,total

)2
Emat

+
(
KI I,total

)2
μmat

, (5)

where μmat is shear modulus of matrix material. That
is, the crack will tend to propagate in the direction of a
kink angle corresponding to the maximum value of J .

2.4 Combined effect of crack kinking and nearby
inclusions

The total mode I and mode II stress intensity factors
KI,total and KI I,total, are computed via (4), where the
stress intensity factors for the kinked crack (without
inclusions), KI and KI I , are computed via (2). To relate
quantities to the experiment, the far field mode I stress
intensity factor, K1, used to compute the kinked crack
stress intensity factors is computed using (1) as a func-
tion of the moment, M , applied to the 4-point bending
specimen. Using these relations, the total stress inten-
sity factor at a kinked crack in the vicinity of inclusions
can be computed from the load in the 4-point bend-
ing test, inclusion properties, inclusion geometry, and
inclusion arrangement.

At this point, the important assumptions in our
analysis are highlighted: (i) the effect of kinking on
the stress intensity factor assumes the kink length is
infinitesimally small relative to the overall specimen
(but not relative to the inclusion separation distance),
(ii) the inclusionswere circular with radii much smaller
than their distance to the crack, and (iii) the analysiswas
simplified by assuming one-way coupling between the
inclusions and the K-field. That is, the K-field around
a crack was used to compute the stress inside the inclu-
sions, which in turn, via the solution byEshelby (1975),
was used to compute the change in stress at the crack tip
(and subsequently the change in stress intensity factor).
In reality, the change in stress intensity factor would
again influence the stress in the inclusion. This effect
is neglected for simplicity. (iv) The matrix and inclu-
sion materials are assumed to have the same Poisson
ratio and comparable coefficients of thermal expansion
to simplify the equations. This assumption yields rea-
sonably accurate results compared to numerical results
for thematerial systemunder consideration. Finally, (v)
while the kinked crack length is assumed to be infinites-
imally small, we treat the kinked portion of the crack
as a straight crack when applying Eq. (3), which would
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be slightly different than non-straight cracks induced
by defects in the specimen.

2.5 Finite element validation for fracture initiation

In the following, the accuracy of the proposed analyt-
ical model for the mixed-mode stress intensity factor
of a kinked crack in the presence of inclusions was
examined through a case study using linear elastic frac-
ture mechanics (LEFM) finite element analysis. The
stress intensity factor and J-integral predictions were
extracted from the finite element analysis.

The mode I and mode II stress intensity factors
and J-integral from (4) and (5) were compared to the
result from LEFM obtained via finite element analysis
usingAbaqus.When simulatingdual-phase composites
using finite element analysis, the interaction between
the crack and the inclusions is generally predictedmore
accurately through a 3-dimensional model. However,
finite element analysis produces similar stress maxima
for 2-dimensional plane strain as well as 3-dimensional
analyses in comparison to plane stress as the cracks are
believed to mostly originate at the core of the spec-
imen (Twickler et al. 1986). A 2-dimensional plane
strain model (using shell elements) with circular inclu-
sions was thus preferred over a 3-dimensional model to
simplify the analyses (Fett et al. 1996; Helsing 1999;
Lipetzky and Knesl 1995; Sih et al. 1970; Stam et al.
1994; Wang et al. 1998). The elements were 4-node
bilinear plane strain quadrilaterals with reduced inte-
gration scheme.

A representative sample geometry of the 4-point
bending test with a 1 mm long centered notch and
0.2mmkinkwas selected (see Fig. 2a). The two-phases
of material in the specimen were represented using a
partition function. A ramped displacement of 0.1 mm
was applied via two contact points on the top, and the
resulting stress and strain field was computed. A dense
mesh with a smallest element size of 4 µm was gen-
erated and a square-root singularity was defined near
the crack-tip (see Fig. 2b). Note that the mesh shown in
Fig. 2cwas used in the phase-field simulation discussed
in a later section. The material properties are shown in
Table 1. Note that the Poisson ratios for the twomateri-
als in Table 1 are not identical. Nonetheless, the values
are similar such that selecting ν = 0.16 in the finite
element simulation (in order to compare with the ana-
lytical model) resulted in an accurate approximation.

The distance between the inclusions, D, and the
radius of the inclusions, R, were varied to characterize
the accuracy of the analytical model by comparing the
stress intensity factors and J-integral predicted by the
analytical model and finite element solution. The two
different inclusion radii examined were 300 µm and
500µm. These two radii were considered for the simu-
lation based on their practicality to be fabricated using
the co-sinteringmanufacturing process. This is because
exceedingly large inclusions lead to undesirablemicro-
cracks at the interface, while extremely small inclu-
sions will result in negligible changes in the fracture
behavior. The distances between the inclusions were
varied from 1.5 to 2 mm. It was observed that the
influence of the inclusions diminished as the distance
between them was increased. Thus, the maximum sep-
aration distance was limited to 2 mm as increasing the
distance resulted in little change in the stress intensity
factor. A contour integral (for evaluating the J-integral)
that encircled the crack tip but that did not intersect the
inclusions was introduced into the simulation.

