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Developments in additive manufacturing have enabled the reinforcement of ceramic composites across the
scales. Understanding the fracture behavior of such composites is critical for structural design and engineering.
However, systematic investigations on the relationship between the patterning characteristics and the effective
fracture properties have been scarce. This work proposes a mixed-mode phase field model to investigate the
effects of elastic modulus and pattern characteristics of circular inclusions on the fracture behavior of a ceramic
composite beam. The modeling results have shown that the stiff and compliant inclusions can either repel or
attract the crack. The extent of repelling and attraction can be controlled by altering the pattern characteristics.
In addition, utilizing the relationship between the pattern characteristics and resulting fracture path, fracture
growth can be controlled with appropriate inclusion properties. The targeted enhancement in fracture toughness
can also be predicted using an effective fracture model linked with the underlying fracture path computed by the

proposed mixed-mode phase field model.

1. Introduction

Describing brittle fracture in ceramics has developed from the initial
notion of fracture toughness introduced by Griffith [1] to the notion of
effective toughness in ceramic composites in recent decades [2-7].
Ceramic composites provide a means to increase the overall toughness of
a structure beyond a homogeneous material due to the presence of
toughening mechanisms such as crack deflection, branching, and
repelling [8]. With continually advancing manufacturing methods, a
multitude of complex composite arrangements can be created and
geared towards increasing toughness. To discover optimal composite
arrangements, the analysis and simulation of how cracks propagate
through heterogeneous media is required.

Closed form analytical solutions for the effective fracture toughness
of laminated composites was carried out by Gao [6,9,10]. The approach
provided an efficient way to observe how composite geometries and
properties changed the effective response but was of course limited by
the assumptions made including the simplified geometry and small
elastic mismatch. In addition, this approach mainly dealt with cracks
interacting with finite strips or layered composites. Bower and Ortiz
(1991) extended Gao’s theory and applied the finite perturbation
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method to analyze the enhancing effect of adding small quantities of
tough particles within a solid material in three-dimensions [2]. The ef-
fect of these tough particles on fracture growth was mainly reflected in
the crack bridging mechanisms. However, the stress intensity factor
based linear elastic fracture mechanics (LEFM) approach has challenges
in analyzing complex heterogeneous patterns, which can now be pro-
duced with advanced manufacturing methods. Yu et al. (2009) pre-
sented the derivation of an interaction (energy) integral to compute
mixed-mode stress intensity factors in heterogeneous materials by
obtaining the equivalent domain integral [11]. This approach has ad-
vantages over the perturbation analysis (small elastic mismatch) as the
required computational time can be significantly reduced and could be
applied to systems with larger elastic mismatch. However, this method
still cannot analyze complex geometry, hence, numerical fracture
models have also gained more widespread use in studying the fracture
behavior of composites because they can be applied cases with complex
heterogeneities.

The most-widely accepted numerical methods for fracture modeling
of composite materials are the discontinuous Galerkin (DG) method, the
cohesive zone model (CZM), and the smeared cracking model (SCM))
[12-18]. The SCM, especially its latest advancement, the phase-field
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model, has shown promise recently for addressing limitations of the
other numerical methods. Its main advantages over DG and CZM
include: (1) there is no requirement of an initial crack (which may not be
known a-priori), (2) it has the capability to modeling fracture branching
and coalescing, and (3) it has relatively low requirements on mesh
configurations (such as element type, nodes number and interpolation
order).

The concept of regularizing fracture (in SCM) into a continuous field,
representing the state of material, started firstly from Rashid’s work of
introducing stress release to the constitutive model [19]. Instead of
creating a discontinuity for the crack, the constitutive relationship can
be altered, or softened, based on the additional continuous field. After
decades of development, this method has been applied increasingly
within the field of materials science and fracture mechanics. Francfort
and Marigo [20] adopted the concept of minimization of potential en-
ergy, consisting of internal strain energy and surface energy, regarding
displacement and crack topology. The extra scalar field representing the
damage related material state was introduced by Bourdin [21]. In recent
years, this method has been widely employed for several aspects of
fracture related themes including brittle dynamic fracture and
thermo-mechanical fracture using numerical and analytical approaches
[16,22-24]. Hossain et al. (2014) studied the effective toughness of
heterogeneous media with concept of macro homogenization via surfing
boundary conditions [7]. However, the applied phase field approach
only considered mode-I fracture, which could oversimplify the fracture
mechanism [25,26]. Nevertheless, it was concluded that the computa-
tional approach with homogenization shows higher efficiency in terms
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of memory usage compared with fully mapping [27] when investigating
the fracture behavior of composite materials with patterned
heterogeneity.

Generally, phase field models for fracture utilize a scalar damage
variable. The damage variable used here is ¢ € [0, 1], where ¢ = 0 cor-
responds to a virgin (undamaged) state and ¢ =1 corresponds to a
completely fractured state. This approach introduces damage in a
continuous manner removing the challenges associated with disconti-
nuities introduced by the fracture propagation. With the damage vari-
able introduced, it is necessary to relate it to the mechanics of the
structure. One common approach is to define the damage variable
evolution from an energy perspective [16,28] with following process.
First the relation between the damage variable and the stored strain
energy density must be defined. Then, one adds to the total stored en-
ergy the energy required to create the new surface. Binomial and
monotonic functions are among the most widely adopted functional
forms for strain energy degradation due to fracture [29].

However, a common assumption when choosing the strain energy
density degradation function is to assume fractures propagate solely in
mode I. While this approach gives reasonable results for homogenous
materials, the effect of complex stress fields in heterogeneous materials
(in ceramics in particular) are not captured [30,31]. There have been a
limited number of studies including mixed-mode fracture phase-field
models, such as for anisotropic rocks [26,30] and cementitious mate-
rials [25]. However, the formulations in these works were not derived
based on the commonly adopted power-law criterion for ceramic ma-
terials, which are in close agreement with the available experimental
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Fig. 1. Composite beam in 4-point bending configuration. The specimen geometry and boundary conditions are shown in (a). Inclusion arrangement for series c2 and
s1 is shown in (b). Inclusion arrangement for series c1 and s2 is shown in (c). Inclusion arrangement for series h1 is shown in (d). Inclusion arrangement for series h2
and h3 is shown in (e). The inclusion spacing is denoted by a and the inclusion diameter is denoted by d.
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results [5,32,33]. This leads to less accurate fracture growth predictions.

To obtain a more accurate picture of how cracks propagate in two-
phase composites with varying designs, a mixed-mode phase field
model was developed, implemented in ABAQUS, and then validated
(discussed in Appendix A2). Using this model, crack propagation
through a series of composite specimens with different inclusion ge-
ometries and properties were simulated to gain insight into how to
optimize the composites for increased overall toughness. Secondary
development of user element and user material subroutines, UEL and
UMAT, respectively, within the commercial software ABAQUS was
adopted for the numerical implementation. The fracture resistance was
characterized for all cases using effective fracture variables defined from
a volumetric homogenization scheme and domain integral. The results
show a significant enhancement in fracture toughness with both
compliant and stiff patterned inclusions. In addition, a guided fracture
growth was observed with combined compliant and stiff inclusion pat-
terns, revealing a means to tailor and optimize the toughness of
composites.

