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Abstract. In the geosciences, recent attention has been paid
to the influence of uncertainty on expert decision-making.
When making decisions under conditions of uncertainty, peo-
ple tend to employ heuristics (rules of thumb) based on ex-
perience, relying on their prior knowledge and beliefs to in-
tuitively guide choice. Over 50 years of decision-making re-
search in cognitive psychology demonstrates that heuristics
can lead to less-than-optimal decisions, collectively referred
to as biases. For example, the availability bias occurs when
people make judgments based on what is most dominant or
accessible in memory; geoscientists who have spent the past
several months studying strike-slip faults will have this ter-
rain most readily available in their mind when interpreting
new seismic data. Given the important social and commercial
implications of many geoscience decisions, there is a need
to develop effective interventions for removing or mitigating
decision bias.

In this paper, we outline the key insights from decision-
making research about how to reduce bias and review the
literature on debiasing strategies. First, we define an opti-
mal decision, since improving decision-making requires hav-
ing a standard to work towards. Next, we discuss the cog-
nitive mechanisms underlying decision biases and describe
three biases that have been shown to influence geoscientists’
decision-making (availability bias, framing bias, anchoring
bias). Finally, we review existing debiasing strategies that
have applicability in the geosciences, with special attention
given to strategies that make use of information technology
and artificial intelligence (AI). We present two case studies
illustrating different applications of intelligent systems for

the debiasing of geoscientific decision-making, wherein de-
biased decision-making is an emergent property of the coor-
dinated and integrated processing of human—AlI collaborative
teams.

Evidently, if the investigator is to succeed in the
discovery of veritable explanations of phenomena,
he must be fertile in the invention of hypotheses
and ingenious in the application of tests. The prac-
tical questions for the teacher are, whether it is pos-
sible by training to improve the guessing faculty,
and if so, how it is to be done. To answer these, we
must give attention to the nature of the scientific
guess considered as a mental process. Like other
mental processes, the framing of hypotheses is usu-
ally unconscious, but by attention it can be brought
into consciousness and analyzed.

(Gilbert, 1886, pp. 286-287)

1 Introduction

When Grove Karl Gilbert wrote about the development of a
“guessing faculty” in The Inculcation of Scientific Method by
Example (1886), he was one of the first to highlight the value
of understanding how geoscientists resolve epistemic uncer-
tainty during judgment and decision-making. Epistemic un-
certainty refers to knowledge that an individual, in principle,
could have but does not, i.e., limited information of the envi-
ronment or system of study. Although epistemic uncertainty
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is a feature of all sciences, in the geosciences it is the stan-
dard rather than the special case (Bardossy and Fodor, 2001;
Frodeman, 1995). Geoscientists must frequently make deci-
sions when data are incomplete, e.g., when the isolation of
processes can be difficult because multiple processes have
cumulatively transformed the rocks, and when direct obser-
vation (much less experimental control) is impossible due to
the large time spans of geologic processes, which leaves evi-
dence lost or buried beneath the Earth’s surface.

To understand the influence of uncertainty on decision-
making in the geosciences, and what the human mind adds to
the problem of inducing rules from incomplete cases, recent
research has followed Gilbert’s advice and studied geologic
uncertainty as a mental process through the lens of cognitive
science. In this work, particular attention has been paid to
ways that humans constrain judgment and decision-making
through the use of heuristics, i.e., rules of thumb. Heuris-
tics are efficient and offer satisfactory solutions for most
decisions, but they can sometimes yield less-than-optimal
choices, collectively referred to as human decision biases.
Geoscience scholars have begun to characterize the influ-
ence of such biases in geologic decision-making (Alcalde et
al., 2017a, b; Barclay et al., 2011; Bond et al., 2007; Pol-
son and Curtis, 2010; Rowbotham et al., 2010; Taylor et al.,
1997). For example, the interpretation of synthetic seismic
images has been shown to be vulnerable to availability bias,
which occurs when people make judgments based on what is
most dominant or accessible in memory; participants’ inter-
pretations were positively related to their primary field of ex-
pertise in tectonic settings, i.e., an individual who indicated
thrust tectonics as their primary field (and had this setting
most accessible in memory) was more likely to interpret the
image as thrust faults than an individual with a different ex-
pertise (Bond et al., 2007).

Characterizing the impact of decision biases such as the
availability bias is important and more work is needed to de-
termine the range of biases influencing geoscientists and their
prevalence in geologic decision-making. However, given the
potential costs of biased decisions, there is a still greater need
to develop effective interventions for removing or mitigating
bias: in the words of Gilbert (opening quote), to determine
“whether it is possible by training to improve the guessing
faculty, and if so, how it is to be done”. The development
of debiasing techniques is especially important for geologic
decisions that have social and commercial implications (e.g.,
hazard prediction, resource extraction, waste storage, water
supply) but could also benefit the underpinning workflows
involved in more commonplace decisions (e.g., navigation,
mapping) and result in improved field practice. The cogni-
tive literature on judgment and decision-making offers valu-
able insights into how susceptibility to decision bias can be
reduced and thus how geologic decision-making under un-
certainty might be improved. In this paper, we outline the
key insights from judgment and decision-making research
about how to reduce bias and review the literature on debi-
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asing strategies. In doing so, we seek to highlight the most
promising avenues for future research on debiasing geologic
decision-making.

The paper is organized as follows. First, we briefly dis-
cuss how to define an optimal decision, since “improving”
geologic decision-making necessitates having a clear stan-
dard to work towards. Next, we describe the origins of de-
cision biases using a dual-process distinction that has been
supported by a wealth of research in cognitive science (for
review, see Evans and Stanovich, 2013). Dual-process the-
ories of decision-making posit the existence of two unique
sets of processes: a set of intuitive and largely automatic pro-
cesses and a set of deliberative and more effortful processes.
We explain how dual-process theories can account for three
specific decision biases: the availability bias, framing bias,
and anchoring bias. We focus on these three biases because
their influence has been well-documented in the geoscience
literature. Finally, we analyze existing debiasing strategies
that have applicability in the geosciences. We categorize ex-
isting strategies based on whether they debias by modify-
ing the decision maker (i.e., provide knowledge or tools that
must be self-employed to debias) or debias by modifying the
environment (i.e., change settings or the information avail-
able in the environment in which decisions occur to debias).
Special attention is given to debiasing strategies that make
use of information technology and artificial intelligence (AI)
when modifying the decision maker or environment. We be-
lieve that these technologies offer the opportunity to over-
come some of the cognitive constraints that result in biased
strategies and thus hold the greatest promise of successful
application in the geosciences.

2 Optimal decision-making

What does it mean to choose optimally during scientific
decision-making? The scientific decision process is complex
and dynamic, and “optimality” may be defined at various lev-
els from the selection of a measurement tool and sampling
site, to the calculation of individual parameters, to interpre-
tation (single or multi-scenario). The position we take in this
article is that normative decision models offer a reasonable
benchmark for assessing optimal choice in geoscience deci-
sions at all levels. Normative models are based in economic
theory and describe how people should make decisions: peo-
ple should strive to maximize the expected utility of a deci-
sion, the probability that an act will lead to an outcome that
is preferable to all alternatives (the principle of dominance).
Also, people should be internally consistent in their decision-
making, meaning they should assign the same utility to deci-
sion alternatives regardless of minor changes in context, such
as the description and order of alternatives or the presence or
absence of other alternatives (the principle of invariance).
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Unfortunately, what people should do is not always what
they actually do. Numerous behavioral decision studies have
demonstrated that how people make decisions in the real
world can systematically violate normative models (for re-
view, see Gilovich et al., 2002; Kahneman, 2011). These sys-
tematic departures from optimal choice are referred to as bi-
ases, and they arise (as described in the Introduction) from
reliance on heuristics during decision-making. For example,
framing equivalent decision outcomes as positive (e.g., 60 %
chance to win) or negative (e.g., 40 % chance to lose) has
been shown to systematically alter risk preference, a viola-
tion of the invariance principle. This framing bias can drive
individuals to make decisions that fail to maximize expected
value (e.g., preference for a certain gain over a gamble with a
probabilistically higher value), a violation of the dominance
principle.

While it is clear from past research that people do not al-
ways make decisions as they should, there is good reason to
believe that people have the capacity to improve decision-
making to the normative standard. This is evidenced by ob-
servations that (1) when people actively reflect on normative
principles they are likely to endorse them, even if they have
violated those norms in the past, and (2) some people already
adhere to normative principles in their decision-making, and
these individuals often have higher analytic skills (are more
reflective and engaged) than those who are vulnerable to bias
(for review, see Stanovich and West, 2000). Thus, in the cur-
rent article we will not focus on the question of whether geo-
scientists can make optimal choices (we assume this is pos-
sible); instead, we will address the question of how to effec-
tively move geoscientist decision-making towards a norma-
tive standard (Sect. 4, “Debiasing strategies”). However, first
we review in more detail the cognitive mechanisms by which
biases arise.

