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Examples of Gibsonian Affordances
In Legged Robotics Research Using
an Empirical, Generative Framework
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" Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, United States,
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Evidence from empirical literature suggests that explainable complex behaviors can be
built from structured compositions of explainable component behaviors with known
properties. Such component behaviors can be built to directly perceive and exploit
affordances. Using six examples of recent research in legged robot locomotion, we
suggest that robots can be programmed to effectively exploit affordances without
developing explicit internal models of them. We use a generative framework to discuss
the examples, because it helps us to separate—and thus clarify the relationship
between—description of affordance exploitation from description of the internal
representations used by the robot in that exploitation. Under this framework, details of
the architecture and environment are related to the emergent behavior of the system via
a generative explanation. For example, the specific method of information processing
a robot uses might be related to the affordance the robot is designed to exploit via a
formal analysis of its control policy. By considering the mutuality of the agent-environment
system during robot behavior design, roboticists can thus develop robust architectures
which implicitly exploit affordances. The manner of this exploitation is made explicit by a
well constructed generative explanation.

Keywords: robot, affordance, legged, generative, reactive

1. INTRODUCTION

Gibson (1979) describes an affordance as a perceptually reliable feature of the environment that
presents an agent with an opportunity for purposeful action. Autonomous robotics research can
then be conceived as the process of designing a robot to systematically exploit the available
opportunities for action in order to accomplish a specified overall task or tasks. In a complex,
uncertain, and changing world, it is not obvious what design strategies will be most effective. It
is therefore of general interest to ask how the explicit study of affordances might facilitate robotics
research, and what the empirical study of affordances involves.

Ecological psychologists and philosophers have in general argued that perception
and exploitation of affordances need not require the construction and manipulation
of complex internal representations. Here, a “representation” refers to a model used
in the control policy. For example, while a reactive controller could be argued to in
some way represent the problem it is designed to solve, the system itself only senses
and represents the variables used for feedback control. Beginning with the observation
that agents have bodies (Chiel and Beer, 1997; Shapiro, 2011) and environments (Clark
and Chalmers, 1998; Wilson and Golonka, 2013), and considering affordances to be
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properties of the embodied agent-environment system
(Stoffregen, 2003; Chemero and Turvey, 2007), the argument is
that the agent already has all of the action-relevant properties
of the world available to it. It thus does not need complex
internal representations, either of the world or of the affordances
it exploits.

Others—even those sympathetic to the cause of embodied
cognition (Clark, 1997, 1998) — have argued that complex
representations are necessary for basic cognitive skills. It is
elementary that some representation of internal state is necessary
to achieve feedback stabilization of many control systems,
and more comprehensive analyses suggest that robustness to
complex perturbations in a complex world requires an agent to
have complex internal representations of the environment and
the perturbations (Conant and Ross Ashby, 1970; Francis and
Wonham, 1976; Wonham, 1976). The role of internal models for
limbs and their environmental loading in animal motor activity
is widely accepted by many neuroscientists (Kawato, 1999). Deep
learning (LeCun et al.,, 2015; Goodfellow et al., 2016) offers a
modern version of this argument: The complexity of the problem
a neural net can solve is in many ways limited by the size of the
net and the amount of data, and thus the complexity of the model
the net can build.

However, taking an ecological view, it may instead be the case
that the agent needs only representations of “essential variables”
which describe the relevant features of the activity the agent
is involved in Fultot et al. (2019). Representations using only
these essential variables may be of much lower dimensionality
than representations of the full system. Seemingly complex
behaviors can then be built from structured compositions of
such simpler controllers operating on the variables essential
to their component behavior. The behavior resulting from
such compositions of simpler controllers has the added benefit
of increased explainability (Cohen, 1995; Samek et al., 2017;
Gunning and Aha, 2019) since the expected behavior of the
component parts is known and, when properly conceived, their
composition follows formal mathematical properties (Burridge
et al., 1999; De and Koditschek, 2015).

