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Abstract

The microstructure of a material governs mechanical properties such as strength and toughness. Various finite element analysis (FEA) software
packages are used to perform structural analyses such as predicting the flow of strain or strain fields in a microstructure. Engineers frequently
operate these software packages to evaluate mechanical behavior and predict failure. Even though these FEA software packages provide highly
accurate analyses, they are computationally intensive, taking a significant amount of time to produce a solution. The time required by the FEA
software packages to achieve accurate results largely depends on microstructure details and mesh resolution, thus providing a trade-off between
fidelity and computation time. This research proposes the use of Deep Learning algorithms to achieve a significant reduction in the time required
to predict high-accuracy strain fields in a two-dimensional microstructure with defects. This work presents a foundation for developing deep
neural networks to conduct structural analyses, thus reducing the exclusive use of computationally demanding FEA software and augmenting the

analytical capabilities of scientists and engineers.
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1. Introduction

Structural analysis is an important tool for investigating the
integrity of a structure by evaluating its stress and strain
response under specific boundary conditions. This is often
performed using finite element analysis to pinpoint locations
that may experience maximum stress and strain that could lead
to failure. In this regard, structural analysis helps to assess
whether a given structure is able to withstand required loading
conditions adequately during its intended life. Finite Element
Analysis (FEA), simulations are performed using software
such as ANSYS Workbench, COMSOL Multiphysics,
ABAQUS, Autodesk Simulation, and FEA Multiphysics and
these software packages also facilitate changes in the design
might improve functionality.

Microscale structural analysis can be performed to study the
effects of microstructure defects in accelerating failure.

2351-9789 © 2020 The Authors. Published by Elsevier B.V.

Although the aforementioned software packages are able to
conduct such analysis with high accuracy, the time taken to
predict the results largely depend on the computational power
of the device as well as the complexity of the physics governing
behavior of the microstructure. As this complexity increases,
the time to predict accurate results increases as well. Predicting
the performance of extremely complex microstructures
becomes burdensome, requiring a substantial amount of time to
complete a single prediction/iteration. Therefore, there is a
need to develop suitable methods that compute and predict
results in a shorter time without significant loss of accuracy.
Machine learning algorithms have proven quite useful to
predict and classify various entities based on available data in
relatively short time and will be used here to accomplish rapid
FEA.

Deep learning [1], a subset of machine learning is a
powerful tool in feature recognition that has various
applications [2] such as handwriting detection [3,4], face
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detection or recognition [5,6], and natural language processing
[7,8] across different fields of science [9—11], engineering [12]
and design [13—-15]. Convolutional Neural Networks (CNNs)
[16,17] facilitate deep learning that are particularly useful for
the analysis of data that can be represented as images. Shea and
Nash [17] have clearly depicted the use of CNNs and their
uniqueness in recognizing patterns through series of layers, that
makes CNNs suitable for image-oriented applications.

Recent research in the field of machine learning has focused
on the prediction of material behavior and properties based on
microstructural characteristics [18-20]. The current research
focusses on the prediction of strain fields due to a uniform
displacement boundary condition imposed on a microstructure
with defects. Specifically, this work will predict strain fields
associated with a two—dimensional (2-D) microstructures with
defects. To accomplish this analysis using deep learning, we
will test the efficacy of image colorization CNNs [21,22].
CNNss of this type take a greyscale image as input (here, the
microstructure), and provide three images on red, green, and
blue channels as output. We hypothesize that problem of
prediction of strain fields can be treated as an image
colorization problem, wherein the microstructure image can be
treated as the original gray scale image (e.g. in conventional
image colorization) and strain components (e.g. €11, €22 and €12)
are predicted as output color channels.

This problem is motivated from challenges in advanced
manufacturing of complex geometries and microstructures.
Volumetric microstructure defects, e.g. porosity, are often
produced in these scenarios and must be mitigated before the
fabricated component is deployed. However, routes for their
mitigation are challenging and require understanding of the
behavior of the advanced geometry + microstructure + defect
triad under various loading conditions. Occasionally, these
defects are too challenging to mitigate and hence, components
may be designed and fabricated with the assumption that they
will contain tolerable defects, thus also necessitating an
understanding of their behavior in complex loading conditions.
However, traditional computational routes, e.g. FEA might be
too resource intensive to address this requirement.

