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A B S T R A C T   

Developments in additive manufacturing have enabled the reinforcement of ceramic composites across the 
scales. Understanding the fracture behavior of such composites is critical for structural design and engineering. 
However, systematic investigations on the relationship between the patterning characteristics and the effective 
fracture properties have been scarce. This work proposes a mixed-mode phase field model to investigate the 
effects of elastic modulus and pattern characteristics of circular inclusions on the fracture behavior of a ceramic 
composite beam. The modeling results have shown that the stiff and compliant inclusions can either repel or 
attract the crack. The extent of repelling and attraction can be controlled by altering the pattern characteristics. 
In addition, utilizing the relationship between the pattern characteristics and resulting fracture path, fracture 
growth can be controlled with appropriate inclusion properties. The targeted enhancement in fracture toughness 
can also be predicted using an effective fracture model linked with the underlying fracture path computed by the 
proposed mixed-mode phase field model.   

1. Introduction 

Describing brittle fracture in ceramics has developed from the initial 
notion of fracture toughness introduced by Griffith [1] to the notion of 
effective toughness in ceramic composites in recent decades [2–7]. 
Ceramic composites provide a means to increase the overall toughness of 
a structure beyond a homogeneous material due to the presence of 
toughening mechanisms such as crack deflection, branching, and 
repelling [8]. With continually advancing manufacturing methods, a 
multitude of complex composite arrangements can be created and 
geared towards increasing toughness. To discover optimal composite 
arrangements, the analysis and simulation of how cracks propagate 
through heterogeneous media is required. 

Closed form analytical solutions for the effective fracture toughness 
of laminated composites was carried out by Gao [6,9,10]. The approach 
provided an efficient way to observe how composite geometries and 
properties changed the effective response but was of course limited by 
the assumptions made including the simplified geometry and small 
elastic mismatch. In addition, this approach mainly dealt with cracks 
interacting with finite strips or layered composites. Bower and Ortiz 
(1991) extended Gao’s theory and applied the finite perturbation 

method to analyze the enhancing effect of adding small quantities of 
tough particles within a solid material in three-dimensions [2]. The ef
fect of these tough particles on fracture growth was mainly reflected in 
the crack bridging mechanisms. However, the stress intensity factor 
based linear elastic fracture mechanics (LEFM) approach has challenges 
in analyzing complex heterogeneous patterns, which can now be pro
duced with advanced manufacturing methods. Yu et al. (2009) pre
sented the derivation of an interaction (energy) integral to compute 
mixed-mode stress intensity factors in heterogeneous materials by 
obtaining the equivalent domain integral [11]. This approach has ad
vantages over the perturbation analysis (small elastic mismatch) as the 
required computational time can be significantly reduced and could be 
applied to systems with larger elastic mismatch. However, this method 
still cannot analyze complex geometry, hence, numerical fracture 
models have also gained more widespread use in studying the fracture 
behavior of composites because they can be applied cases with complex 
heterogeneities. 

The most-widely accepted numerical methods for fracture modeling 
of composite materials are the discontinuous Galerkin (DG) method, the 
cohesive zone model (CZM), and the smeared cracking model (SCM)) 
[12–18]. The SCM, especially its latest advancement, the phase-field 
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model, has shown promise recently for addressing limitations of the 
other numerical methods. Its main advantages over DG and CZM 
include: (1) there is no requirement of an initial crack (which may not be 
known a-priori), (2) it has the capability to modeling fracture branching 
and coalescing, and (3) it has relatively low requirements on mesh 
configurations (such as element type, nodes number and interpolation 
order). 

The concept of regularizing fracture (in SCM) into a continuous field, 
representing the state of material, started firstly from Rashid’s work of 
introducing stress release to the constitutive model [19]. Instead of 
creating a discontinuity for the crack, the constitutive relationship can 
be altered, or softened, based on the additional continuous field. After 
decades of development, this method has been applied increasingly 
within the field of materials science and fracture mechanics. Francfort 
and Marigo [20] adopted the concept of minimization of potential en
ergy, consisting of internal strain energy and surface energy, regarding 
displacement and crack topology. The extra scalar field representing the 
damage related material state was introduced by Bourdin [21]. In recent 
years, this method has been widely employed for several aspects of 
fracture related themes including brittle dynamic fracture and 
thermo-mechanical fracture using numerical and analytical approaches 
[16,22–24]. Hossain et al. (2014) studied the effective toughness of 
heterogeneous media with concept of macro homogenization via surfing 
boundary conditions [7]. However, the applied phase field approach 
only considered mode-I fracture, which could oversimplify the fracture 
mechanism [25,26]. Nevertheless, it was concluded that the computa
tional approach with homogenization shows higher efficiency in terms 

of memory usage compared with fully mapping [27] when investigating 
the fracture behavior of composite materials with patterned 
heterogeneity. 

Generally, phase field models for fracture utilize a scalar damage 
variable. The damage variable used here is ϕ 2 ½0; 1�, where ϕ ¼ 0 cor
responds to a virgin (undamaged) state and ϕ ¼ 1 corresponds to a 
completely fractured state. This approach introduces damage in a 
continuous manner removing the challenges associated with disconti
nuities introduced by the fracture propagation. With the damage vari
able introduced, it is necessary to relate it to the mechanics of the 
structure. One common approach is to define the damage variable 
evolution from an energy perspective [16,28] with following process. 
First the relation between the damage variable and the stored strain 
energy density must be defined. Then, one adds to the total stored en
ergy the energy required to create the new surface. Binomial and 
monotonic functions are among the most widely adopted functional 
forms for strain energy degradation due to fracture [29]. 

However, a common assumption when choosing the strain energy 
density degradation function is to assume fractures propagate solely in 
mode I. While this approach gives reasonable results for homogenous 
materials, the effect of complex stress fields in heterogeneous materials 
(in ceramics in particular) are not captured [30,31]. There have been a 
limited number of studies including mixed-mode fracture phase-field 
models, such as for anisotropic rocks [26,30] and cementitious mate
rials [25]. However, the formulations in these works were not derived 
based on the commonly adopted power-law criterion for ceramic ma
terials, which are in close agreement with the available experimental 

Fig. 1. Composite beam in 4-point bending configuration. The specimen geometry and boundary conditions are shown in (a). Inclusion arrangement for series c2 and 
s1 is shown in (b). Inclusion arrangement for series c1 and s2 is shown in (c). Inclusion arrangement for series h1 is shown in (d). Inclusion arrangement for series h2 
and h3 is shown in (e). The inclusion spacing is denoted by a and the inclusion diameter is denoted by d. 
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results [5,32,33]. This leads to less accurate fracture growth predictions. 
To obtain a more accurate picture of how cracks propagate in two- 

phase composites with varying designs, a mixed-mode phase field 
model was developed, implemented in ABAQUS, and then validated 
(discussed in Appendix A2). Using this model, crack propagation 
through a series of composite specimens with different inclusion ge
ometries and properties were simulated to gain insight into how to 
optimize the composites for increased overall toughness. Secondary 
development of user element and user material subroutines, UEL and 
UMAT, respectively, within the commercial software ABAQUS was 
adopted for the numerical implementation. The fracture resistance was 
characterized for all cases using effective fracture variables defined from 
a volumetric homogenization scheme and domain integral. The results 
show a significant enhancement in fracture toughness with both 
compliant and stiff patterned inclusions. In addition, a guided fracture 
growth was observed with combined compliant and stiff inclusion pat
terns, revealing a means to tailor and optimize the toughness of 
composites. 