For each geometric combination of inclusion radius
and separation distance, the mode I and mode II stress
intensity factors (see (4)) and the J-integral (see (5))
were plotted versus the kink angle at the end of the
notch from0◦ to 90◦ as shown in Fig. 3 (negative angles
were not considered here due to symmetry). The mark-
ers represent the finite element prediction and the solid
lines correspond to the analytical solution. Figure 3a–c,
plot the relative stress intensity factors in model I and
II, and the relative J-integral, respectively, versus kink
angle for different inclusion separation distances, D,
and fixed radius, R. The relative KI and J were nor-
malized by their value at zero kink angle ω = 0. The
relative KI I was normalized by its maximum value in
the homogeneous specimen. Figure 3c–e, also show the
same plots, but now with different radii, R, but fixed
separation distance, D.

The analytical model accurately captures the varia-
tion of the stress intensity factors and J-integral in the
range of kink angles considered (up to 90◦). As pos-
tulated through the small kink angle assumption, the
accuracy of the analytical model is higher for smaller
kink angles. Moreover, at larger kink angles, the ana-
lytical model is less accurate for the cases with inclu-
sions than the one without inclusions (owing to the
assumptionsmadewhen incorporating inclusions in the
model). To summarize, for this specimen geometry, the
analytical model predictions are within 5% (at most)

123



176 A. R. Thakur et al.

Fig. 2 A schematic of the specimen in a shows the geometry,
loading and boundary conditions for the 4-point bending test,
which includes the dimension of the inclusions and kinked crack.

The mesh detail and von Mises stress contours are shown for the
b LEFM model and c phase-field model

of the result from finite element analysis. The addi-
tion of the inclusions causes an increase in the stress
intensity factors and J-integral relative to the homoge-
neous case. This is expected for the case of compliant
inclusions considered here (cf. Table 1), which tend

to increase the stress field near the crack tip. Further-
more, as shown in Fig. 3, increasing the size of the
inclusion results in an increased J-integral. The reduced
accuracy of the analytical model for large inclusion
sizes is consistent with the underlying assumption of
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Table 1 Material properties of the matrix and inclusion materi-
als used in experiments and finite element analysis

Parameter Symbol Value

Matrix

Young’s modulus Emat 512 GPa

Poisson’s ratio νmat 0.16 (–)

Coefficient of thermal expansion
from 300 to 1073 K

CTEmat 6.6 × 10−6 K−1

Critical energy release rate Gc,mat 0.02674 N/mm

Inclusion

Young’s modulus Einc 2.55 GPa

Poisson’s ratio νinc 0.17 (–)

Coefficient of thermal expansion
from 273 to 373 K

CTEinc 4.3 × 10−6 K−1

Critical energy release rate Gc,inc 0.035 N/mm

The elastic properties of the matrix were measured via the
impulse excitation techniquewhile the remainingpropertieswere
obtained from the supplier (H. C. Starck). The properties of the
inclusion were also obtained from the supplier (Goodfellow)

the inclusion radius being small compared to the crack
length.

3 Fracture propagation

3.1 Incremental crack extension method

To predict the propagation of a crack, we propose an
incremental crack extension method. First, an initial
crack tip location is chosen. Then a small kink is added
to the end of the crack. Using the fracture initiation
model based on the J-integral of the kinked crack, the
kink angle resulting in themaximum J-integral is found
numerically. That is, find the kink angle, ω, that max-
imizes J in (5). This kink angle is taken to be the pre-
ferred propagation direction. Once the preferred prop-
agation direction is determined, the new crack tip is
found by adding a small crack increment of length,
Δa = 0.001 mm, in the preferred direction. Then, the
process is repeated to find the new preferred propa-
gation direction from the current crack tip. Contour
plots of the spatial variation of the maximum J-integral
and its corresponding kink angle are show in Fig. 4a,
b, respectively. The inclusion separation distance was
D = 1.5mmand the inclusion radii were R = 0.3mm.
The material properties used were the same as Table 1
(and taking ν = 0.16). One can see in Fig. 4a that the

maximum J-integral (of all kink directions) increases
closer to the inclusions. In addition, the kink angle giv-
ing rise to the greatest J-integral tends to point towards
the left inclusion when the crack is on the left half of
the specimen and vice-versa on the right-half, as shown
in Fig. 4b.

This is, of course, an approximation because the
crack path behind the tip is not accounted for (each iter-
ation assumes a straight crack up to the current crack tip
location). However, this approach does provide a first
approximation of the crack path as most of the material
behind the crack tip becomes unloaded and thus does
not significantly affect the stress at the crack tip.

3.2 Phase-field model

To gauge the accuracy of the crack extension method,
we compare the estimated crack paths from the pro-
posed approach with those predicted from a phase-
field simulation and experiments.While the phase-field
approach is common for predicting crack paths, the
incremental crack extension method is a more compu-
tationally efficient alternative to obtain a first approxi-
mation of the crack paths through the composite. This
is especially helpful as a first pass to sample the very
large space of possible composite materials and geo-
metric combinations.