Legged locomotion is one example of such a behavior. Robots
are able to locomote using both very strong feed-forward control
methods, such as central pattern generators (Saranli et al., 2001;
Ijspeert et al., 2007; Ijspeert, 2008) as well as more distributed
control (Cruse et al., 1998; Owaki et al., 2013; Owaki and
Ishiguro, 2017; De and Koditschek, 2018) and many roboticists
employ combinations thereof (Espenschied et al., 1996; Merel
et al., 2019). Legged animals appear to pragmatically combine
feedforward (Grillner, 1985; Whelan, 1996; Golubitsky et al.,
1999; Minassian et al., 2017) and feedback (Pearson, 1995, 2004;
Steuer and Guertin, 2019) controllers, implemented physically in
both the mechanics of the body and in the nervous system (Cruse
et al.,, 1995, 2006; Jindrich and Full, 2002; Sponberg and Full,
2008).

Research on insect navigation provides some support for the
potential robustness and flexibility of coordinated systems of
simple controllers, even for behaviors that had been previously
believed to require cognitive maps (Tolman, 1948). Despite
compelling evidence of complex cognition in invertebrate species

(Jacobs and Menzel, 2014), recent studies of insect navigation
(review: Wrystrach and Graham, 2012) suggest that insects
integrate information from multiple simple navigation systems
(Hoinville and Wehner, 2018). These could include a path
integration system (Wehner and Srinivasan, 2003); visual cues,
with motivation controlling the switch between relevant cues
(Cruse and Wehner, 2011); reactive collision avoidance (Bertrand
et al,, 2015); and a highly conserved systemic search mechanism
when other mechanisms fail (Cheng et al, 2014). Each of
these simple mechanisms for navigation operates in a relatively
decentralized manner and requires little internal representation.
Properly coordinated, together they are sufficient to produce
robust navigation.

The literature on vertebrate navigation suggests that even
animals which do seem to build complex spatial maps
of their environments for navigation using special neural
structures (O’Keefe and Burgess, 1996; Hafting et al., 2005;
Savelli and Knierim, 2019) still rely on the coordination of
multiple navigation systems (Moser et al., 2008)—perhaps
one solving the problem of local navigation with landmarks,
and the other providing directional bearing (Jacobs and
Menzel, 2014). It has even been suggested that primates
navigate available affordances and choose between them in
virtue of neurally implemented competing feedback controllers
(Cisek, 2007; Pezzulo and Cisek, 2016).

However, the robotics research often considered to exemplify
the application of ecological concepts like affordances to robotics
is generally either oriented toward building representations
of affordances (Sahin et al, 2007; Zech et al, 2017; Andries
et al, 2018; Hassanin et al., 2018) or toward biomimetic
implementations of specific animal behaviors or capabilities
(Beer, 1997; Cruse et al., 1998; Webb and Consilvio, 2001;
Ijspeert, 2014) which then act as models for testing biological
hypotheses (Webb, 2001, 2006). When non-biomimetic robotics
research oriented toward coordinating simple controllers is
considered (e.g., Braitenberg, 1986; Brooks, 1986; Raibert, 1986;
Arkin, 1998), it is inevitably decades old. This motivates a
reconsideration of how affordances are—and can be—studied in
robotics, one that examines how simpler component processes
and behaviors might be coordinated to explainably produce more
complex and robust affordance exploitation.

We find the application of Miracchi (2017, 2019)’s generative
framework useful for this discussion. The generative framework
is designed to separate descriptions of a target behavior (in
our case affordance exploitation) from commitments about the
details of robot morphology, programming, or environment
necessary to accomplish the task. The framework consists of
three parts. The basis model describes aspects of the robot,
including its methods of information processing, and relevant
properties of the environment. The emergent model specifies
the target behaviors in the relevant contexts. These behaviors
operate at a larger spatiotemporal scale than those of the basis
model, characterizing more global patterns and abstracting away
from the details of implementation. Emergent behaviors are
thus likely not to be obvious consequences of the basis model.
The generative model specifies how features of the basis model
determine (“generate”) features of the emergent model, thus
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TABLE 1 | Definitions of terms used to describe the case studies under the
generative framework. An example application to a simple reactive controller
represented with a dynamical system is provided in parentheses.

