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Abstract 1 

Separating neural signals from noise can improve brain-computer interface performance and 2 

stability. However, most algorithms for separating neural action potentials from noise are not suitable for 3 

use in real time and have shown mixed effects on decoding performance. With the goal of removing noise 4 

that impedes online decoding, we sought to automate the intuition of human spike-sorters to operate in 5 

real time with an easily tunable parameter governing the stringency with which spike waveforms are 6 

classified. We trained an artificial neural network with one hidden layer on neural waveforms that were 7 

hand-labeled as either spikes or noise. The network output was a likelihood metric for each waveform it 8 

classified, and we tuned the network’s stringency by varying the minimum likelihood value for a 9 

waveform to be considered a spike. Using the network’s labels to exclude noise waveforms, we decoded 10 

remembered target location during a memory-guided saccade task from electrode arrays implanted in 11 

prefrontal cortex of rhesus macaque monkeys. The network classified waveforms in real time, and its 12 

classifications were qualitatively similar to those of a human spike-sorter. Compared to decoding with 13 

threshold crossings, in most sessions we improved decoding performance by removing waveforms with 14 

low spike likelihood values. Furthermore, decoding with our network’s classifications became more 15 

beneficial as time since array implantation increased. Our classifier serves as a feasible preprocessing 16 

step, with little risk of harm, that could be applied to both offline neural data analyses and online 17 

decoding. 18 

 19 

New & Noteworthy 20 

While there are many spike-sorting methods that isolate well-defined single units, these methods typically 21 

involve human intervention and have inconsistent effects on decoding. We used human classified neural 22 

waveforms as training data to create an artificial neural network that could be tuned to separate spikes 23 

from noise that impaired decoding. We found that this network operated in real time and was suitable for 24 

both offline data processing and online decoding.  25 

 26 
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Introduction 27 

Brain computer interfaces (BCIs) have been used as both research tools to understand neural 28 

phenomena (Chase, Kass, and Schwartz 2012; Golub, Yu, and Chase 2015; Sadtler et al. 2014; Schafer 29 

and Moore 2011) and devices to improve patient control of prosthetics (Collinger et al. 2013; Hochberg et 30 

al. 2012; Velliste et al. 2008). BCIs interpret neural signals arising from electrodes implanted in the 31 

cortex using real time decoding algorithms; however, their performance is limited by the difficulty of 32 

isolating the activity of individual neurons from extracellular voltage signals (“spike-sorting”), the 33 

characteristics of the information present in individual neurons and multi-unit activity (their “tuning”), as 34 

well as the nuances of interactions among neurons (Averbeck, Latham, and Pouget 2006). Refining the 35 

raw data is necessary to improve BCI performance, but identifying waveforms that contain relevant 36 

information is challenging.  37 

One common noise removal method is to use all waveforms crossing a minimum voltage 38 

threshold for decoding, where all waveforms on a particular channel are considered to be from a single 39 

neural “unit” (Christie et al. 2015; Lewicki 1998). Using threshold crossings also serves to reduce the 40 

amount of stored data. However, threshold crossings often capture noise and the summed activity of 41 

multiple nearby neurons, called multi-unit activity, on each channel (Rey, Pedreira, and Quian Quiroga 42 

2015; Stark and Abeles 2007). Alternatively, since waveforms with the characteristic shape of an action 43 

potential are the focus of most offline neural data analyses, a different approach is to isolate well-defined 44 

spike waveforms from the threshold crossings via spike-sorting, and use only those waveforms for 45 

decoding (Lewicki 1998; Rey, Pedreira, and Quian Quiroga 2015). Unfortunately, most spike-sorting 46 

techniques are unsuitable for BCI use because they are time-intensive and require manual refinement.  47 

Furthermore, even with the development of real time, automated spike-sorting algorithms 48 

(Chaure, Rey, and Quian Quiroga 2018; Chung et al. 2017), deciding which waveforms should be used by 49 

the decoding algorithm is challenging. There is typically no clear ground truth for what constitutes a spike 50 

waveform based solely on sparse extracellular recordings (Pedreira et al. 2012; Rey, Pedreira, and Quian 51 

Quiroga 2015; Rossant et al. 2016; Wood et al. 2004), except in the case of a few rare data sets 52 
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(Anastassiou et al. 2015; Neto et al. 2016). While some studies have found spike-sorted units improved 53 

decoding performance (Kloosterman et al. 2014; Santhanam et al. 2004; Todorova et al. 2014; Ventura 54 

and Todorova 2015), others have found that using pooled spikes from threshold crossings resulted in 55 

comparable or better decoding that was more stable over time (Chestek et al. 2011; Christie et al. 2015; 56 

Dai et al. 2019; Fraser et al. 2009; Gilja et al. 2012). These conflicting results highlight the gap in our 57 

understanding of what information in neural recordings is most valuable for BCIs. Even within studies, 58 

there are inconsistent effects of spike-sorting on decoding, both between subjects and over time (Christie 59 

et al. 2015; Fraser et al. 2009). It is also difficult to compare the effects of spike-sorting on decoding 60 

performance across studies due to the inherent variability in spike-sorting techniques (Pedreira et al. 61 

2012; Rey, Pedreira, and Quian Quiroga 2015; Rossant et al. 2016; Wood et al. 2004) and differences in 62 

brain regions, parameters being studied, and decoding algorithms that may influence which waveforms 63 

are the most decodable (Bishop et al. 2014; Chestek et al. 2011; Fraser et al. 2009; Lewicki 1998; Oby et 64 

al. 2016). Furthermore, it is unclear whether spike-sorting, where the goal is to define isolated single-65 

units, is the best-suited approach for preprocessing data for decoding, where multi-unit activity has been 66 

shown to be sufficient in some cases (Stark and Abeles 2007).  67 

Given spike-sorting’s history of variable effects on decoding performance, we sought to avoid 68 

explicitly sorting our data and instead developed an easily tunable spike classifier that could objectively 69 

and efficiently assign waveforms to one of two classes: spike or noise. To achieve this goal, we sought a 70 

classification approach that would (1) take advantage of the spike-sorted waveforms from previous 71 

analyses that formed a readily available, labeled training data set; (2) output a likelihood of being a spike 72 

for each waveform so we could simply adjust the minimum cutoff for binary spike classification; (3) once 73 

trained could operate in real time. We built a neural network classifier that satisfied these three criteria. 74 

To evaluate our classifier’s performance, we decoded the activity of sparse electrode arrays implanted in 75 

prefrontal cortex (PFC), and compared decoding accuracy of task condition with all threshold crossings to 76 

decoding accuracy with the waveforms selected by our classifier. We also assessed how decoding 77 

performance changed as a function of the stringency of our classifier (i.e. the minimum cutoff for spike 78 
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classification) and explored how decoding accuracy with our classifier changed as a function of time 79 

since the array implantation (array implant age).   80 

By removing waveforms that the network identified as unlikely to be spikes, we improved 81 

decoding performance for most sessions relative to decoding with all threshold crossings. Moreover, in 82 

the remaining sessions there was no substantial detriment to decoding accuracy, meaning we could apply 83 

our method with little risk of harming decoding performance. Our network classifications continued to 84 

improve decoding accuracy in sessions recorded long after array implantation, even though the overall 85 

decoding accuracy decreased and the array recordings became noisier. Thus, our real time, tunable 86 

waveform classifier demonstrates promise for long-term BCI applications and for efficient offline 87 

preprocessing. 88 

 89 

Materials and Methods 90 

We trained a neural network, using a database of spike-sorted waveforms, to assign waveforms to 91 

a spike or noise class. We then tested the network’s classifications with another data set that was 92 

independent from the training set.  In contrast to the offline, human supervised spike-sorting that was used 93 

to label the training data, our network did not sort waveforms into isolated single-units, but rather 94 

assigned spike or noise classifications to individual waveforms (hence its name Not A Sorter, or NAS). To 95 

evaluate the network’s classifications, we decoded task location using only waveforms labeled as spikes 96 

by the network and compared the accuracy to decoding accuracy using all threshold crossings. All 97 

experimental procedures were approved by the Institutional Animal Care and Use Committee of the 98 

