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Abstract—With emergence of blockchain technologies and the
associated cryptocurrencies, such as Bitcoin, understanding net-
work dynamics behind Blockchain graphs has become a rapidly
evolving research direction. Unlike other financial networks, such
as stock and currency trading, blockchain based cryptocurrencies
have the entire transaction graph accessible to the public (i.e.,
all transactions can be downloaded and analyzed). A natural
question is then to ask whether dynamics of the transaction
graph impacts price of the underlying cryptocurrency. We show
that standard graph features such as degree distribution of the
transaction graph may not be sufficient to capture network
dynamics and its potential impact on fluctuations of Bitcoin price.
In contrast, topological features computed from the blockchain
graph using the tools of persistent homology, are found to exhibit
higher utility for predicting Bitcoin price dynamics.

Index Terms—blockchain, bitcoin, persistent homology, graph

I. INTRODUCTION

Recent jumps of Bitcoin price have led to ever growing
debates with respect to the future of Bitcoin and cryptocurren-
cies and its potential impact on global financial markets [13].
One interesting aspect of popular cryptocurrencies, such as
Bitcoin, is that each transaction is recorded on a distributed
public ledger, called blockchain. The recorded transactions can
be then accessed and analyzed by anyone. Furthermore, all of
the transactions could be represented by a graph referred to
as the “blockchain graph”. Existence of the blockchain graph
raises important questions such as “How does the blockchain
graph structure impact the underlying cryptocurrency price?”

In this paper, we focus on addressing this question by
proposing approaches to represent blockchain graph patterns;
and we use these patterns to build machine learning models
for Bitcoin price prediction.

First approach that comes to mind to leverage the blockchain
graph structure is to extract traditional graph features such as
degree distribution, motif counts and clustering coefficients,
and to use these graph features in machine learning models

such as Random Forest for assessment of their utility in price
forecasting.

As already observed by previous studies (e.g., [8, 12, 16]),
and also confirmed by our experimental results, these standard
graph based features are insufficient to capture important
properties such as transaction volumes, transaction amounts,
and their relationships with the underlying graph structure.
Since these basic approaches do not provide conclusive in-
sights into the blockchain graph dynamics and its impact on
cryptocurrency price, we propose novel techniques inspired by
topological data analysis (TDA) and, particularly, persistent
homology that account for these higher order interactions.

Persistent homology allows us to extract topological in-
formation from a blockchain graph and unveil some critical
characteristics behind its functionality. Most notably, persistent
homology captures interactions of the graph components at a
multi-scale level which are otherwise largely inaccessible with
conventional analytic methods. Such an approach provides the
following important benefits. First, we systematically account
for changes in the blockchain graph topology and geometry at
different scales, both in terms of transaction patterns and asso-
ciated transaction volumes. Second, by computing topological
features for a range of scale values we bypass the problem
of optimal scale selection. That is, instead we systematically
derive topological information from the blockchain graph and
use its change dynamics for cryptocurrency price prediction.
Third, the multi-scale approach permits us to effectively
distinguish true topological features from noisy ones in a
robust way based on the extent of feature lifespan across scale
values. Furthermore, a few studies on the application of TDA
to other types of networks show that persistent homology-
based features outperform conventional graph features such
as betweenness centrality, clustering coefficient and degree
centrality in network classification and segmentation [7].

Our contributions can be summarized as follows:
• To our knowledge, we are the first ones to introduce



persistent homology to cryptocurrency predictive analytics.
Furthermore, we couple homology-based topological features
of Blockchain with machine learning techniques to predict
Bitcoin prices.
• We introduce a novel concept of a Betti derivative. Betti
derivatives capture the rate of changes that occur in the topo-
logical structure of the blockchain graph. We show predictive
utility of the Betti derivatives in forecasting Bitcoin prices.
• Using extensive empirical analysis, we show that ma-
chine learning models incorporating our proposed persistent
homology-based methodology can significantly outperform
(i.e., up to 38% improvement in root mean squared error)
models which use only past price and standard features such
as total transaction count.