The remainder of the paper is organized as follows. The
background section provides a brief overview of the current
research and developments made in the field of material
sciences using FEA along with a brief review of the basics of
deep learning. The next section describes the methodology of
this work including data generation and the application of the
deep learning algorithm. In the next section, the CNN is trained
and tested on data generated using a Finite Element Analysis
software. Several experimental analyses highlight the effect of
changing the number and size of defects in the microstructures
on accuracy and computation time performance of the CNN
(and FEA, as a baseline comparison). The final section ends
with discussion of conclusions and future work.

2. Background

Modern advanced materials are characterized by a wide
range of mechanical, optical or thermodynamic properties
those of which are frequently attributed to a microstructure
[23]. Herein, the advent of computational modelling has

enabled researchers to conduct various parametric studies on a
microstructure and improve coupled processes. Computational
modelling is extremely useful in both obtaining specific
material properties and also in designing new microstructures
[23]. To this end, FEA software is useful for analyzing the
properties of novel microstructures.

FEA software has become a very important aspect of
industrial-level and academic research. Initially researchers
used to study macroscopic behavior of microstructures like
chemical properties, crystal structure and crystal orientation by
using programs like Object-Oriented Finite (OOF) elements
and Portable Pixel Map to OOF format translator (ppm2oof)
[24]. Programs like OOF enabled the use of mean-field and
other spatial averaging methods to produce approximate
models for materials behavior [24]. Before the advent of OOF
programs, it was significantly more challenging to correlate
microstructures with important properties that affected the
integrity of the structure. With the development of such a
software, a finite element mesh and an easy-to-use graphical
interface became the standard for structural analysis of any
component. The purpose of such software is to assign
properties to features in a material's image and generate a
finite-element mesh representing the material useful for
conducting desired analysis.

This work specifically makes use of ABAQUS for FEA
simulations. ABAQUS is one widely-used software for
performing detailed simulations [25]. In ABAQUS several
parameter configurations with different computational costs
are utilized for finite element analysis such as stress-strain
prediction, flow of temperature etc. [26]. The various types of
algorithms present in ABAQUS provides different types of
advantages and disadvantages, based on the problem that needs
to be solved. Although ABAQUS is a very useful software for
finite element analysis especially for choosing the correct
algorithm for a problem, researchers often face difficulties
when performing analysis since the speed and performance
level of the software is limited by the processing power of the
hardware used.

FEA software can take a significant amount of time to yield
a converging solution, and this time increases substantially
when detailed, e.g. high spatial resolution results are necessary
or when a complex microstructure is analyzed. These
shortcomings of FEA software highlight the need for better
analysis tool to provide results with high accuracy in relatively
short time. With the increasing applications of machine
learning algorithms in the field of material sciences [19,20,27—
29], both prediction [30-32] and classification [33-35] of
mechanical properties and material parameters can be done
more quickly and with less computation power than traditional
analyses . Work by others has effectively used neural networks
to predict shrinkage in molds [30], analyze properties of
composites [31,32], provide classification of steel
microstructures [33] and perform microstructure-recognition
through classification [34]. The utilization of neural networks
provided motivation for the work performed here to predict
strain fields in microstructures using CNNs.

Generally, deep learning is used to model and understand
that contain complex relationships [1,36]. Deep learning
algorithms extract patterns often termed as features in the data,



994 Pranav Milind Khanolkar et al. / Procedia Manufacturing 48 (2020) 992999

and through a process of self-learning provide a prediction such
that the final error computed between the actual output and the
predictions is minimum. Many deep learning algorithms entail
the use of artificial neural networks. These are computing
systems that can solve complex real-world problems through
layers of interconnected nodes or neurons that perform parallel
computations [37]. The reader can find additional background
in [2].