The fundamental idea in brittle fracture is that a
crack forms in order to minimize the internal energy (a
combination of strain energy and crack surface energy),
which dates back to the work of Griffith and Taylor
(1921). Assuming linearized kinematics, the internal
energy of a solid occupying a region Ω with a crack
surface Γ is

U =
∫

Ω/Γ

ψ(ε) dV +
∫

Γ

Gc dA, (6)

where ψ is the strain energy density defined such
that the stress is given by σ = ∂ψ/∂ε and ε is the
small-strain tensor (since ceramic composites are being
considered, the assumption of linearized kinematics
is appropriate). The crack surface energy density is
Gc. Note that the crack surface energy takes on dif-
ferent values, Gc,inc and Gc,mat, depending on if the
crack is in the inclusion or matrix, respectively. In
the phase-field approach, the surface integral is trans-
formed into a volume integral to simplify the numerical
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Fig. 3 Comparison between analytical model (lines) and linear
elastic finite element simulation (dots). The left column shows
the effect of different inclusion separation distances, D; a, b,
and c compare the model and simulation values of the mode
I and II stress intensity factors, and the J-integral versus kink

angle, respectively. The right column shows the effect of differ-
ent inclusion radii, R; similarly, d, e, and f compare the model
and simulation values of themode I and II stress intensity factors,
and the J-integral versus kink angle, respectively

implementation of the model via a degradation func-
tion φ(x) ∈ [0, 1] (Bourdin et al. 2008; Miehe et al.
2010). The internal energy is then,

U =
∫

Ω

(
(1 − φ)2 + k

)
ψ(ε) dV

+
∫

Ω

Gc

2

(
�0∇φ · ∇φ + 1

�0
φ2

)
dV,

(7)
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Fig. 4 Contour plots of the a J-integral and b kink angle in the
preferred direction. The J-integralwas normalized by its value for
the straight kink at the origin. The coordinate axes are normalized
by the inclusion separation distance, D/2

where now the degraded stress is σ = ∂ϕ/∂ε, withϕ =
((1−φ)2+k)ψ(x, ε) being the degraded strain energy
density function. The material is completely fractured
where φ = 1 and is undamaged where φ = 0. Also,
we let ψ depend on the spatial position x since we
will be considering composite materials with different
elastic moduli. Hence, the strain energy function will
vary with position. The parameter, k = 10−5, is a small
number for numerical conditioning. The crack width
is characterized by �0. The potential energy term, Π ,
can then be obtained by subtracting the work done by
external forces on the solid,W = ∫

Ω
b · u dV + ∫

∂Ω
t ·

u dA, from the internal energy of the solid, U . That is,
Π = U −W , where b is the body force, t is the surface
traction, and u is the displacement field.

The results for the Euler–Lagrange (equilibrium)
equations that minimize the potential energy are shown
in Table 2. We implement this material model within
the finite element method framework of Abaqus using
subroutines includingUMATandUEL.Constant strain
triangle elements were used with a single integration
point (see Fig. 2c). The material parameters used in
the phase-field model are the same as those used in the
finite element simulation, which are shown in Table 1.
However, in addition to Table 1, the intrinsic length

scale parameter, �0, in the phase-field model was taken
to be 1% of the inclusion diameter.

3.3 Specimen preparation for 4-point bending
experiments

To fabricate composite specimens to use in valida-
tion experiments, a powder-based sintering approach
was used (Hilmas and Watts 2006). The procedure is
detailed in Fig. 5. Fabricating composites comprised
of multi-phase constituents depends on their thermo-
mechanical properties, geometry, size, and nature of
the interface between them (Makarian et al. 2016).
For the experiments, materials were selected that best
mimicked the system analyzed in Fig. 1. In partic-
ular, materials with similar Poisson ratios and com-
parable coefficients of thermal expansion (to reduce
residual stress and interface cracking from the sinter-
ing process) were selected. To this end, a zirconium
diboride matrix and graphite inclusions were chosen
(refer to Table 1 for material properties). A batch of
powdered grade B zirconium diboride (93.86 wt.%)
by H. C. Starck with phenolic resin (2.3 wt.%), boron
carbide (0.98 wt.%), and traces of polyethylene glycol
and polyvinyl butyral (PVB) were added as a binder
and plasticizer, respectively, to the mix for the matrix.
A batch of graphite (47.42 wt.%), methoxy polyethy-
lene glycolMPEG (0.91wt.%), heavymineral oil (3.67
wt.%), polyether block amide PEBA-7 (24.83 wt.%),
zirconium diboride (23.17 wt.%) and phenolic resin
was prepared for the inclusion. These compositions
are summarized in Table 3. The carbon and boron
carbide additives to the ZrB2 batch promote its den-
sification (Neuman et al. 2017). These batches were
ball milled in acetone for 24 h at ambient temperature
and pressure using tungsten carbidemillingmedia. The
solution was then dried via rotary vacuum evaporation
to obtain powder mixtures suitable for densification.