An extended version of this work with detailed explanations
of our algorithmic model can be found online. 1

II. LEARNING GRAPH BASED AND TOPOLOGICAL
FEATURES

Problem Statement: Let xt ∈ Rd be a set of features com-
puted on the Bitcoin blockchain. Let (x1, y1), . . . , (xt, yt)
be the observed data where Y = {y1, . . . , yt} are the
corresponding Bitcoin prices in dollars. At a time point t,
estimate the Bitcoin price yt′ where t′ > t.
We provide two solutions to our research problem: graph
filtration (FL) and the Betti sequences. The first approach is
based on graph filtration. That is, we filter the transaction
network with increasing thresholds of Bitcoin amounts, and
create multiple realizations of the network. Afterwards, we
merge these realizations to train a model. The second approach
uses topological summaries to capture persistent features in
terms of Betti sequences and Betti derivatives.

The Betti approach is based on rigorous mathematical
foundations of algebraic topology and provides a multi-lens
view of the system, whereas the graph filtration is a heuristic
that allows manually selecting amount thresholds and asso-
ciated filtering of the network. Next, we describe these two
approaches in details.

A. Learning Graph Representations

We first introduce existing blockchain network models and
explain their shortcomings. Next we describe our substructure
model of the blockchain graph and extract graph filtration
features.

In a typical blockchain graph such as the one used by
Bitcoin, an owner of multiple addresses can combine them
in a transaction and send coins to multiple output addresses.
Therefore, the Bitcoin blockchain consists of two types of
nodes: transactions, and addresses that are input/output of
transactions (e.g., see Figure 1). In our approach, we follow [1]
and construct a heterogeneous Blockchain graph with both
address and transaction nodes.

With its input and output addresses, each transaction repre-
sents an immutable decision that is encoded as a substructure

1https://arxiv.org/abs/1908.06971
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Fig. 1: A Bitcoin graph with 4 transactions and 13 addresses.
Amounts on edges show currency transfers. The difference
between input and outputs amounts, if exists, shows the
transaction fee collected by miners.

on the blockchain graph. Recently, [1, 2] proposed to study
such blockchain substructures in the form of chainlets.

The chainlet approach of [1] aims to transfer the ideas
of network motifs [14] to blockchain graphs. That is, by
counting frequency of certain shapes, a blockchain graph can
be summarized with chainlet densities. However, while the
chainlet approach of [1] is found to be promising in describing
dynamics of the blockchain graph, it has two major shortcom-
ings. First, [1] focuses only on the basic case of k = 1, or 1-
chainlets. Indeed, as the k value increases, k-chainlets encode
higher order structures on the graph and the number of distinct
shaped chainlets also increases. Second, even in the basic
case of 1-chainlets, [1] disregards such critical information
as amounts of coins transferred from its inputs to outputs. In
this paper, we address the second shortcoming and incorporate
the key information on the transferred amounts into analysis
of blockchain substructures.

a) Occurrence and Amount Matrices: On the Bitcoin
network, the output and input addresses of a transaction tn
are defined as a list of addresses |Γon| ≥ 1 and

∣∣Γin∣∣ ≥ 1, re-
spectively. An address ia ∈ Γin has an associated coin amount
A(ia) that tn receives. The output amount of a transaction
tn is defined as the sum of outputs from all input addresses
Ao(n) =

∑
ia∈Γi

n
A(ia). Considering all transactions T , we

define the maximum number of inputs, imax = argmax
tn∈T

(
∣∣Γi

n

∣∣)
and outputs omax = argmax

tn∈T
(|Γo

n|).

We then encode chainlet substructures with two dimensions:
for |i| input addresses and |o| output addresses, the chainlet
is denoted as Ci→o. The blockchain graph can be then
represented in a form of two matrices, that is, the occurrence
O[imax×omax] and amount A[imax×omax] matrices, where the
cell of i-th row and o-th column represents information on the
substructure Ci→o.

b) Graph Filtration (FL): Given the amount and oc-
currence information, a natural combination of them entails
filtering the occurrence matrix with user defined thresholds
on amounts, or filtering the amount matrix with user defined
thresholds on occurrences. In both cases, the user defined
threshold implies a heuristic aspect.

