
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020 1463

An Efficient K-Persistent Spread Estimator for
Traffic Measurement in High-Speed Networks

He Huang , Member, IEEE, ACM, Yu-E Sun , Chaoyi Ma , Graduate Student Member, IEEE,

Shigang Chen , Fellow, IEEE, You Zhou, Member, IEEE, Wenjian Yang,

Shaojie Tang, Member, IEEE, Hongli Xu , Member, IEEE, and Yan Qiao

Abstract— Traffic measurement in high-speed networks has
many important functions in improving network performance,
assisting resource allocation, and detecting anomalies. In this
paper, we study a generalized problem called k-persistent spread
estimation, which measures the volume of persist traffic elements
in each flow that appear during at least k out of t measurement
periods, where k and t are two positive integers that can
be arbitrarily set in user queries, with k ≤ t. Solutions to
this problem have interesting applications in network attack
detection, popular content identification, user access profiling, etc.
There is very limited prior art for this problem, only addressing
the special case of k = t under a flawed assumption. Removing
this assumption, we propose an efficient and accurate estimator
for generalized k-persistent traffic measurement, with k ≤ t.
Our method relies on bitwise SUM, instead of bitwise AND in
the prior art, to combine the information collected from different
periods. This change has fundamental impact on the probabilistic
analysis that derives the estimator, particular over space-saving
virtual bitmaps. Based on real network traces, we demonstrate
experimentally the effectiveness of our new method in estimating
the k-persistent spreads of all network flows. Our estimator
performs much better than the prior art on its case of k = t.
We also incorporate a sampling module to the estimator for
improved flexibility, and give a use study on how to detect and
find DDoS attackers using the proposed estimator.

Index Terms— Traffic measurement, persistent traffic, spread
estimation.

Manuscript received July 7, 2018; revised July 17, 2019; accepted March 6,
2020; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Edi-
tor A. Bremler-Barr. Date of publication May 25, 2020; date of current
version August 18, 2020. This work was supported in part by the National
Science Foundation (NSF) under Grant STC-1562485 and Grant CNS-
1719222, in part by the National Natural Science Foundation of China
(NSFC) under Grant 61873177 and Grant 61672369, and in part by
Florida Cybersecurity Center under a grant. The preliminary version of
this article appeared in IEEE INFOCOM 2018. (Corresponding author:
Yu-E Sun.)

He Huang is with the School of Computer Science and Technology,
Soochow University, Suzhou 215006, China (e-mail: huangh@suda.edu.cn).

Yu-E Sun is with the School of Rail Transportation, Soochow University,
Suzhou 215131, China (e-mail: sunye12@suda.edu.cn).

Chaoyi Ma, Shigang Chen, and You Zhou are with the Department of
Computer and Information of Science and Engineering, University of Florida,
Gainesville, FL 32611 USA (e-mail: ch.ma@ufl.edu; sgchen@cise.ufl.edu;
jayzhou@ufl.edu).

Wenjian Yang is with the School of Computer Science and Technology, Soo-
chow University, Suzhou 215006, China (e-mail: yangwjlx@outlook.com).

Shaojie Tang is with the Naveen Jindal School of Management, The
University of Texas at Dallas, Richardson, TX 75080 USA (e-mail:
tangshaojie@gmail.com).

Hongli Xu is with the School of Computer Science and Technology,
University of Science and Technology of China, Hefei 230052, China (e-mail:
xuhongli@ustc.edu.cn).

Yan Qiao is with the Google Inc., Mountain View, CA 94043 USA (e-mail:
yqiao@google.com).

Digital Object Identifier 10.1109/TNET.2020.2982003

I. INTRODUCTION

TRAFFIC measurement over big streaming data in
high-speed networks has many applications in improv-

ing network performance, assisting resource allocation, and
detecting anomalies. One basic measurement function is called
spread (or cardinality) estimation [9], [14], [18], [28], [32],
which estimates the number of distinct elements in each
network flow during a measurement period, where flows may
be TCP flows, P2P flows, HTTP flows, or defined arbitrarily
based on one or a combination of fields in packet headers,
and elements under measurement may also be addresses/ports
in packet headers or application-specific values in packet
payload. In one example, we may consider all packets from
the same source address as a per-source flow, and mea-
sure the number of distinct destination addresses (i.e., ele-
ments) that each source (i.e., flow label) has contacted.
In another example, all packets to each server form a flow,
and we may measure the number of distinct files (ele-
ments) that are accessed from that server (flow label). Spread
estimation has many important applications in scan detec-
tion, worm monitoring, proxy caching, and content access
profiling [29].

We stress that flow-spread estimation is different from
traditional flow-size estimation that measures the number of
packets in each flow [4], [22], [33] or identifying elephant
flows [7], [20], [31]. Spread estimation is to count the number
of distinct elements, requiring duplicate elements to be filtered.
It is harder than size estimation, which counts simply the
number of packets. For example, consider a per-source flow
where a source host sends 10, 000 packets to 10 desti-
nation hosts. The flow size is simply 10, 000, but if we
define the flow spread as the number of distinct destination
addresses in the flow, it is just 10, where all packets to
the same destination address are considered as duplicates.
Such a spread measurement helps in scan detection, where a
large spread indicates that the source host may be performing
scanning.

This paper investigates a new problem called k-persistent
spread estimation. Traditionally, traffic measurement is per-
formed over each measurement period (or called epoch) whose
length is pre-defined. Instead of performing spread estimation
within each period in isolation, we look across a number t
of consecutive periods and estimate the number of distinct,
persistent elements that appear in a flow over at least k out
of t periods, where t and k can be arbitrarily defined in user
queries.