For the inclusion material, graphite powder was
blended with the thermoplastic polymer and plasticiz-
ers (Table 3) using a torque rheometer at 130 ◦C and
30 RPM. This material was formed into a cylindrical
feed-rod using a heated hydraulic press. This feed rod
was then extruded into finer filaments with the desired
diameters using a ram extruder. For the matrix, the
powdered mixture batch (Table 3) was molded into
billets of desired dimensions using a rectangular die
and hydraulic press before drilling at selected inclusion
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Table 2 The Euler–Lagrange equations of the potential energy used in the phase-field model

Symbolic Index notation Description

∇ · σ = 0 σi j, j = 0 Stress equilibrium

σ n = t σi j, j n j = ti Traction relation
∂ϕ
∂φ

+ Gc φ
�0

+ Gc �0 ∇2φ = 0 ∂ϕ
∂φ

+ Gc φ
�0

+ Gc �0 φ,i i = 0 Degradation function PDE

∇φ · n = 0 φ,i ni = 0 Boundary condition of degradation function

Note that the summation convention is implied in the index notation form and commas denote differentiation with respect to the spatial
coordinates

Fig. 5 Illustration of specimen fabrication process showing the
a carbon mixture for inclusions, b ZrB2 powder for matrix, c
carbon feed rod, d ZrB2 green billet, e periodic holes drilled into

the green billet, f carbon feed rod extruded into filaments, g co-
sintered ZrB2-C billet, h sintering schedule, i ceramic composite
with inclusions, and j, k the test specimens cut and notched

Table 3 Composition of the composite specimens

Material Quantity (wt.%)

Matrix

Zirconium diboride (grade B) 96.67

Phenolic resin 2.35

Boron carbide 0.98

Polyethylene glycol Trace

Polyvinyl butyral (PVB) Trace

Inclusion

Graphite 47.42

Methoxy polyethylene glycol (MPEG) 0.91

Heavy mineral oil 3.67

Polyether block amide (PEBA-7) 24.83

Zirconium diboride 23.17

locations using fine 0.5 mm diameter, tungsten carbide
drill bits. Then the graphite filaments were threaded
through the matrix and the resulting sample was co-

sintered in a graphite hot-press (Model HP20-3060;
Thermal Technology Inc., Santa Rosa, CA) to form the
precursor to the final specimen (typical overall billet
dimensions were 40×30×5 mm3 with 500 µm diam-
eter inclusions). The specimens were heated under vac-
uum (200 mTorr) with approximately 1 hour isother-
mal holds at both 1450 ◦C and 1650 ◦C. Following the
1650 ◦C hold, the atmosphere was changed to flow-
ing argon and a pressure of 32 MPa was applied. The
specimen was then ramped to the final densification
temperature of 2050 ◦C. A ramp rate of 75 ◦C/min was
maintained for thefirst twoholds and then a ramp rate of
60 ◦C/min was applied until the densification temper-
ature was attained. The ram travel was monitored upon
reaching the final temperature to determine when the
densification process ceased before cooling. The pla-
nar surfaces of the resulting sinteredbilletswere ground
using a Chevalier FSG-618 surface grinder with a 400
grit diamond grinding wheel with progressively finer
diamond abrasives from National Diamond Lab. The
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Fig. 6 Images of the a experimental set-up, b micro-tensile tester equipped with 4-point bending test fixture, c specimen with kinked
notch and inclusions, and d the crack-tip

resulting surface finish facilitated the observation of the
specimen under the microscope during experiments.
The polished billets were then cut into the desired spec-
imen size through wire electrical discharge machining
(EDM).

A straight notch centered between the inclusions
was introduced in one specimen and an off-set notch
was introduced in the second specimen via wire electri-
cal discharge machining. These specimens were sub-
jected to a four-point-bend test using a 200 N lead-
screw micro-tensile tester by Deben-GATAN and were
observed under Hirox Digital KH-8700 optical micro-
scope as illustrated in Fig. 6.

The bonding between the inclusion and matrix is
of great importance when attempting to alter crack
propagation using the inclusions. A key factor towards
improving the bond strength is to use materials for the
matrix and inclusion with comparable coefficients of
thermal expansion since the main cause of debonding
is residual stress arising during the sintering process
(due to mismatched coefficients of thermal expansion),
which cause cracks to form. Composites with second-
phase inclusions are particularly susceptible to stress-
inducedmicro cracking due to the localized stress fields

formed during the co-sintering process (Green 1981).
In addition, spontaneous interface failures are partic-
ularly prominent in materials with large elastic mis-
match.

The inclusion size required to reduce interface frac-
ture during sintering is a function of critical stress inten-
sity factor, Poisson’s ratio, and residual stress (Green
1981). Generally, smaller inclusions have a smaller
interaction volume with the surrounding matrix and, as
a result, exhibit less residual stress. This in turn reduces
the likelihood of cracking. In addition, selecting mate-
rialswith comparable coefficients of thermal expansion
will mitigate interface fracture. Preliminary composite
specimens containing zirconiumdiboridewith graphite
inclusions with diameters of approximately 500 µm
resulted in no noticeable crack formation at the inter-
faces.

With the above manufacturing constraints, it would
appear that the possible choices of materials and
geometries are quite restricted. However, if certain
material combinations are found to be desirable based
on simulation results, butmanufacturing such specimen
results in interface debonding, there are other manufac-
turing routes that could be employed to reduce residual
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stresses. For example, recent work (Els 2014; Hilmas
et al. 2012) has focused on creating spiral shaped inclu-
sions whose geometry reduces the residual stress. The
spiral inclusion shape is formed by rolling layers of
the inclusion and matrix material together, followed
by co-extrusion into fibers to obtain the desired inclu-
sion composition and geometry. Such spirals could be
used in place of cylindrical inclusions. The spiralwould
practically behave as a cylindrical inclusion with its
effective elastic modulus based on the relative volume
fractions of materials forming the spiral. However, the
introduction of such spiral inclusions is beyond the
scope of this project.