2. Phase-field modeling for mixed-mode fracture

The main concept of the phase-field method is to convert disconti-
nuities in field variables due to the presence of cracks to continuous
fields by regularizing the crack into a continuous field. The scalar phase-
field variable is introduced as, ¢, ranging from O to 1, where 0 means
the material point has not been damaged and 1 means the material is
fully damaged. The total internal energy is (considering the phase-field
induced damage in strain energy) as (cf. Eq. (A.2))

v = [[0- 97 +ifwerar [ lawa s ol @

where y/(¢) is the elastic strain energy density (of the undamaged ma-
terial), ¢ is the small strain tensor, G, is the critical energy release rate,

¢y is the regularization scale parameter (controls the crack thickness),
and k is a parameter to keep the system well-conditioned during the
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simulation. Note that index notation and summation convention are
implied, and commas denote derivatives with respect to the spatial co-
ordinates. The first term on the right-hand side denotes the reduced
elastic strain energy due to an increase in ¢. The second term on the
right-hand side represents the regularized surface energy related to
fracture growth. The potential energy is then given by the difference
between the stored internal energy and work done by external forces,

nm=uv-V, (2a)
where the work done by an external body force, b;, and surface traction,
t;, is given by

V= /Qpb,-u,-dQJr /6Q,t,~u,-d09, (2b)

with p denoting the density. Applying the Principle of Minimum Po-
tential Energy, the equilibrium solutions for the displacement field and
phase-field damage parameter are those that minimize the potential
energy. The potential energy can be minimized by taking its first vari-
ation with respect to displacement and phase-field parameter (see Ap-
pendix Al) to obtain the following governing differential equations (or
Euler-Lagrange equations) as given in Eq. A.14a-e

UUJ+bi:01nQ (3a)

on; = t; on 0%, (3b)

u; = u; on 082, (30)
e\ | (wuxe)\ | ¢

2(¢ — 1)\/( IGI’ ) + ( ”G”’ ) +o = lodinQ (3d)
c c 0

¢, n; =0onoQ, (3e)

where o = % is the Cauchy stress tensor and Gy, and Gy, are the critical

energy release rate in mode I and II, respectively. Also, the applied
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Fig. 2. Graphical illustration of the material homogenization scheme and calculation of effective fracture toughness. The specimen geometry and boundary con-
ditions for 4-point are shown in (a). An example crack propagation for the case with one compliant inclusion with the total propagation length labeled is shown in (b).
Crack propagation for the conjugate case of (b) showing the homogenized area is given in (c).
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displacement boundary condition is denoted ;. Note that the stress is
defined as the derivative of the damaged strain energy density function,
¢ = ((1 — ¢)®+ k)y. The total (undamaged) elastic energy density is
decomposed into 2 parts: the hydrostatic strain energy density (con-

n
taining only the tensile component)y;(¢) =1 > |ower|”, where nis the
k=1

dimension number, and the deviatoric strain energy density y(¢) =
1 |aije,~j| with i # j. The split of the strain energy is to assure a mixed-mode
fracture criterion is properly defined. This adaptation is similar to the
recent work by Zhang et al. [30] with a difference that a quadratic
failure criterion is used instead of the linear one in Zhang et al. [30] (i.e.,
"'(’;—(:)—s— "’g—l(lf)) since the majority of experimental work on mixed-mode
fracture in ceramic materials shows a non-linear relation [5,34-36].
We also validated the improved accuracy of this approach in Appendix
A.2. Also, it is further assumed that G;. = Gy = G, for a simplified
numerical solution.

Due to the addition of ¢ to the degrees of freedom at the nodes, it is
difficult to directly use commercial FEM software. In particular, a new
element formulation for integrating the phase field parameter, ¢, using
Gauss quadrature is needed. To this end, the phase-field model was
implemented in ABAQUS using a user defined element subroutine
(UEL). Our implementation follows the approach of Msekh [28]. After
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implementing the phase-field model within ABAQUS, its accuracy was
validated by comparing against two different problems that have exact
solutions (discussed in the Appendix A.2).

3. Modeling details

Using the proposed phase-field model, the effect of various com-
posite parameters on crack propagation were simulated including (1)
compliant inclusions, (2) stiff inclusions, and (3) hybrid inclusions. The
rationale for each composite parameter is outlined below along with the
definitions of the metrics used to quantify the effective toughness of the
ceramic. To approximate experiments, all test specimens were in a 4-
point bending configuration, with a pattern of inclusions introduce
near the notch (see Fig. 1). The size of the beam specimen was 10 mm X
110 mm and a precast crack of length 3 mm was located on the sym-
metry axis along y-direction. The beam was constrained in the x- and y-
direction displacements by the pinned connection on the left and in the
y-direction by the roller on the right. Loadings were applied in steps with
a maximum displacement increment of 1072 mm and a minimum
increment of 10~® mm via displacement control within ABAQUS. The
pin and roller connections and the two loading points were arranged
symmetrically with distances of 50 mm and 25 mm, respectively, to the
symmetric axis. Element sizes were no larger than 1/10 of 7, (defined in
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Fig. 3. Homogenization process for determining the effective Young’s modulus. The geometry and boundary conditions of the specimen is shown in (a). The ho-
mogenization area and partition of unit cells is shown in (b). The total homogenized area is shown in (c). The geometry of a single unit cell is shown in (d). The

homogenized are of a single unit cell is shown in €.
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Eq. (1)) at the middle span, while an element size of 0.2 mm was used
remote from the crack trajectory.

3.1. Inclusion patterns

Inclusions with identical radii were assigned to be within the area
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shown as light blue in Fig. 1(a). Two series were investigated for
compliant inclusions, namely c1 and c2. For the c1 series, 5 columns of
compliant inclusions were used with the crack pointing to the middle
column, shown in Fig. 1(c). For series c2, 4 columns of compliant in-
clusions were simulated with the initial crack pointing towards the space
between adjacent columns at the middle span of the beam, as shown in

a/d=2.00

) a/d ratio

1_5' ........ 1.50

1 1 1 1

4 5 6 7 8
L /d
y

Fig. 4. Crack propagation pattern and propagation ratio for series c1 (rows of inclusions are labeled with numbers on the right side). The crack propagation is
illustrated in(a-f) for cases with a/d = 0.25, 0.50, 0.75, 1.00, 1.50, and 2.00, respectively. The propagation ratio, Ry, for each specimen is shown in (g). Note that
the curve is identical for each specimen such that the curves lay on top of each other.
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Fig. 1(b). Two series were designed to include only stiff inclusions,
namely s1 and s2, which had the same geometry as the c2 and c1 series
but with stiff inclusions.

Three series were designed to include a hybrid of compliant and stiff
inclusions, namely h1, h2, and h3. For the h1 series, 4 columns of in-
clusions were included with the initial crack pointing towards the space
between adjacent compliant and stiff inclusions at the middle span of the
beam, as shown in Fig. 1(d), where blue circles represent compliant
inclusions and orange ones represent stiff inclusions. For the h2 series, 5
columns were adopted with the initial crack pointing toward the middle
column, as shown in Fig. 1(e); thus, the crack is expected to propagate
towards compliant inclusion initially. The h3 series has the same ge-
ometry as h2 but all the inclusions were altered with the initial crack
pointing toward the middle stiff inclusion, such that the stiff inclusions
in h2 were replaced with compliant inclusions and vice versa.