Term Definition

Basis model Describes relatively more concrete aspects of the robot
and environment relevant to the target behavior (e.g.,

equations of motion)

Emergent model Describes relatively more abstract behavior qualifying as
systemic, effective affordance exploitation (e.g., fixed

point location)

Generative model Formal analysis linking features of the basis and

emergent models (e.g., stability analysis of fixed point)

Gibsonian affordance  An opportunity for action in an agent-environment

system (emergent-level property)

Reactive control Responsive to robot-environment system'’s state, with

little or no memory
Parallel composition Controllers operating simultaneously in the same basis

level, interacting according to formally described rules

Sequential “Chains” of controllers, with the successful execution of
composition one sub-behavior setting up the next sub-behavior
Hierarchical Controllers operating at different levels of abstraction,
composition e.g., on a single limb, coordination of limbs, center of

mass trajectory, or to set a global goal

explaining the emergent behavior in terms of the implementation
details at the basis level! (see Table 1).

We can demonstrate this separation of the basis and emergent
models with an example application to two types of feedback
controller. Say we have a proportional-derivative (PD) controller
on the speed of a steam engine that operates by powering a
motor to open or close a valve based on a reading given by an
electronic velocity sensor such as an inertial measurement unit
(IMU). The emergent model would then be the stable operation
of the engine at the set point speed. The basis model would
then include the engine dynamics, the way it is influenced by
powering the valve, and the properties of the velocity sensor.
Formal analysis on the stability of the PD controller would
constitute the generative model. With properly set gains and an
assumption that the sensor is within a certain percentage error,
the controller would be guaranteed to bring the engine to the set
speed. Now say the speed controller used a Watt governor instead
(Van Gelder, 1995), which raises and lowers the arms controlling
the amount of steam allowed through the valve using centrifugal
forces determined by the speed of the prime mover. The emergent
model would be the same, but the basis model would substitute
the governor’s mechanical equations of motion for the electronic
signal processing model of the IMU. Similarly, we can consider
what representations are sufficient to effectively exploit the target
affordance specified by an emergent model.

We apply this framework to six case studies of legged
locomotion involving reactive controllers in order to

!(Miracchi, 2019) uses the term “agent” model because of her focus on agency and
intentionality. Here we use the term “emergent” both for increased generality and
because we do not wish to take a stand on whether the target behaviors are agential
in any important sense.

demonstrate how these projects can be usefully conceptualized as
designing robots to exploit affordances without complex internal
representations. We choose work that uses reactive controllers
to generate affordance exploitation, not only because they are
often referenced in research on affordances in animals (see
above), but also because robotics research has long demonstrated
their utility. Reactive controllers respond to the state of the
robot-environment system with little or no memory; are robust;
typically require modest explicit internal world models, if at
all; can often be formally analyzed with tools from dynamical
systems theory; and—correctly designed and implemented—
must indefatigably steer the coupled robot-environment system
toward an appropriate goal. Such controllers can also be
composed into more complex systems (Brooks, 1986; Arkin,
1998), though it is vital to the explainability of the emergent
behavior that these compositions follow formal mathematical
rules (e.g., Burridge et al., 1999). Compositions can be made
in parallel (Raibert, 1986; De and Koditschek, 2015, 2018),
in sequence (Lozano-Perez et al., 1984; Burridge et al., 1999;
Burke et al., 2019a,b), and hierarchically (Full and Koditschek,
1999), which requires proper coordination of more primitive
subcomponents whose isolated behavior and interactions are
both mathematically understood. These interactions generate
the required emergent behavior (Vasilopoulos et al., 2018a,b)
(see Table 1).

The case studies are drawn from one research group that
typically provides formal generative explanations, easing the
application of the generative framework. Focusing on one group
also enabled us to quickly and deeply examine the ways in which
systems can be designed to exploit affordances at multiple levels
of abstraction from implementation details without introducing
many different kinds of research problems, and to discuss each
project with the primary and senior authors to ensure that the
researchers agreed with this characterization of their work. We
anticipate that similar analysis would be interesting to apply to
a variety of other robotics research programs (e.g., Hatton and
Choset, 2010; Hogan and Sternad, 2013; Majumdar and Tedrake,
2017; Burke et al., 2019a,b).