Image recognition is one of the most popular applications of
deep learning algorithms. Manufacturing applications can
benefit from utilizing CNNs, where imaging is primarily used
for analyzing the material properties through examining the
effect of the certain boundary conditions on the given material.
Furthermore, works involving surveying three-dimensional
structures [12,15] as well as additive manufacturing [13] have
successfully incorporated the use of CNNs to achieve their
desired results. There are numerous deep neural networks that
are used for image recognition, classification and manipulation
[34,38—41]. One type of image manipulation involves changing
the color scheme of the input image. An extremely common
type of image manipulation is colorization [22,42] in which a
colored version of a greyscale image is inferred. The research
documented in this paper will highlight a colorization approach
to predict strain fields in two-dimensional microstructures with
specific boundary conditions. The data generated and use of
CNN for this purpose are depicted in the next section.

3. Methodology
3.1. Data generation

Synthetic data was generated in the ABAQUS PDE (Python
Development Environment). Specifically, a 2-D microstructure
was generated with Aluminum (Al6061 — T6), rectangular
dimensions, 38.1 mm as length and 6 mm as breadth, for plane-
strain simulation of elastic deformation, according to the
ASTM E8/E8M standards [43].

For initial training and testing portion, each of the
microstructures were modelled with 100 circular pores with
radii randomly selected between 100 and 500 pm with their
locations within the microstructures set according to uniform
distribution. The finite element analysis conducted involved
uniform uniaxial displacement of 0.1 mm in the plane-strain
mode to obtain strain fields. Three plane-strain fields obtained
were €11, &2 and €, as displayed in Fig. 1. Traditionally, deep
learning algorithms tend to require a substantial amount of data
in order to perform well [29]. To that end, a data generation
pipeline was developed to produce 1000 samples.

After the samples were generated, a MATLAB code was
developed to convert the 2-D microstructures and their
respective strain fields into images. The code converted the
microstructure model and its resultant strain fields into images
with a resolution of 1 pixel equivalent to 0.06 mm, such that
the images consist of 101 pixels in the vertical direction and
636 pixels in the horizontal direction. This resolution was
chosen to preserve the major features of the microstructure with
the minimum number of pixels. The inputs to the CNN were
the 2-D defects-ridden microstructures whose pixel values

were either 0 (indicating a defect) or 1 (indicating material),
depicted in Fig. 2.

Fig. 1. Microstructure model with porous defects (above); Corresponding
strain fields obtained in ABAQUS (below; €1, €2 and &, from top to bottom)

The strain fields from the ABAQUS simulations were also
converted to images with pixels similar as the input (101 x 636)
using the MATLAB code as displayed in Fig 3.
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Fig. 2. Microstructure model generated in ABAQUS FEA software (above)
and converted to image with 101 x 636 pixels using MATLAB (below)

These samples served as training and testing data for the
development of the CNN.

3.2. Proposed Deep Learning Algorithm

A Convolutional Neural Network (CNN) was developed to
perform an image colorization as a means of strain field
inference. Several CNN architectures, with a varying number
of convolutional layers and corresponding parameters such as
number of filters, kernel size, activation functions, and strides
were evaluated in terms of prediction time and accuracy. In
general, increases in the number of convolutional layers, filters
sizes and number of filters resulted in increase in time required
for training the corresponding CNN and subsequent increase in
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time to predict strain fields. Ultimately, an 18-layer CNN
consisting 2-D convolutional layers with filters, kernel sizes,
padding, activation functions and up-sampling layers, as shown
in the Table 1, was developed and selected for this work, based
on the accuracy and prediction time of the results.

38.1mm

6 mm
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Fig. 3. Microstructure strain field €, in ABAQUS FEA software (above;
displayed using MATLAB) and converted to image with 101 x 636 pixels
(below; displayed using Python IDE)

The CNN starts with the input layer defined by the shape
obtained in terms of pixels (101%636). The following layers are
specified with number of filters to capture maximum detail
within the images formed in the layers, kernel size within each
layer to set the dimensions of the weights, padding to account
for the edges of each images so that all pixels are effectively
computed and dimensionality of the images is maintained,
appropriate activation functions to provide outputs to every
following layer and strides to move the filters across the images
to account for every pixel. These layers ultimately converge to
the output layer consisting of 3 images each denoting strain
fields &1, €» and €, as colored images. Coefficient of
determination (R-squared) was used to assess the accuracy of
the CNN. The R-squared value was obtained by comparing the
predicted output and actual output, both represented by 3 strain
field images each.
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Fig.4. Tanh and ReLU activation functions of CNN!
Of the 1000 samples created using the data generation

pipeline, 500 samples were used for training and 500 samples
were used for testing. This division in datasets is done in order