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2768-6607
https://orcid.org/0000-0002-0018-4810
https://orcid.org/0000-0002-3572-0046
https://orcid.org/0000-0001-7867-7765
https://orcid.org/0000-0003-3831-4577

1464 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

The most related work is done by Xiao et al. [26], which
is a special case of our problem — finding the number of
distinct elements that appear in a flow during all t mea-
surement periods, i.e., k = t. Their work can be motivated
by an application example of detecting stealthy denial-of-
quality attacks [26], where malicious hosts send a sufficient
number of service requests to a server to slow it down,
without overwhelming the server (which would make the
attack’s presence obvious). Xiao et al. makes the following
observation from real traffic traces: legitimate users connect
to a server intermittently, while attacking hosts would keep
sending packets to the server. Therefore, one can separate
attackers from legitimate users by finding those that appear
during all measurement periods. However, the attackers can
easily evade such detection by not sending packets in some
(or even one) periods. To counter against this evasion, we need
a new, generalized approach of k-persistent spread estimation,
which can find those hosts that appear in at least k out of
t periods. Such an approach provides greater flexibility in
identifying malicious hosts that have more intense activities
than normal ones but do not necessarily show up in every
single period. Measuring k-persistent spread has many other
applications, such as identifying popular web files that are
persistently accessed by users over at least k out of t periods,
or profiling Internet access patterns by finding the number of
servers that each user persistently access (during at least k out
of t periods).

We want to enable k-persistent spread estimation at a
high-speed network where routers forward packets at an
extremely high rate, which requires packet processing to
be performed by specialized network processors with lim-
ited on-chip cache memory (such as SRAM). This setting
requires all online network functions such as routing, packet
scheduling, quality of service, and traffic measurement to be
performed efficiently in terms of processing overhead and
space overhead.

Xiao et al. uses a space-efficient bitmap to record the
elements in a flow, where each element is encoded at a certain
bit location. Their approach performs bitwise AND among
bitmaps from different periods in order to estimate the number
of common elements in all t periods. There are two problems
that prevent their approach from solving the more general
problem of k-persistent spread estimation. First, bitwise AND
is lossy in information. When we perform AND among t
bits, the result is zero as long as one of the t bits is zero.
It no longer tells how many of the t bits are one, which is
critical to finding those elements that appear in at least k out
of t bitmaps. Second, they make an assumption that elements
appear either in all periods or in just one period. This will
simplify the mathematical process of deriving an estimator.
However, we will demonstrate that the assumption does not
always hold in real traffic traces.

In this paper, we propose to solve the problem of
k-persistent spread estimation by bitwise SUM among multi-
ple bitmaps collected over a number of t measurement periods.
Bitwise SUM has never been explored in spread estimation.
This seemly simple deviation from traditional bitwise AND
will change the whole mathematical process of deriving an
estimator for the more complex problem of finding the number

of persistent elements that appear in at least k out of t periods
— a problem that was not studied before. While bitwise
SUM keeps more information, it makes the analysis much
harder. Yet, our analysis no longer requires the assumption
that all elements appear either in all periods or in just one
period. Furthermore, we show how our bitwise SUM approach
can work on virtual bitmaps: Each flow is assigned a virtual
bitmap, while the virtual bitmaps of different flows share their
bits, which help fit many flows in a tight memory space. The
virtual bitmap of a flow will not only record the elements of the
flow, but also record some (noise) elements from other flows,
due to bit sharing. We develop a mechanism that can filter out
the noise under the new context of bitwise SUM. Moreover,
in order to further reduce space overhead and processing
overhead as well as to meet high link rates, we incorporate
a sampling module so that only sampled elements of a flow
will be recorded. Finally, we will present a use case to show
how to identify stealthy DDoS attackers using our estimator
together with a Bloom filter. Based on the real network traces,
we demonstrate that the proposed new estimator can accurately
estimate the k-persistent spreads of the flows. It also performs
much better than [26] for the special case of measuring
elements that appear in all periods.

The rest of the paper is organized as follows. We first
formulate the k-persistent traffic measurement problem in high
speed networks in Section II. Then, we propose mechanisms
for k-persistent spread measurement of one flow in Section III
and further design an estimator based on the virtual bitmap
in Section IV. To evaluate the performance of the proposed
mechanisms, we use the real network traffic traces to perform
experiments in Section V. Next, we present a use study to
detect and find the stealthy DDoS attackers in Section VI.
Section VII describes the related work. At last, we conclude
the paper in Section VIII.

II. PRELIMINARIES

A flow is a set of packets that share the same flow label,
which can be flexibly defined according to the application
need. We measure elements that are carried by the packets
of a flow; they can also be flexibly defined according to
the application need. For example, we may define that all
packets sent to the same destination host constitute a (per-
destination) flow, and let elements be the source addresses
carried by the packets. We define the spread of a flow as
the number of distinct elements in the flow. Monitoring the
number of sources in each flow helps us detect DDoS attacks
when the spread of a flow spikes abnormally, i.e., it receives
packets from an unusually large number of sources. As another
example, we may define that all packet sent from the same
source host constitute a (per-source) flow, and let elements be
the destination addresses carried by the packets. Monitoring
the number of destinations in each flow helps us detect
scanners (or worm attackers) that have unusually high spreads,
i.e., sending packets to a large number of different destinations.

Below we define the concepts of k-persistent elements and
k-persistent spreads, which are the subjects of research in this
paper.

Definition 1 (k-Persistent Element): Given t measurement
periods of interest, we define an element of flow f as a

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: EFFICIENT K-PERSISTENT SPREAD ESTIMATOR FOR TRAFFIC MEASUREMENT 1465

k-persistent element if this element appears in the flow during
at least k out of t periods, where 1 ≤ k ≤ t.