3 Origins of decision biases

In the opening quote, Gilbert is astute in his observation that
the mental processes through which decision makers han-
dle uncertainty are frequently outside the focus of their at-
tention. Converging evidence from psychology and neuro-
science suggests there are two distinct sets of processes driv-
ing judgment and decision-making (for review, see Evans and
Stanovich, 2013). One set of processes is intuitive and places
minimal demand on cognitive resources because it does not
require controlled attention. The other set is deliberative and
places greater demand on cognitive resources but also en-
ables uniquely human abilities such as mental simulation and
cognitive decoupling during hypothetical thinking, i.e., the
ability to prevent real-world representations from becoming
confused with representations of imaginary situations. In the
judgment and decision-making literature these sets of pro-
cesses are typically referred to as Type 1 and Type 2 pro-
cesses, respectively; however, for the purposes of this pa-
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per we will simply refer to them as intuitive and delibera-
tive. Both sets of processes serve important functions when
making decisions under uncertainty. Generally, intuitive pro-
cesses are believed to be prompted rapidly and with minimal
effort, providing default responses that serve as heuristics.
When the heuristic responses are inappropriate and do not
align with set goals, deliberative processes intervene and en-
gage available resources for slower, more reflective reason-
ing (Evans and Stanovich, 2013; Kahneman and Frederick,
2002).

The interaction between intuitive and deliberative pro-
cesses can be likened to that of a reporter and an editor in
a newspaper room.! Reporters (i.e., intuitive processes) in-
terpret the world and produce the bulk of the written work
(i.e., decision-making). It is the job of the editor (i.e., de-
liberative processes) to endorse the work of reporters, edit
the work, or stop it altogether. Unfortunately, editors are of-
ten overburdened, so stories that should be edited or stopped
(because they are in some way flawed or objectionable) are
instead endorsed. Similarly, deliberative processing is often
overworked because it is restricted by the limited capacity of
available cognitive resources — so heuristic responses that are
ill-suited for the current decision environment can be mistak-
enly endorsed by deliberative processes.

It is important to note that, on most occasions, heuristic re-
sponses do lead to good decisions. Intuitive processing draws
from our knowledge of the world, our experiences, and the
skills we possess — it is what allows us to move quickly and
efficiently through our environment, making decisions with
relatively little effort. To truly appreciate the value of intu-
itive processing, consider how your behavior in the last hour
would have changed if you had to deliberately think about ev-
ery choice: you would have had to deliberate about the best
form for sitting down and standing up, the amount of time
spent in each position, where to put your pen, which way to
position your coffee cup, the best web browser to use, and so
on. Viewed in this light, we should all be thankful for the in-
tuitive processes that allow us to make decisions quickly and
effortlessly.

Yet, while intuitive processing is generally effective, there
are some situations in which the heuristic responses gen-
erated by intuitive processes are inappropriate and fail to
meet desired goals. In such circumstances, we need inter-
vention from deliberative processes to behave optimally.
Decision-making is vulnerable to bias when (1) deliberative
processes do not interrupt and override faulty heuristic re-
sponses or (2) when the content of deliberative processing is
itself flawed. Because deliberative processing is constrained
by the capacity of available cognitive resources, in situations
in which resources are already limited (e.g., high-mental-

IThe reporter—editor analogy, to our knowledge, was first intro-
duced by Daniel Kahneman in 2013 during an interview with Mor-
gan Housel for The Motley Fool, a multimedia financial advisement
company.
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effort tasks, fatigue, sleep deprivation) decision makers will
be more likely to rely on heuristic responses, thus mak-
ing them particularly susceptible to bias in such situations.
Also, in general, humans act as cognitive misers (Bocken-
holt, 2012; Stanovich, 2009), meaning even when cognitive
resources are available for deliberative processing we tend
to rely on less effortful intuitive processes. Thus, broadly
speaking, decision-making may be debiased by changing the
environment or through training change the decision maker,
so default heuristic responses lead to good decisions or so
the application of deliberative processing is supported un-
der conditions in which it is otherwise unlikely to be applied
(Milkman et al., 2009).

There are three decision biases that have been shown to
influence geologic decision-making: the availability bias, the
framing bias, and the anchoring bias. All three are driven by
faulty heuristic responses, which should be overridden by de-
liberative processes but are not. A form of anchoring bias
can also be driven by flawed deliberative processing, which
is discussed. These three biases by no means exhaust the full
range of biases that could be influencing geologic decision-
making under uncertainty, but they are, at present, the best
documented in the geosciences literature. For a more com-
plete list of biases and their potential influence on geologic
decision-making, see Baddeley et al. (2004), Bond (2015),
and Rowbotham et al. (2010).

3.1 Availability bias

This bias is driven by an availability heuristic (intuitive pro-
cess), which is a tendency to make decisions based on what
is most dominant or accessible in memory. To illustrate, con-
sider the following: do air pollutants have a higher concentra-
tion outdoors or indoors? When asked to make this judgment
you likely recalled (automatically and without effort) news
stories related to outdoor air pollutants; maybe you visual-
ized billowing smoke, car exhaust, or a smoggy city skyline.
The ease with which examples of outdoor air pollution were
drawn to mind probably led you to conclude that air pollu-
tion is more highly concentrated outdoors versus indoors. If
s0, you have just fallen prey to the availability bias. In fact,
of air quality studies examining both indoor and outdoor en-
vironments, over two-thirds have found higher pollutant con-
centrations inside (Chen and Zhao, 2011).

The availability heuristic can lead to bias because it sub-
stitutes one question (the size or frequency of a category or
event) for another (the accessibility of the category or event
in memory). When the ease with which something is drawn
to mind is not reflective of the true size or frequency, bias
occurs. There are many factors besides frequency that can
make it easy to come up with instances in memory: for ex-
ample, the recency with which something has occurred (e.g.,
flying is perceived as more risky or dangerous immediately
following a plane crash), whether it holds personal signif-
icance (e.g., people have better attention and memory for

Solid Earth, 10, 1469-1488, 2019

C. G. Wilson et al.: How can geologic decision-making under uncertainty be improved?

the household tasks they complete, causing them to under-
estimate the contributions of their living partner), and how
salient or dramatic it is (e.g., shark attacks get lots of media
attention so people tend to exaggerate their frequency). Note,
then, that if a event (a) did not occur recently, (b) does not ap-
ply to you, or (c) is banal, it will lead to an impression that
the event is rare (even if it is not).

In the geoscience literature, evidence of the availability
bias during data interpretation has been documented in both
experts (Bond et al.,, 2007) and students (Alcalde et al.,
2017b). Bond et al. (2007) found that experts’ interpreta-
tions of seismic images were related to their primary field
of expertise in tectonic settings; specifically, the most domi-
nant tectonic setting in memory was the one selected. Like-
wise, Alcalde et al. (2017b) found that geology students were
more likely to interpret a fault in a seismic image as normal-
planar as this fault type and geometry are overrepresented
in teaching materials, particularly those the students had en-
countered. After students were exposed to a greater range of
fault models through a 2-week training course, the range of
fault interpretation type and geometry increased. The poten-
tial value of such education programs for reducing vulner-
ability to decision bias is discussed in Box 1: “Can better
decision-making be taught?”

3.2 Framing bias

Framing bias occurs when people respond differently to ob-
jectively equivalent judgments based on how potential out-
comes are described or framed. It is generally believed to be
the result of an initial affective reaction, or affect heuristic
(intuitive process), that makes certain gains particularly at-
tractive and certain losses particularly aversive (Kahneman
and Frederick, 2007). In a now classic example of framing
bias, Tversky and Kahneman (1981) showed that when dis-
ease outbreak intervention programs were framed in terms of
lives saved (i.e., 200 out of 600 people will be saved OR 1/3
probability 600 people will be saved, 2/3 probability O peo-
ple will be saved) participants preferred the sure option over
the risky option, but when the same programs were framed
in terms of lives lost participants preferred the risky option
over the sure option.? This research had a huge impact in the
fields of psychology and economics (as of 2018 it has been
cited over 17600 times) because it illustrated that human
preference can be the product of problem description and not
actual substance. Subsequent research has shown that frame-
driven changes in risk preference are robust, occurring across
a variety of populations and domains, including experts in
medicine (McNeil et al., 1982), law (Garcia-Retamero and
Dhami, 2013), finance (Fagley and Miller, 1997), and geo-
science (Barclay et al., 2011; Taylor et al., 1997).

2This example represents only one manifestation of framing
bias, referred to as “risky choice framing”. For a complete typol-
ogy of framing effects see Levin et al., 1998.
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Early evidence of framing bias in geologic hazard risk as-
sessment was found by Taylor et al. (1997) across two ex-
periments. In experiment 1, participants of varying levels of
expertise (high school student, undergraduate student, pro-
fessional geoscientist) were asked to make decisions regard-
ing hazardous waste storage, flood protection, and volcano
monitoring. These problems were presented in a format sim-
ilar to the disease outbreak problem by Tversky and Kah-
neman (1981): for the waste storage problem, the positive
frame described the probability of safe storage and the neg-
ative frame described the probability of an accidental spill;
for the flood protection problem, the positive frame described
the probability the protection would succeed and the negative
frame described the probability it would fail; and for the vol-
cano monitoring problem, the positive frame described the
probability the volcano would remain dormant and the neg-
ative frame described the probability of an eruption. Across
all scenarios, participants demonstrated evidence of frame-
driven changes in risk preference. Importantly, professional
geoscientists were just as vulnerable to bias as students, sug-
gesting that even experts (who regularly make decisions that
impact public safety) can be swayed by superficial choice
descriptions.

