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Abstract 

The microstructure of a material governs mechanical properties such as strength and toughness. Various finite element analysis (FEA) software 
packages are used to perform structural analyses such as predicting the flow of strain or strain fields in a microstructure. Engineers frequently 
operate these software packages to evaluate mechanical behavior and predict failure. Even though these FEA software packages provide highly 
accurate analyses, they are computationally intensive, taking a significant amount of time to produce a solution. The time required by the FEA 
software packages to achieve accurate results largely depends on microstructure details and mesh resolution, thus providing a trade-off between 
fidelity and computation time. This research proposes the use of Deep Learning algorithms to achieve a significant reduction in the time required 
to predict high-accuracy strain fields in a two-dimensional microstructure with defects. This work presents a foundation for developing deep 
neural networks to conduct structural analyses, thus reducing the exclusive use of computationally demanding FEA software and augmenting the 
analytical capabilities of scientists and engineers. 
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1. Introduction 

Structural analysis is an important tool for investigating the 
integrity of a structure by evaluating its stress and strain 
response under specific boundary conditions. This is often 
performed using finite element analysis to pinpoint locations 
that may experience maximum stress and strain that could lead 
to failure. In this regard, structural analysis helps to assess 
whether a given structure is able to withstand required loading 
conditions adequately during its intended life. Finite Element 
Analysis (FEA), simulations are performed using software 
such as ANSYS Workbench, COMSOL Multiphysics, 
ABAQUS, Autodesk Simulation, and FEA Multiphysics and 
these software packages also facilitate changes in the design 
might improve functionality. 

Microscale structural analysis can be performed to study the 
effects of microstructure defects in accelerating failure. 

Although the aforementioned software packages are able to 
conduct such analysis with high accuracy, the time taken to 
predict the results largely depend on the computational power 
of the device as well as the complexity of the physics governing 
behavior of the microstructure. As this complexity increases, 
the time to predict accurate results increases as well. Predicting 
the performance of extremely complex microstructures 
becomes burdensome, requiring a substantial amount of time to 
complete a single prediction/iteration. Therefore, there is a 
need to develop suitable methods that compute and predict 
results in a shorter time without significant loss of accuracy. 
Machine learning algorithms have proven quite useful to 
predict and classify various entities based on available data in 
relatively short time and will be used here to accomplish rapid 
FEA.  

 Deep learning [1], a subset of machine learning is a 
powerful tool in feature recognition that has various 
applications [2] such as handwriting detection [3,4], face 
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detection or recognition [5,6], and natural language processing 
[7,8] across different fields of science [9–11], engineering [12] 
and design [13–15]. Convolutional Neural Networks (CNNs) 
[16,17] facilitate deep learning that are particularly useful for 
the analysis of data that can be represented as images. Shea and 
Nash [17] have clearly depicted the use of CNNs and their 
uniqueness in recognizing patterns through series of layers, that 
makes CNNs suitable for image-oriented applications. 

Recent research in the field of machine learning has focused 
on the prediction of material behavior and properties based on 
microstructural characteristics [18–20]. The current research 
focusses on the prediction of strain fields due to a uniform 
displacement boundary condition imposed on a microstructure 
with defects. Specifically, this work will predict strain fields 
associated with a two–dimensional (2-D) microstructures with 
defects. To accomplish this analysis using deep learning, we 
will test the efficacy of image colorization CNNs [21,22]. 
CNNs of this type take a greyscale image as input (here, the 
microstructure), and provide three images on red, green, and 
blue channels as output. We hypothesize that problem of 
prediction of strain fields can be treated as an image 
colorization problem, wherein the microstructure image can be 
treated as the original gray scale image (e.g. in conventional 
image colorization) and strain components (e.g. ε11, ε22 and ε12) 
are predicted as output color channels.  

This problem is motivated from challenges in advanced 
manufacturing of complex geometries and microstructures. 
Volumetric microstructure defects, e.g. porosity, are often 
produced in these scenarios and must be mitigated before the 
fabricated component is deployed. However, routes for their 
mitigation are challenging and require understanding of the 
behavior of the advanced geometry + microstructure + defect 
triad under various loading conditions. Occasionally, these 
defects are too challenging to mitigate and hence, components 
may be designed and fabricated with the assumption that they 
will contain tolerable defects, thus also necessitating an 
understanding of their behavior in complex loading conditions. 
However, traditional computational routes, e.g. FEA might be 
too resource intensive to address this requirement. 