Definition 2 (k-Persistent Spread): Given t measurement
periods of interest, we define the k-persistent spread of flow
f as the number of distinct k-persistent elements in the flow.

This problem is to design data structures and algorithms to
estimate the k-persistent spreads of flows that pass through
a high-speed router, which performs per-packet operations in
on-chip memory of a network processor.

III. MEASURING k-PERSISTENT SPREAD OF ONE FLOW

WITH ELEMENT SAMPLING

We first consider a single flow. In each measurement period,
a router records the flow in a bitmap, which is offloaded
to a server at the end of the period. After a number of
periods, we can make query to the server which will compute
k-persistent spread of the flow based on the bitmaps it stores.

A. Online Recording of a Flow

The router creates a bitmap B of m bits to store a traffic
record of flow f . Denote the ith bit of B as B[i]. At the
beginning of each measurement period, it resets the bitmap to
zero. From each arrival packet of the flow, the router extracts
〈e, f〉, where e is the element to be recorded and f is the
flow label. For example, f may be the destination address
and e may be the source address as in the DDoS detection
application we discussed earlier.

Each element has a probability p (0 < p ≤ 1) to be recorded
by the router. Sampling becomes important when we discuss
how to measure all flows through a router together, where it
allows the router to set p smaller than 1 if it needs to reduce
overhead in order to catch up with the line rate. With 〈e, f〉
extracted from a packet, the router computes a hash value
H(e⊕f), where H(. . .) is a hash function whose default range
is X . Only if H(e⊕f)/X ≤ p, the element e will be recorded
as follows: The router performs another hash H(e) ∈ [0, m)
and sets B[H(e)] to one. Note that the hash range can be
reduced to m by modulo m.

B. Joining Bitmaps by Bitwise SUM

After a number t of measurement periods, the server stores a
set of traffic records, B = {B1, . . . , Bt}, about flow f from the
router. Given a user query with f and k, we want to compute
the k-persistent spread of f based on the information in B. Let
nj be the number of elements that appear at the router in j
out of t measurement periods, for 1 ≤ j ≤ t. The k-persistent
spread n∗ can be calculated as n∗ =

∑t
j=k nj .

Bitwise AND has been used in the prior art [26] to join
the information of multiple bitmaps. However, the operation
is lossy: When AND is performed over t bits, the result is
zero as long as at least one of the t bits is zero; the result
does not reflect exactly how many of the t bits are one, which
is important to the estimation of k-persistent spread. Hence,
we join the information of multiple bitmaps by bitwise SUM,
a new technique never explored in spread estimation. Let S
be the resulting counter array of bitwise SUM, Bj [i] the ith
bit of Bj , and S[i] the ith counter of S, for 1 ≤ j ≤ t and

1 ≤ i ≤ m. We define S[i] =
∑t

j=1 Bj [i]. If a k-persistent
element is recorded by the ith bit, it will set the ith bit of at
least k bitmaps in B. Hence, we must have S[i] ≥ k.

C. Estimating k-Persistent Spread

We cannot estimate the number of k-persistent elements by
counting the number of counters in S whose values are at
least k. The reason is hash collision. On the one hand, when
multiple elements with spreads less than k are hashed to the
same ith bit, they together may set the ith bit of at least k
bitmaps in B, causing S[i] ≥ k and thus over-estimation of
k-persistent spread. On the other hand, when multiple elements
with spreads at least k are hashed to the same bit, they produce
a single counter greater than or equal to k, resulting in under-
estimation.

Let Vj , 0 ≤ j ≤ t, be the fraction of counters in S whose
values are j. Its value can be found by counting the number
of j’s in S and dividing that number by m. Let N be the total
number of distinct elements that appear at the router during all
t periods, i.e., N =

∑t
j=1 nj . What we want to know are N ,

n1, …, and nt, from which the k-persistent spread n∗ can be
computed. What we already know are V0, V1, …, and Vt. If we
can establish one equation for each Vj , 0 ≤ j ≤ t, that relates
the unknowns (N , n1, …,nt) to Vj , then we will have t + 1
equations to solve for the values of the unknowns. Note that
because N =

∑t
j=1 nj , we actually have t unknowns, and

that because
∑t

j=0 Vj = 1, we actually have t independent
equations.

More specifically, as our probabilistic analysis will show,
we can establish an equation that relates V0 to N , from which
N can be computed. We can establish an equation that relates
V1 to N and n1, from which n1 can be computed. In general,
we can establish an equation that relates Vj to N , n1, …, and
nj , from which nj can be computed, where N , n1, …, nj−1

have been computed by the previous equations, for 1 ≤ j ≤ t.
Next we derive the functional relationship between Vj and the
unknowns (N and nj), for 1 ≤ j ≤ t.

Consider an arbitrary counter S[i]. The probability for S[i]
to be j is denoted as Pr{S[i] = j}. There are exactly j bitmaps
in B whose ith bits are one. Consider an arbitrary subset cj of
j bitmaps from B. There are Cj

t ways to form such a subset.
Denote the complement of the subset as c−j , which consists
of all bitmaps from B that are not in cj . Performing bitwise
SUM over cj and c−j , we denote Scj [i] =

∑
B∗∈cj

B∗[i] and
Sc−j [i] =

∑
B∗∈c−j

B∗[i]. Let Pr{Scj [i] = j, Sc−j [i] = 0} be
the probability for Scj [i] = j and Sc−j [i] = 0 to happen. It is
the probability that all bitmaps in cj have their ith bit set to
one while all bitmaps in c−j have their ith bits stay as zero.
We have

Pr{S[i] = j} = Cj
t Pr{Scj [i] = j, Sc−j [i] = 0}. (1)

To derive Pr{Scj [i] = j, Sc−j [i] = 0}, we first derive the
probability Pr{Sc−j [i] = 0} that none of the elements is
hashed to the ith bit of any bitmap in c−j , which happens
when the following two independent events happen.