Two types of specimens were produced with differ-
ent crack offsets (relative to the central axis between the
inclusions). For the specimens, the separation distance
between the inclusions was the same, D = 1.8 mm.
The diameter of the inclusions was 500 µm. For one
type, the initial notch was half way between the inclu-
sions while for the other, the initial notch was placed
0.5mm to the right of the central axis. Bothwere loaded
to failure. The fracture path is shown for each specimen
in Fig. 7a. The load vs. load point displacement curve
obtained from the experiments and phase field simula-
tions for the aforementioned specimens with an off-set
notch and a centered notch are illustrated in Fig. 7c.
From the experiments, the maximum load before the
ultimate failure of the specimenwas 28% higher for the
specimenwith the off-set notch than the centered notch,
66 N and 52 N, respectively. This further illustrates
the result that purely geometrical effects can be used
to alter (and increase) the failure load (i.e. strength).
Moreover, by examining the fracture paths between the
two cases, the fracture surface area in the specimen
with the off-set notch is higher than in the centered
notch. Thus, the presence of inclusions near the initial
crack results in increased crack surface area (and sub-
sequently increased energy dissipation and toughness)
by solely altering the geometry.

4 Discussion

4.1 Validation of proposed approach

To validate the proposed approach, the experimentally
observed crack path was compared with the computed
crack paths from the crack extension method and the
phase-field model as shown in Fig. 7. Figure 7a shows

the experimentally observed crack path for the two
specimens with different initial notch positions. Fig-
ure 7b combines the crack paths obtained from the
experiments (transcribed from microscope images),
phase-field model, and crack extension method. The
phase-field crackpredictionwas determinedbyplotting
the line of maximum crack set parameter, φ. The trend
of the fracture path predicted by the crack extension
method follows the experimentally measured crack ini-
tially but deviates slightly as the crack approaches
the inclusion, which is consistent with the various
assumptions in the model. Also, the phase-field pre-
diction follows both the experimentallymeasured crack
and the crack extension method. While the phase-field
result is slightly closer to the experimentally measured
crack than the crack extension method, the phase-field
method required significantly more time to compute.
For comparison, the crack extension method required
on the order of seconds to generate the path shown
in Fig. 7, while the phase-field method required on
the order of hours to simulate the corresponding path.
While a detailed comparison of the run time between
the two methods is beyond the scope of the paper,
the order of magnitude difference in run time illus-
trates, qualitatively, the efficiency of the crack exten-
sionmethod over the phase-field approach,whilemain-
taining accuracy.

With the accuracy of the analytical model estab-
lished through LEFM finite element analysis, phase-
field modeling, and an experimental case study, it
was applied to investigate the influence of the inclu-
sion properties and arrangement on the crack behavior
in the matrix. In the following sections, the material
characteristics, in particular the Young modulus mis-
match, geometry, and the location of the inclusionswith
respect to the crack-tip are shown to affect the crack ini-
tiation and subsequently the propagation through the
matrix material.

4.2 Relative crack length increase metric

In order to quantitatively compare the effectiveness
of different composite designs on increasing the over-
all toughness of the material, the relative crack length
increase metric was used, L/LH , where L is the total
length of the crack as it passes through a unit cell of
inclusions and LH is the length of a straight crack pass-
ing the same unit cell (if the material was replaced by a
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Fig. 7 a Experimental crack paths after complete fracture for
varying notch locations. The size of the bottom image was not
sufficiently large to completely visualize the denoted plotting
area. Thus, the dark shaded region was added to the left side
of the image. b Crack paths from the proposed method, phase

field model, and experiment. c Load vs. load point displacement
curve from the experiment and the phase field model illustrating
variation in failure load and subsequently toughness between
specimens with centered and off-set notch
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homogeneous one). In linear elastic fracture mechan-
ics, the energy dissipated due to crack propagation is
transferred into the energy of the new surface area. In
two dimensions, the size of the crack surface area is
proportional to the length of the crack. In the follow-
ing, we restrict our analysis to consider the case where
the fracture propagates through the matrix (i.e. it does
not intersect with inclusions). This is due to the corre-
sponding assumptionmade in the stress intensity factor
calculation. In other words, the following study of the
effect of composite design on toughness focuses on the
mechanism of crack deflection within the matrix. In
this setting, the ratio of the energy dissipated in one
unit cell between a homogeneous and composite spec-
imen (quantifying the relative toughness), is equal to
the relative crack length increase metric,

Gc,matA

Gc,matAH
= L

LH
, (8)

where A and AH are the surface areas of the crack in the
composites compared to a homogeneous material. In
the two dimensional analysis, a unit depth is assumed.