University of Pittsburgh and were performed in accordance with the United States National Institutes of 99 

Health’s Guidelines for the Care and Use of Laboratory Animals.  100 

Neural recordings 101 

We analyzed neural recordings from six adult male rhesus macaques (Macaca mulatta) which 102 

had previously been spike-sorted for ongoing experiments in the laboratory. Data from four subjects were 103 

used to train our spike-classifying neural network, and data from the remaining two subjects (Monkey Pe 104 
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and Monkey Wa) were used to assess decoding accuracy using the network’s classifications. Raw 105 

recordings from both 96-electrode ‘Utah’ arrays (Blackrock Microsystems, Salt Lake City, UT) and 16-106 

channel linear microelectrode arrays (U-Probe, Plexon, Dallas, TX) were band-pass filtered from 0.3 to 107 

7,500 Hz, digitized at 30 kHz, and amplified by a Grapevine system (Ripple, Salt Lake City, UT). The 108 

inter-electrode distance on the ‘Utah’ arrays was 400 μm and on the linear arrays was 150 or 200 μm, 109 

beyond the range over which the two extracellular electrodes are likely to capture the waveform of a 110 

single neuron. For each recording session, a threshold (VT) was defined for each channel independently 111 

based on the root-mean-squared voltage of the waveforms (VRMS) recorded on that channel at the 112 

beginning of the session (i.e. VT  = VRMS*X, where X was a multiplier set by the experimenter). Each time 113 

the signal crossed that threshold, a 52-sample waveform segment was captured (i.e. a threshold crossing), 114 

with 15 samples prior to and 36 samples following the sample in which the threshold excursion occurred.  115 

Offline spike-sorting 116 

All data in this work were spike-sorted to identify well-defined single-units for previous studies. 117 

This pre-sorted data was used to create the labeled training set for this study. Waveform segments were 118 

initially sorted into spike units and noise using a custom, offline MATLAB spike-sorting algorithm that 119 

used an automated competitive mixture decomposition method (Shoham, Fellows, and Normann 2003). 120 

These automated classifications for each recording session were subsequently refined manually by a 121 

researcher using custom MATLAB software (https://github.com/smithlabvision/spikesort). The researcher 122 

modified the classifications on each channel based on visualization of the overlaid waveform clusters, 123 

projections of the waveforms in PCA space (to assess how many clusters were present), the inter-spike 124 

interval distribution of any potential single-unit (ensuring it contained few waveforms separated by less 125 

than a sensible refractory period), and whether each potential single-unit was stationary (i.e. present for 126 

the majority of the recording session). While only a single researcher spike-sorted the waveforms from 127 

any particular session, the data in the training set (7 sessions total) collectively consisted of data spike-128 

sorted by four different researchers. If multiple unique spike waveform shapes were present on a channel, 129 

the sorter would label those as different units.  130 
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Training data set 131 

We sought a diverse neural waveform training set that captured a variety of subjects, brain 132 

regions, implanted array ages (i.e. number of days since the array was implanted) and recording devices 133 

(Table 1). The four training data set subjects each had a 96-electrode ‘Utah’ array implanted in right or 134 

left hemisphere visual area V4. Two of those subjects also had 16-channel U-probe recordings from the 135 

frontal eye field (FEF), located in the anterior bank of the arcuate sulcus. Data from two sessions were 136 

used for three of the subjects: one session recorded shortly after the array implant, and one session 137 

recorded at least four months later. For the fourth subject, only a single recording session recorded shortly 138 

after the array implant was used because there were no later recordings from that array. These recordings 139 

were collected and sorted as part of previous studies which describe the experimental preparations in 140 

detail (Khanna, Snyder, and Smith 2019; Snyder et al. 2014; Snyder et al. 2015; Snyder and Smith 2015). 141 

Data in the training set were assigned a label of 0 or 1. If there were multiple single-units identified by the 142 

sorter on a particular channel, they were not distinguished in the training set and all were treated as spike 143 

waveforms (labeled as 1).  We only included data from channels with very distinct spike waveforms, 144 

defined as channels with a signal-to-noise ratio (SNR) greater than 2.5 (Kelly et al. 2007). These channels 145 

still included both noise (labeled as 0) and spike waveforms (labeled as 1). The aim of using only the high 146 

SNR channels in the training set was to emphasize relatively well-isolated single-unit action potential 147 

shapes while also exposing the network to a variety of noise waveforms. Additionally, excluding low 148 

SNR channels resulted in a training set with a relatively even distribution of spike and noise waveforms 149 

(47.5% spikes, 52.5% noise).  150 

Overall, the network training set consisted of 24,810,795 waveforms from four monkeys, two 151 

brain regions (V4 and FEF), two recording devices (Utah array and U-probe), and different array implant 152 

ages. These waveforms were classified as spikes or noise using the offline spike-sorting technique 153 

described above (Fig. 1a).  154 

Table 1. Training data set information, including time since implant (array age), brain area (RH-
right hemisphere, LH-left hemisphere), and number of recording sessions. Utah arrays contained 96 
channels and U-Probes had 16 channels.  
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 Recording device Brain area Time since implant # of sessions 
Monkey Wi Utah array RH V4 ~1 month 1 

Utah array RH V4 ~11 months 1 
U-Probe RH FEF - 1 

Monkey Ro Utah array LH V4 <1 month 1 
Utah array LH V4 ~8 months 1 
U-Probe LH FEF - 1 

Monkey Bo Utah array RH V4 <1 month 1 
Utah array RH V4 ~4 months 1 

Monkey Bu Utah array RH V4 ~1 month 1 
 155 

Testing data set 156 

We used recordings from two additional subjects, not included in the training set, for testing to 157 

ensure that the trained network was generalizable to subjects not included in its training. The two testing 158 

data set subjects (Monkey Pe and Monkey Wa) each had two 96-electrode ‘Utah’ arrays implanted, one in 159 

visual area V4 and one in dorsolateral PFC (on the prearcuate gyrus just medial to the principal sulcus, 160 

area 8Ar). Both arrays were implanted in the right hemisphere for Monkey Pe and in the left hemisphere 161 

for Monkey Wa. Only data recorded from PFC were used for the complete set of analyses (Table 2) 162 

because this provided a matched data set from two monkeys for the purpose of assessing the impact of our 163 

method on decoding and because it allowed us to test our network’s generalizability in situations where 164 

the data were recorded from a different region than the training set. However, we repeated some of the 165 

analyses in held out data from V4 and similarly found an improvement in decoding with our network 166 

(Supplementary Figure 5, https://doi.org/10.6084/m9.figshare.11808492.v1). Recordings within 50 days 167 

of the array implant were considered early sessions and recordings from over 50 days after the implant 168 

were considered late sessions (see Table 2 for session counts by subject). For Monkey Pe, the thresholds 169 

across channels were similar for all recording sessions (90% of channels had thresholds between -39 and -170 

20 μV, median: -29 μV). For Monkey Wa, the thresholds were more permissive for the later recording 171 

sessions (> 6 months after the array implant) as the experimenters sought to extract the maximum 172 

remaining signal in arrays that were decreasing in recording quality. The median threshold of Monkey 173 