In experiment 2 (Taylor et al., 1997), high school student
participants completed a variation of the volcano monitoring
problem in which they played the role of a volcanologist who
must interpret incoming information from three instruments
to make ongoing decisions about how many people to evac-
uate from the area surrounding a volcano. Readings from the
three instruments were correlated with probabilities of vol-
canic activity that were positively framed (i.e., dormant) or
negatively framed (i.e., eruption). Participants completed ei-
ther a paper—pencil version or a computerized version of the
task. Again, participants demonstrated frame-driven changes
in risk preference, but only in the paper—pencil version; in the
computerized version, participants were resistant to framing
bias. In a follow-up study by Barclay et al. (2011), the same
computerized volcano monitoring problem was used but in-
strument readings were either presented in text format (as
in experiment 2; Taylor et al., 1997) or in a novel graph-
ical format. Barclay et al. (2011) reported similar findings
of resistance to framing in the text version but found that
presenting instrument readings graphically produced frame-
driven changes in risk preference. That presentation mode
(paper—pencil, computer) and presentation format (graphical,
text-based) have an influence on vulnerability to framing bias
demonstrates the complexity of characterizing cognitive bi-
ases and the need for evidence-informed practices, which we
discuss further in Sect. 4, “Debiasing strategies”.

3.3 Anchoring bias
Anchoring is the result of focusing on the first available value

or estimate for an unknown quantity before making a judg-
ment or decision about that quantity. The initial value “an-
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chors” subsequent judgments, so decisions stay close to the
value considered. Bias occurs when the anchor is incorrect
or arbitrary. Unfortunately, even when decision makers are
fully aware that the anchor is a meaningless value, it still has
a strong influence on their choice. For example, a study by
Englich et al. (2006) asked expert judges to make a hypothet-
ical prison sentence for a shoplifter (in months) after rolling
a loaded die that only landed on three or nine. Those judges
who rolled a nine gave an average sentence of 8 months,
while those who rolled a three gave an average sentence of
5 months.

In science, anchors come in the form of initial hypothe-
ses or interpretations. Vulnerability to bias can make scien-
tists reluctant to accept alternative explanations, even in the
face of disconfirming evidence. Ultimately, this can disrupt
the evolution of knowledge. In the geosciences, for exam-
ple, Rankey and Mitchell (2003) demonstrated that experts
only made minor changes to their initial interpretations of
3-D seismic data after being given additional quality infor-
mation that could aid interpretation. One expert (who did not
change his interpretation at all) noted, “I did... not want to
change any of my picks based on the additional well data —
looks like I had it nailed.”.

A particular form of anchoring bias is called herding (Bad-
deley, 2015). Herding is group-driven behavior in which
members’ judgments are anchored to those of influential
group members. This can be especially detrimental in science
because evidence that conflicts with established consensus or
opinion can be sidelined, and if the conflicting findings are
successfully published, the authors risk being ostracized or
punished. There are well-known historical examples: Galileo
Galilei was convicted of heresy by the Catholic church for
supporting the Copernican theory that the Earth and planets
revolve around the sun (Lindberg, 2003); Alfred Wegener’s
championing of plate tectonics theory was ignored, mocked,
and deemed pseudoscience by his peers for over 40 years
(Vine, 1977).

Empirical evidence of herding in the geosciences was first
demonstrated by Phillips (1999), who showed that experts’
probability distributions of corrosion rates for nuclear waste
storage containers differed depending on whether they were
elicited independently or in groups. Experts made different
prior assumptions, resulting in probability distributions that
were initially radically different. Inter-expert discussion re-
sulted in some convergence of probability distributions but
was also accompanied by an increase in the variance of each
independent distribution; i.e., experts increased the spread
of their initial distributions to encompass the spread of the
consensus distribution. In a similar study, Polson and Curtis
(2010) showed that experts’ estimated probability distribu-
tions for the presence of a fault were vulnerable to herding;
the group of experts moved towards a single member’s opin-
ion such that the consensus distribution was primarily a re-
flection of the views of one individual.
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As mentioned in Sect. 3, “Origins of decision biases”, an-
choring is typically driven by a faulty heuristic response,
which should be overridden by deliberative processing but
is not. When given an anchor, intuitive processes immedi-
ately construct a world in which the anchor is true by acti-
vating compatible memories. This, in turn, primes decision
makers to notice information that is consistent with the an-
chor and ignore or discount information this is inconsistent.
In the Rankey and Mitchell (2003) study, the participant who
“had it nailed” was demonstrating an anchoring bias driven
by faulty intuitive processing; the participant was primed to
interpret new data as consistent with his initial hypothesis
and ignore disconfirming data.

Alternatively, anchoring can be driven by flawed deliber-
ative processing, which occurs when decision makers fail to
adequately adjust from the anchor. We know this is a failure
of deliberative processing because people are more prone to
insufficient adjustment when their mental resources are de-
pleted, e.g., when their attention is loaded or when consum-
ing alcohol (Epley and Gilovich, 2006). Research shows peo-
ple tend to only adjust estimates to the first plausible value
and are generally unwilling to search for more accurate es-
timates (Epley and Gilovich, 2006). This may explain why
participants in the Phillips (1999) study, when given the op-
portunity to adjust their initial probability distributions fol-
lowing group discussion, primarily increased their distribu-
tion range to encompass the spread of the consensus distri-
bution. The participants made the simplest adjustment that
was still a plausible reflection of the true distribution.

4 Debiasing strategies

Cognitive research on heuristics and biases, beginning in the
1970s and continuing today, has demonstrated the pervasive
and robust influence of an ever-increasing list of decision
biases. In comparison, our understanding of how to debias
decision-making is limited. This is in part due to the rela-
tively unappealing nature of debiasing research; “it is more
newsworthy to show that something is broken than to show
how to fix it” (Larrick, 2004). It is also likely that researchers
have been dissuaded from pursuing debiasing research be-
cause early studies found biases were generally robust in
the face of commonsense corrective measures, including pro-
viding feedback or incentives (Camerer and Hogarth, 1999;
Fischhoff, 1982), holding people accountable for their de-
cisions (Lerner and Tetlock, 1999), and offering warnings
about the possibility of bias (Fischhoff, 1982). While there
is a strong need for additional research on debiasing, a num-
ber of successful strategies have been discovered (for review,
see Larrick, 2004; Milkman et al., 2009; Soll et al., 2016).
These existing strategies can be categorized into one of two
approaches: (1) debiasing by modifying the decision maker
or (2) debiasing by modifying the environment (Soll et al.,
2016). In the remaining section we consider the pros and
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cons of the two approaches and discuss how each can be best
used in geoscience education and industry to minimize bias.

4.1 Modifying the decision maker

Debiasing strategies that modify the decision maker provide
knowledge and tools that must be self-employed to overcome
bias. This includes cognitive strategies to shift the perception
of a problem (i.e., consider the opposite), the use of compu-
tational models to assist judgment, and education on statis-
tical rules and normative principles (see Box 1). All of the
above are likely familiar to geoscience scholars, though per-
haps not framed as decision aids. In fact, it can be argued
that the cognitive debiasing strategy of “consider the oppo-
site” has been a feature of geoscience for over a century. In
his 1890 publication The Method of Multiple Working Hy-
potheses, Thomas Chrowder Chamberlin advocates that geo-
scientists should generate multiple plausible alternatives to
explain the occurrence of geologic phenomena (essentially
a “consider the opposite” strategy). Chamberlin is clear in
stating the value of this method in guarding against bias

(pp. 756).

The effort is to bring up into view every rational
explanation of new phenomena, and to develop ev-
ery tenable hypothesis respecting their cause and
history. The investigator thus becomes the parent
of a family of hypotheses: and, by his parental re-
lation to all, he is forbidden to fasten his affections
unduly upon any one. In the nature of the case,
the danger that springs from affection is counter-
acted. .. Having thus neutralized the partialities of
his emotional nature, he proceeds with a certain
natural and enforced erectness of mental attitude
to the investigation.

Cognitive research has supported Chamberlin’s assertions
that generating multiple alternatives to a decision problem
can be an effective debiasing strategy, particularly when bias
is driven by a tendency to rely on small and unrepresentative
samples of information, as with anchoring bias (e.g., Muss-
weiler et al., 2000), overconfidence (e.g., Koriat et al., 1980),
and hindsight bias (e.g., Sanna and Schwarz, 2006). In mod-
ern geoscience practice, as noted by Bond (2015), the method
of multiple working hypotheses is not consistent with the
culture of science in which advocacy for a single model is
rewarded. However, there is recognition of the value of pro-
moting a workflow that increases the consideration of per-
missible interpretations in the geosciences (Bond et al., 2008;
Macrae et al., 2016), as well as other sciences faced with
complexity and high uncertainty (Elliot and Brook, 2007).
While geoscience educators recognize the centrality of the
principle of multiple working hypotheses to geoscience prac-
tice, there is, to our knowledge, no accepted pedagogy for
supporting practice in the skill.
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Box 1. Can better decision-making be taught?