For all cases, the inclusion geometries were all set as circles with a
fixed diameter of 0.6 mm based on the allowable size in extrusion-based
manufacturing methods [37] (denoted as d = 0.6 mm and served as the
basis for length normalization). The precast crack length was 3 mm
(or 5d) and the distance between crack tip and lowest inclusion row
(0.9 mm, or 1.5d) were fixed for all cases. For each series, the space
between nearby inclusions, shown as a in Fig. 1(b-e), was varied to
explore the influence of inclusion spacing on the propagation of the
crack. It should be noted that the inclusion spacing along the x- and
y-directions were set to be identical. Six settings were adopted for each
series:a/d = 0.25, 0.5, 0.75, 1.00, 1.50, and 2.00. For all series other
than h1, half of the specimen was simulated and a symmetry plane is
used for computational efficiency.

An alumina matrix (with a Young’s modulus of 160 GPa), graphite
compliant inclusions (with a Young’s modulus of 15.85 GPa), and silicon

Composites Part B 172 (2019) 564-592

carbide stiff inclusions (with a Young’s modulus of 410 GPa) were
selected. The fracture toughness G, was assumed to be 0.034 N/mm,
which is derived from Young’s modulus and fracture toughness (Kjc)
provided by online material property database [38,39], for all materials
since the presented work mainly focuses on the effect of elastic
mismatch and pattern characteristics. The selection of alumina,
graphite, and silicon carbide was due to their wide applications in
ceramic composites [40,41].

3.2. Fracture parameters

In order to quantitatively assess and compare the fracture behavior
of the various composite arrangements, several metrics are introduced
in the following sections. In particular, the propagation ratio, effective
Young’s modulus, and effective fracture toughness are defined.

3.2.1. Propagation ratio(R,).
The elongation of the sinuous propagation path is quantified by the
propagation ratio,

L Uy
R, = @
‘y

where Ly, denotes the total length of the propagation path and Ly is the
projection of Ly,, onto the y-axis, and corresponds to the effective
propagation path as shown in Fig. 2(b-c). To rule out the influence from

the upper boundary, the value of R, corresponding to L, = 8d for each
case is extracted for comparison. This value is denoted as R, .

3.2.2. Effective Young’s modulus (Eqy)
The effective Young’s modulus is defined for the area containing
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Fig. 5. These plots show normalized J-integral, J, and effective energy release rate, G, versus relative crack length for series c1 The relative crack length is
obtained by normalizing the crack top position by the inclusion diameter, d. Results for specimens with a/d = 0.25, 0.50, 0.75, 1.00, 1.50, and 2.00 are shown I
(a-f), respectively.
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inclusions using the unit cell concept, as shown in Fig. 3(a—c). The unit
cell is defined as the area enclosing both the inclusions and matrix, as
illustrated in Fig. 3(b, d). Denote Ayc i, Aucri Auem and A, as the area of
compliant inclusions, stiff inclusions, area of the matrix included in one
unit cell, and the total unit cell area, respectively, as shown in Fig. 3(d).
Then, the effective Young’s modulus is given by

@) a/d=0.25 [

RNWHSIONI®

a/d=1.00
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_ Auc.mEm + Auc,ciEc + Auc.riEr
B Ay E,

E, )
where E., E, and E, are the Young’s modulus of the compliant in-
clusions, stiff inclusions, and matrix, respectively, and can be found in
Tab. 1. It should be noted that E. is a normalized based on Ey,.

a/d=2.00

T

1.4

1.3

a/d ratio

Bl | 7.

7 8

Fig. 6. Crack propagation pattern and propagation ratio for series c2. The crack propagation is illustrated in (a—f) for the cases with a/d = 0.25, 0.50, 0.75, 1.00,
1.50, and 2.00, respectively. Propagation ratio, R, versus relative crack length is shown in (g).
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3.2.3. Effective fracture toughness (G )

Inspired by the surfing boundary condition in Ref. [7] and consid-
ering the geometry of the composite, a homogenization strategy for
effective fracture toughness is proposed. A conjugate numerical case is
adopted with the effective Young’s modulus for the region covering the
inclusion patterns. The Young’s modulus of the matrix material is used
for the area outside. As defined before, L, is used as the effective crack
length for the conjugate numerical case. By applying the same boundary
conditions from the original case, the energy release rate can be calcu-
lated using LEFM for the conjugate case. The effective fracture tough-
ness was then determined by the energy release rate obtained from the
conjugate case during the crack propagation in the original case. The
defined effective fracture toughness, G, ., can then be used to evaluate
the effect of inclusion patterns on the fracture resistance.

4. Results and discussions

In this section, the fracture paths, characterized by the propagation
ratio, Rp, normalized J-integral for each case (nondimensionalized as
J = J/G. with G, being the critical energy release rate of the matrix and
inclusions, cf. Section 3.1), and effective fracture toughness, G ., were
analyzed to determine the effect of the patterned inclusions on the crack
propagation behavior. The fracture trapping, repelling, and guiding
mechanisms were observed and discussed in detail.

Organization for this section is as follows: Sections 4.1, 4.2 and 4.3
describe the series of compliant inclusions, stiff inclusions, and hybrid
compliant and stiff inclusions, respectively. Section 4.4 summarizes and
discusses the mechanisms affecting crack propagation that were
observed. For each series, 6 cases with a/d = 0.25, 0.50, 0.75, 1.00,
1.50, and 2.00 are labeled as cases a-f for sake of brevity. These labels

1.5
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also correspond to the sequence of sub-figures of each series.
4.1. Compliant inclusions

4.1.1. Five inclusion columns (c1)

As shown in Fig. 4(a—f), with the initial crack tip pointing toward the
middle column of compliant inclusions, the crack propagates in the y-
direction without any deviation (regardless of the inclusion spacing).
This leads to the fact that the propagation ratio, R,, remained 1.0
constantly, which can be seen in Fig. 4(g). The crack in Fig. 4 (and
subsequent figures) is shown in red, which denotes the area where the
damage parameter, ¢, exceeds the value 0.99, considering the value of ¢
will not reach 1.0 due to the numerical error introduced by parameter k .

As presented in Fig. 5, J for all cases fluctuates slightly around the
line J = 1.0 while propagating through the matrix and inclusions. No
visible change of J is observed when the crack enters each compliant
inclusion. However, as the crack propagates into the matrix from the top
of each compliant inclusion, J decreases rapidly and then returns to 1.0.

4.1.2. Four inclusion columns (c2)

As shown in Fig. 6(a—f), when located around the crack tip, the
compliant inclusions tend to attract the crack. For cases a-e, the crack
propagates at first along the y-direction for a very short distance before
turning towards the compliant inclusion of the 1st row. Subsequently,
the crack propagates along one column of inclusions in the y-direction.
As for case f, the crack propagates following the initial direction until it
gets close to the 2nd row of inclusions. This is due to the fact that with
this relative inclusion spacing (a/d = 2), the 1st row of inclusions is not
sufficiently close to the initial crack tip to alter the propagation path.
Thus, it can be observed that for a fixed set of materials, there exists an

— - - 1.6 7ac05g” r 1.7 7a=
(a) a/d=0.25 e (b) "°[a/d=0.50 —rrw— (© (| — Jintegral
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0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
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B 17 T 1.7 75
(©) ! a/d=1.00 — Jintegral — J-integral | | ® 16 Wd=2.00 —J-integral
-~ Ceert -~ Coenr - G eft
04 ‘ - - 0.4 0.4 - ~
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
L /d L /d L/d
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Fig. 7. These plots show normalized J-integral, J, and effective energy release rate, G. oy, versus relative crack length for series c2. Results for specimens with a/

d =0.25, 0.50, 0.75, 1.00, 1.50, and 2.00 are shown in (a—f), respectively.
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optimum inclusion spacing that results in the greatest increase in crack
length.