2. Phase-field modeling for mixed-mode fracture 

The main concept of the phase-field method is to convert disconti
nuities in field variables due to the presence of cracks to continuous 
fields by regularizing the crack into a continuous field. The scalar phase- 
field variable is introduced as, ϕ, ranging from 0 to 1, where 0 means 
the material point has not been damaged and 1 means the material is 
fully damaged. The total internal energy is (considering the phase-field 
induced damage in strain energy) as (cf. Eq. (A.2)) 

Uðϕ; uÞ ¼

Z

Ω

h
ð1 �ϕÞ

2
þ k

i
ψðεÞdΩ þ

Z

Ω

Gc

2

�

ℓ0ϕ;iϕ;i þ
1
ℓ0

ϕ2
�

dΩ (1)  

where ψðεÞ is the elastic strain energy density (of the undamaged ma
terial), ε is the small strain tensor, Gc is the critical energy release rate, 
ℓ0 is the regularization scale parameter (controls the crack thickness), 
and k is a parameter to keep the system well-conditioned during the 

simulation. Note that index notation and summation convention are 
implied, and commas denote derivatives with respect to the spatial co
ordinates. The first term on the right-hand side denotes the reduced 
elastic strain energy due to an increase in ϕ. The second term on the 
right-hand side represents the regularized surface energy related to 
fracture growth. The potential energy is then given by the difference 
between the stored internal energy and work done by external forces, 

Π ¼ U �V; (2a)  

where the work done by an external body force, bi, and surface traction, 
ti, is given by 

V ¼

Z

ΩρbiuidΩ þ

Z

∂Ωt tiuid∂Ω; (2b)  

with ρ denoting the density. Applying the Principle of Minimum Po
tential Energy, the equilibrium solutions for the displacement field and 
phase-field damage parameter are those that minimize the potential 
energy. The potential energy can be minimized by taking its first vari
ation with respect to displacement and phase-field parameter (see Ap
pendix A1) to obtain the following governing differential equations (or 
Euler-Lagrange equations) as given in Eq. A.14a-e 

σij;j þ bi ¼ 0 in Ω (3a)  

σijnj ¼ ti on ∂Ωt (3b)  

ui ¼ ui on ∂Ωu (3c)  
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¼ ℓ0ϕ;ii in Ω (3d)  

ϕ;i ni ¼ 0 on ∂Ω; (3e)  

where σij ¼
∂φ
∂εij 

is the Cauchy stress tensor and GIc and GIIc are the critical 
energy release rate in mode I and II, respectively. Also, the applied 

Fig. 2. Graphical illustration of the material homogenization scheme and calculation of effective fracture toughness. The specimen geometry and boundary con
ditions for 4-point are shown in (a). An example crack propagation for the case with one compliant inclusion with the total propagation length labeled is shown in (b). 
Crack propagation for the conjugate case of (b) showing the homogenized area is given in (c). 
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displacement boundary condition is denoted ui. Note that the stress is 
defined as the derivative of the damaged strain energy density function, 
φ ¼ ðð1 �ϕÞ

2
þ kÞψ . The total (undamaged) elastic energy density is 

decomposed into 2 parts: the hydrostatic strain energy density (con

taining only the tensile component)ψ IðεÞ ¼ 1
2

Pn

k¼1
jσkkεkkj

þ, where n is the 

dimension number, and the deviatoric strain energy density ψ IIðεÞ ¼

1
2

�
�σijεij

�
� with i 6¼ j. The split of the strain energy is to assure a mixed-mode 

fracture criterion is properly defined. This adaptation is similar to the 
recent work by Zhang et al. [30] with a difference that a quadratic 
failure criterion is used instead of the linear one in Zhang et al. [30] (i.e., 
ψ IðεÞ

GIc
þ

ψ IIðεÞ

GIIc
) since the majority of experimental work on mixed-mode 

fracture in ceramic materials shows a non-linear relation [5,34–36]. 
We also validated the improved accuracy of this approach in Appendix 
A.2. Also, it is further assumed that GIc ¼ GIIc ¼ Gc for a simplified 
numerical solution. 

Due to the addition of ϕ to the degrees of freedom at the nodes, it is 
difficult to directly use commercial FEM software. In particular, a new 
element formulation for integrating the phase field parameter, ϕ, using 
Gauss quadrature is needed. To this end, the phase-field model was 
implemented in ABAQUS using a user defined element subroutine 
(UEL). Our implementation follows the approach of Msekh [28]. After 

implementing the phase-field model within ABAQUS, its accuracy was 
validated by comparing against two different problems that have exact 
solutions (discussed in the Appendix A.2). 

3. Modeling details 

Using the proposed phase-field model, the effect of various com
posite parameters on crack propagation were simulated including (1) 
compliant inclusions, (2) stiff inclusions, and (3) hybrid inclusions. The 
rationale for each composite parameter is outlined below along with the 
definitions of the metrics used to quantify the effective toughness of the 
ceramic. To approximate experiments, all test specimens were in a 4- 
point bending configuration, with a pattern of inclusions introduce 
near the notch (see Fig. 1). The size of the beam specimen was 10 mm �

110 mm and a precast crack of length 3 mm was located on the sym
metry axis along y-direction. The beam was constrained in the x- and y- 
direction displacements by the pinned connection on the left and in the 
y-direction by the roller on the right. Loadings were applied in steps with 
a maximum displacement increment of 10�2 mm and a minimum 
increment of 10�6 mm via displacement control within ABAQUS. The 
pin and roller connections and the two loading points were arranged 
symmetrically with distances of 50 mm and 25 mm, respectively, to the 
symmetric axis. Element sizes were no larger than 1=10 of ℓ0 (defined in 

Fig. 3. Homogenization process for determining the effective Young’s modulus. The geometry and boundary conditions of the specimen is shown in (a). The ho
mogenization area and partition of unit cells is shown in (b). The total homogenized area is shown in (c). The geometry of a single unit cell is shown in (d). The 
homogenized are of a single unit cell is shown in €. 
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Eq. (1)) at the middle span, while an element size of 0:2 mm was used 
remote from the crack trajectory. 

3.1. Inclusion patterns 

Inclusions with identical radii were assigned to be within the area 

shown as light blue in Fig. 1(a). Two series were investigated for 
compliant inclusions, namely c1 and c2. For the c1 series, 5 columns of 
compliant inclusions were used with the crack pointing to the middle 
column, shown in Fig. 1(c). For series c2, 4 columns of compliant in
clusions were simulated with the initial crack pointing towards the space 
between adjacent columns at the middle span of the beam, as shown in 

Fig. 4. Crack propagation pattern and propagation ratio for series c1 (rows of inclusions are labeled with numbers on the right side). The crack propagation is 
illustrated in(a-f) for cases with a=d ¼ 0:25; 0:50; 0:75; 1:00; 1:50; and 2:00 , respectively. The propagation ratio, Rp, for each specimen is shown in (g). Note that 
the curve is identical for each specimen such that the curves lay on top of each other. 
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Fig. 1(b). Two series were designed to include only stiff inclusions, 
namely s1 and s2, which had the same geometry as the c2 and c1 series 
but with stiff inclusions. 

Three series were designed to include a hybrid of compliant and stiff 
inclusions, namely h1, h2, and h3. For the h1 series, 4 columns of in
clusions were included with the initial crack pointing towards the space 
between adjacent compliant and stiff inclusions at the middle span of the 
beam, as shown in Fig. 1(d), where blue circles represent compliant 
inclusions and orange ones represent stiff inclusions. For the h2 series, 5 
columns were adopted with the initial crack pointing toward the middle 
column, as shown in Fig. 1(e); thus, the crack is expected to propagate 
towards compliant inclusion initially. The h3 series has the same ge
ometry as h2 but all the inclusions were altered with the initial crack 
pointing toward the middle stiff inclusion, such that the stiff inclusions 
in h2 were replaced with compliant inclusions and vice versa. 