4.3 Influence of inclusion separation distance on
fracture

An obvious factor to consider when designing a com-
posite with an array of inclusions is to examine the
effect of the spacing between the inclusions. In partic-
ular, it is important to understand the ability of the inclu-
sions to affect the fracture process. To illustrate this
effect, fracture paths from the phase-field simulation
and the crack extension method are computed assum-
ing different initial starting points between the center
line, at x = 0, and the inclusion, at x = D/2, in incre-
ments of 0.1 mm as shown in Fig. 8a (for two different
ratios of the inclusion separation to the radius, R/D);
the crack extension method and phase-field model are
compared again here in order to assess the accuracy of
the analytical model as crack paths pass closer to the
inclusions. As can be seen in the two plots of Fig. 8a,
for larger crack offsets (resulting in a crack path that
is also closer to the inclusion), the deviation of the
crack extensionmethod from thephase-field simulation
increases, which is consistent with the assumptions in
themodel regarding the coupling between the inclusion
and crack tip. Quantitatively, in the left plot of Fig. 8a,

(a)

(b)

Fig. 8 Simulation of a crack propagation for different initial
crack offset positions (the solid line denotes the crack extension
method and the dots show the phase-field simulation) and b crack
length increase versus inclusion separation and offset position
predicted from the crack extension method. All distances are
relative to the inclusion separation distance, D

with R/D = 0.15, the percent difference between the
crack extensionmethod andphase-field simulation (rel-
ative to the inclusion separation, D) for each crack path
is 0.3, 2.5, 6.5, and 12.0%, for the cracks with initial
offsets of x = 0, 0.1, 0.2, and 0.3 mm, respectively.
Thus, the error of the extension method increases as
the crack path passes closer to the inclusion. Qualita-
tively, however, the crack extension method is able to
capture the same trendof the inclusions having a greater
impact on the crack as it passes closer to the inclusion.
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Again, it should be emphasized that the main advan-
tage of the crack extension method is that it can be
used as a first approximation to begin narrowing down
the design space due to its computational efficiency.
Simulating the entire design space with the phase-field
method may not be feasible depending on the compu-
tational resources available.

It is intuitive that the smaller the separation dis-
tance between the inclusions is, the closer the fracture
pathway is to the adjacent inclusion. Consequently, the
closer the crack passes to the inclusion, the influence
of the inclusion on the crack path is higher. This is
illustrated in Fig. 8b, which plots the relative percent
increase in crack length (relative to the straight crack)
where the separation distance, D, between the inclu-
sions was changed between 1.5 and 2 mm and their
radius R = 0.3 mm was held fixed. In dimensionless
terms, Fig. 8b shows the results for specimens with
R/D = 0.15 and 0.2. It can be observed that the rela-
tive percent increase in the crack length, which corre-
lates with the influence of the inclusion, is more signifi-
cant for a given crack location offset for specimenswith
smaller inclusion separation distance for a fixed applied
loading condition. An increase in crack length implies
a larger crack surface area (and subsequently increased
energy dissipation and toughness), thereby altering the
fracture toughness of the specimen solely by varying
the location of the inclusions within the matrix.

4.4 Effect of the inclusion pattern on the overall
toughness

The crack extension method was used to study three
composite designs, motivated by the results of Wei
et al. (2019), in order to determine the one resulting in
the greatest toughness enhancement. The three designs
scenarios were (1) a cubic array of stiff inclusions
rotated by an angle relative to the initial crack in order
to guide the crack, (2) a body-centered cubic array of
stiff inclusions to create a zig-zag pattern that increases
crack length, and (3) a multi-phase cubic array of stiff
and soft inclusions to also create a zig-zag pattern that
increases crack length.

4.4.1 Crack guiding using a rotated cubic array

Altering the direction of crack propagation is useful
for increasing the crack length (and therefore also the

Fig. 9 Example cubic array of stiff inclusions (α = 10 and
R/D = 0.3), denoted by the shaded circles, oriented at an angle
γ = 7◦. The crack (blue line) is guided by the orientation of the
inclusions

energy dissipated) as well as deflecting a crack away
froma sensitive component in amaterial or structure. In
this design, stiff inclusions are selected in order to con-
tain the crack propagation within the matrix. A cubic
array with n = 16 circular inclusions with variable
radius R, and fixed spacing D = 1.5 mm, were sim-
ulated, such that R/D ∈ {0.13, 0.93}. This is accom-
plished by using the crack extension method based on
the stress intensity factor in (4) where now the number
of terms in the summation is increased due to the addi-
tional inclusions. To guide the crack, the cubic array
was rotated by an angle γ relative to the initial direc-
tion of the notch crack. In this study, we sought to deter-
mine the R/D ratio that gave rise to the largest relative
crack length increase L/LH . The longest crack length
corresponded to the case with the largest possible array
orientation angle γ , while containing the crack within
thematrix. The simulations were repeated for three dif-
ferent values of elastic mismatch ratio: α = 2, 5, and
10 (defined in (12)). To change the elastic mismatch
ratio, the Young modulus of the inclusion was varied
while the Young modulus of the matrix was held fixed
as the value in Table 1. The initial notch was assumed
to be centered relative to the inclusion array (denoted
by the origin in the Fig. 9).

As an example, for the case of an elastic mismatch
of α = 10, and R/D = 0.3, the maximum angle of
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(a)

(b)

Fig. 10 a Plot of the maximum allowable orientation angle of
the inclusions versus relative inclusion radius. b Plot of the corre-
sponding relative crack length increase versus relative inclusion
radius

the array orientation such that the crack remains in the
matrix is shown in Fig. 9. If the orientation angle of
the inclusions is further increased, the crack enters into
the inclusions, which is not accounted for in the sim-
plified model. If the orientation of the array is reduced,
the crack is deflected less, resulting in a shorter crack
length and lower toughness. In this particular design,
the relative crack length increasewas L/LH = 1.0078.