As shown in Fig. 7, a relatively large jump in J within the crack
position range of 0 to 1 mm was observed for cases a-e. This jump cor-
responds to the crack propagating towards the inclusions of the 1st row.
This behavior was also observed for case f when the crack tip reached the
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inclusions at the 2nd row, and coincided with the increasing R;, as
shown in Fig. 6(g). These results indicate that the crack-trapping
mechanism can be introduced by placing the compliant inclusion at a
limited distance away from the crack tip. The increased fracture path
provides more release of fracture energy hence increasing the effective
fracture toughness.

a/d=0.50 [G]

a/d=2.00

® al/d ratio '

--0.25

1.5 1.50

4 5 6 7 8

L /d
y

Fig. 8. Crack propagation pattern and propagation ratio for series s1. (a—f). The crack propagation is illustrated in (a—f) for cases with a/d = 0.25, 0.50, 0.75, 1.00,
1.50, and 2.00, respectively. The propagation ratio, R, versus relative crack length for each specimen is shown in (g). As in Fig. 4, the curves for each specimen are

identical and lay on top of each other.
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4.2. Stiff inclusions

4.2.1. Four inclusion columns (s1)

As shown in Fig. 8(a-f), with stiff inclusions distributed symmetri-
cally about the initial crack, the crack propagates in the y-direction with
a constant propagation ratio, R, =1, as shown in Fig. 8(g). As shown in
Fig. 9, although the propagation pattern for this scenario is no different
than homogeneous situation or series c1, J shows periodic fluctuations,
indicating the influence of nearby stiff inclusions. The number of fluc-
tuations, corresponding to the number of inclusions within the area,
decreased from 6 to 2 when the number of rows decreased from 8 to 4.
The amplitude of the fluctuations, corresponding to the inclusion
spacing, decreased from around 0.25 to 0.05 when a/d increased from
0.25 to 2, which shows that the influence of stiff inclusions is reduced as
the spacing between the stiff inclusions and crack tip is increased.

4.2.2. Five inclusion columns (s2)

As shown in Fig. 10(a-f), stiff inclusions can change the fracture
propagation path by repelling the crack tip away from the inclusion. The
overall propagation process can be divided into two stages: (1) straight
crack growth due to the initial crack direction and then an altering
process while reaching the stiff inclusions of the 1st row followed by a
stage (2) where crack propagation is constrained between two columns
of stiff inclusions.

As shown in Fig. 11, corresponding to the two-stage propagation, the
value of J also exhibits two stages: (1) an initial fluctuation within the
crack position range of 0 to 0.8 mm reflecting the initial large crack
deflection process. The amplitude of the initial fluctuation decreases
slightly with increasing inclusion spacing, which is due to the fact that as
the inclusion spacing increases, the crack has more space between the

(a) 1.35
1.3

(b) 1.3

a/d=0.25 /d=0.50 |

—J-integral
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adjacent columns of inclusions to propagate at will. As for the steady
propagation stage (2), a periodic fluctuation is observed. With
increasing inclusion separation, the amplitude of the fluctuation does
not change significantly, but the average value increases gradually due
to the increasing inclination angle of the crack. Series s2 shows the
strong crack repelling mechanism of using stiff inclusions, in which the
crack was always deflected away from the inclusions. This observation is
consistent with the trend of Ry, as shown in Fig. 10(g).

4.3. Hybrid stiff and compliant inclusions

4.3.1. Four inclusion columns (hl)

As shown in Fig. 12(a-f), the crack propagation pattern varies
significantly with increasing a/d. For cases a-b, the crack propagates
mainly along a zigzag route after initiation, i.e., the path connects
compliant inclusions for each row in sequence. Also, it can be observed
that branches emerge while propagating towards stiff inclusions. After
branching, the crack further develops along one of the branches and
marches towards the compliant inclusion.

As a/d increases more for cases c-d, where a/d reaches the value of
0.75 and 1.00 separately, the crack chooses a path periodically crossing
compliant inclusions and bypassing stiff inclusions of the same column.
Small branches are observed to initiate and arrest immediately after.

For an even higher a/d = 1.50 in case e, two major branches are
observed after the crack initiation. The left branch grows towards the
compliant inclusion of the 2nd row and the right branch grows towards
the compliant inclusion of the 1st row. When the loading process con-
tinues on, the right branch arrests while reaching the 2nd row and the
left branch continues propagating with the latter part exhibiting a
similar pattern with cases c¢-d: crossing compliant inclusions and

(c) 1.25

a/d=0.75

—J-integral —J-integral

a/d=1.50

—J-integral

4
L/d
y

‘—J-integral —J-integral

Fig. 9. These plots show normalized J-integral, J, and effective energy release rate, G ., versus relative crack length for series s1. Results for cases with a/d = 0.25,

0.50, 0.75, 1.00, 1.50, and 2.00 are shown in (a-f), respectively.
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bypassing stiff ones.

For case f with the maximum a/d = 2.00, the crack propagates in the
y-direction before deflecting towards and entering the compliant in-
clusion of the 2nd row. Small branches are also observed. However,
further growth was not observed for these small branches. The subse-
quent propagation exhibited similar behavior to cases c-d: entering
compliant inclusions and bypassing stiff ones. Branches were also
observed at each row.

As shown in Fig. 12(g), the propagation ratio, R,, corresponding to
the longest final propagation path with a/d =0.25 and 0.5 is much
larger than the other cases, which is due to the multiple branches and
zigzag route. Cases with inclusion spacing of a/d = 1.00 resulted in the
lowest value of R, due to minimal deflections and branches.

As shown in Fig. 13, the behavior of J is similar to that of the spec-
imens described before. For cases a-b, J decreases rapidly when the crack
propagates from a compliant inclusion into the matrix and then in-
creases and reaches a relatively high value due to the branching and
inclination angle. This behavior repeats when the crack crosses

8
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2
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Composites Part B 172 (2019) 564-592

compliant inclusions in the first 5 rows. The higher value of J seen in
case b is due to the developments of more branches. For cases c-f, J
decreases when the crack passes through the boundaries from the in-
clusion side into the matrix, and then increases while the crack bypasses
the following stiff inclusion until reaching the top surface.

4.3.2. Five inclusion columns: precast crack pointing to compliant inclusion
(h2)

As shown in Fig. 14(a—f), the crack propagates through the nearest
compliant inclusion after the crack initiation for all cases, and then the
patterns vary for increasing inclusion spacing in a similar fashion as
series h1. For cases a-b, branches are observed as the crack propagates
past the compliant inclusion of the 2nd row. The right branch enters the
rightmost compliant inclusion of the 3rd row and then arrests, while the
left branch propagates between compliant inclusions of the subsequent
rows. For cases c-f, the crack only enters the compliant inclusions in the
middle column. Instead of choosing a route connecting compliant in-
clusions for each row, the crack propagates periodically entering the

a/d=0.50 a/d=0.75

a/d=1.50 a/d=2.00

® 1.35

1.3

1.25

1.05

a/d ratio

--0.25

Fig. 10. Crack propagation pattern and propagation ratio for series s2. The crack propagation is illustrated for cases with a/d = 0.25, 0.50, 0.75, 1.00, 1.50,
and 2.00 in (a—f), respectively. The propagation ratio, R,, versus relative crack length is shown in (g).
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Fig. 11. These plots show normalized J-integral, J, and effective energy release rate, G ., versus relative crack length for series s2. Results for cases with a/d = 0.25,

0.50, 0.75, 1.00, 1.50, and 2.00 are shown in (a-f), respectively.

compliant inclusions and bypassing the stiff inclusions within the same
column. Similarly, as observed in series h1, the final propagation ratio,
R,, of cases a-b is much longer than that of cases c-f.