For all cases, the inclusion geometries were all set as circles with a 
fixed diameter of 0:6 mm based on the allowable size in extrusion-based 
manufacturing methods [37] (denoted as d ¼ 0:6 mm and served as the 
basis for length normalization). The precast crack length was 3 mm 
(or 5d) and the distance between crack tip and lowest inclusion row 
(0:9 mm, or 1:5d) were fixed for all cases. For each series, the space 
between nearby inclusions, shown as a in Fig. 1(b–e), was varied to 
explore the influence of inclusion spacing on the propagation of the 
crack. It should be noted that the inclusion spacing along the x- and 
y-directions were set to be identical. Six settings were adopted for each 
series:a=d ¼ 0:25, 0:5, 0:75, 1:00, 1:50, and 2:00. For all series other 
than h1, half of the specimen was simulated and a symmetry plane is 
used for computational efficiency. 

An alumina matrix (with a Young’s modulus of 160 GPa), graphite 
compliant inclusions (with a Young’s modulus of 15:85 GPa), and silicon 

carbide stiff inclusions (with a Young’s modulus of 410 GPa) were 
selected. The fracture toughness Gc was assumed to be 0:034 N=mm, 
which is derived from Young’s modulus and fracture toughness (KIC) 
provided by online material property database [38,39], for all materials 
since the presented work mainly focuses on the effect of elastic 
mismatch and pattern characteristics. The selection of alumina, 
graphite, and silicon carbide was due to their wide applications in 
ceramic composites [40,41]. 

3.2. Fracture parameters 

In order to quantitatively assess and compare the fracture behavior 
of the various composite arrangements, several metrics are introduced 
in the following sections. In particular, the propagation ratio, effective 
Young’s modulus, and effective fracture toughness are defined. 

3.2.1. Propagation ratio(RpÞ:

The elongation of the sinuous propagation path is quantified by the 
propagation ratio, 

Rp ¼
Lprop

Ly
(4)  

where Lprop denotes the total length of the propagation path and Ly is the 
projection of Lprop onto the y-axis, and corresponds to the effective 
propagation path as shown in Fig. 2(b–c). To rule out the influence from 
the upper boundary, the value of Rp corresponding to Ly ¼ 8d for each 
case is extracted for comparison. This value is denoted as Rp;c. 

3.2.2. Effective Young’s modulus (Eeff ) 
The effective Young’s modulus is defined for the area containing 

Fig. 5. These plots show normalized J-integral, J, and effective energy release rate, Gc;eff , versus relative crack length for series c1 The relative crack length is 
obtained by normalizing the crack top position by the inclusion diameter, d. Results for specimens with a=d ¼ 0:25; 0:50; 0:75; 1:00; 1:50; and 2:00 are shown I 
(a–f), respectively. 
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inclusions using the unit cell concept, as shown in Fig. 3(a–c). The unit 
cell is defined as the area enclosing both the inclusions and matrix, as 
illustrated in Fig. 3(b, d). Denote Auc;ci, Auc;ri Auc;m and Auc as the area of 
compliant inclusions, stiff inclusions, area of the matrix included in one 
unit cell, and the total unit cell area, respectively, as shown in Fig. 3(d). 
Then, the effective Young’s modulus is given by 

Eeff ¼
Auc;mEm þ Auc;ciEc þ Auc;riEr

AucEm
(5)  

where Ec, Er and Em are the Young’s modulus of the compliant in
clusions, stiff inclusions, and matrix, respectively, and can be found in 
Tab. 1. It should be noted that Eeff is a normalized based on Em. 

Fig. 6. Crack propagation pattern and propagation ratio for series c2. The crack propagation is illustrated in (a–f) for the cases with a=d ¼ 0:25; 0:50; 0:75; 1:00;
1:50; and 2:00, respectively. Propagation ratio, Rp, versus relative crack length is shown in (g). 
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3.2.3. Effective fracture toughness (Gc;eff ) 
Inspired by the surfing boundary condition in Ref. [7] and consid

ering the geometry of the composite, a homogenization strategy for 
effective fracture toughness is proposed. A conjugate numerical case is 
adopted with the effective Young’s modulus for the region covering the 
inclusion patterns. The Young’s modulus of the matrix material is used 
for the area outside. As defined before, Ly is used as the effective crack 
length for the conjugate numerical case. By applying the same boundary 
conditions from the original case, the energy release rate can be calcu
lated using LEFM for the conjugate case. The effective fracture tough
ness was then determined by the energy release rate obtained from the 
conjugate case during the crack propagation in the original case. The 
defined effective fracture toughness, Gc;eff , can then be used to evaluate 
the effect of inclusion patterns on the fracture resistance. 

4. Results and discussions 

In this section, the fracture paths, characterized by the propagation 
ratio, Rp, normalized J-integral for each case (nondimensionalized as 
J ¼ J=Gc with Gc being the critical energy release rate of the matrix and 
inclusions, cf. Section 3.1), and effective fracture toughness, Gc;eff , were 
analyzed to determine the effect of the patterned inclusions on the crack 
propagation behavior. The fracture trapping, repelling, and guiding 
mechanisms were observed and discussed in detail. 

Organization for this section is as follows: Sections 4.1, 4.2 and 4.3 
describe the series of compliant inclusions, stiff inclusions, and hybrid 
compliant and stiff inclusions, respectively. Section 4.4 summarizes and 
discusses the mechanisms affecting crack propagation that were 
observed. For each series, 6 cases with a=d ¼ 0:25; 0:50; 0:75; 1:00;
1:50; and 2:00 are labeled as cases a-f for sake of brevity. These labels 

also correspond to the sequence of sub-figures of each series. 

4.1. Compliant inclusions 

4.1.1. Five inclusion columns (c1) 
As shown in Fig. 4(a–f), with the initial crack tip pointing toward the 

middle column of compliant inclusions, the crack propagates in the y- 
direction without any deviation (regardless of the inclusion spacing). 
This leads to the fact that the propagation ratio, Rp, remained 1.0 
constantly, which can be seen in Fig. 4(g). The crack in Fig. 4 (and 
subsequent figures) is shown in red, which denotes the area where the 
damage parameter, ϕ, exceeds the value 0.99, considering the value of ϕ 
will not reach 1.0 due to the numerical error introduced by parameter k . 

As presented in Fig. 5, J for all cases fluctuates slightly around the 
line J ¼ 1:0 while propagating through the matrix and inclusions. No 
visible change of J is observed when the crack enters each compliant 
inclusion. However, as the crack propagates into the matrix from the top 
of each compliant inclusion, J decreases rapidly and then returns to 1:0. 

4.1.2. Four inclusion columns (c2) 
As shown in Fig. 6(a–f), when located around the crack tip, the 

compliant inclusions tend to attract the crack. For cases a-e, the crack 
propagates at first along the y-direction for a very short distance before 
turning towards the compliant inclusion of the 1st row. Subsequently, 
the crack propagates along one column of inclusions in the y-direction. 
As for case f, the crack propagates following the initial direction until it 
gets close to the 2nd row of inclusions. This is due to the fact that with 
this relative inclusion spacing (a=d ¼ 2), the 1st row of inclusions is not 
sufficiently close to the initial crack tip to alter the propagation path. 
Thus, it can be observed that for a fixed set of materials, there exists an 

Fig. 7. These plots show normalized J-integral, J, and effective energy release rate, Gc;eff , versus relative crack length for series c2. Results for specimens with a=
d ¼ 0:25; 0:50; 0:75; 1:00; 1:50; and 2:00 are shown in (a–f), respectively. 
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optimum inclusion spacing that results in the greatest increase in crack 
length. 