2. CASE STUDIES

The six examples in this section are arranged in order of
abstraction from the physics governing the robot’s limb-
ground interactions. We will mention the roles of parallel,
sequential, and hierarchical compositions of controllers where
appropriate. A concise, technical summary is provided in Table 2.
Readers interested in the more detailed analysis leading to
the summarized formal conclusions can refer to the specific
equations, theorems, and figures in the original research papers
which are noted in the table. The emergent and basis models (EM,
BM) refer to the target behavior and implementation details of
the paper cited in the last column. The generative model (GM)
describes the formal analytical link, a mathematical explanation
of how the target behavior emerges from the basis model
(Table 1). The Gibsonian affordance (GA) describes in functional
terms the designers’ selected opportunity for action provided
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TABLE 2 | Concise analysis of case studies under generative Gibsonian framework.

Section Emergent model Basis model Generative model Gibsonian affordance Agent-environment References
interaction
2.1 Energy-efficient Direct-drive robot legs on  Virtual damping in leg Robot energy retention Dissipated power (work
locomotion on sand dry granular media triggered by as a function of media exchange rate between Roberts and
(Figure 5) (Equation 1) decompression reduces  sensitivity to robot and media) arising ~ Koditschek,
work transferred to policy-selected foot from virtually damped 2018
media (Figure 9) intrusion velocity (Sec. foot velocity
1.b.2)
2.2 Energy-efficient standing Internal and external Descent of jointspace Efficient body pose as a Landscape descent
on complex or broken gravitational loading at energetic cost function of control computed from Johnson
ground (Equation 1) joints of legged robot on landscape by descent-selected internal proprioceptive etal, 2012
fixed rigid substrate quasi-static feedback interaction between (actuator currents)
(Equations 22, 23) control (Equations 29, body morphology and sensing
31) local substrate geometry
(Figure 1)
2.3 Predictable steady state Gait mediated yaw Locked heading Body heading as a Body torque
body heading from mechanics (Equation 15) calculated from basis gait-selected function of  perturbations induced Qian and
gait-obstacle interaction induced by obstacle model equilibrium interaction between by gait-selected Koditschek,
(Figure 11) disturbance field (Equations 25, 26) body shape and obstacle disturbance 2019
abstraction (Equation 11) periodic terrain field
geometry (Figure 3)
2.4 Autonomous terrain Point particle (Equation Global correctness for Safe reactive path to Controller velocity or
ascent (Equation 15) 35), or kinematic gradient-driven point local peaks and ridges force commands driven llhan et al.,
avoiding disk obstacles (Equation 44) and particle abstraction as an by instantaneously 2018
(Equation 14) of sparse dynamic (Equation 51) (Thm. 3.2); more obstacle-policy-selected  sensed terrain slope
unknown placement unicycle mechanics with conservative guarantees  function of terrain slope mediated by
local range (Equation 26) for kinematic (Thm. 3.5) (Figure 2) obstacle-robot vector
and vestibular (Equation and dynamic (Thm. 3.9)
55) sensing. unicycle
2.5 Planar navigation to a Point-particle (Equation Global correctness of Safe reactive path to Controller velocity
global goal avoiding 14) or kinematic unicycle obstacle-abstraction global goal as a function ~ commands driven by Vasilopoulos
familiar complex mechanics (Equation 18) controller for of memory-triggered instantaneously sensed and
obstacles of sparse with global position point-particle (Thm. 1) obstacle abstraction goal-robot vector Koditschek,
unknown placement sensor and obstacle and kinematic unicycle policy (Figure 4) mediated by obstacle 2018
(Figure 1) recognition and (Thm. 2) abstraction
localization oracle
(Equation 12)
2.6 Execution of deliberative Kinematic unicycle Faithful assembly plan Safe reactive paths to Reference path tracking
assembly plan in planar mechanics (Equation 1) execution with obstacle deliberatively sequenced  controller driven by Vasilopoulos
et al.,, 2018a

environment (Figure 1)
with sparse, unknown,
complex, prox-regular
(Def. 3) obstacles

with global position and
dense local depth-map
sensors (Equation 3)

avoiding excursions
guaranteed to insure
progress toward
sub-goals (Thm. 1)
modulo correct object
manipulation modes
(Sec. C.2)

sub-goals as a
policy-selected function
of obstacle boundary
shapes (Figure 7)

path-error vector and
obstacle boundary

Where appropriate, we have specified the figures, theorems, and equations in the source material that correspond to the emergent, basis, and generative models, and the affordance

exploited.