As seen from Fig. 15, the behavior of J is similar to series h1. The
increasing of J arises mainly from the inclination and branching effects,
which also explains the remarkably higher peak compared with the
cases shown in Fig. 15(c—f). The periodicity of J corresponds to that of
Ry, as shown in Fig. 14(g).

4.3.3. Five inclusion columns: initial crack pointing to a stiff inclusion (h3)

A similar crack behavior as series h2 was observed, as shown in
Fig. 16. For cases a-b, after initiation, the crack bypasses the stiff in-
clusion and then enters the compliant inclusion of the 1st row. Crack
branching was been observed while the crack propagated through the
compliant inclusions. The crack propagation in cases c-d followed a
similar behavior to cases c-d of series h2: propagating periodically
bypassing the stiff inclusions and crossing the compliant inclusions. In
Fig. 17, when the inclusions are arranged in an opposite fashion to the
corresponding cases with same a/d ratio of series h2, the same fracture
behavior can be observed - aside from higher peaks due to the increased
number of crack branches.

All the cases with hybrid compliant and stiff inclusions (h1, h2, and
h3) reveal a crack guiding and controlling mechanism. A smaller in-
clusion spacing (i.e., smaller a/d) provides increased control of the crack
path by forcing the crack to grow along a zig-zag connecting compliant
inclusions and avoiding stiff inclusions. The smaller inclusion spacing
also reduces the occurrence of crack branching which makes the crack
growth more predictable. For larger inclusion spacing, the attraction
and repelling effects of compliant and stiff inclusions are reduced. Thus,
the crack propagates periodically crossing compliant inclusions and
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bypassing stiff ones of the same column. It can be seen in this design,
that the effective toughness can be increased by hybrid inclusions and
changing the inclusion spacing.

4.4. Toughening mechanisms

4.4.1. Crack trapping with compliant inclusions

First, as can be seen from E,; shown in Fig. 18(a), the pure compliant
inclusions of series c1 and c2 had a pure reducing effect on the overall
effective Young’s modulus.

Considering the fact that the propagation path was not affected by
the compliant inclusions in the cl series, as shown in Fig. 18(b), the
corresponding G . showed only the effect from the material property
mismatch introduced by the compliant inclusions. As presented in
Fig. 18(d), G, of series cl is nearly linearly related to the E,, which
means a higher inclusion spacing leads to a higher E,, as well as a
higher G .. It should be noted that the maximum G, . is less than one,
which means that while the propagation path was unchanged, compliant
inclusions reduced the overall fracture resistance.

As for series c2, the overall effective Young’s modulus, denoted by
E, was still the same with series c1. However, the attraction effect of
compliant inclusions led to an altered crack propagation path, and thus
the total propagation path was elongated, as shown in Fig. 18(b), and
the effective energy release rate, Gy, was increased. The effect of a
longer total propagation distance, Ly, which led to higher fracture
energy, counteracted the reducing effect of the compliant inclusions,
which explains the reason why values of the effective energy release
rate, G o, for the cases shown in Fig. 7(c—f), are greater than one.

Overall, the fracture resistance property, G. o, is affected by both the
elastic mismatch and a/d ratio for patterned compliant inclusions. The
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Fig. 12. Crack propagation pattern and propagation ratio for series hl. The crack propagation is illustrated for cases with a/d = 0.25, 0.50, 0.75, 1.00, 1.50,
and 2.00 in (a—f), respectively. The propagation ratio, R,, versus relative crack length is shown in (g).

underlying crack trapping mechanisms were observed and also
explained analytically for a local setting in our recent work [37]. The
lower Young’s modulus of the compliant inclusion can create a low local
stress field and large strain field which leads the crack propagation to-
wards the inclusion. However, these local fields become less effective
when the inclusions are farther away from the crack tip. Therefore, it is
possible to use compliant inclusions to trap the crack as observed from
the computational results. However, this effect is very limited when a/d
exceedingly large.

4.4.2. Crack repelling with stiff inclusions

As can be seen from Ey shown in Fig. 18(a), the pure stiff inclusions
of series s1 and s2 has a pure enhancing effect on the overall effective
Young’s modulus.

While the propagation path was not changed throughout series s1
due to the symmetric arrangement of stiff inclusions, as shown in Fig. 18
(b), the effective energy release rate, G. ., of all the cases in this series
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was greater than one, which indicates that the stiff inclusions near the
crack path enhanced the fracture toughness. Similarly, as explained for
the trapping mechanism, the stiff inclusions induce a compressive local
stress field which tended to close the crack tip when propagating. It was
also observed that with increasing inclusion spacing, the effective en-
ergy release rate, G. 4y, of series s1 decreased, which indicates that the
enhancing effect reduces when the inclusions are farther apart.

When the propagation path is altered, as shown in Fig. 18(b), results
from series s2 showed that the a/d ratio also affects the fracture resis-
tance via the repelling mechanism, and thus leads to a longer total
propagation distance, Ly.,,. This also resulted in a higher effective en-
ergy release rate. The change in energy release rate, G. 5, with inclusion
spacing and effective Young’s modulus, E, can be found in Fig. 18
(c—d). It should be noted that although the effective Young’s modulus is
decreasing with increasing interspacing, a, the increasing R reflects a
larger propagation distance and leads to an increasing G ¢¢. This means
that increasing the propagation distance has a more significant effect on
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Fig. 13. These plots show normalized J-integral, J, and effective energy release rate, G, versus relative crack length for series hl. Results for cases with a/d =

0.25, 0.50, 0.75, 1.00, 1.50, and 2.00 are shown in (a—f), respectively.

G, . than elastic mismatch.

In addition, the results of the c1 and sl series, as seen in Fig. 18(d),
showed that elastic mismatch has a significant effect on effective energy
release rate with a straight crack path. Alternatively, with the crack
trapping mechanism from the compliant inclusions and repelling effect
of the stiff inclusions introduced into the system, the altered propagation
path increased the overall effective energy release rate by increasing the
total propagation distance.

4.4.3. Crack guiding with hybrid inclusions

For the series with hybrid compliant and stiff inclusions, the effective
Young’s modulus decreases slightly with increasing inclusion spacing
compared to pure compliant or stiff inclusion series. The corresponding
effective energy release rate was mainly influenced by the inclusion
spacing.