As shown in Fig. 7, a relatively large jump in J within the crack 
position range of 0 to 1 mm was observed for cases a-e. This jump cor
responds to the crack propagating towards the inclusions of the 1st row. 
This behavior was also observed for case f when the crack tip reached the 

inclusions at the 2nd row, and coincided with the increasing Rp, as 
shown in Fig. 6(g). These results indicate that the crack-trapping 
mechanism can be introduced by placing the compliant inclusion at a 
limited distance away from the crack tip. The increased fracture path 
provides more release of fracture energy hence increasing the effective 
fracture toughness. 

Fig. 8. Crack propagation pattern and propagation ratio for series s1. (a–f). The crack propagation is illustrated in (a–f) for cases with a=d ¼ 0:25; 0:50; 0:75; 1:00;
1:50; and 2:00, respectively. The propagation ratio, Rp, versus relative crack length for each specimen is shown in (g). As in Fig. 4, the curves for each specimen are 
identical and lay on top of each other. 

C. Wei et al.                                                                                                                                                                                                                                     



Composites Part B 172 (2019) 564–592

573

4.2. Stiff inclusions 

4.2.1. Four inclusion columns (s1) 
As shown in Fig. 8(a–f), with stiff inclusions distributed symmetri

cally about the initial crack, the crack propagates in the y-direction with 
a constant propagation ratio, Rp ¼ 1, as shown in Fig. 8(g). As shown in 
Fig. 9, although the propagation pattern for this scenario is no different 
than homogeneous situation or series c1, J shows periodic fluctuations, 
indicating the influence of nearby stiff inclusions. The number of fluc
tuations, corresponding to the number of inclusions within the area, 
decreased from 6 to 2 when the number of rows decreased from 8 to 4. 
The amplitude of the fluctuations, corresponding to the inclusion 
spacing, decreased from around 0.25 to 0.05 when a/d increased from 
0.25 to 2, which shows that the influence of stiff inclusions is reduced as 
the spacing between the stiff inclusions and crack tip is increased. 

4.2.2. Five inclusion columns (s2) 
As shown in Fig. 10(a–f), stiff inclusions can change the fracture 

propagation path by repelling the crack tip away from the inclusion. The 
overall propagation process can be divided into two stages: (1) straight 
crack growth due to the initial crack direction and then an altering 
process while reaching the stiff inclusions of the 1st row followed by a 
stage (2) where crack propagation is constrained between two columns 
of stiff inclusions. 

As shown in Fig. 11, corresponding to the two-stage propagation, the 
value of J also exhibits two stages: (1) an initial fluctuation within the 
crack position range of 0 to 0:8 mm reflecting the initial large crack 
deflection process. The amplitude of the initial fluctuation decreases 
slightly with increasing inclusion spacing, which is due to the fact that as 
the inclusion spacing increases, the crack has more space between the 

adjacent columns of inclusions to propagate at will. As for the steady 
propagation stage (2), a periodic fluctuation is observed. With 
increasing inclusion separation, the amplitude of the fluctuation does 
not change significantly, but the average value increases gradually due 
to the increasing inclination angle of the crack. Series s2 shows the 
strong crack repelling mechanism of using stiff inclusions, in which the 
crack was always deflected away from the inclusions. This observation is 
consistent with the trend of Rp; as shown in Fig. 10(g). 

4.3. Hybrid stiff and compliant inclusions 

4.3.1. Four inclusion columns (h1) 
As shown in Fig. 12(a–f), the crack propagation pattern varies 

significantly with increasing a=d. For cases a-b, the crack propagates 
mainly along a zigzag route after initiation, i.e., the path connects 
compliant inclusions for each row in sequence. Also, it can be observed 
that branches emerge while propagating towards stiff inclusions. After 
branching, the crack further develops along one of the branches and 
marches towards the compliant inclusion. 

As a=d increases more for cases c-d, where a=d reaches the value of 
0:75 and 1:00 separately, the crack chooses a path periodically crossing 
compliant inclusions and bypassing stiff inclusions of the same column. 
Small branches are observed to initiate and arrest immediately after. 

For an even higher a=d ¼ 1:50 in case e, two major branches are 
observed after the crack initiation. The left branch grows towards the 
compliant inclusion of the 2nd row and the right branch grows towards 
the compliant inclusion of the 1st row. When the loading process con
tinues on, the right branch arrests while reaching the 2nd row and the 
left branch continues propagating with the latter part exhibiting a 
similar pattern with cases c-d: crossing compliant inclusions and 

Fig. 9. These plots show normalized J-integral, J, and effective energy release rate, Gc;eff , versus relative crack length for series s1. Results for cases with a=d ¼ 0:25;
0:50; 0:75; 1:00; 1:50; and 2:00 are shown in (a–f), respectively. 
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bypassing stiff ones. 
For case f with the maximum a=d ¼ 2:00, the crack propagates in the 

y-direction before deflecting towards and entering the compliant in
clusion of the 2nd row. Small branches are also observed. However, 
further growth was not observed for these small branches. The subse
quent propagation exhibited similar behavior to cases c-d: entering 
compliant inclusions and bypassing stiff ones. Branches were also 
observed at each row. 

As shown in Fig. 12(g), the propagation ratio, Rp, corresponding to 
the longest final propagation path with a=d ¼ 0:25 and 0:5 is much 
larger than the other cases, which is due to the multiple branches and 
zigzag route. Cases with inclusion spacing of a=d ¼ 1:00 resulted in the 
lowest value of Rp due to minimal deflections and branches. 

As shown in Fig. 13, the behavior of J is similar to that of the spec
imens described before. For cases a-b, J decreases rapidly when the crack 
propagates from a compliant inclusion into the matrix and then in
creases and reaches a relatively high value due to the branching and 
inclination angle. This behavior repeats when the crack crosses 

compliant inclusions in the first 5 rows. The higher value of J seen in 
case b is due to the developments of more branches. For cases c-f, J 
decreases when the crack passes through the boundaries from the in
clusion side into the matrix, and then increases while the crack bypasses 
the following stiff inclusion until reaching the top surface. 

4.3.2. Five inclusion columns: precast crack pointing to compliant inclusion 
(h2) 

As shown in Fig. 14(a–f), the crack propagates through the nearest 
compliant inclusion after the crack initiation for all cases, and then the 
patterns vary for increasing inclusion spacing in a similar fashion as 
series h1. For cases a-b, branches are observed as the crack propagates 
past the compliant inclusion of the 2nd row. The right branch enters the 
rightmost compliant inclusion of the 3rd row and then arrests, while the 
left branch propagates between compliant inclusions of the subsequent 
rows. For cases c-f, the crack only enters the compliant inclusions in the 
middle column. Instead of choosing a route connecting compliant in
clusions for each row, the crack propagates periodically entering the 

Fig. 10. Crack propagation pattern and propagation ratio for series s2. The crack propagation is illustrated for cases with a=d ¼ 0:25; 0:50; 0:75; 1:00; 1:50;
and 2:00 in (a–f), respectively. The propagation ratio, Rp, versus relative crack length is shown in (g). 
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compliant inclusions and bypassing the stiff inclusions within the same 
column. Similarly, as observed in series h1, the final propagation ratio, 
Rp, of cases a-b is much longer than that of cases c-f. 

As seen from Fig. 15, the behavior of J is similar to series h1. The 
increasing of J arises mainly from the inclination and branching effects, 
which also explains the remarkably higher peak compared with the 
cases shown in Fig. 15(c–f). The periodicity of J corresponds to that of 
Rp, as shown in Fig. 14(g). 