Wa’s early sessions was -32 μV (90% between -43 and -23 μV), and the median threshold of the later 174 

sessions was -15 μV (90% between -29 and -12 μV). The waveforms in the testing data set were also 175 
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spike-sorted offline via the technique described above for a comparative analysis between our network 176 

classifications and offline spike-sorting. 177 

Table 2. Testing data set information, including time since implant (array age), brain area (RH-
right hemisphere, LH-left hemisphere), and number of recording sessions. 
 Recording device Brain area Time since implant # of sessions 
Monkey Pe Utah array RH PFC 11-43 days 14 

 RH PFC 80-147 days 22 
Monkey Wa Utah array LH PFC 27-40 days 5 

 LH PFC 180-224 days 11 
 178 

Neural Network  179 

Using TensorFlow (Abadi et al. 2016) and Keras (Chollet 2015), we developed a neural network 180 

to classify data segments as spike or noise waveforms (Fig. 1b). The network accepts a waveform 181 

segment with ‘s’ samples (s=52), which passes through a hidden layer with ‘n’ units (n=50) that uses a 182 

rectified linear unit (ReLU) activation function. The product of the hidden layer passes through one 183 

output unit and then the network applies a sigmoid function to its output.  184 

With the aforementioned training waveforms, the network was trained to maximize accuracy 185 

based on binary labels (0 for noise, 1 for spikes) using an Adam optimization algorithm (Kingma and Ba 186 

2015) and a binary cross-entropy loss function in batch sizes of 100. 187 

For a single waveform input run through the trained network, the output was a value between 0 188 

(likely not a spike) and 1 (likely a spike), which represented the network’s assessment of the likelihood 189 

that the input waveform was a spike. While this output value was not a conventional probability, we refer 190 

to it as the probability of being a spike or P(spike) because it was a likelihood metric scaled between 0 191 

and 1. Supplementary Figure 1 (https://doi.org/10.6084/m9.figshare.11808492.v1) provides more 192 

intuition regarding the hidden layer units and how the network assessed waveforms. In order to classify 193 

the waveforms using the network’s output probability, we set a minimum P(spike) for a waveform to be 194 

classified as a spike. We referred to this minimum probability as the γ threshold. A γ threshold of 0 195 

classified all of the waveforms that were captured for the session as spikes; this is often referred to as 196 
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‘threshold crossings’ in the literature. Increasing γ resulted in fewer waveforms classified as spikes 197 

because the P(spike) cutoff was higher. 198 

We refer to our neural network as Not A Sorter (NAS), because it classifies waveforms as spikes 199 

or noise but does not attempt to sort the spikes into separable single-units.  Custom Python and MATLAB 200 

scripts used to train the neural network and classify waveforms, as well as sample training and testing 201 

data, are available at https://doi.org/10.6084/m9.figshare.11808492.v1. The NAS software is also 202 

integrated into our custom MATLAB “Spikesort” package (https://github.com/smithlabvision/spikesort).  203 

Memory-guided saccade task 204 

The two testing data set subjects (Monkey Pe and Monkey Wa) performed a memory guided 205 

saccade task (Fig. 2a). Each subject fixated on a central point for 200 ms. Then, a target stimulus flashed 206 

at a set amplitude and direction for 50 ms, followed by a 500 ms delay. There were a total of 40 possible 207 

conditions: the radius could be one of five eccentricities and the target direction could be one of eight 208 

(spaced in 45° steps). After the delay, the fixation point disappeared instructing the subject to make a 209 

saccade to the location where the target flashed. For some sessions, during the saccade the target 210 

reappeared to help the subject; however, for all analyses we only used data from the beginning of the 211 

delay period (i.e. prior to the saccade). Subjects were rewarded with water or juice for making a saccade 212 

to the correctly remembered target location. For all decoding analyses, the decoded condition was the 213 

target location. Trials at a single eccentricity (Monkey Pe: 9.9°, Monkey Wa: ~7.6°) were used to 214 

maximize the number of recording sessions that could be compared. Thus, there were eight unique target 215 

locations to decode. 216 

Only rewarded trials were analyzed. The number of trial repeats per condition varied over 217 

sessions. Monkey Pe had an average of 43 repeats per session (range: 25-75, sd: 17) and Monkey Wa had 218 

an average of 62 repeats per session (range: 51-83, sd: 11) for each target condition. 219 

Decoding 220 

To classify target direction prior to movement from spikes in PFC , we used a Poisson Naïve 221 

Bayesian decoder (Fig. 2b). All decoding analyses were performed offline. Waveforms classified as 222 
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spikes from 300 ms to 500 ms after fixation (i.e. 50 ms after stimulus offset) were used for decoding, 223 

while waveforms classified as noise were discarded. Each channel was considered a single decodable unit 224 

with one exception: to calculate decoding accuracy using manual spike-sorting, if there were multiple 225 

single-units identified by the manual spike-sorting method on a channel, each single-unit on that channel 226 

remained separate for the purposes of decoding. Units with an average firing rate across trials below 0.25 227 

spikes per second were discarded. We allocated training and test trials using two different methods. For 228 

one analysis, we assigned 80% of the trials from each session to the training set and the remaining 20% to 229 

the test set (Fig. 4a,b). For the remaining analyses, we wanted two test sets, so we used 60% of the trials 230 

for training and 20% for each of the two test sets. The two test sets allowed us to search for an optimal γ 231 

threshold using the first test set and cross validate this value with the second test set. Training and test 232 

data were rotated such that each trial was used for a test set only once. 233 

Our decoding algorithm created a Poisson distribution model for each target location (𝜃) using 234 

the average spike count for each unit (𝑛௦௣௜௞௘) in the training set. For each test trial, the target location 235 

with the maximum prediction probability, 𝑃൫𝜃ห𝑛௦௣௜௞௘൯, was the predicted label. In equation (1), 236 

𝑃൫𝑛௦௣௜௞௘ห𝜃൯ was calculated using the Poisson model developed with the training trials: 237 

𝑃൫𝜃ห𝑛௦௣௜௞௘൯ ൌ
𝑃൫𝑛௦௣௜௞௘ห𝜃൯ ∗ 𝑃ሺ𝜃ሻ

𝑃ሺ 𝑛௦௣௜௞௘ሻ
 

Decoding accuracy was calculated as the ratio of the number of correct prediction labels to the 238 

total number of predictions. We used 5-fold cross validation and computed the average decoding accuracy 239 

across folds.  240 

 241 

Results 242 

We trained a one-layer neural network called Not a Sorter (NAS) to evaluate the likelihood that a 243 

neural waveform was a spike. We used a diverse set of waveforms in the training set from different brain 244 

regions, subjects, and array implant ages (time since array implant) in order to expose the network to a 245 

variety of waveform types. Each waveform in the training set was assigned a binary label of noise (0) or 246 
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spike (1) via offline spike-sorting with manual refinement by researchers. The network was also exposed 247 

to variability in spike classification due to manual sorting because different researchers sorted different 248 

sets of waveforms in the training data. The network learned to assess how spike-like a waveform was 249 

based on binary labels, but itself output a continuous value between 0 and 1 for each waveform allowing 250 

for tunable classification. We referred to this output as the probability of being a spike or P(spike). The 251 

network classified 1000 waveforms in less than one millisecond on average (computed on a 2011 iMac 252 

with a 2.8 GHz Intel Core i7 processor). In a 10 ms bin, 1000 waveforms would be the expected output of 253 