It can be concluded from series h1l, h2 and h3, that the hybrid ar-
rangements of compliant and stiff inclusions lead to a zigzag crack
propagation mode when the inclusion spacing was sufficiently small.
Thus a longer propagation path is reached and resulted in a higher
overall fracture resistance. As shown in Fig. 19(c-d), with more
branches and inclinations, the effective energy release rate for cases a-b
with a/d = 0.25 and 0.5 were higher than that of the cases with higher
a/d ratios, which shared same trend with R,.. A maximum in the
effective energy release rate appeared when a = 0.50d. For higher in-
clusion spacing, the combination of attraction effects of compliant in-
clusions and repelling effects of stiff inclusions is not sufficient to
significantly alter the crack path resulting in a much lower R, .. Results
of these three series show the possibility of manipulating the crack
propagation path using the patterned hybrid inclusions for ceramic
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composites. A alternating arrangement of compliant and stiff inclusions
with proper spacing could significantly increase the overall toughness
and provide a means to guide crack propagation.

4.4.4. Crack branching

Crack branching was observed when the crack propagated toward
stiff inclusions. The repelling effect due to local compressive stresses
forced the crack tip to bifurcate forming the branched cracks as shown in
Figs. 12, 14 and 16. This crack tip bifurcation originates from the
symmetric condition with respect to the crack path which typically are
along the radial direction running towards the stiff inclusions. This
branching is mainly caused by the local stress field. However, this may
be slightly different from the actual experiment where local defects may
disturb the stress distribution at the crack tip. Sufficive to say, the nu-
merical results confirm the fact that additional cracks can possibly be
generated via branching due to the combination of compliant and stiff
inclusions.

5. Conclusion

In this work, a mixed-mode phase-field model was proposed and
implemented to investigate the effect of compliant and stiff inclusions on
the fracture resistance properties of 4-point bending beam specimens.
The crack trapping, repelling, and guiding mechanisms were observed
for different patterns. The effects of these mechanisms on the fracture
behavior of the composites were characterized. The following conclu-
sions can be drawn:



C. Wei et al.

8
74
6
5
4
3
2
il

a/d=1.00

Composites Part B 172 (2019) 564-592

a/d=0.50 a/d=0.75

a/d=1.50 a/d=2.00

© 24 a/d ratio l l
==:(),25
2.2 I |[mwsecss 0.50
===:0.75
2+|--1.00
........ 1.50
18 L |~ --2.00
mQ
1.6
147
1.2¢
1 (!
0 1

Fig. 14. Crack propagation pattern and propagation ratio for series h2. The crack propagation is illustrated for cases with a/d = 0.25, 0.50, 0.75, 1.00, 1.50,
and 2.00 in (a—f), respectively. The propagation ratio, Ry, versus relative crack length is shown in (g).

(1) If the propagation route follows the direction of the initial crack,
the presence of compliant inclusions reduces the fracture resis-
tance of the composite, as shown in the results of series c1. The
degree of reduction is approximately linear to the volume frac-
tion of the compliant inclusions. On the other end, the presence of
stiff inclusions would have an enhancing effect on the fracture
resistance property, as shown in results of series s1.

(2) Results of series c2 show that the compliant inclusion can trap the
crack tip when arranged closely together. By comparison, the stiff
inclusions deflect or repel crack propagation, as shown in series
s2. In both ways, the crack route is altered and the fracture
resistance is increased.

(3) With the combination of compliant and stiff inclusions, the total
propagation distance can be significantly increased compared to
cases with only compliant or stiff inclusions. As shown in cases a-
b of series h1, h2, and h3, the crack follows a zigzag route con-
necting compliant inclusions of rows in sequence. Crack
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branching is also introduced to the system, which increases the
effective energy release rate as much as 4.53 times that in the
homogeneous case. This enhancement is found to be the most
significant for inclusion spacing within the range
0.25 < a/d < 0.75.

In summary, the combination of the compliant and stiff inclusions
with an arrayed pattern was able to control and guide the fracture
propagation to enhance the effective fracture toughness of the ceramic
composite. The enhancement is closely related to the elastic mismatch
between the inclusion and matrix and is constrained by the ratio of in-
clusion spacing to inclusion size for the composites. This result dem-
onstrates a new approach for designing ceramic composites to optimize
fracture resistance using patterned inclusions. The concept can be
applied using various additive manufacturing techniques including 3D
printing and co-extrusion sintering.
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Fig. 15. These plots show normalized J-integral, J, and effective energy release rate, G, oy, versus relative crack length for series h2. Results for cases with a/d =
0.25, 0.50, 0.75, 1.00, 1.50, and 2.00 are shown in (a—f), respectively.
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Fig. 16. Crack propagation pattern and propagation ratio for series h3. The crack propagation is illustrated for cases with a/d = 0.25, 0.50, 0.75, 1.00, 1.50,
and 2.00 in (a—f), respectively. The propagation ratio, Ry, versus relative crack length is shown in (g).
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Fig. 17. These plots show normalized J-integral, J, and effective energy release rate, G. oy, versus relative crack length for series h3. Results for cases with a/d =
0.25, 0.50, 0.75, 1.00, 1.50, and 2.00 are shown in (a—f), respectively.
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Fig. 18. Fracture variation for series c1, c2, s1, and s2. E,s versus inclusion spacing is shown in (a). Rp, versus inclusion spacing is shown in (b). G, versus

inclusion spacing is shown in (c). G, . versus Egy is shown in (d), where arrows denote the increasing a/ddirection.

582




C. Wei et al. Composites Part B 172 (2019) 564-592

(a) (b)

1.3 2.5
-A-h1 “-h1
+-h2
<-h3 29
1.2
1.9}
& o
W ™
16}
1.1
d 1.3
1 1
0 0.5 1 15 2 0
a/d
(©) 50 @ s
“-h1 “-h1
+h2 4.5} |+h2
.6_
40 h3_ i ~<-h3
3.5¢
$3.0 1 % 5
o o
2.5
2.0
2
1.0 T T
0.6 1
0 0.4 0.8 1.2 1.6 2 1.05 1.1 1.15 1.2 1.25
a/d
Eeff
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Appendix
Al. Formulation and Numerical Implementation

The fundamental idea in brittle fracture is that a crack forms in order to minimize the combined strain energy and crack surface energy, which is on
the basis of the work by Griffith(1921) [1],

U= / O\ (e)d + / G.doQ, (A1)
. JIr

where y(¢) is the strain energy, G is the critical energy release rate and the stress is given by 6;; = dy/de;;. Index notation with the Einstein summation
convention is adopted for deviations presented in this work. Comma subscripts are used to denote derivatives with respect to the spatial coordinates.
This energy function can be transformed into volume integrals to make it simpler to implement numerically. However, we must replace the normal
strain energy density with a damaged strain energy density ¢ (x) = ((1 — ¢)* + k)y/(x,¢), in addition to replacing the surface area energy integral with a
regularized volume integral,

U= [2 [( gy + k} w(x, €)dQ + A % <’£ i f(,¢_i¢ti)dg (A.2)

where the stressis o; = 5’% The second term in (A.2) is a continuous representation of the surface energy regarding the phase field damage parameter,
ij

¢ and the crack thickness parameter, £y. Also, k is a conditioning number for numerical stability. This formulation is adopted from Ref. [28]. Finally, it
should be noted that y depends on the spatial position x due to the fact that composite materials have spatially-varying elastic moduli due to the
different composite phases.