FL creates multiple occurrence matrices of a Bitcoin net-
work at a given time period, and uses them as the feature set
to train a prediction model. At a given time period t, chainlets



of the time period are iterated over with a set of thresholds.
A chainlet Ci→j’s occurrence is recorded in the associated
occurrence matrix Oε if the amount transferred by the chainlet
amount(Ci→j) ≥ ε. The process is repeated for all inputted
data. Resulting occurrence matrices are row-wise concatenated
and output as the FL feature set for time period t (i.e., xt).

The FL captures persistent graph substructures by retaining
edges among nodes according to a set of scale values. For
a scale value ε ∈ ε1,...,S , we only record the occurrence
of chainlet substructures, if the amount transferred by the
substructure is ≥ ε.

B. Learning Topological Representations

TDA is an emerging field at the intersection of algebraic
topology and computational geometry providing methods to
systematically study the topological and geometric structure
underlying data [4]. In this context, these structures are
commonly analyzed via the multi-scale-based framework of
persistent homology. Below we outline its main steps. The
primary idea is to assess which topological features remain
persistent over a larger set of scales and hence, e.g., in the
case of the Blockchain network, are likely to play a significant
role in its functionality.

Let X = {X1, . . . , Xn} be a set of data points in a metric
space (e.g., the Euclidean space). Select a scale εk and form a
graph Gk with the associated adjacency matrix A = 1dij≤εk ,
where dij is the distance between points Xi and Xj . Changing
the scale values ε1 < ε2 < . . . < εN results in a hierarchical
nested sequence of graphs G1 ⊆ G2 ⊆ . . . ⊆ GN that is
called a graph filtration.

Next, to glean the intrinsic geometry underlying the data
from the graph filtration, we associate an (abstract) simplicial
complex with each Gk, k = 1, . . . , N . These constructs can
be thought of as higher order analogues of graphs having
both the topological and combinatorial structure [4]. The latter
serves well for the computational purposes to extract various
topological summaries from data. A major advantage of the
multi-lens perspective is that it avoids the issue of searching
for an optimal scale value and associated feature engineering.

The choice of a simplicial complex depends on the complex-
ity of the data and which topological features one is interested
in highlighting. The Vietoris-Rips (VR) simplicial complex
is one of the most popular choices in TDA due to its easy
construction and computational advantages (e.g., [4]).

Armed with the associated VR filtration, V R1 ⊆ V R2 ⊆
. . . ⊆ V RN , we can track qualitative topological features such
as connected components, loops and voids that appear and
disappear as we move along the filtration.

In our analysis, we use the Betti sequences as summaries
of persistent homology calculations which encode the counts
of these features at increasing scale values. Their individual
elements are called the Betti numbers that are computed for
each value of the scale:

βp = (βp(ε1), βp(ε2), . . . , βp(εN )), p = 0, 1, . . . ,K,

where βp(εk) is the p-th Betti number of the simplicial
complex at scale εk. The Betti numbers for small p have
a simple interpretation. For instance, β0 is the number of
connected components; β1 is the number of loops; β2 is the
number of voids etc.

1) Betti Sequences for a Blockchain Network: Although
the Betti sequences provide a non-parametric solution to com-
bine information on edge distance with node connectedness,
the computational complexity of Betti calculations prohibits
their usage in large networks. For example, for simplicial
complexes of dimension 2, “currently no upper bound better
than a constant times n3 is known” [6]. For Betti numbers
βp>3, the complexity becomes too restrictive. The problem
is compounded in the Bitcoin network since address reuse is
discouraged. As such, every day brings ≥ 500K new nodes
to the network. Betti number computations on such large
networks is unfeasible.

To solve the complexity issues, we propose a novel approach
that computes the Betti sequences on a network of N × N
nodes where N is the size of the amount matrix A (See
Section II-A). Each of the N2 unique chainlets (e.g., C2→3)
creates a node in the new network, where edge distance
between two nodes is computed with a suitable ’distance’ d.
We describe the main steps as follows:

Given a heterogeneous Blockchain network with transferred
bitcoins on edges,

1) All transferred amounts are converted from Satoshis to
bitcoins (dividing by 108), then added one (so that the
values after taking logarithm are non-negative) and log-
transformed: a′ = log(1 + a/108), where a is an amount
in Satoshis.