1 Source: https://www.kdnuggets.com/wp-content/uploads/activation.png

to estimate how the model is expected to perform on samples
not used during the training of the model. The CNN was trained
for 100 iterations. The Adam optimizer [44] was used for
training the CNN with default parameters of 0.001 for learning
rate, 1 = 0.9 and B> = 0.999. ReLU activation functions were
utilized throughout the CNN except for the final two layers
where TanH activation function were used to provide
appropriate pixel values in accordance to the actual strain
values. These activation functions [45] ReLU and TanH are
illustrated in Fig. 4.

Table 1. CNN used for Analysis.

Layer
Layer Features
No.
0 Input Layer; Shape (101 x 636 x 1)
| Conv. Layer; Filters: 4 ; Kernel size (9,9); Padding: “same”;
Activation: ReLU; Strides: (1,1)
2 Conv. Layer; Filters: 4 ; Kernel size (9,9); Padding: “same”,
Activation: ReLU, Strides: (1,1)
3 Conv. Layer; Filters: 8 ; Kernel size (7,7); Padding: “same”,
Activation: ReLU, Strides: (1,1)
4 Conv. Layer; Filters: 8 ; Kernel size (7,7); Padding: “same”,
Activation: ReLU, Strides: (1,1)
5 Conv. Layer; Filters: 16 ; Kernel size (5,5); Padding: “same”,
Activation: ReLU, Strides: (1,1)
6 Conv. Layer; Filters: 16 ; Kernel size (5,5); Padding: “same”,
Activation: ReLU, Strides: (1,1)
7 Conv. Layer; Filters: 16 ; Kernel size (3,3); Padding: “same”,
Activation: ReLU, Strides: (1,1)
8 Conv. Layer; Filters: 16 ; Kernel size (3,3); Padding: “same”,
Activation: ReLU, Strides: (1,1)
0 Conv. Layer; Filters: 16 ; Kernel size (2,2); Padding: “same”,
Activation: ReLU, Strides: (1,1)
10 Conv. Layer; Filters: 16 ; Kernel size (2,2); Padding: “same”,
Activation: ReLU, Strides: (1,1)
11 Up-Sampling Layer 2-D with size (1,1)
12 Conv. Layer; Filters: 16 ; Kernel size (2,2); Padding: “same”,
Activation: ReLU, Strides: (1,1)
13 Up-Sampling Layer 2-D with size (1,1)
14 Conv. Layer; Filters: 8 ; Kernel size (3,3); Padding: “same”,
Activation: ReLU, Strides: (1,1)
15 Up-Sampling Layer 2-D with size (1,1)
16 Conv. Layer; Filters: 4 ; Kernel size (7,7); Padding: “same”,
Activation: TanH, Strides: (1,1)
17 Up-Sampling Layer 2-D with size (1,1)
18 Conv. Layer; Filters: 3 ; Kernel size (9,9); Padding: “same”,

Activation: TanH, Strides: (1,1)
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4. Results

A device with GeForce 940M GPU and 6th Gen Intel Core
17-6500U processor as CPU was used for CNN development
and simulation. With GPU usage, the trained CNN model
provided results with an R-squared values 96.25% obtained
from the dataset used for testing. Fig. 5 displays an example of
the input data (black and white 2-D microstructure) along with
the output data (colored strain fields) obtained from the CNN.

The strain fields which are displayed in Fig 5, were
predicted by the CNN with R-squared value of 95.33%. Further
analysis was conducted for 50 samples selected randomly from
the 1000 samples by comparing the time required by the CNN
prediction and the original ABAQUS simulation time. The
ABAQUS simulation time considered in this work includes the
problem solving time, subsequent to the microstructure
modeling and meshing stages. The results of the mentioned
computation time comparison are displayed in Fig. 6. The mean
computation time required for ABAQUS was found to be 2.23
+ 0.0433 seconds, while the CNN predicted the results in 0.13
+0.0171 seconds. This serves as a strong indication that CNNs
have efficacy for computing material properties in a rapid
fashion that enables quick iteration.