The remainder of the paper is organized as follows. The 
background section provides a brief overview of the current 
research and developments made in the field of material 
sciences using FEA along with a brief review of the basics of 
deep learning. The next section describes the methodology of 
this work including data generation and the application of the 
deep learning algorithm. In the next section, the CNN is trained 
and tested on data generated using a Finite Element Analysis 
software. Several experimental analyses highlight the effect of 
changing the number and size of defects in the microstructures 
on accuracy and computation time performance of the CNN 
(and FEA, as a baseline comparison). The final section ends 
with discussion of conclusions and future work. 

2. Background 

Modern advanced materials are characterized by a wide 
range of mechanical, optical or thermodynamic properties 
those of which are frequently attributed to a microstructure 
[23]. Herein, the advent of computational modelling has 

enabled researchers to conduct various parametric studies on a 
microstructure and improve coupled processes. Computational 
modelling is extremely useful in both obtaining specific 
material properties and also in designing new microstructures 
[23]. To this end, FEA software is useful for analyzing the 
properties of novel microstructures. 

FEA software has become a very important aspect of 
industrial-level and academic research. Initially researchers 
used to study macroscopic behavior of microstructures like 
chemical properties, crystal structure and crystal orientation by 
using programs like Object-Oriented Finite (OOF) elements 
and Portable Pixel Map to OOF format translator (ppm2oof) 
[24]. Programs like OOF enabled the use of mean-field and 
other spatial averaging methods to produce approximate 
models for materials behavior [24]. Before the advent of OOF 
programs, it was significantly more challenging to correlate 
microstructures with important properties that affected the 
integrity of the structure. With the development of such a 
software, a finite element mesh and an easy-to-use graphical 
interface became the standard for structural analysis of any 
component. The purpose of such software is to assign 
properties to features in a material's image and generate a 
finite-element mesh representing the material useful for 
conducting desired analysis. 

This work specifically makes use of ABAQUS for FEA 
simulations. ABAQUS is one widely-used software for 
performing detailed simulations [25]. In ABAQUS several 
parameter configurations with different computational costs 
are utilized for finite element analysis such as stress-strain 
prediction, flow of temperature etc. [26]. The various types of 
algorithms present in ABAQUS provides different types of 
advantages and disadvantages, based on the problem that needs 
to be solved. Although ABAQUS is a very useful software for 
finite element analysis especially for choosing the correct 
algorithm for a problem, researchers often face difficulties 
when performing analysis since the speed and performance 
level of the software is limited by the processing power of the 
hardware used.  

FEA software can take a significant amount of time to yield 
a converging solution, and this time increases substantially 
when detailed, e.g. high spatial resolution results are necessary 
or when a complex microstructure is analyzed. These 
shortcomings of FEA software highlight the need for better 
analysis tool to provide results with high accuracy in relatively 
short time. With the increasing applications of machine 
learning algorithms in the field of material sciences [19,20,27–
29], both prediction [30–32] and classification [33–35] of 
mechanical properties and material parameters can be done 
more quickly and with less computation power than traditional 
analyses . Work by others has effectively used neural networks 
to predict shrinkage in molds [30], analyze properties of 
composites [31,32], provide classification of steel 
microstructures [33] and perform microstructure-recognition 
through classification [34]. The utilization of neural networks 
provided motivation for the work performed here to predict 
strain fields in microstructures using CNNs.  

Generally, deep learning is used to model and understand 
that contain complex relationships [1,36]. Deep learning 
algorithms extract patterns often termed as features in the data, 
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and through a process of self-learning provide a prediction such 
that the final error computed between the actual output and the 
predictions is minimum. Many deep learning algorithms entail 
the use of artificial neural networks. These are computing 
systems that can solve complex real-world problems through 
layers of interconnected nodes or neurons that perform parallel 
computations [37]. The reader can find additional background 
in [2].  