Event H1: none of the recorded (j +1)-persistent elements
is mapped to the ith bit of any bitmap in B. Otherwise, it will

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

1466 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

set the ith bit of at least (j + 1) bitmaps, including at least
one in c−j , because cj only has j bitmaps.

Denote the probability of event H1 as Pr{H1}. The prob-
ability of any recorded (j + 1)-persistent element not being
hashed to the ith bit is 1− 1

m . The number of (j+1)-persistent
elements is N −∑j

l=1 nl, and each element has a probability
of p to be recorded. Then, we have

Pr{H1} = (1 − 1
m

)(N−�j
l=1 nl)p. (2)

Event H2: Any recorded element whose spread is less than
or equal to j is not hashed to the ith bit of any bitmap in c−j .
Note that such an element may be hashed to the ith bit, but
does not appear in the measurement periods when the bitmaps
in c−j are produced.

Consider an arbitrary element e that is recorded by the
router in l (≤ j) periods. Element e has a probability of 1

m to

be hashed to the ith bit, and a probability of
Cl

t−Cl
j

Cl
t

to appear

in at least one bitmap of c−j . Thus, the probability that e sets

the ith bit of at least one bitmap in c−j is 1
m

Cl
t−Cl

j

Cl
t

. Event
H2 means that e does not set the ith bit of any bitmap in

c−j . That probability is 1− 1
m

Cl
t−Cl

j

Cl
t

. There are nlp recorded
elements appearing at the router in l periods. Hence,

Pr{H2} =
j∏

l=1

(1 − 1
m

Cl
t − Cl

j

Cl
t

)nlp. (3)

Combining the above analysis, we have

Pr{Sc−j [i] = 0} = Pr{H1} ∗ Pr{H2}
= (1 − 1

m
)(N−�j

l=1 nl)p

×
j∏

l=1

(1 − 1
m

Cl
t − Cl

j

Cl
t

)nlp. (4)

When Sc−j [i] = 0, Scj [i] may be zero, 1, 2, …, or j. Hence,

Pr{Sc−j [i] = 0} =
j∑

l=0

Pr{Scj [i] = l, Sc−j [i] = 0},

Pr{Scj [i] = j, Sc−j [i] = 0}
= Pr{Sc−j [i] = 0}

−
j−1∑

l=0

Pr{Scj [i] = l, Sc−j [i] = 0} (5)

Below we derive Pr{Scj [i] = l, Sc−j [i] = 0}. When
Scj [i] = l and Sc−j [i] = 0, there must exist a subset of l
bitmaps (denoted as cl) that are selected from cj , with their
ith bits being one, while the ith bits of all other bitmaps in cj

are zero. There are Cl
j ways to form such a subset. Consider

an arbitrary subset cl, and let c−l be the complement of cl,
i.e., c−l = B−cl. The probability of Scl

[i] = l and Sc−l
[i] = 0

is denoted as Pr{Scl
[i] = l, Sc−l

[i] = 0}. Hence,

Pr{Scj [i] = l, Sc−j [i] = 0}=Cl
j Pr{Scl

[i] = l, Sc−l
[i] = 0}.

(6)

By substituting (6) and (4) to (5), we have

Pr{Scj [i] = j, Sc−j [i] = 0}

= Pr{Sc−j [i] = 0} −
j−1∑

l=0

Cl
j Pr{Scl

[i] = l, Sc−l
[i] = 0}

= (1 − 1
m

)(N−�j
l=1 nl)p

j∏

l=1

(1 − 1
m

Cl
t − Cl

j

Cl
t

)nlp

−
j−1∑

l=0

Cl
j Pr{Scl

[i] = l, Sc−l
[i] = 0}. (7)

Substituting (7) to (1), we have

Pr{S[i] = j}

= Cj
t [(1 − 1

m
)(N−�j−1

l=1 nl)p

j−1∏

l=1

(1 − 1
m

Cl
t − Cl

j

Cl
t

)nlp

× (1 − 1
m

)−njp(1 − 1
m

Cj
t − Cj

j

Cj
t

)njp

−
j−1∑

l=0

Cl
j Pr{Scl

[i] = l, Sc−l
[i] = 0}]. (8)

Next we show that Pr{S[i] = j} = E(Vj), where Vj is the
fraction of counters in S that are j. It is easy to see that

Vj =
1
m

m∑

i=1

Ii,j , (9)

where Ii,j is an indicator variable, whose value is 1 when
S[i] = j and 0 otherwise.

Clearly,

E(Ii,j) = Pr{S[i] = j}.
Hence, ∀ 0 ≤ j ≤ t, 0 ≤ i < m,

E(Vj) =
1
m

m−1∑

i=0

E(Ii,j) =
1
m

m−1∑

i=0

Pr{S[i] = j}

= Pr{S[i] = j}. (10)

Substituting (10) to (8), replacing E(Vj) with the instant
value Vj measured from S, and replacing nl with its estimated
value n̂l, 1 ≤ l ≤ j, we have an equation. Solving that
equation for n̂j , we have the following recursive estimator:
∀ 1 ≤ j ≤ t,

n̂j =
a − b − c

p(ln(1 − Cj
t −1

mCj
t

) − ln(1 − 1
m))

, (11)

where

a = ln(
Vj

Cj
t

+
j−1∑

l=0

Cl
j Pr{Scl

[i] = l, Sc−l
[i] = 0}),

b = (N −
j−1∑

l=1

n̂l)p ln(1 − 1
m

),

c =
j−1∑

l=1

n̂lp ln(1 − Cl
t − Cl

j

mCl
t

).