In a similar manner themaximum angle of the inclu-
sion orientation and the corresponding relative crack
length increase were computed for different inclusion
radii and elastic mismatch ratio, and are shown in
Fig. 10a and b, respectively. One can see in Fig. 10a
that as R/D increases, the maximum angle that the
array can be rotated (while maintaining crack prop-
agation within the matrix) decreases. This is because
smaller inclusions can be shifted over a greater distance
before intersecting the crack path (due to their smaller
radii). The relative crack length increase versus inclu-

sion radius in Fig. 10b interestingly shows amaximum.
Generally, as R/D increases, it has a greater impact on
crack deflection and thus the crack length increases.
However, increasing R/D eventually has a negative
impact on the crack deflection because the angle of the
inclusion array must be reduced to prevent the crack
from intersecting the inclusion. Thus, there is an impor-
tant trade off between array orientation, γ , and R/D.
Of the elastic mismatches considered, α = 2, 5, and
10, the ratio of inclusion radius to spacing should be
R/D = 0.55, 0.67, and 0.75, respectively, in order to
maximize crack guiding for toughness enhancement.

4.4.2 Crack deflection using a body-centered cubic
array

In the previous design scenario, the orientation of the
array itself was used to deflect the crack and increase its
length. In the proposed body-centered cubic array, the
relative position of the inclusions is used as a mech-
anism to control the crack path as illustrated by the
example in Fig. 11a. As with the previous example, the
inclusion spacing is held fixed at D = 1.5mmwhile the
radius of the inclusions and elastic mismatch ratio were
varied. The number of inclusions used was n = 21.
The initial crack position was centered between the
initial inclusion and the body-centered inclusion, i.e.
at x = D/4. The result in Fig. 11a corresponds to
R/D = 0.24 and α = 10. For different combina-
tions of inclusion radius and elastic mismatch ratio,
the relative crack length increase L/LH was computed
(see Fig. 11b). One can see in Fig. 11b that as R/D
increases, the relative crack length increases. However,
the inclusion size cannot be increased arbitrarily large
while containing the crack in thematrix. In this case, for
R/D > 0.24, the crack will propagate in the inclusions
(for each of the elastic mismatch ratios considered).
For each radii, the crack length increase is higher for
greater elastic mismatch. In summary, the maximum
inclusion radius to spacing ratio was determined for
the body-centered array and the corresponding crack
length increase was computed.

Comparing the results in Fig. 11b with the previous
results for the rotated cubic array in Fig. 10b, for similar
combinations of inclusion radius and elastic mismatch
ratio, the relative crack length increase is always higher
for the body-centered cubic array than for the rotated
cubic array. Thus, the local individual position of the
inclusions has a greater effect on crack length (per unit
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(a)

(b)

Fig. 11 a Body-centered cubic array of stiff inclusions used
(shaded area) to increase the crack length (blue line). b Plot of
the relative crack length increase versus relative inclusion radius

cell) than the global deflection of the crack using the
rotated cubic array. However, for crack guiding, the
rotated cubic array can globally deflect and guide the
crack, while changes in the local inclusion arrangement
made possible in the body-centered cubic array only
locally deflects the path while the global path remains
fixed.

4.4.3 Crack deflection in a multi-phase array

As a final scenario, we consider the addition of a second
(weak/soft) inclusionmaterial to the previous consider-
ation of only stiff inclusions. Motivated by the zig-zag
behavior observed in Fig. 11a, the case of an alternating
stiff and soft inclusion pattern was hypothesized to fur-
ther increase the amplitude of the zig-zag behavior. For
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Fig. 12 a Inclusion arrangement in the multi-phase, cubic com-
posite and resulting crack path. The dark and light shaded cir-
cles correspond to the stiff and soft inclusions, respectively. The
crack path is denoted by the solid blue line. b Plot of relative
crack length increase versus inclusion radius for different elastic
mismatch ratios

example, see Fig. 12a, which shows the arrangement of
the stiff and soft inclusions in a cubic array. Generally,
the crack is attracted to the soft inclusions and repelled
by the stiff inclusions, resulting in the zig-zag behavior.
With two different sets of inclusions, there are now two
elasticmismatch ratios to consider corresponding to the
strong/stiff inclusion and to the weak/soft inclusion,

α1 = Estiff

Emat
, α2 = Esoft

Emat
. (9)