There is good evidence that decision-making can be improved by teaching people statistical rules and normative
principles. Research in this area examines the influence of teaching across formal higher education. disciplinary-
specific training. single courses, and brief laboratory sessions. For example, doctoral-level scientists with extensive
statistical training are better than psychology graduate students with two to three courses in statistics at applying
statistical rules to avoid drawing inferences from small samples — but graduate students do better than undergraduate
students with only one statistics course (Fong et al.. 1986). Also. economics professors are more likely than biology
and humanities professors to use normative principles in everyday decision-making. such as ignoring a sunk cost by
leaving a mediocre play early in the performance (Larrick et al., 1993). and college students can be taught how to
apply normative principles in laboratory sessions lasting less than an hour (Larrick et al.. 1990). From this research
we infer that better decision-making in the geosciences can also be taught by a substantive statistics curriculum.

Although modern geoscience researchers have embraced statistical methods, and quantitative skills are fundamental
to the evaluation and investigation of geologic processes. there is not a strong history of statistics curriculum in
undergraduate and graduate geoscience courses (Manduca et al.. 2008). However. in the past 20 years there has been
increased interest in identifying quantitative skills that students need to succeed in the field and developing strategies
for teaching those skills: see Kempler and Gross (2018) for a recent example. As a result, statistical training is now a
more common feature of geoscience education. In future research. it would be interesting to know if education on
statistical rules in the geosciences mitigates some biases (e.g.. sunk costs) and how any improvements in decision-
making compare to those achieved through similar statistical education in other sciences. Also, it would be worthwhile
to determine the reliability and duration of decision improvement following statistics education: do geoscientists with
statistical education always avoid drawing inferences from small samples. or just occasionally, and how long after
education has concluded do improvements endure?

Beyond education on statistical rules and normative principles. in some fields it is common that students receive
additional decision-focused curriculum. For example, in fields such as business and medicine, wherein there has been
longer recognition of the influence of decision bias. students are taught how experts resolve uncertainty in decision-
making and the biases that occur when experts rely on heuristics that are not well suited to the choice environment.
To our knowledge. most of this decision-focused curriculum is descriptive: that is. it teaches facts about biases
(including a taxonomy of biases) and how they distort reasoning but does not address strategies for overcoming bias.
To date. the effectiveness of courses with decision curriculum aimed at reducing vulnerability to bias is unknown.

We feel that geoscience education and industry would benefit from the adoption of similar decision-focused
curriculum. since being aware of the existence and possibility of decision bias is the first necessary step to reducing
vulnerability. Already uncertainty training has been incorporated into many major oil company training portfolios and
is offered by training consultants to the geoscience industry. Yet. past research would suggest that simply being aware
of the possibility of bias is not enough to reduce susceptibility by any substantial margin (Fischhoff. 1982). A
potentially worthwhile addition, then. to decision curriculums in geoscience and other fields would be education on
choice architecture and “nudging” (see Sect. 4.2, “Modifying the environment”). i.e.. teaching students how to
structure and engage with their environment to promote good judgment and decision-making. This would include
instruction on how and why biases occur and debiasing strategies to mitigate them, but also practice with choice
infrastructure creation so decision makers are not required to self-employ strategies to rise above their ingrained and
subtle biases. Trainings on using structured workflows. as are common in the geoscience industry, is one existing
method of incorporating choice architecture techniquesin education. How best to teach decision-focused curriculum
and what kind of content. guidance, and practice to offer is an important question for future education research: for a
discussion on the possible virtues of “nudge™ education, see Beaulac and Kenyon (2014): for a discussion of how to
achieve such institutional education changes. see Hendersonet al. (2015).

Box 1.

The debiasing strategy of applying computational mod-
els is a more recent fixture of geoscience, and its increased
prominence is at least partially owed to the increased avail-
ability of user-friendly modeling software. In sustainabil-
ity and resource management research in particular, many
modeling and simulation software tools have been created
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to aid judgment (for review, see Argent, 2004; Argent and
Houghton, 2001; Rizzoli and Young, 1997). Computational
models systematize the weights placed on various decision
inputs (in lieu of relying on expert experience), enabling bet-
ter forecasting of outcomes. In situations in which expert ex-
perience is critical to predicting outcomes, that experience
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can become a decision input in the model. Past research has
shown that such computational models outperform expert
judgment in a variety of domains (Dawes et al., 1989), and
even the simplest linear models that equally weight all rele-
vant decision inputs (not taking into account historical data
on inputs) can outperform expert judgments (Dawes and Cor-
rigan, 1974). In the geosciences, recent research investigating
the impact of model use on human judgment about resource
management found that management outcomes were supe-
rior when student participants relied on models rather than
their own experience (Holden and Ellner, 2016). Also, model
use has been shown to improve sustainability policy deci-
sions — in a role-play simulation, model users evidenced bet-
ter outcomes (e.g., low change in temperature, high access to
electricity, and high global economy) than participants who
did not use models (Czaika and Selin, 2017).

For decision makers to use computational models or em-
ploy cognitive techniques like “consider the opposite” suc-
cessfully requires (at minimum) that deliberative processing
resources be available for suspending and correcting deci-
sions. These debiasing strategies operate by supporting the
application of deliberative processing under conditions in
which it is likely to not be applied, encouraging decision
makers to shift themselves from intuitive to deliberative pro-
cessing. For example, when decision makers “consider the
opposite” it encourages deliberative analysis and suspends
reliance on intuitions that distort the representation of infor-
mation (e.g., intuition to rely on what is most dominant or
accessible in memory). Recall from Sect. 3, “Origins of de-
cision biases”, that we have a limited capacity of delibera-
tive resources to draw from; i.e., our “editor” can be over-
worked. Therefore, these debiasing strategies will have a low
probability of success in situations in which deliberative pro-
cessing resources are reduced (e.g., high-mental-effort tasks,
states of fatigue or sleep deprivation). Also, individual differ-
ences in thinking style and quantitative ability (i.e., numer-
acy) impact the effectiveness of deliberative processing debi-
asing strategies; people who are reflective and have high nu-
meracy are more likely to suspend heuristic responses and in-
voke deliberative resources to do necessary additional think-
ing (Frederick, 2005). However, even under ideal conditions,
in which deliberative resources are not constrained and the
decision maker is prone to reflective thinking, there is no
guarantee of debiasing success — and herein lies the prob-
lem with self-employed debiasing strategies: they may re-
quire too much of the decision maker. Successful implemen-
tation requires that the decision maker be able to recognize
the need to apply a strategy, have the motivation and the re-
quired deliberative resources to do so, select the appropriate
strategy, and apply it correctly. A mistake or failure at any
step of this process could result in (at best) continued vulner-
ability to decision bias or (at worse) an increase in bias.

Consider, for example, the application of computational
models in sustainability and resource management research.
Although there are many modeling and simulation software
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tools available for forecasting climate outcomes (for review,
see Argent, 2004; Argent and Houghton, 2001; Rizzoli and
Young, 1997), there is concern amongst geoscience scholars
that decision makers are not using computational models as
often as expected or correctly (see also Box 1 for a discus-
sion of concerns about the level of quantitative education in
the geosciences). Both Edwards et al. (2010) and Oxley et al.
(2004) found poor receptivity to and “low uptake” of mod-
eling software tools amongst targeted end users within EU-
funded research projects. The authors of these studies argue
that low uptake resulted from bad communication between
tool developers and end users. Thus, despite computational
models being available for use in forecasting climate out-
comes, some experts are not sufficiently motivated to apply
them or are unconfident in their ability to select the appro-
priate model and apply it correctly, instead relying on their
experience and intuition as a substitute for formal analysis.
Determining methods for facilitating the adoption of self-
employed debiasing strategies is a critical issue for debiasing
research both generally and in the geosciences. Some of the
reluctance to use computational models in the geosciences
can be solved by improving the design and user interface of
modeling and simulation software. To this end, McIntosh and
colleagues have outlined design principles (Mclntosh et al.,
2005) and best practices (McIntosh et al., 2008) for the devel-
opment of computer-based models, with the goal of improv-
ing the usefulness and usability of modeling tools in the geo-
sciences. However, even with improved tool design, decision
makers may continue to resist using computational models
and other self-employed debiasing strategies. In the words of
debiasing researcher Richard Larrick (2004, pp. 331),

[decision makers] do not want to be told that they
have been “doing it wrong” for all these years.
They do not want to relinquish control over a deci-
sion process. And, perhaps most importantly, they
fail to understand the benefits of many debiasing
techniques relative to their own abilities, not just
because they are overconfident, but because the
techniques themselves are alien and complex, and
the benefits are noisy, delayed, or small.