& mm
Input Image e, o1
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Fig. 5. Microstructure Strain Field predicted by CNN and ABAQUS

Two one-factor experiments were conducted to analyze the
effects of varying size and number of defects in microstructures
to assess their impact on computation time and accuracy of the
CNN in comparison to ABAQUS. In the first experiment, the
size of the pores in a microstructure was randomly varied from
10 um to 500 pm in increments of 50 um, each range
distributed uniformly, with the number of pores kept constant
at 50. In the second experiment the size range of the pores was

kept constant between 100 — 300 um and the number of pores
incremented from 20 till 200 in uniform increments of 20. For
both of these experiments, the original CNN (trained with
images of microstructures having 100 pores of size range 100-
500 um) was used to make predictions.

Fig. 7 and 8 present the results of these experiments. The
computation time of the CNN and the corresponding accuracy
in terms of R-squared values are largely independent of the size
and number of the defects. Hence the graph for the prediction
times by CNN is always (almost) uniform around 0.1 — 0.2
seconds. In contrast, these values greatly influenced the
prediction time exhibited by ABAQUS.

CNN FEA (ABAQUS)

Fig. 6. Comparison of prediction time by CNN and ABAQUS; Error Bars
represent Standard Error.

The computation time required by ABAQUS to predict
strain fields is displayed in Figs. 7 and 8, and summarized in
Table 2 and Table 3, along with the number of elements created
during the FEA mesh for the respective microstructures,
respectively.

The computation time is dependent on the number of
elements created for the model during the meshing as depicted
in Table 2 and Table 3. As more defects are generated, or as
these defects become smaller, a larger number of elements are
required in the mesh, which greatly increases the computational
time.

Table 2. Computation time performance of CNN and ABAQUS considering
the number of elements formed in the FEA software for a given radii-range of

pores within a microstructure.

Radii - No. of elements Prediction time Prediction time
Range formed in by ABAQUS by the CNN
(nm) ABAQUS (seconds) developed
(seconds)
10-50 16188 242 0.1097
50-100 17402 2.55 0.1117
100-150 20138 3.01 0.1146
150-200 17953 2.64 0.1116
200-250 14121 2.09 0.1147
250-300 11285 1.66 0.1104
300-350 9156 1.38 0.1127
350-400 7230 1.08 0.1126
400-450 5707 0.87 0.1146
450-500 4663 0.72 0.1117
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Prediction Time vs. Radii of Pores in Microstructure
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Fig. 7. Comparison of prediction time (above) and accuracy (below) of CNN
with ABAQUS by varying Radii-range of microstructures with fixed number
of pores

As the radii of the pores increases, the mesh becomes
coarser which requires that fewer elements for respective
microstructure model for FEA. Precise values for the number
of elements in these meshes are tabulated in Table 2. The
increase in the radii-range of the pores results in decrease in
curvature as well as the decrease in proximity of these pores,
which is why the number of elements decrease as the radii
range increase. The parabolic shape of FEA prediction times
with maximum at 150 pm can be justified based on this
reasoning. In contrast, the number of elements in the CNN is
constant by definition.

Table 3. Computation time performance of CNN and ABAQUS considering
the number of elements formed in the FEA software for a given number of

pores within a microstructure.

Number of No. of elements  Prediction time Prediction time

pores in a formed in by ABAQUS by the CNN

microstructure ~ ABAQUS (seconds) developed
(seconds)

20 7683 1.24 0.1249

40 11941 1.84 0.1490

60 17123 2.65 0.1196

80 22101 335 0.1360

100 29578 4.54 0.1214

120 31682 4.86 0.1196

140 33306 5.22 0.1707

160 30977 4.71 0.1148

180 32717 5.03 0.1256

200 33381 5.14 0.2144

In the case of a fixed radii range (100-300 um), increase in
the number of pores resulted in increase in the number of
elements created for the particular samples considered in Fig §,
as displayed in Table 3. Thus, the computation time required
the FEA software largely and proportionally depends on the
features present in the given model, which in this case are the
number of pores and radii-range of pores along with the
proximity of these defects/pores that define the number of
elements required for meshing.