Image recognition is one of the most popular applications of 
deep learning algorithms. Manufacturing applications can 
benefit from utilizing CNNs, where imaging is primarily used 
for analyzing the material properties through examining the 
effect of the certain boundary conditions on the given material. 
Furthermore, works involving surveying three-dimensional 
structures [12,15] as well as additive manufacturing [13] have 
successfully incorporated the use of CNNs to achieve their 
desired results. There are numerous deep neural networks that 
are used for image recognition, classification and manipulation 
[34,38–41]. One type of image manipulation involves changing 
the color scheme of the input image. An extremely common 
type of image manipulation is colorization [22,42] in which a 
colored version of a greyscale image is inferred. The research 
documented in this paper will highlight a colorization approach 
to predict strain fields in two-dimensional microstructures with 
specific boundary conditions. The data generated and use of 
CNN for this purpose are depicted in the next section. 

3. Methodology 

3.1. Data generation 

Synthetic data was generated in the ABAQUS PDE (Python 
Development Environment). Specifically, a 2-D microstructure 
was generated with Aluminum (Al6061 – T6), rectangular 
dimensions, 38.1 mm as length and 6 mm as breadth, for plane-
strain simulation of elastic deformation, according to the 
ASTM E8/E8M standards [43].  

For initial training and testing portion, each of the 
microstructures were modelled with 100 circular pores with 
radii randomly selected between 100 and 500 µm with their 
locations within the microstructures set according to uniform 
distribution. The finite element analysis conducted involved 
uniform uniaxial displacement of 0.1 mm in the plane-strain 
mode to obtain strain fields. Three plane-strain fields obtained 
were ε11, ε22 and ε12 as displayed in Fig. 1. Traditionally, deep 
learning algorithms tend to require a substantial amount of data 
in order to perform well [29]. To that end, a data generation 
pipeline was developed to produce 1000 samples. 

After the samples were generated, a MATLAB code was 
developed to convert the 2-D microstructures and their 
respective strain fields into images. The code converted the 
microstructure model and its resultant strain fields into images 
with a resolution of 1 pixel equivalent to 0.06 mm, such that 
the images consist of 101 pixels in the vertical direction and 
636 pixels in the horizontal direction. This resolution was 
chosen to preserve the major features of the microstructure with 
the minimum number of pixels. The inputs to the CNN were 
the 2-D defects-ridden microstructures whose pixel values 

were either 0 (indicating a defect) or 1 (indicating material), 
depicted in Fig. 2.  

 

Fig. 1. Microstructure model with porous defects (above); Corresponding 
strain fields obtained in ABAQUS (below; ε11, ε22 and ε12 from top to bottom) 

The strain fields from the ABAQUS simulations were also 
converted to images with pixels similar as the input (101 × 636) 
using the MATLAB code as displayed in Fig 3.  

 

Fig. 2. Microstructure model generated in ABAQUS FEA software (above) 
and converted to image with 101 × 636 pixels using MATLAB (below) 

These samples served as training and testing data for the 
development of the CNN. 

3.2. Proposed Deep Learning Algorithm 

A Convolutional Neural Network (CNN) was developed to 
perform an image colorization as a means of strain field 
inference. Several CNN architectures, with a varying number 
of convolutional layers and corresponding parameters such as 
number of filters, kernel size, activation functions, and strides 
were evaluated in terms of prediction time and accuracy. In 
general, increases in the number of convolutional layers, filters 
sizes and number of filters resulted in increase in time required 
for training the corresponding CNN and subsequent increase in 
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time to predict strain fields. Ultimately, an 18-layer CNN 
consisting 2-D convolutional layers with filters, kernel sizes, 
padding, activation functions and up-sampling layers, as shown 
in the Table 1, was developed and selected for this work, based 
on the accuracy and prediction time of the results.  

 

Fig. 3. Microstructure strain field ε11 in ABAQUS FEA software (above; 
displayed using MATLAB) and converted to image with 101 × 636 pixels 

(below; displayed using Python IDE) 

The CNN starts with the input layer defined by the shape 
obtained in terms of pixels (101×636). The following layers are 
specified with number of filters to capture maximum detail 
within the images formed in the layers, kernel size within each 
layer to set the dimensions of the weights, padding to account 
for the edges of each images so that all pixels are effectively 
computed and dimensionality of the images is maintained, 
appropriate activation functions to provide outputs to every 
following layer and strides to move the filters across the images 
to account for every pixel. These layers ultimately converge to 
the output layer consisting of 3 images each denoting strain 
fields ε11, ε22 and ε12 as colored images. Coefficient of 
determination (R-squared) was used to assess the accuracy of 
the CNN. The R-squared value was obtained by comparing the 
predicted output and actual output, both represented by 3 strain 
field images each.  