In sum, self-employed debiasing strategies carry a high
risk of being used inappropriately by decision makers (i.e.,
used incorrectly or not at all), and for this reason we be-
lieve that such strategies alone do not offer the most promise
for successful application in the geosciences. Instead, we ad-
vocate that debiasing strategies (including “consider the op-
posite” and using computational models) be supported by
modifying the decision environment such that (1) people are
“nudged” towards the optimal choice strategy or (2) the envi-
ronment becomes a good fit for the strategy people naturally
apply, thereby relieving decision makers of the impetus for
debiasing.
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4.2 Modifying the environment

Debiasing techniques that modify the environment alter the
settings in which decisions occur. The environment can be
modified to make it a better fit for the strategy people natu-
rally apply (e.g., status-quo bias pushes people to stick with a
default response option over selecting a new option, so mak-
ing the default a desirable outcome will maximize decision-
making). The environment can also be modified to nudge
people towards the optimal choice strategy (e.g., prompts to
induce reflection and deliberation). The environment mod-
ification approach to debiasing is sometimes referred to as
choice architecture, making the individual or entity respon-
sible for organizing the environment in which people make
decisions the choice architect (Thaler and Sunstein, 2008). It
is the role of the choice architect, as put forward by Thaler
and Sunstein (2008) in their popular press book Nudge, to in-
fluence people’s decision-making such that their well-being
(and the well-being of others) is maximized, without restrict-
ing the freedom to choose. Importantly, there is no such thing
as neutral choice architecture; the way the environment is
set up will guide decision-making, regardless of whether the
setup was intentional on the part of the architect; e.g., de-
scriptions of risk will be framed in terms of gains or losses,
and a wise architect chooses the framing that will maximize
well-being.

The advantage of debiasing techniques that modify the en-
vironment, over those that modify the decision maker, is that
it is the choice architect and not the decision maker who
is accountable for debiasing (unless, of course, the archi-
tect and the decision maker are the same person). Conscious
choice architecture is a naturally deliberative process — po-
tential mechanisms of bias must be considered and used to
design nudges, and user responses to these nudges must also
be considered, including factors unrelated to the nudge that
may influence responses. Therefore, techniques that modify
the environment tend to be more successful in reducing vul-
nerability to bias and improving decision-making, and this
has been evidenced in varied domains, e.g., improving rates
of organ donation (Johnson and Goldstein, 2003), increasing
employee retirement savings (Madrian and Shea, 2001), and
encouraging healthier eating habits (Downs et al., 2009).

Choice architecture debiasing techniques have been
adopted in the sciences in the form of imposed workflow
practices and structured expert elicitation exercises. The lat-
ter may be more familiar to geoscientists given that there is
a long history of using cumulative expert judgments in ge-
ologic research when data are insufficient (e.g., Cooke and
McDonald, 1986; Hemming et al., 2018; Wood and Curtis,
2004). Expert elicitation research demonstrates that struc-
tured methods can be employed to enforce the considera-
tion of group ideas and opinions such that the vulnerabil-
ity to overconfidence and other biases is reduced (Wood and
Curtis, 2004; Polson and Curtis, 2010). The use of imposed
workflows, in comparison, is a newer feature of scientific
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practice. In the social and life sciences, a research repro-
ducibility crisis has led many academic gatekeepers to ad-
vocate for the use of workflows such as study preregistration
(i.e., a description of study methods, materials, and analy-
ses published prior to data collection) and open sharing of
data and study materials. In geoscience research, the use of
workflows is also increasingly encouraged. For example, Gil
et al. (2016) propose that the “geoscience paper of the fu-
ture” should make data and software reusable and explicitly
describe higher-level computational workflows.

One way the value of choice architecture debiasing in the
sciences manifests is through improved efficiency and effec-
tiveness of an ongoing decision process — how many data
points are enough to reach a conclusion about my interpre-
tation(s) and how confident am I in that conclusion? This
decision process can be visualized by plotting the relation-
ship between conclusion certainty and data, wherein the term
data is generally defined as the quality and quantity of in-
formation known. Notably, in most sciences, the amount of
data (as defined above) is directly proportional to time, re-
sources, and funds. As data accumulate, conclusion certainty
increases until some threshold of confidence is reached, at
which point the scientific decision maker makes a conclu-
sion about their interpretation(s). We define this threshold
of confidence as a geologist’s individual perception of be-
ing “certain enough” in their interpretation, and hence the
threshold can differ dramatically between individuals (what
seems certain to one will not seem certain to all) and be
shaped by research context (what counts as “certain enough”
in one research field will not count in all research fields).
In the ideal case, in which data are homogeneous, collected
in an unbiased manner, and consistent with a theory, there
is a positive linear relationship between data and conclusion
certainty, with greater slopes indicating greater decision ef-
ficiency, i.e., faster ascension to the decision maker’s thresh-
old of confidence (see Fig. 1). However, as every researcher
knows, this ideal case is rare. More often, as data accumu-
late, researchers experience upward and downward shifts in
conclusion certainty. Decision biases can impact how confi-
dence shifts with incoming data and where the threshold of
confidence is set.

Consider the following study by Macrae et al. (2016) on
geologic workflows as an example. Macrae et al. (2016) gave
geoscientists a 2-D seismic reflection image and asked them
to provide an interpretation within a limited time frame. Half
the geoscientist participants were asked to undertake a spe-
cific workflow in which they received instruction to explicitly
consider geological evolution through writing or drawing (a
choice architecture debiasing technique), and the other half
received no workflow. The results from Macrae et al. (2016)
reveal that geoscientists nudged to consider geological evo-
lution had higher-quality interpretations than those who re-
ceived no nudge. Because real seismic data were used, the
correct interpretation was unknown, but interpretations were
deemed high quality if they were consistent with the interpre-
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Figure 1. The relationship between data and conclusion certainty
in the scientific decision-making process. In the ideal case, an in-
creasing number of data are accompanied by increasing certainty,
with slopes greater than or equal to one indicating an efficient deci-
sion process. In reality, an increasing number of data are more often
accompanied by upward and downward shifts in certainty. A scien-
tific conclusion is reached once a decision maker reaches their per-
sonal subjective threshold of confidence and feels “certain enough”
in their interpretation.

tations of at least one of five leading experts. Some partici-
pants may have been overconfident in their interpretation (as
suggested by Macrae et al., 2016), which implies that their
threshold of confidence was lower, thus increasing the likeli-
hood of accepting an erroneous interpretation. The workflow
nudge could have mitigated overconfidence by testing the in-
terpretation (during or after creation) to determine whether
the final interpreted geometry could evolve in a geologically
reasonable manner. Figure 2 shows the decision process of
two hypothetical individuals, Participant 1 and Participant 2.
For interpretations in which the evolution was not feasible
(Participant 1, Interpretation A), the workflow nudge would
force the participant to consider modifications (1B) or alter-
native interpretations (1C), thereby reducing overconfidence.
For interpretations in which the evolution was reasonable,
certainty in interpretation would likely increase to the thresh-
old of confidence (Participant 2, Interpretation A).

We can also use the data certainty plot to visualize how the
choice architecture practice of expert elicitation influences
decision-making and vulnerability to herding (anchoring) in
the aforementioned study by Polson and Curtis (2010). Pol-
son and Curtis (2010) asked four expert geoscientists to as-
sess the probability that a fault existed. Figure 3 shows the
decision process of the four participants. Note that the x axis
of Fig. 3 is represented as time rather than data; as previously
stated, we view the quality or quantity of known information
(data) as related to time and in this example time is the more
coherent descriptor. After making their initial assessment,
participants were alerted to common biases in expert judg-
ment and allowed to modify their assessment. If as a result
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Figure 2. The influence of a geologic workflow nudge on conclu-
sion certainty in a study by Macrae et al. (2016). Participants 1 and 2
both experience shifting uncertainty in their initial interpretations as
data are accumulated prior to the nudge onset. After being nudged
to consider the geological evolution of their interpretations, Partici-
pant 2 finds a geologically reasonable evolution for his or her inter-
pretation, certainty in the interpretation increases to their threshold
of confidence, and a conclusion is made. Participant 1 cannot con-
struct a geologically reasonable evolution of their initial interpreta-
tion, prompting a consideration of modifications (1B) or alternative
interpretations (1C).

of the warning the participant felt they had made a mistake
or their initial probability was somewhat biased, they could
have modified their interpretation (Participants 1 and 3) or
experienced a reduction in certainty (Participant 4). Alterna-
tively, if the participant perceived their initial analysis to be
free of bias — either because it truly was or because the warn-
ing was not sufficient for resolving bias — then they would
likely stick with their initial probability distribution and po-
tentially experience an increase in conclusion certainty (Par-
ticipant 2). Following the bias warning and any changes to
the initial interpretation, experts shared their probability dis-
tributions, explained their reasoning to the group, and were
then asked to reach a group consensus.