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: EFFICIENT K-PERSISTENT SPREAD ESTIMATOR FOR TRAFFIC MEASUREMENT 1467

TABLE I

THE DISTRIBUTION OF FLOW SPREADS

Algorithm 1 Estimator for k-Persistent Spread

1: Pr{Scj [i] = 0, Sc−j [i] = 0} = V0;
2: Compute N̂ from (13).
3: for j = 1 to k − 1 do
4: Compute n̂j by (11);
5: Compute Pr{Scj [i] = j, Sc−j [i] = 0} by (14);
6: end for
7: Set n̂∗ = N̂ − ∑k−1

j=1 n̂j ;
8: Return n̂∗.

We invoke the above estimator in the order of j =
1, 2, . . . , t. For a specific value of j, the computation of n̂j

requires the values of n̂l, 1 ≤ l < j, which are computed
earlier by (11). We need the value of N . Note that Pr{Scj [i] =
0, Sc−j [i] = 0} refers to the probability that no element sets
the ith bit in any bitmap. Since the probability for any recorded
element not to set the ith bit is 1 − 1

m and there are Np
independent recorded elements in total, we have

Pr{Scj [i] = 0, Sc−j [i] = 0} = E(V0) = (1 − 1
m

)Np, (12)

where V0 is the fraction of counters in S whose values are
zero. Replacing E(V0) with the instance value V0 that can be
measured from S, we compute an estimated value of N as
follows

N̂ =
ln V0

p ln(1 − 1
m)

. (13)

We also need the values of Pr{Scl
[i] = l, Sc−l

[i] = 0},
0 ≤ l < j. Again by (12), we can estimate the value of
Pr{Scj [i] = 0, Sc−j [i] = 0} as the measured value of V0.

Now, replacing N with its estimated value N̂ and nl,
1 ≤ l < j, in (7) with its estimated value n̂l, we have

Pr{Scj [i] = j, Sc−j [i] = 0}

≈ (1 − 1
m

)(N̂−�j
l=1 n̂l)p

j∏

l=1

(1 − 1
m

Cl
t − Cl

j

Cl
t

)n̂lp

−
j−1∑

l=0

Cl
j Pr{Scl

[i] = l, Sc−l
[i] = 0}. (14)

Therefore, we should compute (11) and (14) alternatively
as j is increased from 1 to t. After n̂j is computed by (11),
we feed it in (14) to compute Pr{Scj [i] = j, Sc−j [i] = 0},
which is in turn used in the next iteration to compute n̂j+1

by (11). This iterative process is carried out by Algorithm 1 to
estimate the number of k-persistent elements, denoted as n̂∗.

D. An Example

Suppose the element sets of flow f are {e1, e4, e6, e8, e9,
e10, e11, e12, e14, e17}, {e1, e2, e3, e5, e8, e11, e14, e15, e16,
e17} and {e3, e5, e6, e7, e8, e9, e13, e14, e15, e18} in

Fig. 1. An example of bitwise SUM.

measurement period 1, 2, and 3, respectively. We use a
bitmap of size 6 to record the elements of f in each
measurement period, set p = 0.5, and want to know the
3-persistent traffic volume. Assume e1 is the first arrival
element of measurement period 1, and its hash outputs
H(e1 ⊕ f) and H(e1) are 0.4N and 4, respectively. Then,
we have e1 sets B1[4] to one according to our online recording
mechanism. At the end of the third period, we have three
traffic records B1, B2 and B3(each bit of one is set by the
elements below in Fig. 1). Then, the router performs bitwise
SUM among these three bitmaps, and get the counter array S
as shown in Fig. 1. We can easily get that V0 = 1

6 , V1 = 1
6 ,

V2 = 1
3 , and V3 = 1

3 .
To measure the 3-persistent traffic volume, we first compute

the value of N according to (13), which is equal to 19.6549.
By substituting N̂ , Pr{Scj [i] = 0, Sc−j [i] = 0} = V0 = 1

3 and
V1 into (11), we have n̂1 = 8.9151. Then, we can compute
Pr{Scj [i] = 1, Sc−j [i] = 0} = 0.0556 according to (14)
since N̂ = 19.6549 and n̂1 = 8.9151 have been computed.
After that, we can get n̂2 = 8.9677 by substituting N̂ , n̂1,
Pr{Scj [i] = 1, Sc−j [i] = 0} and V2 to (11), and get the
estimated 3-persistent traffic volume n̂∗ = 1.7722 finally.
Since the actual volumes of N , n1, n2 and n3 are 18, 8,
8 and 2, respectively, each estimated spread of our estimator
is close to its actual value.

IV. MEASURING k-PERSISTENT SPREADS OF MULTIPLE

FLOWS WITH ELEMENT SAMPLING

In this section, we consider the case of multiple flows with
element sampling. The distribution of flow spreads in real
traffic from CAIDA is shown in TABLE I. On the one hand,
most flows have spreads less than 100. On the other hand,
the largest spread among all flows reaches 106 although the
number of elephant flows is very small. Since the router does
not know the spreads of the flows during online recording,
it has to assign the flows with bitmaps of the same size,
which should be large enough to accommodate the largest
possible spread. We point out that the size of on-chip SRAM is
typically small in the introduction. This will limit the number
of concurrent flows that the router can handle.