Prediction Time vs. No. of Pores in Microstructure
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Fig. 8. Comparison of prediction time (above) and accuracy (below) of CNN
with ABAQUS by varying number of pores with fixed radii range of 100- 300
pm

Since the weights of the CNN were finalized by training on
500 samples, the computation time required is almost uniform
and only dependent on the pixel size of the input image of the
microstructure whose strain fields are to be predicted. These
weights are set by capturing maximum details and features such
as curvature/radii of the pores as well as the proximity of these
pores within the trained microstructures. In such manner, the
accuracy of predicted strain fields of the microstructures
largely depends on the finalized weights set by the training
dataset of 500 samples of microstructures each having different
defect layout and size. Thus, different microstructures, with
distinct range of radii coupled with their locations within the
microstructure, will be predicted with different accuracies as
depicted in Figs. 7 and 8. As displayed in Figs. 7 and 8, the
accuracies of predicted microstructures, with varied radii range
and number of pores along with their locations set randomly
following a uniform distribution, are obtained within the range
92-97%, which is remarkably high, proving that the CNN
works for wide range of defect layout and pore size.
Furthermore, strain fields of microstructures with defects in
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shape of ellipses were predicted using the CNN. These
predictions were made with mean accuracy of 95.20%.

5. Summary and Future work

FEA software, such as ABAQUS, requires a considerable
amount of time to predict results of structural analysis. Changes
in the complexity of the structural model, such as increasing
the number or decreasing the size of microstructural defects,
may lead to increase in the computation time. This highlights a
need to reduce the computation time in FEA analysis in order
to enable more rapid iteration by engineers. This work attempts
to meet that need by developing an image-colorization CNN to
predict strain fields in microstructures.

The overall accuracy of the CNN developed was
approximately 96%. The computation time performance of the
CNN developed in predicting the strain fields was almost
uniform in the range 0.1-0.2 seconds, irrespective of the shape,
number and position of the defects within the microstructure,
whereas the computation time required by FEA software
fluctuated between 1 to 5 seconds based on the size and number
of defects present. Furthermore, it was observed that changes
in the number, size and position of the defects in the
microstructures had a significant effect on the computation
time of the FEA software because these variables resulted in
changes to the number of elements created in the FEA mesh.
To summarize the main outcome of this project, the time
required to predict strain fields by CNN based colorization
algorithm was significantly less than the time required by FEA
software (ABAQUYS), as displayed in Figs. 7, 8 and 9.

There are certain limitations to this research. The CNN
developed was trained on synthetic data, generated specifically
for this work. Any microstructure with a complex shape and
size of defects other than circular pores may not be predicted
accurately. Moreover, non-obvious characteristics that are
present in empirically-measured data may lead to low
prediction accuracy, as CNNs are often not robust to variability
in data. Even though the CNN predictions require less time, the
training of the CNN requires considerable amount of time and
computation power, often meaning a GPU for effective
learning. Therefore, it is likely that CNNs such as that
developed here will be most useful in applications where a
large number of simulations will be performed for a consistent
set of input geometries. Otherwise, the large amount of training
time required will not be outweighed by a comparable amount
of analysis time. In addition to that, this CNN is only capable
of predicting strain fields of microstructures with the input
image shape, boundary conditions, and defect characteristics
on which it was trained. It is important to note that the CNN
must be retrained for other microstructure images.

Future work can be done to address these issues by including
various shapes of defects and their locations, set through
different distributions such as normal, exponential along with
clustering these defects, to address a wide range of
microstructures. Furthermore, research work using CNNs can
be done to predict mechanical behavior within microstructures
with non-homogenous material properties, including inclusions
of varying sizes and compositions. In addition to that,
microstructure strain fields due to different boundary

conditions can be labelled based on their boundary conditions
and utilized for training the CNN to predict strain fields for
microstructures with specified boundary conditions within
those labelled ones.
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