Equilibrium solutions for the displacement, u, and degradation field, ¢, are assumed to be the ones that minimize the potential energy via the
principle of minimum potential energy. The potential energy is the internal energy U minus the work done by external forces V (due to body forces, b,
and surface tractions, t). Thus, the external work is

V= //)b,-u[dQ + /0Q,t,-u[d6§2, (A.3)
2

where p is the mass density. The portion of the surface where traction (Neumann) boundary conditions are applied is denoted 0Q;. The portion of the
surface where displacement boundary conditions, u;, are applied is denoted 09, such that the entire surface is the union 0Q = 0Q,UdQ2,Thus, the
potential energy is IT = U— W,

G (¢
= / o(x,$,€)dQ + / Ge (9, Cop i, )dQ — / P dQ — / 0, t,u;d0Q A4
Q 22 \% Y Q
The equilibrium displacement and damage fields are the minimizers. Taking the first variation with respect to the displacement,
D5, T = / 60u;;dQ — / pbidu,dQ — / 00,1,6u;d0Q (A5)
JQ JQ B
where the constitutive, o; = 5’7‘”] = %’ was used. Note that we have changed the functional dependence of ¢ on the strain tensor, ¢, to the displacement

gradient, Vu, to simplify the calculations. From the chain rule,

(056u;) . = 0y,;0u; + 650u;, (A.6)

J

as well as the divergence theorem, Eq. (A.5) becomes,

D5 1 = — / (04, + pbi)Su;dQ + / 0Q(oyn; — 1;)0u;d0Q = 0V Su; (A7)
Q
Eq. (A.7) should hold for any choice of éu, so it must be the case:
cij; +pbi =0in Q2 (A.8a)
on; = t; on 082, (A.8b)

which are the balance of linear momentum equation (or equilibrium equation) and the traction relation.
Computing the derivative of the potential energy with respect to the phase field parameter, ¢, and it gives,

_ [|% b
DsyIT = /Q {a (/)5¢+GF< A +zo¢_,.5¢_,‘>}dg (A.9)

Using the chain rule for the last term (in index notation) as well as the divergence theorem, Eq. (A.9) could be rewritten as,
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Dall = / <a¢5¢+

+ / 092G JopmidpdoQ = OV 5¢p

G.o¢

- Gclodz_ﬁ&/)) de
(A.10)

where d”’ = 2(¢p — 1)y(x, ) by our definition, ¢ = [(1 — ¢)* + k]y. The assumption is made that the fracture energy, G, is not spatially varying; this is

con31stent with the numerical analysis presented in the paper.
Eq. (A.10) should hold for all any choice of 6¢, it must be the case that:

2(p—1) (éts) +;£ =l inQ, (A.11)
¢ n; =0 on 0. (A.12)

We now assume a decomposition of the strain energy density into volumetric, y;(x, €), and deviatoric parts, y(x, €), respectively, by replacing

2 2
w(:;e) _ \/ (%?) + (%’;”) , where Gy, and Gy are the corresponding critical energy release rates in mode I and II. Substituting the strain energy

decomposition into Eq. (A.11) gives

2(¢1)\/<wl(cxl,.e)> +<wlg,-e)> +%:10¢,a (A.13)

The governing partial differential equations are summarized as follows:

6y +bi=0inQ (A.142)
oyn; =1t; on 0L, (A.14b)
u; = u; on 082, (A.14¢)
vi(x,€) : w(x, ) : ¢ .
2(p—1) + +-+-=1le¢,; inQ, (A.144d)
G Gy lo ’
¢ n; =0 on 0. (A.14e)

A2. Model Validation

A.2.1 Validation with elastic fracture mechanics

As shown in Fig. A1, a scenario of a classical crack problem was simulated to validate the model and implementation. An elliptical crack with the
long axis (along x-direction) being 1 mm and the short axis (along y-direction) being 0.01 mm was located in the center of the square domain shown in
Fig. A1(d). This domain was fixed on the lower boundary along the x- and y-directions and displacements were applied on the upper boundary in both
the x- and y-directions, forming a mixed-mode loading on the pre-crack.

In the two-dimensional plane strain setting, 3-node triangle elements with element sizes no greater than 1/10 of the pre-crack length were used.
The element size around the pre-crack tip was 0.01 mm.

The values of the various material properties were as follows: Young’s modulus was 2 x 10° MPa, Poisson’s ratio was 0.25, the critical energy
release rate was set to a sufficiently large value (9.9 x 10* N/mm) to ensure that the crack would not propagate. In this way, the analytical results from
linear elastic fracture mechanics can be compared to the numerical solution. As for the boundary conditions, the displacement on the bottom surface
was set to zero in both the x- and y-directions, while top surface was loaded by applying displacements u, = 0.05 mm and u, = 0.025 mm, in the x-
and y-directions, respectively.

According to classic linear elastic fracture mechanics, the displacement fields around the crack tip for mode-I are

K, [ [

1 1 _ - 2(Y
u, = 2” cos <2> |:K 1 + 2sin <2>} (A.15a)

K, r 7 [

1 _ B o2 _ 2=
u, = —2” 2”sm < 2> |:K‘ + 1 —2cos ( 2)} (A.15b)

where, K; = ov/ax is the mode-I fracture toughness, with a being half of the crack length (long axis) and ¢ being the far field tensile stress. Ky = 7\/ar is
the mode-2 fracture toughness, with 7 being the far field shear stress. The polar coordinates r and 6 were used with the crack tip being the origin along
= 0. Also, the displacement fields around the crack tip for mode-II are

K [ [

u_ Bu 2 (Y
u, = 2,u o sm (2) {K’ + 1+ 2cos (2” (A.16a)

K 0 [

11 an 1 a2 (2
u, = 2” 2ﬂcos ( 2> |:K 1 — 2sin (2” (A.16b)
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The total displacement field is then

U, = l,tlt + uf (A.17a)
u, = ui + u;’ (A.17b)

The x- and y-displacement data from the result file of ABAQUS along the line of x = 0.5 mm around the crack tip area was extracted and compared
with analytical results. Fig. A1 (b-c) shows that the modeling results are in good agreement with the analytical results.

A.2.2 Vadlidation of mixed-mode fracture with inclusions

A series of cases were studied to verify the phase-field model both for mode-I and mode-II fracture. To validate mode-I fracture, a plate with area
(width and height) xh = 3 mm x 4 mm , as shown in Fig. A2(a), was used. A horizontal pre-crack was arranged at the middle of left edge with a length
of 1 mm. A compliant or stiff inclusion was located in the center of the plate with a pre-crack pointing towards it along the horizontal axis (also an axis
of symmetry). The radius of the inclusion was fixed as r = 0.3 mm for all cases. The distance between the pre-crack tip and edge of the inclusion, shown
as d in Fig. A. 2(a), was varied between the values 0.5r, 1.0r, and 1.5r. The problem used to validate mode-II fracture was identical to that used for
mode-I fracture but with a different displacement control of the top surface, to create a mode-II fracture scenario.