To address the above problem, Yoon et al. introduced the
concept of virtual bitmaps in [29]. Their idea is to let the
bitmaps of different flows to share a common pool of bits,

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

1468 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

instead of occupying separate memory space. The router allo-
cates a logical virtual bitmap to each flow. More specifically,
it selects a certain number of bits pseudo-randomly from
a common physical bit array to form a virtual bitmap per
flow. The virtual bitmaps of all flows share the bits in the
array, where each bit may be selected (shared) by multiple
flows. Through such bit sharing, the router is able to handle
a large number of flows in a tight space. Overestimation of
flow spreads is the main challenge for virtual bitmaps, where
bits can be set by other flows due to sharing. There must
be a mechanism that can effectively remove such “noise”
introduced by other flows.

Yoon’s work [29] is not on persistent spread estimation,
but its concept of virtual bitmaps has been borrowed by [26]
to measure the number of persistent elements. As we point
out earlier, this work is a special case of our k-persistent
estimation. It finds the number of elements that appear in
t out of t measurement periods, not k out of t periods,
for k < t, that we consider in this paper. We also point
out earlier that their bitwise AND operation is lossy and
cannot be used to find k-persistent spread. Moreover, they
make a flawed assumption that elements either appear in all
periods or appear in just one period. This assumption makes
their mathematical analysis tractable, but causes large error
in real traffic traces that violate this assumption, as we will
demonstrate through experiments. In addition, the prior work
[26], [29] records all elements of all flows. We incorporate a
sampling module to allow one extra dimension of flexibility
to reduce space overhead and processing overhead with fewer
elements recorded. This flexibility becomes important if the
traffic measurement function cannot catch up with the line
rate.

Below we develop a new estimator for the general case of
k-persistent spread estimation. We do not require the assump-
tion that elements either appear in all periods or appear in just
one period.

A. Recording Sampled Traffic With Virtual Bitmaps

Let B be a physical bit array of u bits that will be used
to record the elements of all flows. For each flow f , let Bf

be a virtual bitmap of m bits that are randomly taken from B
through hashing.

Bf [i] ≡ B[H(f ⊕ H(i))], 0 ≤ i < m, (15)

where ⊕ is bitwise XOR. Two virtual bitmaps of different
flows may take (thus share) the same bits from B. We omit
the modulo operation in the above formula, assuming the hash
output is always modulo’ed to the desired range. For instance,
H(i) will produce a hash output of the same length as f .

At the beginning of each measurement period, all bits in B
are reset to zero. From each coming packet, the router extracts
〈e, f〉, where e is the element to be recorded and f is the flow
label. Each element is sampled with probability p (0 < p ≤ 1)
for recording. The router computes H(e⊕f) ∈ [0, N). Only if
H(e⊕ f)/N ≤ p, this element will be recorded at the H(e)th
bit in virtual bitmap Bf . However, we cannot set that bit
Bf [H(e)] to one because it is virtual. We set the corresponding
bit B[H(f ⊕ H(H(e)))] in the physical bit array B.

Packets from different flows are all recorded in B as
described above. At the end of each period, the content of
B is offloaded to a server.

B. Estimating k-Persistent Spread From Virtual Bitmap

After a number t of measurement periods, the server has
t bit arrays, B = {B1, B2, . . . , Bt}. When receiving a query
about k-persistent spread of a flow f , the server explicitly
constructs a virtual bitmap of f from each physical bit array
in B based on (15). These virtual bitmaps are denoted as Bf =
{Bf,1, Bf,2, . . . , Bf,t}. This is an offline operation and thus
overhead is less of a concern.

From Bf , we can estimate the k-persistent spread of flow
f by using the method proposed in Section III. However, not
only are the bits in Bf,j set by the elements of f , but they
may also be set by elements of other flows who share bits with
Bf,j (from the common bit pool Bj). Hence, the k-persistent
spread estimated from Bf is likely to be larger than the actual
value. To solve this problem, we need to find a way to remove
the noise in Bf that is introduced by other flows due to bit
sharing.

Let nf,j be the actual number of elements that persistently
stay in flow f during any j out of t measurement periods,
and nm

f,j be the number of elements from all flows that
appear during any j out of t periods, for 1 ≤ j ≤ t.
We have

nm
f,j = nf,j + nu

f,j , (16)

where nu
f,j is the noise from other flows. We can compute an

estimation n̂m
f,j for nm

f,j by applying the method in Section III
to Bf .

To compute the noise, we consider a grand flow F that
consists of all flows. We view the physical bit array B in
Section IV-A as the bitmap of F for online recording. F
includes elements of all flows. Let Nu

j be the number of ele-
ments in F that appear at the router during j out of t periods.
We join the physical bit arrays of t measurement periods by
performing bitwise SUM, which results in a physical counter
array M∗, where M∗[i] =

∑t
j=1 Bj [i]. Then, we compute

an estimate N̂u
j for Nu

j , 1 ≤ j ≤ t, using the method in
Section III based on the grand flow’s traffic records in B
and M∗.