1000 channels each recording from a single-unit with a firing rate of 100 spikes/s. Thus, our network 254 

could be easily integrated to operate within real time computing constraints. In a realistic simulation of a 255 

real time application of our network, waveforms captured from 192 channels in a 20 ms time step could 256 

be classified in less than 0.1 ms on average, easily sufficient for the updating of a BCI cursor or other 257 

feedback. 258 

Qualitative assessment of NAS classifications 259 

To assign each NAS-classified waveform a binary spike or noise label, we set a parameter called 260 

the γ threshold, which was the minimum P(spike) a waveform needed to be considered a spike waveform. 261 

We found that even a low γ threshold, such as γ=0.20 (Fig 3a), assigned most waveforms to classes that a 262 

human spike-sorter would deem appropriate. Most spike-sorters and spike-sorting algorithms search for 263 

waveforms with a canonical action potential shape – an initial voltage decrease followed by a sharp 264 

increase, a narrow peak, and a return to baseline. Increasing the γ threshold to 0.70 (i.e. only waveforms 265 

assigned a P(spike) > 0.70 were considered spikes) mimicked the effect of more selective spike-266 

classification (Fig 3b), where the percentage of spike waveforms on the channel decreased since more 267 

waveforms were placed in the noise class and the remaining spike waveforms had a clearer single-unit 268 

shape. Considering all of the waveforms from this same channel, the range of P(spike) values coincided 269 

well with our subjective impression of the match of individual waves with a canonical action potential 270 

shape (Fig 3c), and this was also true across all channels from this array (Fig 3d). Thus, tuning the γ 271 
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threshold from low values (near 0) to high values (near 1) resulted in a shift from a more permissive to a 272 

more restrictive regime. 273 

Quantitative assessment of NAS classifications with decoding 274 

Although by eye the network appeared to classify waveforms reasonably well, we sought to 275 

objectively assess its performance by measuring its effect on offline decoding accuracy. Specifically, we 276 

hypothesized that decoding using spikes classified by our network would be better than using threshold 277 

crossings. We applied our network to a set of data recorded from PFC on which the network had not been 278 

trained. First, we set the γ threshold and discarded any waveforms with a P(spike) below the threshold. 279 

Next, we split the data into training and testing sets. We trained the decoder using the training set to 280 

decode the task condition (the remembered location, out of 8 possibilities) during the delay period of a 281 

memory-guided saccade task on each trial (see Methods). Then, we used the trained decoder to assess 282 

decoding accuracy in the test set(s). We repeated this process for the same data set using multiple γ 283 

thresholds between 0 (i.e., all threshold crossings were considered spikes) and 0.95 (i.e., only waveforms 284 

assigned a 0.95 or greater probability by the network were considered spikes). Since only waveforms 285 

classified as spikes were used for decoding, as the γ threshold increased, fewer waveforms remained for 286 

decoding.  287 

Initially, we used 80% of trials to train the decoder and the remaining to test it. We analyzed 288 

cross-validated decoding accuracy as a function of γ (sample recording sessions in Fig. 4a,b). Chance 289 

decoding was 12.5% (1 out of 8) and was verified by computing decoding accuracy for shuffled test trials. 290 

The decoding accuracy using threshold crossings (γ = 0) for the sample recording sessions in Fig. 4a and 291 

4b was close to chance levels for Monkey Pe (12.8%) and was also low for Monkey Wa (20.1%). Using 292 

the network’s classifications improved decoding accuracy relative to using threshold crossings. The peak 293 

decoding benefit of using the network’s spike classifications occurred at a low γ threshold (Monkey Pe: γ 294 

= 0.16, Monkey Wa: γ = 0.16). Being very selective about the spikes used for decoding (by setting a high 295 

γ threshold) did not have a large impact on decoding accuracy, which appeared to plateau after the peak. 296 

We found that increments of the γ threshold did not remove the same number of waveforms. A substantial 297 
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proportion of waveforms were removed at the lowest γ threshold tested (especially in Monkey Pe), and 298 

small increments of the γ threshold as it approached a value of 1 could also result in large increases in the 299 

proportion of removed waveforms (especially notable in Figure 4b). For reference, when we manually 300 

spike-sorted the same data offline (see Methods), we discarded 89.2% of the waveforms in Figure 4a and 301 

71.5% of the waveforms in Figure 4b. These values were similar to the percentage of waveforms the 302 

network removed at higher γ thresholds. 303 

Ideally, for the sake of simplicity during online BCI experiments, we could select a single γ 304 

threshold and use it for all recording sessions. We wanted to find the lowest γ threshold that improved 305 

decoding accuracy for the majority of recording sessions. We focused on lower γ thresholds because it 306 

was a conservative approach, and because our intuition from single channels and results in example 307 

sessions (Figure 4) showed it could have the greatest benefit for decoding. In order to cross-validate both 308 

our decoder and our γ threshold selection for the remaining analyses we created two test sets for decoding 309 

(training set: 60% of trials, test set 1: 20% of trials, test set 2: 20% of trials). Our general strategy was to 310 

use the first test set to identify a γ threshold that optimized decoding accuracy. We then cross-validated 311 

this selection by applying the chosen γ threshold to the data in the second test set and computing decoding 312 

accuracy for those unseen trials.  313 

As described above, after training the decoder for each session using the training trials, we 314 

calculated decoding accuracy with the first set of test trials at each γ threshold. We found the maximum 315 

decoding accuracy at any γ threshold greater than 0, and then searched for the lowest non-zero γ threshold 316 

that resulted in a decoding accuracy within 99% of that maximum (Fig. 4c, d). Since the optimal γ 317 

threshold varied between sessions, we computed the median across sessions of these γ values and rounded 318 

it to the nearest tested value (Monkey Pe: γ = 0.2, Monkey Wa: γ = 0.08).  We then used that median 319 

value as the γ threshold for all sessions in the second test set and analyzed the change in decoding 320 

accuracy from decoding using threshold crossings in that same test set, which we termed ∆ % decoding 321 

accuracy (Fig. 4e, f). Combining sessions from both animals, the average improvement in decoding 322 

accuracy was 3.9% (2-tailed, Wilcoxon signed rank test; across subjects: p < 0.0001, Monkey Pe: p < 323 
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0.0001, Monkey Wa: p = 0.057). Thus, our network’s classifications tuned to the previously described γ 324 

thresholds resulted in a net benefit for decoding performance across sessions compared to using threshold 325 

crossings. Although we could tune the γ threshold for each session to maximize the decoding, our choice 326 

of a fixed γ threshold was more consistent with the use of our network in an online decoding context, 327 

where it would be desirable to set a constant γ threshold at the start of each session rather than tuning it as 328 

a free parameter. However, an alternative strategy would be to collect a small data set at the start of each 329 

day to find the optimal γ value, and then continue experiments for the remainder of that day using the 330 

chosen value. 331 

Given the ability of our network to improve decoding accuracy beyond that observed with 332 

threshold crossings, we took advantage of our longitudinal recordings in a fixed paradigm to understand 333 

how our network’s performance varied as a function of time. Since there is mixed evidence in the 334 

literature regarding decoding stability with long-term array implants, we were specifically interested in 335 

how the passage of time since array implant (array implant age), and concomitant degradation of 336 

recording quality, could influence our network’s performance. 337 

Impact of array age 338 

 First, we assessed how the overall quality of our neural data changed as a function of time. As the 339 

time since the array implant increased, the percentage of waveforms that the network assigned a very low 340 

probability of being a spike (P(spike) < 0.02) also increased (Fig 5a; Spearman’s correlation, Monkey Pe: 341 