The results from Polson and Curtis (2010) showed that the
consensus interpretation did not reflect the opinions of all
participants in the group; instead, the group moved towards
one expert’s opinion (Participant 1), herding around and an-
choring to it (see gray zone, Fig. 3). Thus, although the bias
warning may have been an effective debiasing strategy for
the individual probabilities at the start of the elicitation, the
experimental evidence suggests that it had a minimal impact
later in the elicitation process when coming to the group con-
sensus. As discussed in Sect. 4.1, “Modifying the decision
maker”, there are many reasons why a simple warning may
be ineffective for debiasing — it requires that the interpreter
be able to recognize his or her own bias and have the moti-
vation and available cognitive resources to apply a strategy
to combat bias — and in group situations in which socially
constructed hierarchies exist, bias warnings may be partic-
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Figure 3. The influence of expert elicitation practices on conclusion
certainty in a study by Polson and Curtis (2010). All participants ex-
perience shifting uncertainty in initial probabilities for the existence
of a fault as elicitation progresses. Interpretations A, B, and C re-
fer to each individual’s successive interpretation. When exposed to
information on how cognitive bias impacts expert judgment, Par-
ticipants 1 and 3 modify their interpretations (to 1B and 3B) and
Participant 4 experiences a decline in conclusion certainty (4A).
Participant 2, in contrast, becomes more certain in his or her initial
interpretation following the bias warning, either because the inter-
pretation was truly unbiased or because the warning was insufficient
to recognize and resolve bias. When interpretations are shared and
discussed amongst the group, Participants 2, 3, and 4 modify their
interpretations to be in accordance with Participant 1 — certainty in
this new interpretation (2B, 3C, 4B) increases such that a consensus
assessment is reached. This herding bias is noted by the gray zone
in the figure.

ularly ineffective. A potentially better debiasing strategy in
this instance would have been to weight expert opinions and
present this information in the form of a digital nudge; e.g.,
this is what the consensus probability distribution would be if
a mean of the experts was calculated and it does not accom-
modate the range of individual expert opinions. Expert elic-
itations focusing on geological problems (e.g., Polson and
Curtis, 2010; Randle et al., 2019) show that much of their
value is in better understanding decision-making workflows
and where uncertainties and bias arise, which can be used to
inform nudge design.

As the above examples illustrate, the potential for choice
architecture to aid decision-making in geoscience and other
scientific fields is significant. Yet, choice architecture debias-
ing is not infallible to human error. For example, research on
expert elicitation practices in the geosciences has shown that
erroneous predictions about geologic events are made when
using subjective methods for selecting experts (Shanteau et
al., 2002) and when judgments are not aggregated appropri-
ately (Lorenz et al., 2011; Randle et al., 2019). Also, it is
worth noting that Macrae et al. (2016) found that over 80 %
of participants in the no-workflow group reported that they
had considered the geological evolution of their interpreta-
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tion — these individuals thought they were using a normative
workflow, but did not apply it effectively, either because their
deliberative processing resources were overburdened from
the demands of the interpretation task (“busy editor”) or be-
cause of a general tendency towards cognitive miserliness
(“lazy editor”). We believe recent innovations in Al and in-
formation technology offer the opportunity to overcome the
cognitive constraints that lead to both biased choice and trou-
ble in effectively self-employing debiasing strategies. Specif-
ically, we advocate for coordinated and integrated decision-
making in humans and intelligent systems, wherein debiased
decisions are an emergent property of the human—AlI collab-
orative team. This approach has been referred to as “cap-
tology”, standing for “computers as persuasive technology”
(Fogg, 2003), and, more recently, “digital nudging” (Mirsch
et al., 2017; Weinmann et al., 2016).

This paper is not the first to call attention to the utility of
intelligent systems for geoscientific research. The use of in-
telligent technologies in geoscience research is increasingly
common, e.g., mobile robotic platforms (Qian et al., 2017)
and machine-learning algorithms (Karpatne et al., 2018), and
recent articles in GSA Today (Spino, 2019) and Communi-
cations of the ACM (Gil et al., 2018) both outline promising
opportunities for intelligent systems to address research chal-
lenges in the geosciences. Most of this existing work implic-
itly takes the view that humans and intelligent systems have
separate but complementary functions in geologic decision-
making (e.g., Shipley and Tikoff, 2018). Here we present a
different view, namely that geologic decision-making can be
enhanced when humans and intelligent systems work in col-
laboration with a shared understanding of the task goal, rele-
vant contextual features, and existing scientific knowledge.
To illustrate the value of this digital nudging approach in
geoscience research, we discuss two case studies that repre-
sent different applications of intelligent systems for the geo-
sciences that are presently in practice: the first case study
addresses the use of unmanned aerial vehicles (UAVs or
“drones”) to collect new field data, and the second addresses
the use of software for geologic interpretation of seismic im-
age data. For each case study, we describe how the intelligent
system is currently being used to aid geologic research and
how this application of technology has improved, or could
improve, upon pretechnological research methods. Then, we
describe how digital nudging can be incorporated into intel-
ligent systems and illustrate the scientific value of nudging
using the data conclusion certainty plot (similar to Figs. 2
and 3 above).

4.2.1 Case Study 1 - optimizing field data collection
with UAVs to minimize anchoring bias

In this case study, we describe how automated unmanned
aerial vehicle (UAV) navigation could be used to nudge geo-
scientists to be more efficient when making decisions regard-
ing reconnaissance and mapping, as well s mitigate against
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anchoring bias. The advent of better mobile robot platforms
has allowed for the deployment of robots by ground, sea, and
air to collect field data at a high spatial and temporal res-
olution. Here, we focus on the use of aerial robots (semi-
autonomous or autonomous UAVs) for data collection, but
the conclusions we draw are likely applicable to other mo-
bile robot platforms (i.e., underwater autonomous vehicles,
ground robots).

Currently, the majority of geoscience research with UAVs
is nonautonomous, i.e., user controlled. Efforts have been
made to automate the interpretation of geological data from
UAV imagery or 3-D reconstructions with some success
(Thiele et al., 2017; Vasuki et al., 2014, 2017), and the ap-
plication of image analysis and machine-learning techniques
continues to be developed (Zhang et al., 2018). In reconnais-
sance and geologic mapping, the decision of where to go and
how to fly there is made by the expert — either the expert flies
the UAV and makes navigation decisions in situ or they preset
a flight path for the UAV to follow semiautonomously (e.g.,
Koparan et al., 2018; Ore et al., 2015). However, a UAV that
is capable of attending to measurements in real time and re-
acting to local features of measurement data could navigate
autonomously to collect observations where they are most
needed. Such autonomous workflows should increase the ef-
ficiency of data collection and could be designed to mitigate
against potential biases. Here, we consider how an automated
UAV navigation nudge could reduce the tendency to anchor
field exploration based on existing models and hypotheses.

In our hypothetical example, a UAV surveys a large bed-
ding surface with the aim of identifying fractures to define
the orientations of fracture sets. The bedding surface expo-
sure is large but split into difficult to access exposure, e.g.,
due to cliff sections or vegetation (see column A, Fig. 4). A
bird’s-eye view afforded by the UAV improves the ability to
observe fractures, which would otherwise require time-costly
on-foot reconnaissance to different outcrops of the bedding
surface. Note that in our hypothetical example we assume
that fracture information is obtained only when the flight path
crosses fractures (e.g., column B, blue flight path), thereby
representing a high-level reconnaissance rather than a flight
path in which overlapping imagery is collected. When the
UAV flight path is user controlled, the decision of where and
how to fly is unlikely to be optimal: users could be distracted
by irrelevant information in UAV view and are likely biased
towards exploring certain features and ignoring others (e.g.,
Andrews et al., 2019). For example, fractures may only be
sampled where fracture data are dense or in an orientation
that maximizes sample size but not the range in orientation
(e.g., Watkins et al., 2015) or when it fits with a hypothesis
(e.g., tensional fractures parallel to the axial trace of a fold).
These strategies are all informed by expectations, leaving the
geoscientist vulnerable to anchoring their sampling behavior
to align with initial interpretations and hypotheses.

This anchoring bias is visualized in column B (blue flight
path), where the user detects two unique fracture orienta-
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tions (a, b) on the first exposure visited and then spends
the remaining flight looking at fractures in the same orien-
tation rather than searching for new orientations. As a re-
sult, a novel N-S fracture orientation is not detected in the
user’s flight path — the accompanying certainty plot in col-
umn B shows that time spent at uninformative exposure (T1
to T2) results in increased certainty that all orientations have
been sampled, when in fact they have not (i.e., the thresh-
old of confidence is reached before sampling the N-S orien-
tation). This is reflected in the rose diagrams in column B,
which show the orientation of fractures and the relative num-
ber of fractures sampled in each orientation; even at time T3
the three fracture sets (as shown in the rose diagram in col-
umn A) are not represented.

Column C in Fig. 4 shows a UAV flight (purple) that is
semiautomated to follow a preset path. For this hypothetical
example, a reasonable preset flight path (and the one we as-
sume most experts would take) would be to scan forward and
backward across the area of interest, akin to a lawn mower.
With this approach, the appearance is that no areas will be
missed, the area is equally covered, and there is no risk of re-
sampling, but the flight path will not be optimal to collect the
data of interest — time will be wasted scanning areas that have
little data value, and the linear N-S-oriented path will prefer-
entially sample E-W-oriented fractures (biasing the dataset).
On the certainty plot in column C this is visualized as long
delays between the detection of unique fracture orientations
(a, b, c), resulting in a step-like pattern — dramatic decreases
in certainty when a new orientation is observed during navi-
gation, followed by periods of slowly increasing certainty as
information is observed that is consistent with previous fea-
tures or irrelevant (green bars representing time over wood-
land). In this instance the user’s threshold of certainty is
reached after a longer time period than in the user-driven sce-
nario (column B), but the full range of fracture orientations
is determined (see rose diagrams, column C).