From flow f ’s point of view, beyond its nf,j elements, all
the other (Nu

j −nf,j) elements in the grant flow are potential
noise, for 1 ≤ j ≤ t. These noise elements are randomly
recorded by the u counters in the physical counter array M∗.
The mean noise in each counter is thus

Nu
j −nf,j

u . Define the
virtual counter array of f as the bitwise SUM of the virtual
bitmaps of f over the t periods. Similar to how f ’s virtual
bitmap is formed from the physical bit array, its virtual counter
array is essentially formed with m counters randomly selected
from the physical counter array M∗. The mean noise in the
m counters of f ’s virtual counter array is thus

m(Nu
j −nf,j)

u ,
i.e.,

nu
f,j =

m

u
(Nu

j − nf,j). (17)

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: EFFICIENT K-PERSISTENT SPREAD ESTIMATOR FOR TRAFFIC MEASUREMENT 1469

Combining (16) and (17), replacing Nu
j with its estimate

N̂u
j and nm

f,j with its estimate n̂m
f,j , we have the following

estimation n̂f,j for nf,j :

n̂f,j =
un̂m

f,j−mN̂u
j

u − m
. (18)

Then, the estimator for the record k-persistent spread Nf,k

of flow f is

N̂f,k =
t∑

j=k

n̂f,j =
t∑

j=k

un̂m
f,j−mN̂u

j

u − m
. (19)

In summary, our estimator based on virtual bitmaps can be
computed in three steps. First, we join the physical bit arrays
of t measurement periods by performing bitwise SUM, and
get the resulted counter array M∗. Let Vj,∗ is the fraction
of counters in M∗ that are j. We estimate Nu

j , 1 ≤ j ≤ t,
as follows:

N̂u
j =

a − b − c

p(ln(1 − Cj
t−1

uCj
t

) − ln(1 − 1
u))

, (20)

where

a = ln(
Vj,∗
Cj

t

+
j−1∑

l=0

Cl
j Pr{Scl

[i] = l, Sc−l
= 0}),

b = (N −
j−1∑

l=1

Nu
l)p ln(1 − 1

u
),

c =
j−1∑

l=1

Nu
l p ln(1 − Cl

t − Cl
j

uCl
t

).

Second, we construct t virtual bitmaps for each flow f to
get the virtual counter array of f by performing bitwise SUM
on these virtual bitmaps. Then, we measure the values of n̂m

f,j

for each 1 ≤ j ≤ t by using Equation (11).
Finally, we filter the noise from other flows and obtain the

estimated k-persistent spread N̂f,k

N̂f,k =
t∑

j=k

u

u − m
n̂m

f,j −
m

u − m
N̂u

j . (21)

C. Probabilistic Error Bound

During each measurement period, the virtual bitmaps of
different flows are formed by pseudo-randomly selecting bits
from the same physical bit array. Hence, any bit in the physical
bit array may be chosen by multiple virtual bitmaps. Such bit
sharing introduces noise in the virtual bitmaps of different
flows.

Our k-persistent estimator computes the mean noise caused
by bit/counter sharing, and subtracts this mean noise from
the spread estimation, which is the term m

u−m N̂u
j in (21).

However, the actual noise in the virtual counter array of flow f
is not a constant but a random variable from the probabilistic
element encoding process. The actual noise is an instance
from a distribution, and it is not predictable. The difference
between the actual noise and the removed noise mean is called
the noise deviation. We can measure and remove the mean

noise, but we cannot remove the noise deviation, which causes
estimation error. Below we show that the noise deviation
(i.e., the unremoved noise) is bounded probabilistically.

Theorem 1: For an arbitrary flow and an arbitrary positive
integer d, the probability for the noise deviation introduced by
bit/counter to be bounded by d is

a2+d∑

r=a2−d

Cr
a1

(
m

u
)r(1 − m

u
)(a1−r),

where a1 =
∑t

j=k(Nu
j − nf,j), and a2 = m

u

∑t
j=k(Nu

j −
nf,j).

Proof: Each k-persistent element from flows other than
f has a probability of m

u to choose a counter in the virtual
counter array of f . There are a1 =

∑t
j=k(Nu

j − nf,j)
k-persistent elements from other flows. Hence, the mean noise
for flow f is a2 = m

u

∑t
j=k(Nu

j − nf,j). Consider a noise
deviation bound of d elements. The actual noise bound for f
is the sum of the mean noise and the noise deviation bound,
i.e., d+a2. The probability for (d+a2) k-persistent elements
from other flows to be encoded in the virtual counter array
of f is (m

u)d+a2 , and the probability for other k-persistent
elements not being encoded in the virtual counter array of
f is (1 − m

u)a1−d−a2 . There are Cd+a2
a1

ways to choose
d + a2 elements from the a1 elements of other flows, and
the actual noise within the deviation bound d is distributed
in the range [a2 − d, a2 + d]. Thus, we have the probability
for the unremoved noise deviation to be bound by d is∑a2+d

r=a2−d Cr
a1

(m
u)r(1 − m

u)(a1−r). �
Assume any flow spread is negligibly smaller than the

sum of all flows’ spreads. Namely, nf,j � Nu
j . Then,

the probabilistic bound becomes independent of the flow’s
spread. In other words, all flows have similar probabilistic
bounds no matter whether they are large flows or small flows.
This theoretical result is indeed observed by our experimental
results in Fig. 4 and Fig. 7. Theorem 1 characterizes the
absolute error bound. If we define the relative error bound
as the absolute bound divided by the flow’s spread, then it
decreases as we examine larger flows, which is also observed
in the experiments.

V. EXPERIMENTS

A. Implementation

We implement our scheme in both hardware and software.
For the software implementation, we run our scheme on
a machine with Intel(R) Core(TM) i7-4720HQ @ 2.6GHz
CPU and 8GB memory. For the hardware implementa-
tion, we implement the proposed estimator on an XLINX
Nexys4 A7-100T development board, with 15850 logic units,
4860Kbits Block RAM, and a clock rate of 100MHz.