ρ = 0.87, p<0.0001; Monkey Wa: ρ = 0.90, p<0.0001). Conversely, the percentage of waveforms assigned 342 

higher probabilities of being a spike (P(spike) > 0.70) decreased over time (Fig 5b; Monkey Pe: ρ = -0.87, 343 

p<0.0001; Monkey Wa: ρ = -0.94, p<0.0001). These classification changes were consistent with our 344 

qualitative observations that the arrays showed an increasing proportion of multi-unit activity (relative to 345 

single-unit activity) and apparent noise over time. These changes were also reflected in our manual spike-346 

sorting (performed offline on the same data for previous studies, see Methods) where we discarded a 347 

smaller percentage of waveforms from earlier sessions that were 0-50 days post-implant (mean % 348 

waveforms removed +/- 1 sd, Monkey Pe: 36.1 +/- 8.2%; Monkey Wa: 46.1 +/- 12.2%) and a larger 349 
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percentage in later sessions that were greater than 50 days post-implant (mean % waveforms removed +/- 350 

1 sd, Monkey Pe: 87.0 +/- 7.7%; Monkey Wa: 77.8 +/- 10.3%). We further found that the ratio of the 351 

percentage of waveforms assigned a high P(spike) to the percentage of waveforms assigned a low 352 

P(spike) by the network served as a proxy for a signal to noise ratio metric, and it was highly correlated 353 

with the median signal to noise ratio (across channels) of the array in each session (Supplementary Figure 354 

2, https://doi.org/10.6084/m9.figshare.11808492.v1). Both signal to noise metrics decreased over time, 355 

and the decoding accuracy with threshold crossings also decreased the longer the array had been 356 

implanted (Fig 5c; Monkey Pe: ρ = -0.86, p<0.0001; Monkey Wa: ρ = -0.69, p=0.004).  357 

Given the change in distribution of the types of waveforms present during the session over time, 358 

we tried to optimize the γ threshold based on time since array implant. We used the same method as in 359 

Fig. 4c-d to compute the γ thresholds with approximately maximum decoding (within 1%), except we 360 

calculated the median of the early sessions (recorded 0-50 days post implant) and the median of the late 361 

sessions (recorded >50 days post implant) separately. This did not prove to be a useful optimization as the 362 

median values were similar between early and late sessions in both Monkey Pe (γearly = 0.25, γlate = 0.18) 363 

and Monkey Wa (γearly = 0.06, γlate = 0.08). Decoding accuracy compared to threshold crossings (∆ % 364 

decoding accuracy) was significantly increased in Monkey Pe (Figure 5d, 2-tailed, Wilcoxon signed rank 365 

test, p < 0.0001) and was not significantly helped or hurt in Monkey Wa (p = 0.09). In line with the trends 366 

in signal and noise over time, the decoding accuracies from later sessions (> 50 days post implant) were 367 

helped more by the network classifications in both subjects than those from earlier sessions (Figure 5d, 368 

Wilcoxon rank sum, Monkey Pe: p = 0.01; Monkey Wa: p = 0.01). When we normalized the decoding 369 

accuracy at each γ threshold by the decoding accuracy using threshold crossings for each session and 370 

separately averaged across early and late sessions, the increased benefit of using the network in the later 371 

sessions compared to the earlier sessions was clear (Figure 5e). 372 

Altogether, these results provide additional evidence that factors such as time since the array was 373 

implanted and signal to noise ratio influence decoding accuracy and affect how noise removal impacts 374 

decoding performance. Despite decreasing signal quality and increasing noise waveforms, the effect of 375 
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using our network classifications for noise removal prior to decoding was consistent in that it was most 376 

often beneficial for decoding and at worst minimally detrimental. We confirmed that these results were 377 

not affected by poor γ threshold selection by using the maximum decoding accuracy regardless of γ 378 

threshold to calculate ∆ % decoding accuracy (Supplementary Figure 3a, 379 

https://doi.org/10.6084/m9.figshare.11808492.v1). Our results were also not substantially influenced by 380 

variability in the number of trials across sessions (Supplementary Figure 3b, 381 

https://doi.org/10.6084/m9.figshare.11808492.v1). An even simpler alternative to our network might be 382 

to adjust the voltage threshold for capturing waveforms, to make it more or less permissive. We found 383 

that increasing this threshold (making it more negative and therefore excluding the waveforms that did 384 

not exceed it) did not improve decoding performance (Supplementary Figure 4, 385 

https://doi.org/10.6084/m9.figshare.11808492.v1), indicating that our network was not merely acting to 386 

exclude small amplitude waveforms. Lastly, we confirmed that our network was beneficial for decoding 387 

in data recorded from another brain region (V4) with different Utah arrays in the same sessions from the 388 

same animals in the test data set (Supplementary Figure 5, 389 

https://doi.org/10.6084/m9.figshare.11808492.v1). 390 

Comparison to spike-sorting 391 

 In light of the inconsistent effect of spike-sorting on decoding performance in the literature 392 

(Christie et al. 2015; Dai et al. 2019; Fraser et al. 2009; Todorova et al. 2014), we sought to evaluate the 393 

relative merits of manual spike-sorting and our network classifier on decoding accuracy in our data. Our 394 

goal was to place our new method (using our network to remove noise but not sort the data) in context of 395 

previous work that evaluated the impact of human supervised spike-sorting on decoding. We took 396 

advantage of the offline spike-sorting that had already been applied to these data and calculated the 397 

decoding accuracy of spike-sorted data (Fig. 6, data aggregated across subjects in the marginal 398 

histograms). Decoding using spike-sorted waveforms was better than using threshold crossings (Fig. 6 399 

right marginal; 2-tailed, Wilcoxon signed rank test, p < 0.0001) similar to decoding with our network 400 

classifications (Fig. 6 top marginal, data from Fig. 5d aggregated across subjects; p < 0.0001). Our 401 
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network’s classifications were at least as helpful as manual spike-sorting for decoding relative to using 402 

threshold crossings (Fig. 6 center; paired, 2-tailed, Wilcoxon signed rank test, Monkey Pe: p = 0.75; 403 

Monkey Wa: p = 0.09). Furthermore, the automated real time operation of our network confers a distinct 404 

advantage over manual spike-sorting.  405 

Together, our analyses demonstrate that our network was able to produce classifications of spikes 406 

and noise that matched our qualitative expectations and could be tuned quantitatively to adjust its 407 

permissiveness. Compared to using threshold crossings, our network’s classifications most often led to an 408 

improvement or minimally harmful change in decoding accuracy, indicating that there was usually little 409 

downside to the application of our network. These outcomes are valuable particularly in the context of a 410 

BCI where real time operation and maximal decoding accuracy are prized.  411 

Discussion 412 

By leveraging our pool of previously spike-sorted data, we trained a neural network classifier to 413 

separate spikes from noise in extracellular electrophysiological recordings in real time. To assess the 414 

value of this method, we used an objective criterion – the ability to decode remembered location from 415 

prefrontal cortex in a memory-guided saccade task. We found that we could set a fixed γ threshold that 416 

resulted in an improvement or at worst a small change in decoding accuracy for the majority of sessions, 417 

and this effect persisted even as recording quality decreased over time. Compared to spike-sorting 418 

(performed offline with substantial manual labor involved), classifying spikes with our network had 419 

similar effects on decoding accuracy relative to threshold crossings and was less tedious. 420 

Training the network 421 

Developing a neural network trained on spike-sorted data allowed us to capture the essence of the 422 

rules by which experienced researchers distinguish spikes from noise without explicitly defining all the 423 

variables and exceptions, a standard challenge in spike classification (Wood et al. 2004). Several studies 424 

have demonstrated the promise of using a neural network trained on spike-sorted or human-verified data 425 

for spike detection and classification (Chandra and Optican 1997; Kim and Kim 2000; Lee et al. 2017; 426 