2) For each chainlet of a given time period, we compute
the sample q-quantiles for the associated log-transformed
amounts [10]: a k-th q-quantile, k = 0, 1, . . . , q, is the
amount Q(k) such that

τ∑
i=1

1yi<Q(k) ≈
τk

q
and

τ∑
i=1

1yi>Q(k) ≈
τ(q − k)

q
,

where τ is the total number of transactions. The
(dis)similarity metric dij between chainlet nodes i and
j is defined as the quantile-based distance dij =√∑q

k=0[Qi(k)−Qj(k)]2.
3) We construct a sequence of scales ε1 < ε2 < . . . <

εS covering a range of distances during the entire 365-
day period. For each εk, we build the corresponding VR
complex whose 0-simplices are single chainlets and 1-
simplices are pairs of chainlets with distance ≤ εk. As a
result, we obtain the filtration of VR complexes V R1 ⊆
V R2 ⊆ . . . ⊆ V RS .

4) Armed with the VR filtration, we then compute xt =
{β0(ε1), . . . , β0(εS);β1(ε1), . . . , β1(εS)}.

In constructing the new network, we use and hence retain
the amount information from the Blockchain network. Fur-
thermore, each node type (chainlet substructure) encodes the
number of inputs and outputs in a transaction. This way, we



combine distance (computed from transferred coins) with edge
connectedness while restricting the network size. Our new
TDA approach can work with networks of any size, and our
experimental results (See Section III) show predictive power
of its topological features.

2) Betti derivatives: The graph of the p-th Betti sequence is
often referred to as the p-th Betti curve. Analysis of the Betti
curves allows us to assess dynamics of essential topological
features as a function of the scale. Furthermore, to assess
the rate of changes in topological features of the Blockchain
graph, we introduce a novel concept of Betti derivatives up to
order ` > 0 on VR filtrations:

∆`βp(εk) = ∆`−1βp(εk+1)−∆`−1βp(εk),

where k = 1, 2, . . . , S − 1, p = {0, 1, . . .} values are
determined by how many Betti numbers we choose to use, and
S is the number of filtration steps. These finite differences are
analogues of derivatives for smooth functions. The inclusion
of the rates of change of the Betti curves is intended to sys-
tematically capture dynamics of essential topological features
and to enhance the predictive power.

III. EXPERIMENTS

In this section, we show the performance of predictive
models in our ChainNet framework.

A. Data

We downloaded and parsed the entire Bitcoin transaction
graph from 2009 January to 2018 December. Using a time
interval of 24 hours, we extracted daily transactions on the net-
work and created the Bitcoin graph. Our Bitcoin price (USD)
data is downloaded from blockchain.com which aggregates
prices from worldwide online exchanges.

a) Filtration data.: We analyzed Bitcoin transactions to
find an appropriate dimension N for the occurrence matrix.
We chose N = 20, because N = 20 enables to distinguish
a sufficiently large number (i.e., 400) of chainlets, and still
offers a dense matrix. Our models achieved a satisfactory
performance with ε ∈ {0, 10, 20, . . . , 50} scales in the graph
filtration.

b) Betti and Betti Derivative Data.: We use the Betti
numbers estimation routine of the Perseus [15] software which
provides an efficient algorithm to compute the Betti numbers
and persistent intervals.

We used S ∈ {50, 100, 200 and 400} as the filtration length.
Overall, we find no improvement in prediction accuracy for
S > 400. Furthermore, there is no single optimal value of S
to be used in all statistical and machine learning models.

To decrease computational costs, in the present study, we
focus on VR complexes of dimension one. This implies that
the loops are formed by three or more nodes, which in turn
leads to a general negative association between the Betti-0
and Betti-1 curves – as ε increases, more simplices are added
to the complex, thereby reducing the number of connected
components and increasing the number of loops.