These two values of α are substituted into the expres-
sion for the coefficients in (11) for each inclusion that
is added in the summation in (4). The three com-
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binations of stiff and soft inclusions were the pairs:
(α1, α2) ∈ {(10, 0), (5, 0.5), (2, 0.1)}. The crack prop-
agation through composites with different inclusion
radii and elastic mismatch ratios was simulated and the
resulting relative crack length increase was determined
and is shown in Fig. 12b. Generally, as R/D increases,
the relative crack length increases due the increasing
impact of larger inclusions on the crack path. However,
for each combination of elastic mismatch, there exists a
limit to how large the inclusions can be before the crack
intersects the inclusions (corresponding to the largest
value of R/D plotted on the axis). For greater elastic
mismatch, the largest inclusion radii that can be used is
reduced. However, for greater elastic mismatch (even
with the limitation in maximum R/D), the relative
crack length increase is higher for any R/D. In partic-
ular, for the multi-phase array, the relative crack length
increase for the case of the greatest elastic mismatch
was nearly L/LH = 1.07,which is the largest observed
(for the same elasticmismatch) of the previous designs,
viz. the rotated cubic array and the body-centered cubic
array. Therefore, the multi-phase composite design is
the best design scheme for increasing crack length of
the designs considered (albeit a more complex design
due to the multiple inclusion materials); a larger design
space of possible inclusion arrangements could result
in a design that further improves the toughness, but
this is beyond the scope of this work. Nonetheless, the
efficient crack extension method would significantly
reduce the computational resources required to sample
and analyze the large design space.

5 Conclusion

New manufacturing methods have enabled a large
design space of composites that can be manufactured.
In order to search the large space for designs that
enhance the overall toughness of ceramic composites,
a computationally efficient crack extension method
was developed. The proposed method can be used
to predict the fracture behavior of composite designs
on the order of seconds (compared to hours when
using current approaches such as phase-field model-
ing), with minimal loss in accuracy. This was demon-
strated by comparing the method to LEFM, a phase-
field model, and experiments. In particular, the crack
extension method was shown to capture the behavior
of how nearby inclusions affect the propagation path

(and final length) of the crack, which is the main mech-
anism of interest when designing the composites to
increase toughness. Thus, the crack extension method
is a useful tool for sampling the large design space
of composite arrangements in an efficient manner that
lays the groundwork for future optimization studies in
order to find the configurations with the largest tough-
ness.

The ability of the crack extension method to analyze
different composite arrangementswas demonstrated by
studying a reduced design space of three different com-
posite arrangements: (1) a rotated cubic array of stiff
inclusions used to guide the crack path, (2) a body-
centered cubic array of stiff inclusions that resulted in
a zig-zag crack pattern that increases crack length, and
(3) a cubic array of stiff and soft inclusions that further
enhanced the zig-zag behavior. For each design, the
toughness was assessed via the relative crack length
increase. In design (1), for elastic mismatch ratios of
α = 2, 5, and 10, the arrangement should be chosen
such that R/D = 0.55, 0.67, and 0.75, respectively,
in order to achieve the greatest toughness enhance-
ment for matrix fracture. For design (2), likewise an
arrangement with R/D = 0.24 results in the great-
est toughening (and is not sensitive to the elastic mis-
match ratio). In (3), the inclusion arrangement with
greatest matrix fracture toughness depends on R/D;
for the largest elastic mismatch, R/D = 0.6 is the
best design, while for the smallest elastic mismatch,
R/D = 0.8 is the best design. Overall, the multi-
phase composite demonstrated the greatest toughen-
ing for similar elastic mismatch compared to the other
designs.

These results demonstrate the possibility of con-
trolling crack growth using ordered inclusion arrays,
which has been enabled by advanced manufactur-
ing approaches. Furthermore, the computationally effi-
cient crack extension method will aid in uncover-
ing optimal designs of the composites for increasing
toughness. Future efforts can utilize this fast-running
method to carry out optimization studies where the
position of each inclusion is considered as a variable
to optimize over in order to span the entire design
space.
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Appendix A: Approximate stress intensity factor of
a kinked crack in a 4-point bending test

The parameters c and d, used in (2) are functions of the
kink angle, ω, with an infinitesimal kink length. This
approximation is asymptotically accurate for small
kink angles (in a homogeneous material) and is given
by:

c = 1

2

(
exp

(
− j

ω

2

)
+ exp

(
− j

3ω

2

))
,

d = 1

4

(
exp

(
− j

ω

2

)
− exp

(
j
3ω

2

))
,

(10)

where j = √−1 (Cotterell 1965; He and Hutchinson
1989; Williams 1956).

Appendix B: Influence of a nearby inclusion on a
straight crack

The perturbation in stress intensity factor in mode I
and II fracture due to the difference in material proper-
ties of the inclusions and the matrix is dictated by the
following coefficients appearing in (3):

C1 = (1 − α)(1 − 2ν)

1 + α − 2ν
,

C2 = 3(1 − α)

2(1 + 3α − 4να)
,

C3 = (1 − α)(11 + 19α + 32ν2α − 22ν − 40να)

16(1 + α − 2ν)(1 + 3α − 4να)
,

C4 = −(1 − α)(1 − 2ν)

4(1 + α − 2ν)
,

C5 = 9(1 − α)

16(1 + 3α − 4να)
,

(11)

where ν is Poisson’s ratio (assumed to be same for the
inclusions and the matrix) and

α = Einc

Emat
(12)

is the ratio of the Youngmodulus of the inclusion, Einc,
to the Young modulus of the matrix, Emat. Note that in
most cases, the Poisson ratio of the composite materi-
als will not be identical. Hence, the results predicted

from this model will be most accurate when the Pois-
son ratios of the constituents are nearly the same value.
Despite this assumption, the model is still able to accu-
rately capture experimental results.
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