by the interaction of the robots physical implementation with
its environment, and the agent-environment interaction (AEI)
specifies the perceptually reliable information or energetic
exchange between the robot and the environment that makes this
affordance possible to exploit.

2.1. Energetic Cost of Running on Sand

Roberts and Koditschek (2018, 2019) develop a reactive
controller to reduce the cost of transport (EM) for a direct-
drive robot with programmable compliance in its legs (Kenneally
et al, 2016) locomoting on granular media (BM) using a

combination of simulation and physical emulation experiments.
Robust locomotion can be accomplished by a composition of
decoupled controllers which individually affect vertical motion
and the robot’s directional velocity (Raibert, 1986).

When a robot pushes off of a compliant substrate like sand
(Aguilar and Goldman, 2016), its foot, which has a smaller mass

than the body, can quickly penetrate deep into the sand before
the body begins to move up. Because the dissipation function of
the sand is quadratic in velocity, the robot can transfer — and
thus lose—a large amount of energy from its motors through
its leg and foot to the ground while pushing off (GA). The
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energy wasted in transfer to the ground is significantly reduced
by adding damping to the robot’s leg “spring” in proportion to
the vertical foot intrusion velocity (GM).

To implement Roberts and Koditschek’s controller, the robot
needs only the high-bandwidth information about its foot
intrusion velocity provided by the direct-drive architecture and
a measurement of the distance to the ground (AEI). It does not
require an explicit internal representation of the ground (Hubicki
et al., 2016).

2.2. Manipulating a Robot’s Body Pose

Using Its Limbs

Johnson et al. (2012) develop a controller that distributes effort
between limbs of a six-legged robot standing on rigid, uneven
terrain. Statically stable poses require the projected center of
mass to lie within a polygon defined by the toes, which typically
requires much more torque from some motors than others on
uneven surfaces. Distributing effort between legs reduces the
maximum torque requirement, lowering the overall energetic
cost of standing and avoiding damage to the motors from
overheating (EM).

To develop the controller, the authors build a “landscape”
describing the energetic cost to stand as a function of body
pose for a robot with a given legged morphology and a given
toe placement (GA). They show formally that an effective
descent direction toward a local minimum can be determined
at every location on the landscape (GM) by the current draw
from the motors, a direct measurement requiring no additional
modeling (AEI).

Since the landscape can be expressed as the sum of costs
due to the legs fighting each other in stance (internal forces)
and the effort of the limbs to support the body mass (external
forces), these two systems can be decoupled. The authors exploit
this decomposition to implement the behavior on a physical six-
legged robot as a parallel composition of two controllers: One
to relax the internal forces by driving down the torque of legs
operating in opposition to each other, and one to center the body
mass over the toe polygon by driving down the body-averaged
torques in parallel (BM).

2.3. Characterizing Interactions With

Obstacles
Obstacles in a robot’s environment could be used as opportunities
for the robot to perturb its trajectory toward a desired direction.
Qian and Koditschek (2019) walk a small robot with four legs
and a fast-manufacturable body through a periodic obstacle
field consisting of evenly spaced half-cylinders. By systematic
experimentation, they observe the emergence of a yaw angle that
locks the robot’s steady-state trajectory over the obstacles in a
manner relatively invariant to the robot’s initial conditions upon
entering the field (EM). This locked angle is an empirically stable
function of body aspect ratio, the spacing between the obstacles,
and the robot’s gait (GA).