4.3.3. Five inclusion columns: initial crack pointing to a stiff inclusion (h3) 
A similar crack behavior as series h2 was observed, as shown in 

Fig. 16. For cases a-b, after initiation, the crack bypasses the stiff in
clusion and then enters the compliant inclusion of the 1st row. Crack 
branching was been observed while the crack propagated through the 
compliant inclusions. The crack propagation in cases c-d followed a 
similar behavior to cases c-d of series h2: propagating periodically 
bypassing the stiff inclusions and crossing the compliant inclusions. In 
Fig. 17, when the inclusions are arranged in an opposite fashion to the 
corresponding cases with same a=d ratio of series h2, the same fracture 
behavior can be observed - aside from higher peaks due to the increased 
number of crack branches. 

All the cases with hybrid compliant and stiff inclusions (h1, h2, and 
h3) reveal a crack guiding and controlling mechanism. A smaller in
clusion spacing (i.e., smaller a=d) provides increased control of the crack 
path by forcing the crack to grow along a zig-zag connecting compliant 
inclusions and avoiding stiff inclusions. The smaller inclusion spacing 
also reduces the occurrence of crack branching which makes the crack 
growth more predictable. For larger inclusion spacing, the attraction 
and repelling effects of compliant and stiff inclusions are reduced. Thus, 
the crack propagates periodically crossing compliant inclusions and 

bypassing stiff ones of the same column. It can be seen in this design, 
that the effective toughness can be increased by hybrid inclusions and 
changing the inclusion spacing. 

4.4. Toughening mechanisms 

4.4.1. Crack trapping with compliant inclusions 
First, as can be seen from Eeff shown in Fig. 18(a), the pure compliant 

inclusions of series c1 and c2 had a pure reducing effect on the overall 
effective Young’s modulus. 

Considering the fact that the propagation path was not affected by 
the compliant inclusions in the c1 series, as shown in Fig. 18(b), the 
corresponding Gc;eff showed only the effect from the material property 
mismatch introduced by the compliant inclusions. As presented in 
Fig. 18(d), Gc;eff of series c1 is nearly linearly related to the Eeff , which 
means a higher inclusion spacing leads to a higher Eeff , as well as a 
higher Gc;eff . It should be noted that the maximum Gc;eff is less than one, 
which means that while the propagation path was unchanged, compliant 
inclusions reduced the overall fracture resistance. 

As for series c2, the overall effective Young’s modulus, denoted by 
Eeff , was still the same with series c1. However, the attraction effect of 
compliant inclusions led to an altered crack propagation path, and thus 
the total propagation path was elongated, as shown in Fig. 18(b), and 
the effective energy release rate, Gc;eff , was increased. The effect of a 
longer total propagation distance, Lprop, which led to higher fracture 
energy, counteracted the reducing effect of the compliant inclusions, 
which explains the reason why values of the effective energy release 
rate, Gc;eff , for the cases shown in Fig. 7(c–f), are greater than one. 

Overall, the fracture resistance property, Gc;eff , is affected by both the 
elastic mismatch and a=d ratio for patterned compliant inclusions. The 

Fig. 11. These plots show normalized J-integral, J, and effective energy release rate, Gc;eff , versus relative crack length for series s2. Results for cases with a=d ¼ 0:25;
0:50; 0:75; 1:00; 1:50; and 2:00 are shown in (a–f), respectively. 
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underlying crack trapping mechanisms were observed and also 
explained analytically for a local setting in our recent work [37]. The 
lower Young’s modulus of the compliant inclusion can create a low local 
stress field and large strain field which leads the crack propagation to
wards the inclusion. However, these local fields become less effective 
when the inclusions are farther away from the crack tip. Therefore, it is 
possible to use compliant inclusions to trap the crack as observed from 
the computational results. However, this effect is very limited when a=d 
exceedingly large. 

4.4.2. Crack repelling with stiff inclusions 
As can be seen from Eeff shown in Fig. 18(a), the pure stiff inclusions 

of series s1 and s2 has a pure enhancing effect on the overall effective 
Young’s modulus. 

While the propagation path was not changed throughout series s1 
due to the symmetric arrangement of stiff inclusions, as shown in Fig. 18 
(b), the effective energy release rate, Gc;eff , of all the cases in this series 

was greater than one, which indicates that the stiff inclusions near the 
crack path enhanced the fracture toughness. Similarly, as explained for 
the trapping mechanism, the stiff inclusions induce a compressive local 
stress field which tended to close the crack tip when propagating. It was 
also observed that with increasing inclusion spacing, the effective en
ergy release rate, Gc;eff , of series s1 decreased, which indicates that the 
enhancing effect reduces when the inclusions are farther apart. 

When the propagation path is altered, as shown in Fig. 18(b), results 
from series s2 showed that the a=d ratio also affects the fracture resis
tance via the repelling mechanism, and thus leads to a longer total 
propagation distance, Lprop. This also resulted in a higher effective en
ergy release rate. The change in energy release rate, Gc;eff , with inclusion 
spacing and effective Young’s modulus, Eeff , can be found in Fig. 18 
(c–d). It should be noted that although the effective Young’s modulus is 
decreasing with increasing interspacing, a, the increasing Rp;c reflects a 
larger propagation distance and leads to an increasing Gc;eff . This means 
that increasing the propagation distance has a more significant effect on 

Fig. 12. Crack propagation pattern and propagation ratio for series h1. The crack propagation is illustrated for cases with a=d ¼ 0:25; 0:50; 0:75; 1:00; 1:50;
and 2:00 in (a–f), respectively. The propagation ratio, Rp, versus relative crack length is shown in (g). 

C. Wei et al.                                                                                                                                                                                                                                     



Composites Part B 172 (2019) 564–592

577

Gc;eff than elastic mismatch. 
In addition, the results of the c1 and s1 series, as seen in Fig. 18(d), 

showed that elastic mismatch has a significant effect on effective energy 
release rate with a straight crack path. Alternatively, with the crack 
trapping mechanism from the compliant inclusions and repelling effect 
of the stiff inclusions introduced into the system, the altered propagation 
path increased the overall effective energy release rate by increasing the 
total propagation distance. 

4.4.3. Crack guiding with hybrid inclusions 
For the series with hybrid compliant and stiff inclusions, the effective 

Young’s modulus decreases slightly with increasing inclusion spacing 
compared to pure compliant or stiff inclusion series. The corresponding 
effective energy release rate was mainly influenced by the inclusion 
spacing. 

It can be concluded from series h1, h2 and h3, that the hybrid ar
rangements of compliant and stiff inclusions lead to a zigzag crack 
propagation mode when the inclusion spacing was sufficiently small. 
Thus a longer propagation path is reached and resulted in a higher 
overall fracture resistance. As shown in Fig. 19(c–d), with more 
branches and inclinations, the effective energy release rate for cases a-b 
with a=d ¼ 0:25 and 0:5 were higher than that of the cases with higher 
a=d ratios, which shared same trend with Rp;c. A maximum in the 
effective energy release rate appeared when a ¼ 0:50d. For higher in
clusion spacing, the combination of attraction effects of compliant in
clusions and repelling effects of stiff inclusions is not sufficient to 
significantly alter the crack path resulting in a much lower Rp;c. Results 
of these three series show the possibility of manipulating the crack 
propagation path using the patterned hybrid inclusions for ceramic 

composites. A alternating arrangement of compliant and stiff inclusions 
with proper spacing could significantly increase the overall toughness 
and provide a means to guide crack propagation. 

4.4.4. Crack branching 
Crack branching was observed when the crack propagated toward 

stiff inclusions. The repelling effect due to local compressive stresses 
forced the crack tip to bifurcate forming the branched cracks as shown in 
Figs. 12, 14 and 16. This crack tip bifurcation originates from the 
symmetric condition with respect to the crack path which typically are 
along the radial direction running towards the stiff inclusions. This 
branching is mainly caused by the local stress field. However, this may 
be slightly different from the actual experiment where local defects may 
disturb the stress distribution at the crack tip. Sufficive to say, the nu
merical results confirm the fact that additional cracks can possibly be 
generated via branching due to the combination of compliant and stiff 
inclusions. 