In addition to FL and Betti related features, we also exper-
imented with basic features: price, mean degree of addresses
(MeanDegree), number of new addresses (NumNewAddress),
mean and total coin amount transferred in transactions (mean-
TxAmount and TotalTxAmount, respectively) and address
network average clustering coefficient (ClusCoeff). Among
these, we only found Price and TotalTx to be useful predictors
and included them in our models.

B. Setting for Feature Time Series

training=5 prediction

window=3 horizon

tt-1t-2t-3t-4 t+1 t+2

1 2

Fig. 2: The sliding window based regressor model. The
example model trains with data from the last m = 5 days,
and uses the data from t, t−1 and t−2 (window=3) to make
a prediction for either day t + 1 (horizon=1) or day t + 2
(horizon=2).

Given the features, we employ a time based approach to
predict the Bitcoin price, as shown in Figure 2. Our goal is to
catch trends in the price data, based on the observation that
price movements in the preceding days are a good indicator
of future prices.

ChainNet employs three time related concepts: training
length, window (lag) and horizon. Training length is the
number of past time periods whose data we use to train our
model. Window is the number of past time periods whose data
we use to predict Bitcoin price. Horizon is the number of days
whose price we predict ahead.

In the most basic case of prediction horizon h = 1 and
prediction window w = 1, the model learns to predict the
price of day ŷt+1 by using the data xt of day t. Similarly, for
any window w, the model uses data from {xt−w, . . . , xt} to
predict the price ŷt+h.

Input is time indexed data points and output is the model
parameters trained on the given input. For given window w
and horizon h values, time series data is processed to utilize
the history of the current day, t. Each xt is replaced by
the successive values of time series between t − w − h and
t− h. Newly generated x̂t and its corresponding price, yt, is
appended to the train list. After all days are iterated on, di-
mension reduction is applied to the generated x̂train to obtain
compensated data. At the end, the model is optimized with
the previously obtained train data and the algorithm returns
the obtained model parameters for out-of-sample predictions.

We consider the following two parameters in all
predictive models: window w ∈ {3, 5, 7}, horizon
h ∈ {1, 2, 5, 7, 10, 15, 20, 25, 30}, training length l ∈
{25, 50, 100, 200}. As the interaction of horizon, window and
training length parameters may exhibit nonlinear effects on the
prediction, we conduct a grid search by varying all parameters,
and report the predicted price values for the best model.



An important point in our sliding prediction approach is
that, we train a model per each prediction. As a result, we
train a model 365 times to predict Bitcoin prices in 2017. We
chose this setting because gain results improved over a batch
prediction model. As we model data with low dimensional
features, the cost of this approach was negligible.
C. Statistical and Machine Learning Models

We evaluate ChainNet performance by using one statistical
and four machine learning models: ARIMAX [3], XGBT [5],
Random Forest [9], Gaussian Processes [17] and ENET [18].

a) Parameter Settings for Models: For the hyper-
parameter tuning of ARIMAX, the orders for auto-regression
and moving average terms are chosen from {0, 1, 2}. For the
tree based approaches such as XGBT, RF, generated number
of trees are chosen from {10, 50, 100, 200, 300, 400, 500,
1000}. For the learning rate of XGBT, we tried values from
{0.01, 0.1, 1.0}. ENET regularization parameters for L1 and
L2 and penalty constants are selected from {0.0001, 0.001,
0.01, 0.1, 1.0, 10.0} and {0.001, 0.005, 0.01, 0.05, 0.1, 0.5,
1.0}. In hyper-parameter tuning of GP, regression types, cor-
relation types, and regularization parameters are chosen from
{constant, linear, quadratic}, {absolute exponential, squared
exponential, generalized exponential, cubic, linear}, {0.001,
0.01, 0.1, 1.0, 10.0} respectively.

b) High Dimensionality: Since we use a windowed
(lagged) history of the data, dimensionality of the training data
increases rapidly. We ameliorate the effects of high dimension-
ality by applying Principal Component Analysis (PCA) [11] to
the lagged feature sets of FL, Betti and Betti derivative; we use
PCA to map the high dimensional data into low dimensional
data with the dimension of d2 ∈ {5, 10, 15, 20}.
D. Baseline Performance