 

Fig.4. Tanh and ReLU activation functions of CNN1 

Of the 1000 samples created using the data generation 
pipeline, 500 samples were used for training and 500 samples 
were used for testing. This division in datasets is done in order 

 
 
1  Source: https://www.kdnuggets.com/wp-content/uploads/activation.png 

to estimate how the model is expected to perform on samples 
not used during the training of the model. The CNN was trained 
for 100 iterations. The Adam optimizer [44] was used for 
training the CNN with default parameters of 0.001 for learning 
rate, β1 = 0.9 and β2 = 0.999. ReLU activation functions were 
utilized throughout the CNN except for the final two layers 
where TanH activation function were used to provide 
appropriate pixel values in accordance to the actual strain 
values. These activation functions [45] ReLU and TanH are 
illustrated in Fig. 4. 

Table 1. CNN used for Analysis. 

Layer 
No. 

Layer Features 

0 Input Layer; Shape (101 × 636 × 1) 

1 
Conv. Layer; Filters: 4 ; Kernel size (9,9);  Padding: “same”; 

Activation: ReLU; Strides: (1,1) 

2 
Conv. Layer; Filters: 4 ; Kernel size (9,9);  Padding: “same”, 

Activation: ReLU, Strides: (1,1) 

3 
Conv. Layer; Filters: 8 ; Kernel size (7,7);  Padding: “same”, 

Activation: ReLU, Strides: (1,1) 

4 
Conv. Layer; Filters: 8 ; Kernel size (7,7);  Padding: “same”, 

Activation: ReLU, Strides: (1,1) 

5 
Conv. Layer; Filters: 16 ; Kernel size (5,5);  Padding: “same”, 

Activation: ReLU, Strides: (1,1) 

6 
Conv. Layer; Filters: 16 ; Kernel size (5,5);  Padding: “same”, 

Activation: ReLU, Strides: (1,1) 

7 
Conv. Layer; Filters: 16 ; Kernel size (3,3);  Padding: “same”, 

Activation: ReLU, Strides: (1,1) 

8 
Conv. Layer; Filters: 16 ; Kernel size (3,3);  Padding: “same”, 

Activation: ReLU, Strides: (1,1) 

9 
Conv. Layer; Filters: 16 ; Kernel size (2,2);  Padding: “same”, 

Activation: ReLU, Strides: (1,1) 

10 
Conv. Layer; Filters: 16 ; Kernel size (2,2);  Padding: “same”, 

Activation: ReLU, Strides: (1,1) 

11 Up-Sampling Layer 2-D with size (1,1) 

12 
Conv. Layer; Filters: 16 ; Kernel size (2,2);  Padding: “same”, 

Activation: ReLU, Strides: (1,1) 

13 Up-Sampling Layer 2-D with size (1,1) 

14 
Conv. Layer; Filters: 8 ; Kernel size (3,3);  Padding: “same”, 

Activation: ReLU, Strides: (1,1) 

15 Up-Sampling Layer 2-D with size (1,1) 

16 
Conv. Layer; Filters: 4 ; Kernel size (7,7);  Padding: “same”, 

Activation: TanH, Strides: (1,1) 

17 Up-Sampling Layer 2-D with size (1,1) 

18 
Conv. Layer; Filters: 3 ; Kernel size (9,9);  Padding: “same”, 

Activation: TanH, Strides: (1,1) 
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4. Results 

A device with GeForce 940M GPU and 6th Gen Intel Core 
i7-6500U processor as CPU was used for CNN development 
and simulation. With GPU usage, the trained CNN model 
provided results with an R-squared values 96.25% obtained 
from the dataset used for testing. Fig. 5 displays an example of 
the input data (black and white 2-D microstructure) along with 
the output data (colored strain fields) obtained from the CNN. 

The strain fields which are displayed in Fig 5, were 
predicted by the CNN with R-squared value of 95.33%. Further 
analysis was conducted for 50 samples selected randomly from 
the 1000 samples by comparing the time required by the CNN 
prediction and the original ABAQUS simulation time. The 
ABAQUS simulation time considered in this work includes the 
problem solving time, subsequent to the microstructure 
modeling and meshing stages. The results of the mentioned 
computation time comparison are displayed in Fig. 6. The mean 
computation time required for ABAQUS was found to be 2.23 
± 0.0433 seconds, while the CNN predicted the results in 0.13 
± 0.0171 seconds. This serves as a strong indication that CNNs 
have efficacy for computing material properties in a rapid 
fashion that enables quick iteration. 