The most efficient solution is for the UAV to move au-
tonomously to areas with high data value by attending and
reacting to measurement data in real time, e.g., skipping ar-
eas that are poorly exposed or homogenous, slowing, and fly-
ing multiple angles in areas that have a high frequency of im-
portant features (as defined by the user). This is visualized in
column D (red flight path), where the UAV detects the first
fracture orientation (a) and then recommends the user update
the flight path to move orthogonal to the orientation to en-
sure it is representative and to optimize continued sampling.
When a new orientation is detected (b) the UAV recommends
updating the flight path again to optimize the collection of
both orientations (i.e., horizontal flight path). In the updated
horizontal flight path, the UAV moves efficiently over expo-
sure that features already detected orientations (a, b), which
leads to quicker detection of new orientations (c). The rose
diagrams in column D show that by time T2 all three fracture
sets have been identified. In fact, by time T3 fractures ori-
ented NE-SW are being oversampled; the same fracture is
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Figure 4. Hypothetical UAV scenario in which the goal is to identify fractures on a bedding surface. Panel (a) shows a UAV view of fractured
bedding surface (with exposure separated by trees and cliffs) and a rose diagram of all exposed fractures. Panel (b) shows a user-controlled
flight path (in blue) over bedding surface, rose diagrams of cumulative fracture orientation data at flight times (T1, T2, T3), and an evolving
conclusion certainty plot as the UAV collects data. On the conclusion certainty plot, green bars represent flight time over woodland rather
than rock exposure, the letters a, b, and c represent when the UAV collects fracture data in a new orientation, and the dotted horizontal line
represents the threshold of conclusion confidence. Panel (¢) shows similar plots for a preset flight path (purple), and (d) shows plots for an
autonomous flight path (red) on which the UAV attends and reacts to measurement data in real time.

crossed more than once by the UAV flight path, which is not
an issue here as we are only interested in constraining the
orientations of fractures, but it would need to be taken into
consideration if the user wanted both orientation and rela-
tive intensity. The accompanying certainty plot in column D
shows that this autonomous flight path results in a more ef-
ficient scientific decision-making process, i.e., a strong posi-
tive relationship between conclusion certainty and time, with
a quick ascension to the threshold of confidence.

The goal of the reconnaissance UAV mapping was to de-
tect all fracture orientations and determine the optimal lo-
cation for sampling heterogeneous orientations. A UAV that
possesses some representation of this goal can use multiple
fracture orientation angles to rapidly calculate a flight path
that will optimize continued sampling to confirm a fracture
set or allow for more rapid detection of new orientations.
This type of calculation is a task in which a computer is likely
to excel relative to the human mind, since it will not be an-
chored to existing fracture models or the dominant fracture
set. By offloading the task of navigation geometry to a UAV,
the human expert frees up their cognitive resources for more
important and difficult tasks, such as the real-time interpreta-
tion of surface features from UAV imagery. Were the goal
of UAV reconnaissance to collect data on fracture length,
orientation, and intensity, the programming of the UAV and
the human interaction would be different. In this manner, we
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view the robot and human as a collaborative team, whereby
better decision-making is a property of the coordination of
both agents and a mutual understanding of the task goal as
well as each other’s strengths and weaknesses (Shipley and
Tikoff, 2018). For example, critical to the success of our ex-
ample would be for experts to understand how autonomous
flight paths are being calculated and the conditions in which
they will optimize data collection; an expert not privy to this
information may mistrust well-calibrated path suggestions or
over-trust path suggestions that are inconsistent with their
goals. Also critical to the success of our example is that ex-
perts retain the ability to ignore autonomous path recommen-
dations if their expertise leads them to favor an alternative
path. One of the challenges in geosciences, and perhaps all
sciences, is that Al systems focus only on the constrained
problem and (unlike humans) are not open to the frisson of
exploring other questions en route to the answer. Therefore,
it is important that Al systems do not restrict users’ auton-
omy to override recommendations, thereby barring the ex-
ploration of ideas through data collection that is too narrow
or via inbuilt biases to automated data collection.
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4.2.2 Case Study 2 - fault interpretations in 3-D
seismic image data to minimize availability bias

In this case study, we consider how software interpretations
of seismic image data, and the information derived from
them, could be used to consider alternative models and min-
imize availability bias. Understanding of the geometries of
subsurface geology is dominated by interpretations of seis-
mic image data, and these interpretations serve a critical role
in important tasks like resource exploration and geohazard
assessment. 3-D seismic image volumes are analyzed as se-
quences of 2-D slices. Manual interpretation involves visu-
ally analyzing a 2-D image, identifying important patterns
(e.g., faulted horizons, salt domes, gas chimneys), and label-
ing those patterns with distinct marks or colors, then keeping
this information in mind while generating expectations about
the contents of the next 2-D image. Given the magnitude and
complexity of this task, there has been a strong and contin-
ued interest in developing semiautonomous and autonomous
digital tools to make seismic interpretation more efficient and
accurate (Araya-Polo et al., 2017; Di, 2018; Farrokhnia et al.,
2018).

Here, we consider how 3-D information could be used
with digital nudge technology to inform fault interpretations
in a 3-D seismic image volume. Simple normal fault pat-
terns show a bull’s-eye pattern of greatest displacement in
the center of an isolated fault, decreasing towards the fault
tip (see image A, Fig. 5). Consider interpreting 2-D seismic
image lines across the fault starting at in-line A (image A)
and working towards in-line F: with each subsequent line the
displacement of horizons across the fault should increase and
then decrease, although this pattern will not be known until
the interpretation is completed. Holding this information on
displacements for individual faults between in-line interpre-
tations in complicated seismic image data (e.g., with multi-
ple faults per seismic section; image B, Fig. 5) is incredibly
challenging even for the well-practiced expert. We imagine
a digital nudge that alerts users to discrepancies in fault dis-
placement patterns and prompts the consideration of alter-
native fault patterns, thereby relieving some of the cognitive
burden of 3-D interpretation from the expert and guarding
them against availability bias by encouraging the considera-
tion of models beyond what is most readily accessible to the
mind.

In our hypothetical example, a geoscientist analyzes a 3-D
seismic volume, interpreting in a series of 2-D in-line im-
ages faults and horizon offsets. As subsequent in-lines (A-F)
are interpreted, fault displacement patterns are co-visualized,
so inconsistencies from normal fault displacement can be
clearly seen. Fault 1 (image B) conforms to a simple fault dis-
placement pattern (see Fault 1 displacement—distance plot).
Fault 2 appears to conform to a similar pattern until in-line
D when the interpreted displacement decreases; on interpre-
tation of in-line E, the displacement on Fault 2 increases
again, further highlighting the displacement anomaly on in-
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line D. Reduced displacement in itself does not highlight an
issue, but consideration of the displacement—distance plot
for Fault 1 suggests that if the interpreted displacement for
Fault 2 is correct then the two faults are behaving differently.
In our imagined digital tool, this discrepancy in displacement
between nearby faults would be flagged for further consid-
eration by the user, and potential alternative models could
be highlighted. You can see the hypothetical conclusion cer-
tainty plots for the interpreter for the two faults (Fault 1:
green line, Fault 2: pale blue line) during the interpretation
process. Note the decrease in certainty of the interpreter for
Fault 2, as they interpret in-lines D and E, in comparison to
the increasing certainty for Fault 1 as consecutive interpreted
in-lines conform to a simple normal fault displacement pat-
tern. At in-line E the co-visualized displacement—distance
plot nudges the interpreter to consider a new interpretation
for Fault 2 at in-line D. Certainty in this new interpretation
(displayed as a dark blue dashed line on the certainty plot)
now increases as subsequent in-line interpretations conform
to expected displacements.