Racz et al. 2019; Saif-Ur-Rehman et al. 2019). Lee et al. (2017), Racz et al. (2019), and Saif-Ur-Rehman 427 



                                                                              [A neural network for online spike classification] 

 

18

 

et al. (2019) used spike-sorted data to train their respective neural networks and developed more complex 428 

network architectures than the one-layer network we explored in this work. Each of these studies was 429 

validated by the performance of the network in correctly labeling held out spiking waveforms. The 430 

intention of our simple architecture was not to compare its performance to existing spike detection and 431 

sorting algorithms, but rather to explore how a relatively simple, fast, and trainable noise removal method 432 

could improve decoding performance. 433 

We found that a simple neural network was quite good at capturing the nuances of the training 434 

set. Experts often disagree on how to classify certain instances of low SNR waveforms. The network was 435 

sensitive enough to capture a researcher’s specific spike classification tendencies, such that a network 436 

trained on data classified by a particular individual performed better on classifying test data from that 437 

individual than from other expert spike classifiers. Given this level of sensitivity, a reasonable concern 438 

would be the presence of misclassifications in our training set, as human spike-sorting is both subjective 439 

and prone to error (Pedreira et al. 2012; Rossant et al. 2016). However, the network was trained on many 440 

waveforms to minimize the impact of any confounders, including waveforms from multiple subjects, 441 

brain regions, and human spike-sorters. Additionally, by training the network on labeled data with some 442 

variability introduced by human sorters, the network learned to make stronger predictions (higher 443 

P(spike) values) for obvious spike waveforms and weaker predictions for more ambiguous waveforms. 444 

We then leveraged this range of prediction values to create a tunable parameter for our classifications (i.e. 445 

the γ threshold).  446 

An ideal and even more generalizable training set might include waveforms from different 447 

research groups, artificially simulated neural waveforms and noise in which ground truth could be 448 

established, and/or pre-defined quantities of certain types of spikes (e.g. shifted spikes, slow and fast 449 

spike waveforms) and noise (e.g. electrical artifacts) to target what the network learns. However, no 450 

matter how much training data is used, an ideal training set could only be defined in the context of 451 

objective metrics to assess the trained network’s performance. 452 

Evaluating the network with decoding 453 
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We compared decoding performance with our network classifications to performance with 454 

threshold crossings, which are the current standard in the BCI community. We used independent test data 455 

to assess the effect of classifications from our trained network on decoding accuracy. Although the 456 

expectation might be that removing noise from neural data would improve decoding, historically doing so 457 

with spike-sorted classifications has had mixed effects, in some cases hurting performance (Todorova et 458 

al. 2014). Nevertheless, many BCIs currently operate with some amount of online noise removal or visual 459 

inspection (such as disabling visibly noisy channels) to preprocess neural data before decoding (Chase, 460 

Kass, and Schwartz 2012; Hochberg et al. 2006; Homer et al. 2013; Sadtler et al. 2014). The question of 461 

whether to spike-sort BCI data prior to decoding or simply use all threshold crossings has been a source 462 

of debate with no clear resolution. Our work reframes this question to investigate how an automated noise 463 

removal method could be used to aid decoding. 464 

Our findings provide additional support, across multiple sessions over time, that removing certain 465 

noise waveforms prior to decoding provides an advantage over using all threshold crossings, consistent 466 

with findings from Fraser et al. (2009) and Christie et al. (2015). Although there were a few occasions 467 

when decoding accuracy with threshold crossings was better than decoding using the network, it was 468 

never by more than a few percent. Although these few instances might occur merely due to noise in our 469 

estimation of decoding accuracy, another possible explanation is that a lack of non-neural noise on the 470 

array on certain days would limit the benefits of our network and thereby increase the relative likelihood 471 

that waveforms valuable for decoding were removed.  472 

Contrary to the benefits of spike-classification that we observed, a study by Todorova et al. 473 

(2014) found that using spike-sorted waveforms hurt decoding when noise waveforms were discarded. It 474 

is difficult to speculate why removing noise waveforms hurt decoding in their study but helped it in ours 475 

given that our methods of noise removal were different. They also found assigning noise waveforms from 476 

spike-sorting to a new unit, rather than discarding them, improved decoding relative to threshold 477 

crossings. Yet, when we assigned our noise waveforms to separate units, decoding accuracy was worse or 478 

unchanged compared to discarding noise waveforms both with our spike-sorted classifications and our 479 
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network classifications (Supplementary Figure 6, https://doi.org/10.6084/m9.figshare.11808492.v1). 480 

Importantly, we defined ‘noise’ operationally as any waveform that did not exceed the γ threshold of our 481 

network setting. This definition of noise surely included both electrical artifacts as well as indistinct 482 

shapes that were actually neural in origin. Removal of waveforms from the former class could only help 483 

decoding, but removal of the latter class might actually harm decoding if the multi-unit activity contained 484 

in those waveforms had information about the condition of interest for decoding. 485 

Apparent noise in neuronal activity, in addition to changing the activity of single electrode 486 

channels, can also be correlated across channels. In the activity of pairs of single neurons, such 487 

fluctuations in trial-to-trial correlated variability are sometimes termed “noise correlation” (also known as 488 

spike count correlation, or rsc). Noise correlation can have a substantial impact on the ability of a decoder 489 

to extract information from neuronal populations (Averbeck, Latham, and Pouget 2006; Kohn et al. 490 

2016), and the activity of multi-unit groups of neurons has a higher noise correlation than that of the 491 

constituent pairs of neurons (Cohen and Kohn 2011). Since our network acted on threshold crossings, 492 

which typically contain the activity of many individual neurons, it likely also impacted the magnitude of 493 

the noise correlation between channels. Our decoder assumed that the noise on each unit was 494 

independent, a choice common to BCI, which permitted training the decoder with a smaller quantity of 495 

trials than is necessary to learn the covariance structure in the population. The effect of our network on 496 

decoding surely depends on not only the structure of the network and the choice of γ threshold, but also 497 

the structure of noise present in the population and the sensitivity of the decoder to that noise.  498 

 In addition to understanding how the type of noise present in the data impacts decoding, it may 499 

also be useful to evaluate the types of neural waveforms that contribute to decoding. Different levels of 500 

single and multi-unit activity are captured during a neural recording depending on the threshold set by the 501 

researcher (i.e. the minimum voltage level at which the neural activity is marked as a spike). By adjusting 502 

this threshold, we change the candidate waveforms available for decoding. Oby et al. (2016) found that 503 

the optimal threshold depended on the type of information being extracted from neural activity. Another 504 

study found that higher thresholds, which captured less multi-unit activity, resulted in worse decoding of 505 
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direction from M1 (Christie et al. 2015). These studies in the context of our own findings highlight the 506 

need to identify specific types of waveforms that contribute to the decodable information in different 507 

brain regions and task contexts.  508 

Other variables that impact decoding accuracy 509 

A key concern for practical implementation of BCIs is decoding stability. Array recordings often 510 

get visibly noisier over time, potentially as a result of an immune response to the implant (Ward et al. 511 

2009) or a physical shift in position (Perge et al. 2013). In our study, as the time since array implant 512 

increased there were more “low probability” waveforms and fewer “high probability” waveforms, 513 

indicating the arrays had fewer well-defined single-unit waveforms. In line with this, several other studies 514 

with chronic array implants have found that the number of single-units decreased over time (Dickey et al. 515 