5. Conclusion 

In this work, a mixed-mode phase-field model was proposed and 
implemented to investigate the effect of compliant and stiff inclusions on 
the fracture resistance properties of 4-point bending beam specimens. 
The crack trapping, repelling, and guiding mechanisms were observed 
for different patterns. The effects of these mechanisms on the fracture 
behavior of the composites were characterized. The following conclu
sions can be drawn: 

Fig. 13. These plots show normalized J-integral, J, and effective energy release rate, Gc;eff , versus relative crack length for series h1. Results for cases with a=d ¼

0:25; 0:50; 0:75; 1:00; 1:50; and 2:00 are shown in (a–f), respectively. 
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(1) If the propagation route follows the direction of the initial crack, 
the presence of compliant inclusions reduces the fracture resis
tance of the composite, as shown in the results of series c1. The 
degree of reduction is approximately linear to the volume frac
tion of the compliant inclusions. On the other end, the presence of 
stiff inclusions would have an enhancing effect on the fracture 
resistance property, as shown in results of series s1.  

(2) Results of series c2 show that the compliant inclusion can trap the 
crack tip when arranged closely together. By comparison, the stiff 
inclusions deflect or repel crack propagation, as shown in series 
s2. In both ways, the crack route is altered and the fracture 
resistance is increased.  

(3) With the combination of compliant and stiff inclusions, the total 
propagation distance can be significantly increased compared to 
cases with only compliant or stiff inclusions. As shown in cases a- 
b of series h1, h2, and h3, the crack follows a zigzag route con
necting compliant inclusions of rows in sequence. Crack 

branching is also introduced to the system, which increases the 
effective energy release rate as much as 4.53 times that in the 
homogeneous case. This enhancement is found to be the most 
significant for inclusion spacing within the range 
0:25 < a=d < 0:75. 

In summary, the combination of the compliant and stiff inclusions 
with an arrayed pattern was able to control and guide the fracture 
propagation to enhance the effective fracture toughness of the ceramic 
composite. The enhancement is closely related to the elastic mismatch 
between the inclusion and matrix and is constrained by the ratio of in
clusion spacing to inclusion size for the composites. This result dem
onstrates a new approach for designing ceramic composites to optimize 
fracture resistance using patterned inclusions. The concept can be 
applied using various additive manufacturing techniques including 3D 
printing and co-extrusion sintering. 

Fig. 14. Crack propagation pattern and propagation ratio for series h2. The crack propagation is illustrated for cases with a=d ¼ 0:25; 0:50; 0:75; 1:00; 1:50;
and 2:00 in (a–f), respectively. The propagation ratio, Rp, versus relative crack length is shown in (g). 
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Fig. 15. These plots show normalized J-integral, J, and effective energy release rate, Gc;eff , versus relative crack length for series h2. Results for cases with a=d ¼

0:25; 0:50; 0:75; 1:00; 1:50; and 2:00 are shown in (a–f), respectively. 
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Fig. 16. Crack propagation pattern and propagation ratio for series h3. The crack propagation is illustrated for cases with a=d ¼ 0:25; 0:50; 0:75; 1:00; 1:50;
and 2:00 in (a–f), respectively. The propagation ratio, Rp, versus relative crack length is shown in (g). 
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Fig. 17. These plots show normalized J-integral, J, and effective energy release rate, Gc;eff , versus relative crack length for series h3. Results for cases with a=d ¼

0:25; 0:50; 0:75; 1:00; 1:50; and 2:00 are shown in (a–f), respectively. 

C. Wei et al.                                                                                                                                                                                                                                     



Composites Part B 172 (2019) 564–592

582

Fig. 18. Fracture variation for series c1, c2, s1, and s2. Eeff versus inclusion spacing is shown in (a). Rp;c, versus inclusion spacing is shown in (b). Gc;eff versus 
inclusion spacing is shown in (c). Gc;eff versus Eeff is shown in (d), where arrows denote the increasing a=ddirection. 
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Fig. 19. Fracture variation for series h1, h2, and h3. Eeff versus inclusion spacing is shown in (a). Rp;c, versus inclusion spacing is shown in (b). Gc;eff versus inclusion 
spacing is shown in (c). Gc;eff versus Eeff is shown in (d). 
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Appendix 

A1. Formulation and Numerical Implementation 

The fundamental idea in brittle fracture is that a crack forms in order to minimize the combined strain energy and crack surface energy, which is on 
the basis of the work by Griffith(1921) [1], 

U ¼

Z

ΩnΓψðεÞdΩ þ

Z

Γ
Gcd∂Ω; (A.1)  

where ψðεÞ is the strain energy, Gc is the critical energy release rate and the stress is given by σij ¼ ∂ψ=∂εij. Index notation with the Einstein summation 
convention is adopted for deviations presented in this work. Comma subscripts are used to denote derivatives with respect to the spatial coordinates. 
This energy function can be transformed into volume integrals to make it simpler to implement numerically. However, we must replace the normal 
strain energy density with a damaged strain energy density φðxÞ ¼ ðð1 �ϕÞ

2
þ kÞψðx;εÞ, in addition to replacing the surface area energy integral with a 

regularized volume integral, 

U ¼

Z

Ω

h
ð1 �ϕÞ

2
þ k

i
ψðx; εÞdΩ þ

Z

Ω

Gc

2

�
ϕ2

ℓ0
þ ℓ0ϕ;iϕ;i

�

dΩ (A.2)  

where the stress is σij ¼ ∂φ
∂εij

. The second term in (A.2) is a continuous representation of the surface energy regarding the phase field damage parameter, 
ϕ and the crack thickness parameter, ℓ0. Also, k is a conditioning number for numerical stability. This formulation is adopted from Ref. [28]. Finally, it 
should be noted that ψ depends on the spatial position x due to the fact that composite materials have spatially-varying elastic moduli due to the 
different composite phases. 

Equilibrium solutions for the displacement, u, and degradation field, ϕ, are assumed to be the ones that minimize the potential energy via the 
principle of minimum potential energy. The potential energy is the internal energy U minus the work done by external forces V (due to body forces, b, 
and surface tractions, t). Thus, the external work is 

V ¼

Z

Ω
ρbiuidΩ þ

Z

∂Ωttiuid∂Ωt (A.3)  

where ρ is the mass density. The portion of the surface where traction (Neumann) boundary conditions are applied is denoted ∂Ωt. The portion of the 
surface where displacement boundary conditions, ui, are applied is denoted ∂Ωu, such that the entire surface is the union ∂Ω ¼ ∂Ωt[∂ΩuThus, the 
potential energy is Π ¼ U �W, 

Π ¼

Z

Ω
φðx;ϕ; εÞdΩ þ

Z

Ω

Gc

2

�
ϕ2

ℓ0
þ ℓ0ϕ;iϕ;i

�

dΩ �

Z

Ω
ρbiuidΩ �

Z

∂Ωttiuid∂Ω (A.4) 

The equilibrium displacement and damage fields are the minimizers. Taking the first variation with respect to the displacement, 

DδuΠ ¼

Z

Ω
σijδui;jdΩ �

Z

Ω
ρbiδuidΩ �

Z

∂Ωttiδuid∂Ω (A.5)  

where the constitutive, σij ¼
∂φ
∂εij

¼
∂φ

∂ui;j
, was used. Note that we have changed the functional dependence of φ on the strain tensor, ε, to the displacement 

gradient, ru, to simplify the calculations. From the chain rule, 
�
σijδui

�

;j ¼ σij;jδui þ σijδui;j (A.6)  

as well as the divergence theorem, Eq. (A.5) becomes, 

DδuΠ ¼ �

Z

Ω

�
σij;j þ ρbi

�
δuidΩ þ

Z

∂Ω
�
σijnj �ti

�
δuid∂Ω ¼ 0 8 δui (A.7) 