The authors develop an abstract representation of the effective
yawing disturbance field resulting from the interaction between
the robot’s body aspect ratio and the spacing between the

obstacles, which is a selectable consequence of gait (BM). The
result is a dynamical model whose equilibrium states predict the
resulting steady-state body yaw angle of the robot—and thus
its steady-state locked heading (GM). The only feedback signals
used by the robot are position and velocity measurements on the
rotation of the legs, which are used for feedback control on the
clock-driven position and velocity commands sent to the legs.
These are sufficient to recruit the desired interaction between the
body morphology and the environment structure, and the robot’s
heading stabilizes in absence of any body-level sensing (AEI).

2.4. Reactive Control on a Global Scale

Ilhan et al. (2018) develop a controller that drives a robot toward
the locally most elevated position from any start location in a
gentle hillslope environment punctured by tree-like, disk-shaped
obstacles (EM). They test their controller on a physical six-
legged robot walking on unstructured, forested hillslopes, using
the top of the hillslope as the goal location. The robot uses
an inertial measurement unit to acquire the local gradient, and
a laser range finder to detect obstacles which are likely to be
insurmountable (AEI).

A reactive “navigation”-level controller takes information
about the local gradient and the presence of local obstacles,
and produces a summed vector indicating the direction that
increases the robot’s elevation while avoiding a collision (GA).
The coordination of the limbs to execute these commands is
handled by a lower-level controller in a hierarchical composition.

The authors present multiple options of such compositions
that assume different degrees of actuation authority for the
lower-level controller. The strongest conclusions from formal
analysis (global stability; GM-1) come from assuming the robot
can be treated as a fully velocity-controlled two degree-of-
freedom point particle (BM-1). More realistic models of outdoor
mobility, which have more conservative guarantees (GM-2),
assume that the robot can be treated as a non-holonomically
constrained, velocity-controlled unicycle, or—when running at
speed—a force-controlled unicycle.

2.5. Using Recognition of Complex
Obstacles to Create Abstract Spaces

Conditioned for Reactive Control Schemes
In contrast to the previous case study, which had a perceptually
detected environmental feature as the goal location and a purely
reactive control scheme, Vasilopoulos and Koditschek (2018)
develop a controller that governs navigation in an environment
with perceptually intricate obstacles toward an arbitrary, user-
selected goal (EM). Obstacles may be highly complex, but if non-
convex or densely packed then they are expected to be “familiar.”
The robot is assumed to have access to its global position and
to an oracle with a catalog of non-convex obstacles on which
it was previously trained (Pavlakos et al., 2017) (BM). When
an obstacle enters the robot’s sensory footprint at execution
time, the obstacle can thus be instantaneously recognized and
localized. Unrecognized obstacles are presumed to be convex and
suitably sparse.
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Once recognized, non-convex obstacles are abstracted to a
generic round shape using a smooth change of coordinates, and
if densely packed, may be conglomerated into one large obstacle.
The result is a geometrically simple, abstracted space. A purely
reactive navigation controller (Arslan and Koditschek, 2019)
closes the loop to guarantee obstacle free convergence to the goal
location within the geometrically simplified but topologically
equivalent environment (GA). Actuation commands for the
geometrically detailed physical environment with non-convex
obstacles are obtained by pushing forward the abstracted
navigation commands through this change of coordinates (AEI).
The authors perform a formal analysis of the overall dynamical
system describing the closed-loop controller navigating reactively
through the abstracted space as it is updated by the robot’s
perception of new obstacles. Proofs of correctness (GM-1, GM-
2) are provided for two actuation schemes: A fully actuated
point particle robot (BM-1), and a kinematic unicycle (BM-
2). In a recent extension (Vasilopoulos et al., under review),
the composed controller is implemented on a physical legged
robot, with the unicycle commands interpreted by a lower-level
controller for the robot’s gait in a hierarchical composition.

The contribution of this project may at first seem to be at
odds with our interpretation of affordances, but we suggest that
this project demonstrates how two very different methods can
usefully complement one another. The problems of obstacle
perception and navigation can be separated by the judicious
use of a previously learned library of objects. This separation
reduces the navigation problem to one which can be solved with
reactive navigation control, about which formal guarantees can
be provided. Methods like deep learning can then be used to
produce the necessary library of objects. A careful composition
of the navigation capability provided by the reactive controller
and object recognition capabilities provided by the learning
methods then produces the emergent behavior described in
this project.