2009; Downey et al. 2018; Fraser and Schwartz 2012; Tolias et al. 2007). Nevertheless, there are mixed 516 

findings on the stability of decoding performance in chronic array implants. Some studies have found 517 

decoder performance with threshold crossings remained stable over time (Chestek et al. 2011; Flint et al. 518 

2016; Gilja et al. 2012; Nuyujukian et al. 2014); however, other studies, including our own, observed a 519 

decrease in decoding accuracy over time (Perge et al. 2014; Wang et al. 2014). Unlike the previous 520 

literature investigating the effects of threshold crossings and spike-sorting on decoding performance, we 521 

used neural activity from PFC, where decoding accuracy is typically lower (Boulay et al. 2016; Jia et al. 522 

2017; Meyers et al. 2008; Parthasarathy et al. 2017; Rizzuto et al. 2005; Spaak et al. 2017; Tremblay et al. 523 

2015) than in motor cortex (Collinger et al. 2013; Koralek et al. 2012; Masse et al. 2014; Sadtler et al. 524 

2015). Stability of decoding accuracy with array age may also depend on the brain region of the implant, 525 

the subject’s task, initial decoding performance, and the choice to train the decoder daily (Chestek et al. 526 

2011; Gilja et al. 2012) or hold it constant (Nuyujukian et al. 2014). The beneficial effects of our network 527 

on decoding were particularly salient in the case of older array implants, where decoding accuracy had 528 

decreased over time.  529 

Limitations of NAS 530 
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Our network, NAS, is certainly not sufficient to achieve the goal of obtaining well-isolated 531 

single-units. NAS evaluates each waveform independently and therefore, cannot distinguish between 532 

multiple units recorded on the same channel. A concern for online decoding is that pooling spikes on a 533 

given channel could hurt decoding if there are multiple single-units that respond to the task conditions 534 

differently. This did not appear to be a major issue in our data because we did not find a substantial 535 

difference between decoding performance with pooled spikes from the network classifications and 536 

decoding with well-isolated single-units from spike-sorting (Fig. 7).  537 

NAS was trained using previously sorted data available in our laboratory, rather than simulated 538 

spike waveforms and noise (Chaure, Rey, and Quian Quiroga 2018) or a ground truth data set 539 

(Anastassiou et al. 2015; Neto et al. 2016). This choice had the potential to limit the abilities of NAS to 540 

distinguish spikes from noise, as our training data was subject to errors and biases of individual human 541 

sorters. However, given the rarity of such ground truth data sets, and the particular features of spikes that 542 

are unique to brain areas and the recording hardware in a laboratory, we also view this choice as a 543 

strength. Nearly any laboratory performing extracellular electrophysiology would have such training data 544 

available, already suitable for their particular brain areas and recording methods. Thus our method is 545 

highly customizable for any laboratory, and we view its focus on human-sorted training data as a strength 546 

for the particular application to which it was designed. 547 

Additionally, NAS does not take advantage of temporal or spatial information. When manually 548 

spike-sorting, sorters often use the inter-spike interval and the stationarity of a candidate unit over the 549 

recording to decide whether those waveforms could sensibly belong to a single-unit. For dense arrays and 550 

tetrodes, leveraging spatial information is vital for isolating spikes that appear on multiple channels 551 

(Chung et al. 2017; Pachitariu et al. 2016). However, such dense recordings are still rare relative to the 552 

use of sparse electrodes in electrophysiological experiments. Thus, for traditional offline data processing, 553 

NAS could be used as a quick preprocessing step to remove noise and make preliminary spike 554 

classifications but must be accompanied by another algorithm or manual spike-sorting to isolate single-555 

units.  556 
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Extensions for NAS 557 

Our neural network-based spike classifier is a promising tool for both offline preprocessing of 558 

neural data and improving online decoding performance. However, in designing our network we only 559 

scratched the surface of many potential avenues to address these challenges. We found that using 560 

networks with different numbers of hidden units and layers did not substantially alter decoding accuracy 561 

even though there were some differences in how these different sized networks classified waveforms. 562 

Given that our network was relatively simple, it would be possible to implement similar operations with 563 

alternative algorithms such as logistic regression. We chose a neural network because it was easily 564 

trainable from existing data and there are many ways to modularly build upon its complexity. Although 565 

we opted to use 50 hidden units and one hidden layer, it is possible that a more complex network with 566 

additional filtering operations and more categories of waveform classification may result in improved 567 

decoding performance and could help to create a more robust spike classifier with the ability to 568 

distinguish multi-units and single-units for offline analyses. However, our work had the value of 569 

exploring how a smaller network trained on spike-sorted data could identify features that were most 570 

valuable for decoding.  571 

While training on spike-sorted data from channels with well-isolated single-unit action potentials 572 

(SNR>2.5) was an efficient choice because of its easy availability, it may not be the best choice in 573 

regimes where canonical spike-shapes do not necessarily carry the most decodable information compared 574 

to less well-defined multi-unit activity (Chestek et al. 2011; Stark and Abeles 2007). If the goal is to 575 

improve decoding performance, it might be valuable to train a network on waveforms from low SNR 576 

channels that contain more multi-unit waveforms or to select waveforms or units that positively contribute 577 

to decoding. Ventura and Todorova (2015) developed a method for identifying the information 578 

contribution of units for decoding. Such a method could be used to develop a training set of neural 579 

waveforms that are assigned a label based on how much they positively or negatively contributed to 580 

decoding. Alternatively, if the goal is to discard specific types of artifacts, then it might be ideal to train 581 

the network on predominantly low SNR channels that contain those artifacts.  582 
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Beyond Bayesian decoding, it would be valuable to assess how NAS classifications impact other 583 

neural data analyses. A recent study found that spike-sorting did not provide much benefit over threshold 584 

crossings for estimating neural state space trajectories (Trautmann et al. 2019), a powerful demonstration 585 

that the principles of neural circuits may be accessible in neuronal population recordings even when 586 

single units are not identified. However, this analysis was performed on trial-averaged data. Using NAS 587 

classifications might be more helpful in single-trial data where estimating trajectories through neural state 588 

space could be negatively influenced by the momentary entry of noise into recordings. Another 589 

interesting application would be to assess how NAS classification impacts the measurement of neural 590 

noise correlations, which have been shown to be affected by the stringency of spike-sorting (Cohen and 591 

Kohn 2011). Using NAS classifications with a low γ threshold could prove to be a useful noise removal 592 

tool for applications that are sensitive to classification stringency.  593 

Overall, we developed a new tool for preprocessing BCI data that classified threshold crossings in 594 

a tunable manner that was beneficial for decoding. A neural network-based spike classifier has the 595 

potential to reduce the need for human intervention in removing noise from neural data. Our tunable 596 

classifier is a step toward preprocessing methods that both optimize and stabilize online decoding 597 

performance. 598 
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  793 
Figure 1. Methods of classifying waveforms: classic (manual) spike-sorting and our neural network spike 794 
classifier, Not A Sorter (NAS). (a) Spike-sorted channels with waveforms that were manually classified as 795 
spikes (green) and noise (grey). The network was trained on 24,810,795 spike-sorted neural waveforms from 796 
four monkeys. The waveforms were recorded on arrays implanted in V4 as well as U-probes placed in FEF. 797 
(b) Neural network structure and output for three sample waveforms. Each s=52 waveform input (I) was 798 
passed through a hidden layer (II) with n=50 units. The resultant linear weighting of the waveform voltages 799 
was passed through a rectified linear unit (ReLU) non-linearity (III). The output was again passed through a 800 
weighted sum (IV) followed by a sigmoid non-linearity (V). The resulting value was the network’s assessment 801 
of the likelihood that the input waveform was a spike waveform (VI). We referred to this value as P(s) or the 802 
“probability” of being a spike.  803 