 

Fig. 5. Microstructure Strain Field predicted by CNN and ABAQUS 

Two one-factor experiments were conducted to analyze the 
effects of varying size and number of defects in microstructures 
to assess their impact on computation time and accuracy of the 
CNN in comparison to ABAQUS. In the first experiment, the 
size of the pores in a microstructure was randomly varied from 
10 µm to 500 µm in increments of 50 µm, each range 
distributed uniformly, with the number of pores kept constant 
at 50. In the second experiment the size range of the pores was 

kept constant between 100 – 300 µm and the number of pores 
incremented from 20 till 200 in uniform increments of 20. For 
both of these experiments, the original CNN (trained with 
images of microstructures having 100 pores of size range 100-
500 µm) was used to make predictions. 

Fig. 7 and 8 present the results of these experiments. The 
computation time of the CNN and the corresponding accuracy 
in terms of R-squared values are largely independent of the size 
and number of the defects. Hence the graph for the prediction 
times by CNN is always (almost) uniform around 0.1 – 0.2 
seconds. In contrast, these values greatly influenced the 
prediction time exhibited by ABAQUS.  

 

Fig. 6. Comparison of prediction time by CNN and ABAQUS; Error Bars 
represent Standard Error. 

The computation time required by ABAQUS to predict 
strain fields is displayed in Figs. 7 and 8, and summarized in 
Table 2 and Table 3, along with the number of elements created 
during the FEA mesh for the respective microstructures, 
respectively.  

The computation time is dependent on the number of 
elements created for the model during the meshing as depicted 
in Table 2 and Table 3. As more defects are generated, or as 
these defects become smaller, a larger number of elements are 
required in the mesh, which greatly increases the computational 
time.  

Table 2. Computation time performance of CNN and ABAQUS considering 
the number of elements formed in the FEA software for a given radii-range of 
pores within a microstructure. 

Radii – 
Range  
(µm) 

No. of elements 
formed in 
ABAQUS 

Prediction time 
by ABAQUS 
(seconds) 

Prediction time 
by the CNN 
developed 
(seconds) 

10-50 16188 2.42 0.1097 
50-100 17402 2.55 0.1117 
100-150 20138 3.01 0.1146 
150-200 17953 2.64 0.1116 
200-250 14121 2.09 0.1147 
250-300 11285 1.66 0.1104 
300-350 9156 1.38 0.1127 
350-400 7230 1.08 0.1126 
400-450 5707 0.87 0.1146 
450-500 4663 0.72 0.1117 
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Fig. 7. Comparison of prediction time (above) and accuracy (below) of CNN 
with ABAQUS by varying Radii-range of microstructures with fixed number 

of pores  

As the radii of the pores increases, the mesh becomes 
coarser which requires that fewer elements for respective 
microstructure model for FEA. Precise values for the number 
of elements in these meshes are tabulated in Table 2. The 
increase in the radii-range of the pores results in decrease in 
curvature as well as the decrease in proximity of these pores, 
which is why the number of elements decrease as the radii 
range increase. The parabolic shape of FEA prediction times 
with maximum at 150 µm can be justified based on this 
reasoning. In contrast, the number of elements in the CNN is 
constant by definition. 

Table 3. Computation time performance of CNN and ABAQUS considering 
the number of elements formed in the FEA software for a given number of 
pores within a microstructure. 

Number of 
pores in a 
microstructure 

No. of elements 
formed in 
ABAQUS 

Prediction time 
by ABAQUS 
(seconds) 

Prediction time 
by the CNN 
developed 
(seconds) 

20 7683 1.24 0.1249 
40 11941 1.84 0.1490 
60 17123 2.65 0.1196 
80 22101 3.35 0.1360 
100 29578 4.54 0.1214 
120 31682 4.86 0.1196 
140 33306 5.22 0.1707 
160 30977 4.71 0.1148 
180 32717 5.03 0.1256 
200 33381 5.14 0.2144 

In the case of a fixed radii range (100-300 µm), increase in 
the number of pores resulted in increase in the number of 
elements created for the particular samples considered in Fig 8, 
as displayed in Table 3. Thus, the computation time required 
the FEA software largely and proportionally depends on the 
features present in the given model, which in this case are the 
number of pores and radii-range of pores along with the 
proximity of these defects/pores that define the number of 
elements required for meshing. 