2.6. Layering Deliberative and Reactive

Controllers

Vasilopoulos et al. (2018b) build on the previously described
navigation system to develop a deliberative (offline) planning and
reactive (online) control architecture which enables a robot to
rearrange multiple objects in its imperfectly known environment.
During execution of each deliberatively sequenced sub-goal,
the combined controller produces reactive commands (GA)
as a function of the recognized obstacle’s boundary shape.
Theoretical work (Vasilopoulos et al., 2018b) assumes a robot
constrained to move as a kinematic unicycle, with a globally
known position, and an omnidirectional LIDAR producing a
dense local depth map (BM). Physical experiments (Vasilopoulos
et al., 2018a) are performed with a four-legged direct-drive
robot, with a hierarchically arranged composition of controllers
coordinating the robot’s legs to produce the kinematic unicycle-
like behavior. The emergent model of the velocity-controlled
unicycle is generated by a subcomponent basis model consisting
of properly coordinated parallel and sequential compositions
of hybrid Lagrangian stance dynamics (Topping et al., 2019).
The velocity-controlled unicycle then becomes the basis model

of the reactive controller in this project, producing the
whole-robot behavior.

Formal generative analysis (GM) in these papers addresses
only the interaction between the deliberative planner and the
reactive controller. The former breaks down the task of moving
multiple objects to multiple goals into an ordered set of subtasks
assigned to the latter. The reactive controller, which is endowed
with the same oracle as the previous case study, is able to drive the
robot around unanticipated obstacles (AEI) as needed in order to
execute subtasks as they are assigned by the deliberative symbolic
controller. The robot is then able to grab and move each object
toward its planned subgoal location (EM).

The use of a reactive layer to handle obstacle interactions
significantly simplifies the control problem, and allows the
authors to provide formal guarantees about the conditions under
which this combined controller should be expected to succeed.
The offline, symbolic deliberative layer effectively solves the
abstracted task planning problem. High-level commands from
this layer drive the reactive manipulation and navigation layer,
which can use realtime signal processing and control to readily
handle unexpected geometric and topological complexities which
would seriously challenge a symbolic planner.

3. DISCUSSION

A major contribution of engineering to the understanding
of affordances more generally is the formal methods which
are used to describe the generative relationships between the
implementation details and the desired behavior. We hope
to encourage crossdisciplinary interest in projects using these
methods, and find the clear separation of the specified target
behavior from the implementation details provided by a
generative framework is helpful for discussion. We suggest that
the use of affordances in robotics research need not include
the development of computational models of those affordances
for robots to identify and thus exploit. Instead, consideration
of the mutuality of the agent-environment system during robot
behavior design can be used to develop robust and explainable
architectures which implicitly exploit affordances. Roboticists
can and do use systematic, empirical practice to apply Gibson’s
philosophy of affordances—just without naming them.
Considerations of engineering design and the practicability of
abstraction from the environment at different levels of planning
and control can determine the mix of endowed prior knowledge,
representation building, and sensory dependence. For example,
with the last case study, we suggest that methodological
commitment to use only reactive controllers (as by e.g., Brooks,
1986, 1991) distracts from the potential benefits of combining
a focus on affordances during robot behavior design with a
cautionary approach to internal representations?. If effort need
not be spent to create representations that are useful for the robot
to perform its basic behaviors like locomotion and navigation,
then the effort can be spent to create useful representations
for tasks which do require them, such as to enable better
communication between collaborating robots and humans. For

2As formalized by (Sahin et al, 2007), this is similar to taking the “observer"
perspective rather than the “agent” perspective.
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example, a team of robots tasked with helping geomorphologists
study erosion in the desert might build a map of the ground
stiffness in different locations (Qian et al., 2017). Such a map
would be useful even if the robots are able to navigate and
locomote completely with reactive control, which allows each
robot to continue functioning normally even when it loses
signal connection to team members, damages an end effector,
or experiences a sensor glitch. Why not reserve the difficult
task of building good representations for behaviors that require
them, and use affordance-based reactive control for behaviors
that don’t?
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