 804 
Figure 2. Offline decoding of planned direction from a memory guided saccade task. (a) Memory guided 805 
saccade task. The monkey fixated on a central point. A brief stimulus flash occurred followed by a delay 806 
period. When the fixation point turned off, the subject was required to make a saccade to the location of the 807 
previously flashed stimulus. (b) Decoding paradigm. The stimulus flash could occur at 8 different angles 808 
around the fixation point. A Poisson Naïve Bayes classifier was used to decode stimulus direction offline using 809 
spikes recorded from a 96-electrode Utah array in PFC 50 ms after target offset. For each recording session, 810 
we used 5-fold cross validation, where for each fold the data were split (step 1) into a training set to create 811 
model distributions for each direction (step 2) and an independent testing set to test the accuracy of the 812 
model’s predictions (step 3). Note that the curves in step (2) do not depict actual distributions and simply 813 
represent how a Poisson decoder could use spike counts from trials in the training set to distinguish between 814 
different target conditions. 815 

 816 
Figure 3. Classifying waveforms based on their probability of being a spike, P(spike), by setting γ, a tunable 817 
parameter. (a-b) Waveforms classified as spikes (green) or noise (grey) for a sample channel in Monkey Pe. 818 
The network outputs a value between 0 and 1, referred to as P(spike), for each waveform, where a value close 819 
to 1 means the network identifies that waveform as very likely to be a spike waveform. After running 820 
waveforms through the network, we set the minimum P(spike) to classify waveforms as spikes and referred to 821 
this value as the γ threshold. In (a) only waveforms assigned a spike probability greater than 0.20 (i.e. γ 822 
threshold = 0.20) and in (b) greater than 0.70 (i.e. γ threshold = 0.70) were classified as spikes. Increasing the 823 
γ threshold by definition results in a smaller percentage of waveforms captured in the spike class. (c) 824 
Waveforms from the same channel in (a) and (b) colored based on their network assigned P(spike) value. For 825 
a waveform where γ1 < P(spike) < γ2, the waveform would be classified as a spike when the threshold is γ1, but 826 
would be labeled as noise for γ2. (d) Similar to (c) except the average of waveforms across all channels within 827 
the indicated P(spike) ranges. Modifying the γ threshold tuned the stringency of the spike classifications. For 828 
the channel depicted in (a)-(c) the standard deviation of the waveform noise, computed using the method 829 
described in Kelly et al. (2007), was 17.1 μV. 830 

 831 
Figure 4. Using NAS spike classifications improved decoding accuracy in many sessions. (a-b) Percent 832 
decoding accuracy (black line) and percent of waveforms removed (maroon line) at different γ thresholds for 833 
an example recording session in Monkey Pe and Wa. Chance decoding accuracy was 12.5% (verified by 834 
computing a decoding control with shuffled test trials, grey line). The decoding accuracy increased for low γ 835 
thresholds and then reached an asymptote as γ increased. At the highest γ thresholds, decoding accuracy fell 836 
to chance (grey line). Other labeled relevant metrics include: decoding accuracy with threshold crossings 837 
(blue dot) maximum decoding accuracy (green dot), γ threshold with the maximum decoding accuracy (grey 838 
dotted line), and Δ % decoding accuracy (the difference for a given session between the decoding accuracy 839 
using the network classifications at a particular γ threshold and the decoding accuracy with threshold 840 
crossings). (c-d) Distribution of γ thresholds across sessions (Monkey Pe: N =36, Monkey Wa: N = 16) that 841 
resulted in the maximum decoding accuracy for each session. (e-f) Distribution of Δ % decoding accuracy 842 
across all sessions where the γ threshold was the median from the distributions in (c-d). Mean Δ % decoding 843 
accuracy shown in red. For both monkeys, using spikes classified by the network improved decoding 844 
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accuracy on average across sessions; however, this improvement was only statistically significant for Monkey 845 
Pe (2-tailed, Wilcoxon signed rank test, Monkey Pe: p < 0.0001, Monkey Wa: p = 0.057). 846 

 847 
Figure 5. Noise on the array increased with the age of the array while decoding accuracy decreased in 848 
Monkey Pe (blue) and Monkey Wa (orange). (a) Percentage of waveforms with a P(spike) < 0.02 over time. A 849 
waveform with a P(spike) less than 0.02 was one that the network found very unlikely to be a spike. The 850 
percentage of these unlikely spike waveforms increased as the array became older (Spearman’s correlation, 851 
Monkey Pe: ϱ = 0.87, p < 0.0001; Monkey Wa: ϱ = 0.90, p < 0.0001). (b) Percentage of waveforms with a 852 
P(spike) > 0.70 over time. The percentage of waveforms that the network found to be strongly spike-like 853 
decreased as the array became older (Spearman’s correlation, Monkey Pe: ϱ = -0.87, p < 0.0001; Monkey Wa: 854 
ϱ = -0.94, p < 0.0001). (c) Decoding accuracy with threshold crossings (i.e. γ = 0) decreased as the array aged 855 
(Spearman’s correlation, Monkey Pe: ϱ = -0.86, p < 0.0001; Monkey Wa: ϱ = -0.69, p = 0.004). (d) Change in 856 
percent decoding accuracy using network-classified spikes relative to decoding accuracy with threshold 857 
crossings (Δ % decoding accuracy). We computed a distribution of the maximum γ threshold (similar to Fig. 858 
4c-d) for sessions that were 0-50 days post array implant and used the median to set the γ threshold before 859 
computing decoding accuracy for those sessions. We repeated this for sessions more than 50 days post array 860 
implant. In Monkey Pe, using NAS classifications improved decoding accuracy (2-tailed, Wilcoxon signed 861 
rank test, p < 0.0001) and in Monkey Wa, using the classifications neither hurt nor helped decoding 862 
significantly (p = 0.09). In both subjects, the network helped decoding more in the late array sessions (>50 863 
days post implant) compared to the early sessions (2-tailed, Wilcoxon rank sum, Monkey Pe: p = 0.01; 864 
Monkey Wa: p = 0.01). (e) Mean normalized decoding accuracy across early sessions (open circles) and late 865 
sessions (filled circles) as a function of γ threshold. Shading represents +/- 1 SEM. Using the network 866 
classifications at any γ threshold greater than zero was more helpful for late sessions than it was for early 867 
sessions.   868 

 869 
Figure 6. Using NAS classifications was comparable to using spike-sorted data for decoding. Δ % decoding 870 
accuracy was calculated for both NAS classifications and spike-sorted waveforms as the change from 871 
decoding accuracy with threshold crossings. Top: Distribution of Δ % decoding accuracy using NAS 872 
classifications aggregated across subjects (γ threshold selected as in 5d). Using NAS classifications improved 873 
decoding accuracy from that with threshold crossings (2-tailed, Wilcoxon signed rank test, p < 0.0001). Right: 874 
Distribution of Δ % decoding accuracy using manual spike-sorting aggregated across subjects. Using spike-875 
sorted classifications also improved decoding accuracy from that with threshold crossings (2-tailed, Wilcoxon 876 
signed rank test, p < 0.0001). Center: The joint distribution of Δ % decoding accuracy with spike-sorting and 877 
NAS classified spikes. Using our network’s classifications was at least as helpful as spike-sorting for decoding 878 
(paired, 2-tailed, Wilcoxon signed rank test, Monkey Pe: p = 0.75; Monkey Wa: p = 0.09). 879 

 880 
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