Our imagined digital tool builds on current autocorrela-
tion tools in seismic interpretation software by aiding users
in extrapolating information from a 2-D image to a 3-D rep-
resentation. In this case study we show that by drawing on
known fault displacement patterns, it should be possible to
design tools that flag to users potential errors in fault dis-
placement patterns along interpreted faults in 3-D seismic
data. We describe information for a single horizon displace-
ment, but multiple horizons could be plotted to highlight dis-
placement changes with depth, such as syn-sedimentation.
Our case study uses a simplified case, but fault displacement
inconsistencies would likely be the result of more complex
fault patterns and interactions. For example, it is possible
to imagine a scenario in which both Fault 1 and Fault 2
showed significant decreases in displacement at in-line D,
which might result in a decrease in user certainty for both
faults and reinterpretation as linked faults. As highlighted in
a 3-D seismic interpretation of faulted sedimentary rocks by
Freeman et al. (2010), fault intersections are common and
add challenges to understanding fault growth and displace-
ment partitioning between faults; in their example, a full rein-
terpretation of the 3-D dataset was required after the evalu-
ation of fault displacements on the original interpretations.
Therefore, a digital tool (similar to the one we describe) that
highlights possible fault intersections and relays during inter-
pretation could cue researchers that more complex reasoning
is needed so that simple dominant models — which as identi-
fied by Alcalde et al. (2017b) often show availability effects
— are tempered by the consideration of more complex fault
patterns and displacements. One concern, of course, is in
limiting users’ consideration to known alternative concepts,
which could constrain free and flexible thought while intro-
ducing software bias — this, and other digital nudging con-
cerns, is discussed in more detail below.
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Figure 5. Fault displacement—distance patterns used by a hypothetical digital tool to aid in the 3-D interpretation of normal faults. Panel (a)
is a graphical representation of a horizon displacement with distance along a fault. In this simple pattern for an isolated normal fault,
maximum displacement (red—green) is in the center with minimal displacement (green) at the faults tips. The fault is intersected by a series
of hypothetical seismic lines (A—F), which correspond to the points on the displacement—distance plots. Panel (b) is a seismic image through
faulted sedimentary rocks from the Inner Moray Firth, UK (note the complex fault pattern, including fault intersections). Two faults are
highlighted in (b), Fault 1 and Fault 2, and their respective hypothetical displacement—distance plots are shown for a single horizon. On the
Fault 2 plot, the red point at in-line D highlights an anomaly to the simple displacement—distance plot characteristics seen for Fault 1, and
the dark blue point at in-line D represents the user manually inserting a new interpretation. Certainty plots corresponding to Fault 1 and Fault
2 are also displayed. Seismic image courtesy of the Virtual Seismic Atlas (http://www.seismicatlas.org, last access: 28 August 2019).

5 Conclusions illustrating different applications of intelligent systems for
the debiasing of geoscientific decision-making. In each case
study, debiased decision-making was an emergent property
of the coordinated and integrated processing of human—Al
collaborative teams.

Our discussion of digital nudging in the geosciences high-
lighted the positive attributes of this debiasing approach,
chiefly that it provides relief from the cognitive constraints
that lead to biased choice (and difficulty in effectively self-
employing debiasing strategies), leaving the decision maker
and their deliberative cognitive processing resources free to
tackle other tasks. However, we would be remiss to not also
caution against the potential pitfalls of the digital nudge.
First, digital nudges can propagate existing biases (or intro-
duce new ones) if they are poorly designed or trained us-
ing biased data. In a recent famous case, Amazon ceased
testing an Al system used to evaluate job applicants after
it was revealed to be gender biased, consistently penaliz-
ing applicants who attended women’s colleges or whose re-
sume contained the word “women’s” in some other capacity
(e.g., women’s book club). Similar gender and racial biases
have been demonstrated in judicial (Skeem and Lowenkamp,
2016) and medical (Challen et al., 2019) Al To avoid unin-
tended bias, choice architects must have a well-defined goal

Uncertainty is an inherent challenge in geological reason-
ing. Over 50 years of cognitive research demonstrates that,
when faced with uncertainty, people rely on intuitive heuris-
tics that can arise rapidly and with minimal effort. While ef-
ficient and effective in many situations, heuristics do lead to
predictable biases in decision-making. We reviewed three bi-
ases that have been shown to influence geoscience experts:
availability bias, framing bias, and anchoring bias. Bias can
be overcome by engaging deliberative cognitive processing
resources, which work as an “editor” to modify or override
faulty heuristic responses. This occurs either because the de-
cision maker employs a strategy that activates deliberative
processes or because the environment is modified in such a
way that the decision maker is “nudged” towards delibera-
tive thinking. Because of the many barriers to success when
debiasing is self-employed (e.g., not recognizing debiasing
is needing, using the incorrect debiasing strategy, etc.), we
strongly advocate adoption of the environment modification
(i.e., choice architecture) approach. Further, we believe in-
novations in the use of information technology and Al in
the geosciences can be leveraged to improve expert decision-
making, i.e., digital nudging. We discussed two case studies
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for the nudge and a clear understanding of the decision pro-
cess, including the identification of the critical actions in-
volved in following through with the decision, the identifi-
cation of constraints to the achievement of each critical ac-
tion, a determination of the amount of attention devoted to
each critical action and the decision process as a whole, a de-
termination of the amount of decision-relevant information
gathered, and the identification of the main heuristics and
biases influencing the decision process (see Ly et al., 2013,
Appendix 2 for a suggested list of questions choice architects
should ask themselves when evaluating a decision process).
Choice architects should also submit nudge designs to care-
ful testing, paying special attention to factors unrelated to the
nudge that might influence the results.

A second pitfall is that there is a risk of limited uptake of
digital nudges if they are perceived by the user as untrust-
worthy. To be effective, a nudge must address the particu-
lar bias an individual is experiencing — but people can dif-
fer in the biases they bring to a choice environment. Nudges
that are viewed as inappropriate or misleading by the user
may be ignored and mistrusted. Therefore, choice architects
should be thoughtful in their selection of environments (i.e.,
employing nudges when there is consistency in the type of
bias observed in a specific environment) and seek to design
nudges that are effective against a range of biases. Special
attention should also be paid to the relative “politeness” of
nudges (Whitworth, 2005); i.e., does the nudge respect and
not preempt user choice, and does the nudge avoid pestering
or interrupting the user unnecessarily? Nudges that make cor-
rect suggestions, but do so in an impolite or obtrusive man-
ner, will still be viewed as untrustworthy — we call this the
“Mr. Clippy problem” in reference to the famously derided
Microsoft Office assistant that took the form of an animated
paper clip. Early users of Office will recall that Mr. Clippy
popped up uninvited, preemptively taking control of the cur-
sor and demanding to help (his most famous line, “It looks
like you’re writing a letter...” appeared every time the user
typed “Dear...”"). Worse yet, Mr. Clippy ignored continuous
rejection: hide him and he would simply reappear, ignore him
and he would repeat the unsolicited advice (again and again).
To avoid the Mr. Clippy problem, choice architects should
consider how best to implement nudges within existing user
workflows to minimize distraction and maintain user auton-
omy.

One way choice architects may increase understanding
and trust of digital nudges is through being transparent in
the “reasoning” behind why a nudge is prompted, whereby
reasoning refers to some interpretable translation of the un-
derlying Al algorithm and decision inputs. This type of “ex-
plainable AT” (Miller, 2019) is critical to our vision of col-
laborative and coordinated decision-making in human—AlI
teams. Just as successful human teams are aware of the val-
ues, needs, intentions, actions, and capabilities of all team
members, so should human—AlI teams be reciprocally aware —
this occurs over time: through interaction, shared experience,
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and feedback, team members can jointly and iteratively re-
fine their beliefs and expectations about each other’s behav-
ior. While there are challenges to achieving mutually aware
human—AI teams (for review, see de Graaf and Malle, 2017),
they are, in our opinion, far outweighed by the potential value
of calibrating user trust in technology.

Finally, there are concerns about the ethics and morality
of nudging (digital or otherwise). Some believe that nudging
is morally reprehensible because it patronizes the decision
maker by assuming they are not capable of making the best
choice for themselves (Gigerenzer, 2015). However, as dis-
cussed in this paper, there is strong scientific evidence that
human decision makers are both (a) susceptible to cognitive
bias across a range of choices and (b) struggle to successfully
employ debiasing techniques to improve their judgment. We
believe that if decision makers are aware of their vulnera-
bilities and shown the potential value of nudging (through
education or experience with polite and explainable nudges),
they may be less likely to perceive nudges as condescend-
ing or infantilizing. Another oft-cited ethical concern is that
nudged individuals will become used to being guided away
from negative consequences, resulting in a diminished abil-
ity to make good choices and assume responsibility for those
choices (Bovens, 2009). Related to this, there is concern that
the more used to nudging we become, the less we will be
bothered by the introduction of more controlling or coercive
techniques (Rizzo and Whitman, 2009). Yet, how decision
makers respond to nudges in the long term is an open empir-
ical question. One possibility is that nudges have only short-
term effects, and as time goes on, the level of nudging re-
quired to retain this effect increases because decision makers
habituate to the nudge. If this is the case, then decision mak-
ers would retain their original preference structures, meaning
they would make different choices without the aid from the
nudge, placing them at risk of taking less personal responsi-
bility for their choices because they assume other members
of society will nudge them away from anything that is bad.
The alternative is that repeated nudges induce actual prefer-
ence change in the long term; this could occur because the
decision maker recognizes the hitherto unknown benefits of
the nudged choice, because their sense of identity becomes
linked to the nudged choice, or because the nudged choice
becomes conditioned (in the Pavlovian style). Ultimately,
different people will likely adapt preferences in response to
different nudges in different ways, and future research should
consider both the short-term and long-term effects.

Returning to the opening quote and question posed by
Gilbert, “...whether it is possible by training to improve the
guessing faculty, and if so, how it is to be done”, the an-
swer is unequivocally yes, and we believe that digital nudg-
ing offers the best opportunity to overcome the cognitive con-
straints that result in biased decisions. As described at the
outset of this paper, we hope our review of the cognitive lit-
erature on bias and debiasing will help readers to understand
the constraints to human decision-making and better equip
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them with strategies for improving choice. We also hope this
paper will stimulate future research on the important topic of
debiasing geologic decision-making, particularly in the con-
text of evolving advancements in information technology and
Al
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