The simplest baseline for ChainNet can be constructed by
training models on Price and TotalTx in a sliding window pre-
diction scheme. We did not use other baseline features such as
mean degree (see Section III-A0b) since adding those features
reduces performance of the baseline models. We train baseline
models without reducing the dimensionality, because input
features are very few; for w = 3, the models use 6 features in
training. We assess model performance with root mean squared
error (RMSE) as follows: RMSE =

√
1/|T |

∑
t∈T

(yt − ŷt)2,

where |T | is the number of days, ŷt is the predicted price and
yt is the true observed price on the tth day.

In our rolling predictive framework, we achieve the best
results with a training length of 100 days, that is, each con-
sidered model is adaptively re-estimated for each yt using data
from the previous 100 days. We only report the best results
from each model with the hyper-parameter optimization.

Figure 3 shows the performance of the five models in predic-
tion. ARIMAX has the worst performance for h > 7, whereas
Gaussian Process (GP) has the best RMSE values overall. We
note that as the window value increases, performance does
not improve. This implies that considering past information
on price and total number of transactions does not deliver

improvement in forecasting accuracy. In fact, from window 3
to 7, the RMSE values of the best model, GP, is approximately
similar while h < 10. For h > 10, the RMSE values decrease
13% from window 3 to 7.

E. ChainNet Model Performance

In this section, we provide performance of the predictive
models built with FL, Betti and Betti derivative features. Our
hypothesis is that adding these features will increase model
performance, i.e., RMSE in predictions will decrease over their
associated baseline values. Due to space limitations, results of
RF, GP and ENET comparisons are excluded. We refer the
reader to the extended version of the paper 2for these results.

a) Performance Gain: In our analysis, we report the per-
centage predictive gain, or decrease in RMSE for a specific
machine learning model m w.r.t. its baseline model m0 as
∆m(w, h) = 100 ×

(
1 − RMSEm(w, h)/RMSEm0

(w, h)
)
,

where RMSEm0
(w, h) and RMSEm(w, h) are delivered by

a baseline model m0 and a competing model m, respectively.
Figure 4 shows that XGBT predictions improve for increas-

ing horizons, but decrease for h > 15. Specifically h = 1
predictions reach a positive gain only in XGBT w = 7. XGBT
also offers the best gains for h = 2, but its performance
deteriorates for h > 15.

In constructing the XGBT model, the boosting approach
focuses on examples that increase the error rate of objective
function at each step. We hypothesize that this specific focus
is the reason for XGBT’s better performance.

The highest gain values for h ≤ 7 are achieved in XGBT
Betti models for w = 7 (38% in Figure 4c). Our heuristic
approach, FL, has an interesting trend; its usage in models
leads to better gains for higher horizons. In turn, Betti models
yield higher gain values for short horizons. Considering these
results, ChainNet can use Betti and Betti derivatives for short
(h < 10) term prediction, and use FL for h > 15.

An important result is that next day predictions (h = 1) do
not improve significantly (i.e., at most 2% in Figure 4c) with
ChainNet features. Hence, topological and graph based signals
in the blockchain tend to deliver a lower causal affect in the
very short term forecasting horizon.

In summary, our findings offer evidence that higher order
topological features of the Bitcoin transaction graph, described
via Betti characteristics and FL, exhibit a high predictive utility
for Bitcoin price dynamics, particularly for medium and long
term forecasting horizons.

IV. CONCLUSION

ChainNet is a price prediction platform that utilizes topo-
logical characteristics of a blockchain graph. ChainNet builds
topological constructs over a graph and computes quantitative
summaries in the form of the Betti sequences and Betti deriva-
tives which are then used in model building for the Bitcoin
price prediction. Our results on the full Bitcoin network show
that in less than 7 day ahead predictions, Betti models bring
a prediction gain of almost 40% over baseline approaches.

2https://arxiv.org/abs/1908.06971
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Fig. 3: RMSE of sliding window based predictions of 2017 Bitcoin prices in different window and horizon values.
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Fig. 4: Extreme Gradient Boosting (XGBT) performance.
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