Eq. (A.7) should hold for any choice of δu, so it must be the case: 

σij;j þ ρbi ¼ 0 in Ω (A.8a)  

σijnj ¼ ti on ∂Ω; (A.8b)  

which are the balance of linear momentum equation (or equilibrium equation) and the traction relation. 
Computing the derivative of the potential energy with respect to the phase field parameter, φ, and it gives, 

DδϕΠ ¼

Z

Ω

�
∂φ
∂ϕ

δϕ þ Gc

�
ϕδϕ

l0
þ l0ϕ;iδϕ;i

��

dΩ: (A.9) 

Using the chain rule for the last term (in index notation) as well as the divergence theorem, Eq. (A.9) could be rewritten as, 
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DδϕΠ ¼

Z

Ω

�
∂φ
∂ϕ

δϕ þ
Gcϕδϕ

l0
�Gcl0ϕ;iiδϕ

�

dΩ

þ

Z

∂ΩGcl0ϕiniδϕd∂Ω ¼ 0 8 δϕ
(A.10) 

where ∂φ
∂ϕ ¼ 2ðϕ �1Þψðx; εÞ by our definition, φ ¼ ½ð1 �ϕÞ

2
þ k�ψ : The assumption is made that the fracture energy, Gc, is not spatially varying; this is 

consistent with the numerical analysis presented in the paper. 
Eq. (A.10) should hold for all any choice of δϕ, it must be the case that: 

2ðϕ �1Þ
ψðx; εÞ

Gc
þ

ϕ
l0

¼ l0ϕ;ii in Ω; (A.11)  

ϕ;ini ¼ 0 on ∂Ω: (A.12) 

We now assume a decomposition of the strain energy density into volumetric, ψ Iðx; εÞ; and deviatoric parts, ψ IIðx; εÞ; respectively, by replacing 

ψðx;εÞ

Gc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ψ Iðx;εÞ

GIc

�2

þ

�
ψ IIðx;εÞ

GIIc

�2
s

, where GIc and GIIc are the corresponding critical energy release rates in mode I and II. Substituting the strain energy 

decomposition into Eq. (A.11) gives 

2ðϕ �1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ψ Iðx; εÞ

GIc

�2

þ

�
ψ IIðx; εÞ

GIIc

�2
s

þ
ϕ
l0

¼ l0ϕ;ii (A.13) 

The governing partial differential equations are summarized as follows: 

σij;j þ bi ¼ 0 in Ω (A.14a)  

σijnj ¼ ti on ∂Ωt (A.14b)  

ui ¼ ui on ∂Ωu; (A.14c)  

2ðϕ �1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ψ Iðx; εÞ

GIc

�2

þ

�
ψ IIðx; εÞ

GIIc

�2
s

þ
ϕ
l0

¼ l0ϕ;ii in Ω; (A.14d)  

ϕ;ini ¼ 0 on ∂Ω: (A.14e)  

A2. Model Validation 

A.2.1 Validation with elastic fracture mechanics 
As shown in Fig. A1, a scenario of a classical crack problem was simulated to validate the model and implementation. An elliptical crack with the 

long axis (along x-direction) being 1 mm and the short axis (along y-direction) being 0:01 mm was located in the center of the square domain shown in 
Fig. A1(d). This domain was fixed on the lower boundary along the x- and y-directions and displacements were applied on the upper boundary in both 
the x- and y-directions, forming a mixed-mode loading on the pre-crack. 

In the two-dimensional plane strain setting, 3-node triangle elements with element sizes no greater than 1=10 of the pre-crack length were used. 
The element size around the pre-crack tip was 0:01 mm. 

The values of the various material properties were as follows: Young’s modulus was 2 � 105 MPa, Poisson’s ratio was 0:25, the critical energy 
release rate was set to a sufficiently large value (9:9 � 104 N=mm) to ensure that the crack would not propagate. In this way, the analytical results from 
linear elastic fracture mechanics can be compared to the numerical solution. As for the boundary conditions, the displacement on the bottom surface 
was set to zero in both the x- and y-directions, while top surface was loaded by applying displacements uy ¼ 0:05 mm and ux ¼ 0:025 mm, in the x- 
and y-directions, respectively. 

According to classic linear elastic fracture mechanics, the displacement fields around the crack tip for mode-I are 

uI
x ¼

KI

2μ

ffiffiffiffiffi
r

2π

r

cos
�

θ
2

��

κ �1 þ 2sin2
�

θ
2

��

(A.15a)  

uI
y ¼

KI

2μ

ffiffiffiffiffi
r

2π

r

sin
�

θ
2

��

κ þ 1 �2cos2
�

θ
2

��

(A.15b)  

where, KI ¼ σ
ffiffiffiffiffiffi
aπ

p
is the mode-I fracture toughness, with a being half of the crack length (long axis) and σ being the far field tensile stress. KII ¼ τ

ffiffiffiffiffiffi
aπ

p
is 

the mode-2 fracture toughness, with τ being the far field shear stress. The polar coordinates r and θ were used with the crack tip being the origin along 
¼ 0 . Also, the displacement fields around the crack tip for mode-II are 

uII
x ¼

KII

2μ

ffiffiffiffiffi
r

2π

r

sin
�

θ
2

��

κ þ 1 þ 2cos2
�

θ
2

��

(A.16a)  

uII
y ¼

KII

2μ

ffiffiffiffiffi
r

2π

r

cos
�

θ
2

��

κ �1 �2sin2
�

θ
2

��

(A.16b) 
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The total displacement field is then 

ux ¼ uI
x þ uII

x (A.17a)  

uy ¼ uI
y þ uII

y (A.17b) 

The x- and y-displacement data from the result file of ABAQUS along the line of x ¼ 0:5 mm around the crack tip area was extracted and compared 
with analytical results. Fig. A1 (b-c) shows that the modeling results are in good agreement with the analytical results. 

A.2.2 Validation of mixed-mode fracture with inclusions 
A series of cases were studied to verify the phase-field model both for mode-I and mode-II fracture. To validate mode-I fracture, a plate with area 

(width and height) �h ¼ 3 mm � 4 mm , as shown in Fig. A2(a), was used. A horizontal pre-crack was arranged at the middle of left edge with a length 
of 1 mm. A compliant or stiff inclusion was located in the center of the plate with a pre-crack pointing towards it along the horizontal axis (also an axis 
of symmetry). The radius of the inclusion was fixed as r ¼ 0:3 mm for all cases. The distance between the pre-crack tip and edge of the inclusion, shown 
as d in Fig. A. 2(a), was varied between the values 0:5r; 1:0r; and 1:5r: The problem used to validate mode-II fracture was identical to that used for 
mode-I fracture but with a different displacement control of the top surface, to create a mode-II fracture scenario. 

According to the work of Zhonghua Li et al. [42], the change in the stress intensity factor (SIF) of a mode-I crack tip in presence of an inclusion is 

ΔKI;tip

KI;0
¼

1
π

Z

A
r�2

�

C1 cos
θ
2

cos
3θ
2

þ C2 sin2 θ cos θ
�

dA; (A.18)  

where KI;0 is the mode-I SIF for the crack tip without inclusions, ΔKI; tip ¼ KI;tip �KI;0 is the change in SIF. The variable, A, is the upper half of the area of 
the inclusion. The polar coordinates are r and θ with the crack tip being the origin along θ ¼ 0. The parameters C1 and C2 are related to the material 
properties and are given by 

C1 ¼
ð1 �αÞð1 �2ν Þ

ð1 þ α �2νÞ
(A.19a)  

C2 ¼
3ð1 �αÞ

2ð1 þ 3α �4ναÞ
(A.19b)  

where α is the ratio of the Young’s modulus of the inclusion to the Young’s modulus of the matrix. The Poisson ratio (assumed equal for the inclusion 
and matrix) is given by ν. 