 

Fig. 8. Comparison of prediction time (above) and accuracy (below) of CNN 
with ABAQUS by varying number of pores with fixed radii range of 100- 300 

µm 

Since the weights of the CNN were finalized by training on 
500 samples, the computation time required is almost uniform 
and only dependent on the pixel size of the input image of the 
microstructure whose strain fields are to be predicted. These 
weights are set by capturing maximum details and features such 
as curvature/radii of the pores as well as the proximity of these 
pores within the trained microstructures. In such manner, the 
accuracy of predicted strain fields of the microstructures 
largely depends on the finalized weights set by the training 
dataset of 500 samples of microstructures each having different 
defect layout and size. Thus, different microstructures, with 
distinct range of radii coupled with their locations within the 
microstructure, will be predicted with different accuracies as 
depicted in Figs. 7 and 8. As displayed in Figs. 7 and 8, the 
accuracies of predicted microstructures, with varied radii range 
and number of pores along with their locations set randomly 
following a uniform distribution, are obtained within the range 
92-97%, which is remarkably high, proving that the CNN 
works for wide range of defect layout and pore size. 
Furthermore, strain fields of microstructures with defects in 
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shape of ellipses were predicted using the CNN. These 
predictions were made with mean accuracy of 95.20%.   

5. Summary and Future work 

FEA software, such as ABAQUS, requires a considerable 
amount of time to predict results of structural analysis. Changes 
in the complexity of the structural model, such as increasing 
the number or decreasing the size of microstructural defects, 
may lead to increase in the computation time. This highlights a 
need to reduce the computation time in FEA analysis in order 
to enable more rapid iteration by engineers. This work attempts 
to meet that need by developing an image-colorization CNN to 
predict strain fields in microstructures. 

The overall accuracy of the CNN developed was 
approximately 96%. The computation time performance of the 
CNN developed in predicting the strain fields was almost 
uniform in the range 0.1-0.2 seconds, irrespective of the shape, 
number and position of the defects within the microstructure, 
whereas the computation time required by FEA software 
fluctuated between 1 to 5 seconds based on the size and number 
of defects present. Furthermore, it was observed that changes 
in the number, size and position of the defects in the 
microstructures had a significant effect on the computation 
time of the FEA software because these variables resulted in 
changes to the number of elements created in the FEA mesh. 
To summarize the main outcome of this project, the time 
required to predict strain fields by CNN based colorization 
algorithm was significantly less than the time required by FEA 
software (ABAQUS), as displayed in Figs. 7, 8 and 9. 

There are certain limitations to this research. The CNN 
developed was trained on synthetic data, generated specifically 
for this work. Any microstructure with a complex shape and 
size of defects other than circular pores may not be predicted 
accurately. Moreover, non-obvious characteristics that are 
present in empirically-measured data may lead to low 
prediction accuracy, as CNNs are often not robust to variability 
in data. Even though the CNN predictions require less time, the 
training of the CNN requires considerable amount of time and 
computation power, often meaning a GPU for effective 
learning. Therefore, it is likely that CNNs such as that 
developed here will be most useful in applications where a 
large number of simulations will be performed for a consistent 
set of input geometries. Otherwise, the large amount of training 
time required will not be outweighed by a comparable amount 
of analysis time. In addition to that, this CNN is only capable 
of predicting strain fields of microstructures with the input 
image shape, boundary conditions, and defect characteristics 
on which it was trained. It is important to note that the CNN 
must be retrained for other microstructure images. 

Future work can be done to address these issues by including 
various shapes of defects and their locations, set through 
different distributions such as normal, exponential along with 
clustering these defects, to address a wide range of 
microstructures. Furthermore, research work using CNNs can 
be done to predict mechanical behavior within microstructures 
with non-homogenous material properties, including inclusions 
of varying sizes and compositions. In addition to that, 
microstructure strain fields due to different boundary 

conditions can be labelled based on their boundary conditions 
and utilized for training the CNN to predict strain fields for 
microstructures with specified boundary conditions within 
those labelled ones. 
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