According to the work of Zhonghua Li et al. [42], the change in the stress intensity factor (SIF) of a mode-I crack tip in presence of an inclusion is
AKpy 1

- /r’2 C, cosecosﬁ+ C, sin® O cos 6 |dA, (A.18)
K[‘O T Ja 2 2

where K is the mode-I SIF for the crack tip without inclusions, AK;, 4 = Ki4p — Kip is the change in SIF. The variable, A, is the upper half of the area of
the inclusion. The polar coordinates are r and ¢ with the crack tip being the origin along ¢ = 0. The parameters C; and C; are related to the material
properties and are given by

_(I=a)(l-2v)
C = ita-w) (A.192)
c--—31-9 (A.19b)

2(143a —4va)

where a is the ratio of the Young’s modulus of the inclusion to the Young’s modulus of the matrix. The Poisson ratio (assumed equal for the inclusion
and matrix) is given by v.
As for the mode-II problem, the change in the SIF is [43],

AKyup 1 [
i _ —/r (D, cos + D,c0s20 + Dscos30 )dA, (A.20)
Ko T Ja

where D;, D, and D3 are parameters related to the material properties:

—-a + 19a + 32v°a — 22v — 40va
1 11+ 19 3212 22 40,

D, = A.21
! 16(1+a —2v)(1 4+ 3a — 4va) ( 2)
(I—a)(1 —2w)
Dy=—7—"——"— A.21b
2 16(1 4+ a — 2v) ( )
91 —a)
D. — A.21
> T 16(1 + 3a — 4va) (A.21c)
The other parameters follow the previous definitions.
The change in the energy release rate is then given by
2 2
AGy _ Gy (Ko +AKp) AKy, | (DK,
_Gi_ | _ _1=2 A.22
G() G() Ké KO + Kg ( )

Eq. (A.22) holds for mode-I and mode-II fracture.

To conduct the analysis with a normalized mechanical property system rather than specific values, for each case with compliant or stiff inclusions,
a conjugate case with identical geometry and no inclusions was also modeled as a comparison. The critical energy release rate was set with a large
value of 999.0 N/mm to ensure no crack propagation occurs. The J-integral was extracted and compared to study the influence of the compliant and
stiff inclusions.

The comparison between the analytical solution and the model is shown in Fig. A. 2(b-c) for mode-I fracture and Fig. A. 3(b-c) for mode-II fracture.
The normal and shear stress distributions are shown in Fig. A. 2(d-i) for mode-I fracture and Fig. A. 3(d-i) for mode-II fracture, respectively. It should
be noted that to keep this part concise, only the stress distribution for the case with g = 0.5isincluded. The change of energy release rate obtained from
modeling fits well with the analytical solutions.

A.2.3 Validation of kinked fracture

Considering the effect of compliant and stiff inclusions on the crack propagation, the accuracy of the phase-field model for simulating kinked
fracture was also verified.

A plate with width and height of b x h = 3 mm x 4 mm (see Fig. A4) with a horizontal pre-crack arranged at the middle of left edge of length of

586



C. Wei et al. Composites Part B 172 (2019) 564-592

[ =1 mm is used. A kink was then added to the original crack tip with a length of 0.11. The angle between the pre-crack and kink, denoted as 6, is varied

from —60° to 60°. For all cases in this section, the displacement at bottom surface was zero (in both directions) and the top surface was stretched

uniformly along vertical direction. The mode-I and mode-II SIFs around the kink tip are then extracted with the interaction integral method [44].
Based on work of Wu [45], the SIFs at the kinked crack tip can be expressed as:

81 2

k = [Kra,,(0) + Kby, (0)] + T\/;sinz 0+ \/;I[C3a]3(9) + D3by3(6)] (A.23a)
8l . 2

k][ = [K[le] (0) + K11b21 (9)] - T\/—;SIHQCOSH + \/;l[c;azg (0) + D3b23 (0)} (A.ng)

where, K;, Ky, and T are the mode-I, mode-II, and T-stress for the original crack tip, respectively. The length of the kink is I. The parameters
@mn and by, are related to 6 by

an(0) = %cos <§ 9) + %cos (% 0> (A.24a)
bu(0) = —% sin (; 9) - %sin G 0) (A.24b)
a;3(0) = 73 cos (% 0> + ?cos (% 0> (A.24¢)
bi3(0) = —? sin (g@) + ?sin (% 0) (A.24d)
an (0) = %sin (% 0> + %sin (% 0> (A.24e)
by (0) = %cos (; 0) + icos <% 9) (A.24f)
an(0) = —% sin (% 6) + %sin (% 6) (A.24g)
by (0) = %cos (% 0) - %cos <% 9) (A.24h)

The parameters C; and D3 are the third order coefficients of the Williams series expansion.

The comparison between the phase field model and analytical results is shown in Fig. 4(b) with the x-axis showing the ratio of the mode-I and
mode-II SIF around the kink tip. For brevity, only the stress distribution for 6 = 40° is presented in Fig. 4(c—e).The modeling results fit well with the
analytical solutions.

A.2.4 Comparison of different fracture criteria
To understand the difference between the phase field methods adopting different fracture criteria, a series of cases were modeled. The two fracture

criteria adopted in this part are: (1) the linear mixed mode criterion defined as “’(’;—(f) + W’G’T(f) and (2), the quadratic mixed mode criterion defined as

c lic

2 2
\/ (%’f”) + (%) . Two UEL subroutines in ABAQUS were implemented and utilized in these two cases with identical geometry.

As shown in Fig. A. 5(a), a plate with a width and height of b x h = 3 mm x 4 mm was used. A horizontal pre-crack was arranged at the middle of
the left edge with a length of 1 mm. No inclusions were included in this modeling. Mixed-mode fracture cases were modeled for each series, where the
top surface was displaced in the horizontal and vertical directions by 0.1 mm. The phase field distributions for each case are shown in Fig. A. 5(b-c). It
can be observed that with the quadratic criterion, the damaged part of the phase field becomes more localized around the crack, which demonstrates
that the quadratic criterion captures sharp cracks in brittle materials more accurately than a linear criterion.

587



C. Wei et al. Composites Part B 172 (2019) 564-592

N I R N O R R O (©

0.012
0.012
0.01
0.01
0.008
_ —~ 0.008
£ 1
E 0.006 &£ =
0.
Precast crack = (®) )
0.004 0.004
0.002 © simulation results 0.002 © simulation results
analytical results analytical results
0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
H (mm) H (mm)
Phase-field X-displacement Y-displacement
(AvQ: 75%) +2.618e-02 +5.000e-02
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Fig. A.1. Phase-field model validation. The geometry and loading conditions are shown in (a). The model prediction and analytical results of the x-component of
displacement is shown in (b) and of the y-component of displacement in (c) along the line x = 0.05 mm. The contour plot of the phase field damage parameter is
shown in (d). Contour plots of the displacement field in the x- and y-directions are shown in (e) and (f), respectively.
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Fig. A.2. Validation of mode-I fracture with inclusions. The problem geometry is shown in (a). The comparison between the analytical solution and phase field model
for compliant and stiff inclusions are shown in (b) and (c), respectively. The stress components 611, 622 and 12 of the case with compliant inclusions are shown in (d-
f) and the case with stiff inclusions are shown in (g-i) (both cases assume d/r = 0.5).
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Fig. A.3. Validation of mode-II fracture with inclusions. The geometry is shown in (a). The comparison between the analytical solution and phase field model for
compliant and stiff inclusions is shown in (b) and (c), respectively. The stress components 611, 022, and o1 of the case with compliant inclusions are shown in (d-f)

and the case with stiff inclusions are shown in (g-i) (both cases assume d/r = 0.5).
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Fig. A.4. Validation of kinked fracture. The geometry is shown in (a). The comparison between the analytical solution and the phase field model is shown in (b). The
stress components 611, 622, and o612 (evaluated at § = 40°) are shown in (c-e).

(a) (b) ()

Fig. A.5. Comparison between phase field models adopting different fracture criteria. The geometry is shown in (a). The distribution of the fracture parameter, ¢, for
the case with a linear fracture criterion is shown in (b) and (c) shows the distribution for the case with a quadratic fracture criterion.
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