As for the mode-II problem, the change in the SIF is [43], 

ΔKII;tip

KII;0
¼

1
π

Z

A
r�2ðD1 cosθ þ D2cos2θ þ D3cos3θ ÞdA; (A.20)  

where D1; D2; and D3 are parameters related to the material properties: 

D1 ¼
ð1 �αÞð11 þ 19α þ 32ν2α �22ν �40ναÞ

16ð1 þ α �2νÞð1 þ 3α �4ναÞ
(A.21a)  

D2 ¼ �
ð1 �αÞð1 �2νÞ

16ð1 þ α �2νÞ
(A.21b)  

D3 ¼
9ð1 �αÞ

16ð1 þ 3α �4ναÞ
(A.21c) 

The other parameters follow the previous definitions. 
The change in the energy release rate is then given by 

ΔGtip

G0
¼

Gtip

G0
�1 ¼

�
K0 þ ΔKtip

�2

K2
0

�1 ¼ 2
ΔKtip

K0
þ

�
ΔKtip

K0

�2

(A.22) 

Eq. (A.22) holds for mode-I and mode-II fracture. 
To conduct the analysis with a normalized mechanical property system rather than specific values, for each case with compliant or stiff inclusions, 

a conjugate case with identical geometry and no inclusions was also modeled as a comparison. The critical energy release rate was set with a large 
value of 999.0 N/mm to ensure no crack propagation occurs. The J-integral was extracted and compared to study the influence of the compliant and 
stiff inclusions. 

The comparison between the analytical solution and the model is shown in Fig. A. 2(b-c) for mode-I fracture and Fig. A. 3(b-c) for mode-II fracture. 
The normal and shear stress distributions are shown in Fig. A. 2(d-i) for mode-I fracture and Fig. A. 3(d-i) for mode-II fracture, respectively. It should 
be noted that to keep this part concise, only the stress distribution for the case with dr ¼ 0:5 is included. The change of energy release rate obtained from 
modeling fits well with the analytical solutions. 

A.2.3 Validation of kinked fracture 
Considering the effect of compliant and stiff inclusions on the crack propagation, the accuracy of the phase-field model for simulating kinked 

fracture was also verified. 
A plate with width and height of b � h ¼ 3 mm � 4 mm (see Fig. A4) with a horizontal pre-crack arranged at the middle of left edge of length of 
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l ¼ 1 mm is used. A kink was then added to the original crack tip with a length of 0:1l. The angle between the pre-crack and kink, denoted as θ, is varied 
from �60� to 60�. For all cases in this section, the displacement at bottom surface was zero (in both directions) and the top surface was stretched 
uniformly along vertical direction. The mode-I and mode-II SIFs around the kink tip are then extracted with the interaction integral method [44]. 

Based on work of Wu [45], the SIFs at the kinked crack tip can be expressed as: 

kI ¼ ½KIa11ðθÞ þ KIIb11ðθÞ� þ T
ffiffiffiffi
8l
π

r

sin2 θ þ

ffiffiffi
2
π

r

l½C3a13ðθÞ þ D3b13ðθÞ� (A.23a)  

kII ¼ ½KIa21ðθÞ þ KIIb21ðθÞ� �T
ffiffiffiffi
8l
π

r

sinθcosθ þ

ffiffiffi
2
π

r

l½C3a23ðθÞ þ D3b23ðθÞ� (A.23b)  

where, KI, KII, and T are the mode-I, mode-II, and T-stress for the original crack tip, respectively. The length of the kink is l. The parameters 
amn and bmn are related to θ by 

a11ðθÞ ¼
1
4

cos
�

3
2

θ
�

þ
3
4

cos
�

1
2

θ
�

(A.24a)  

b11ðθÞ ¼ �
3
4

sin
�

3
2

θ
�

�
3
4
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�

1
2

θ
�

(A.24b)  

a13ðθÞ ¼ �
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þ
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4

cos
�

1
2

θ
�

(A.24c)  
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(A.24d)  
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(A.24e)  

b21ðθÞ ¼
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(A.24g)  

b23ðθÞ ¼
15
4
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�

5
2

θ
�

�
3
4

cos
�

1
2

θ
�

(A.24h) 

The parameters C3 and D3 are the third order coefficients of the Williams series expansion. 
The comparison between the phase field model and analytical results is shown in Fig. 4(b) with the x-axis showing the ratio of the mode-I and 

mode-II SIF around the kink tip. For brevity, only the stress distribution for θ ¼ 40� is presented in Fig. 4(c–e).The modeling results fit well with the 
analytical solutions. 

A.2.4 Comparison of different fracture criteria 
To understand the difference between the phase field methods adopting different fracture criteria, a series of cases were modeled. The two fracture 

criteria adopted in this part are: (1) the linear mixed mode criterion defined as ψ IðεÞ

GIc
þ

ψ IIðεÞ

GIIc 
and (2), the quadratic mixed mode criterion defined as 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ψ Ⅰðx;εÞ

GⅠc

�2
þ

�
ψⅡðx;εÞ

GⅡc

�2
s

. Two UEL subroutines in ABAQUS were implemented and utilized in these two cases with identical geometry. 

As shown in Fig. A. 5(a), a plate with a width and height of b � h ¼ 3 mm � 4 mm was used. A horizontal pre-crack was arranged at the middle of 
the left edge with a length of 1 mm. No inclusions were included in this modeling. Mixed-mode fracture cases were modeled for each series, where the 
top surface was displaced in the horizontal and vertical directions by 0.1 mm. The phase field distributions for each case are shown in Fig. A. 5(b-c). It 
can be observed that with the quadratic criterion, the damaged part of the phase field becomes more localized around the crack, which demonstrates 
that the quadratic criterion captures sharp cracks in brittle materials more accurately than a linear criterion.  
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Fig. A.1. Phase-field model validation. The geometry and loading conditions are shown in (a). The model prediction and analytical results of the x-component of 
displacement is shown in (b) and of the y-component of displacement in (c) along the line x ¼ 0.05 mm. The contour plot of the phase field damage parameter is 
shown in (d). Contour plots of the displacement field in the x- and y-directions are shown in (e) and (f), respectively.  
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Fig. A.2. Validation of mode-I fracture with inclusions. The problem geometry is shown in (a). The comparison between the analytical solution and phase field model 
for compliant and stiff inclusions are shown in (b) and (c), respectively. The stress components σ11, σ22 and σ12 of the case with compliant inclusions are shown in (d- 
f) and the case with stiff inclusions are shown in (g-i) (both cases assume d/r ¼ 0.5). 
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Fig. A.3. Validation of mode-II fracture with inclusions. The geometry is shown in (a). The comparison between the analytical solution and phase field model for 
compliant and stiff inclusions is shown in (b) and (c), respectively. The stress components σ11, σ22, and σ12 of the case with compliant inclusions are shown in (d-f) 
and the case with stiff inclusions are shown in (g-i) (both cases assume d/r ¼ 0.5). 
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Fig. A.4. Validation of kinked fracture. The geometry is shown in (a). The comparison between the analytical solution and the phase field model is shown in (b). The 
stress components σ11, σ22, and σ12 (evaluated at θ ¼ 40�) are shown in (c-e). 

Fig. A.5. Comparison between phase field models adopting different fracture criteria. The geometry is shown in (a). The distribution of the fracture parameter, ϕ, for 
the case with a linear fracture criterion is shown in (b) and (c) shows the distribution for the case with a quadratic fracture criterion. 
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