We observe that there is no difference between our hardware
implementation and our software implementation in terms of
memory and measurement accuracy — which is expected.
Thus, we discuss the software experimental results of our
estimator in Section V-C and Section V-D. The only difference
between the two is throughput, which is as shown in Fig. 2.
Hardware is much faster than software, and the throughput of
software implementation is increasing with the decrease of p.

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

1470 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

TABLE II

ACTUAL AND ESTIMATED k-PERSISTENT SPREAD, WITH EACH PERIOD ONE MINUTE, u = 0.5MB

Fig. 2. Throughput of the hardware implementation and software implemen-
tation.

B. Experiment Setup

We use one hour of data downloaded from CAIDA as our
dataset and estimate the spread of per-destination flows in
that dataset. It has 38963 distinct flows, and 7179130 distinct
elements. We observe that the flow spreads are distributed
extremely unbalance (as shown in TABLE I). The spreads of
more than 91% flows are less than 200. However, the largest
spread of elephant flow reaches 319807.

In our experiments, we vary the length of each measurement
period from 1 to 5 minutes, let t = 8, and vary k from
1 to 8. The number of distinct elements in all flows during
a period is in the range of [1081531, 1225640]. We vary
the memory space allocated to the estimator from 0.25MB
to 1MB, and vary the sampling probability from 1 to 0.1.
The spread estimation range is bounded by −m ln m. We set
m = 215 = 32768 bits under a spread upper bound
of 340, 696.

C. Estimation Accuracy and Operating Range

We evaluate the performance of the proposed estimator,
and compare it with MVPE [26] under k = 8 and p = 1,
which are what MVPE was designed for. TABLE II shows
the numerical results of 4 randomly chosen flows, where the
measurement period is one minute. We will show the results
of all flows in the figures that will follow. The actual spread
and the estimated spread of each flow under our estimator
are shown with k = 1 . . . 8. The last column presents the
experimental results of MVPE with k = 8. The table shows
that the proposed estimator achieves reasonably good accuracy
in all cases, with small to medium relative errors, particularly
when k is small. For example, when k = 3, the relative error is
less than 5%. With k = 8, our estimator outperforms MVPE.
The reason is because MVPE assumes that non-persistent
elements appear only in one of the eight period, which is not
always true in the traffic trace.

Fig. 3 presents the experimental results of all flows by
MVPE when the length of each period is one minute.
Each flow is represented by a point in the figure, where
the x-coordinate is the actual persistent spread and the
y-coordinate is the estimated persistent spread. The closer a
point is to the equality line y = x (which is shown in the
figure), the better the estimation is. The four plots are the
estimations under different memory availability, ranging from
0.25MB to 1MB. Because most flows have small spreads,
we see most points are clustered at the left bottom corner.
In all four plots, there are points that significantly deviate
from the equality line, suggesting large estimation errors, due
to the reason we have explained in the previous paragraph.
In comparison, Fig. 4 presents the experimental results by the
proposed estimator under the same setting. The points are all
clustered close to the equality line, suggesting better estimation
accuracy than MVPE in Fig. 3. A close examination on the
actual data confirms that estimation accuracy is improved
under both estimators when the memory u is increased from
0.25MB to 1MB, which is expected since a larger memory
reduces sharing between virtual bitmaps and thus reduces the
noise they introduce to each other.

Next we study the impact of period length on the perfor-
mance of the estimators. We increase each period to 5 minutes
and repeat the previous experiments, and convert the x and y
axes to log scale. The results of MVPE are shown in Fig. 5,
and the results of the proposed estimator are shown in Fig. 6.
The performance of both estimators degrades under longer
periods. The reason is that, as the periods become longer,
more elements will be recorded in each period, which will
increase the noise in virtual bitmaps through bit sharing. When
we compare the proposed estimator with MVPE, the former
remains much better than the latter, whose invalid assumption
of non-persistent elements appearing only in one period causes
significant positive bias in estimation as many points deviate
above the equality line in Fig. 5.

We now vary the value of k. Fig. 7 presents the experimental
results of the proposed estimator under k = 1, 3, 5, 7 in the
four plots, respectively. Our estimator performs well under dif-
ferent k values. In fact, the performance is largely insensitive
to k for large flows, with modest accuracy decrease for small
flows as k increases. Note that small flows are less important
than large flows in most applications.

D. Estimation Accuracy Over Sampling Probability p

The reason for introducing a sampling module in our
estimator is to provide a mechanism to reduce the processing

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: EFFICIENT K-PERSISTENT SPREAD ESTIMATOR FOR TRAFFIC MEASUREMENT 1471

Fig. 3. Persistent spread estimation by MVPE, with each period one minute, k = 8.

Fig. 4. k-persistent spread estimation by the proposed estimator, with each period one minute, k = 8.

Fig. 5. Persistent spread estimation by MVPE, with each period five minutes, k = 8.

Fig. 6. k-persistent spread estimation by the proposed estimator, with each period five minutes, k = 8.

Fig. 7. k-persistent spread estimation by the proposed estimator, with each period one minute, u = 0.25MB, under different k values.

overhead of traffic measurement in order to keep up with the
line rate. When traffic measurement becomes a bottleneck,
we can reduce the sampling probability p. Below we study
the impact of sampling on the accuracy of persistent spread
estimation.

On the one hand, sampling error will decrease estimation
accuracy. On the other hand, sampling reduces the total
number of elements recorded in the available memory. From
each flow’s point of view, when the number of elements from
other flows is reduced, the noise introduced by other flows

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

1472 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

TABLE III

THE AVERAGE ABSOLUTE ESTIMATION ERROR OF ALL FLOWS

TABLE IV

THE AVERAGE RELATIVE ESTIMATION ERROR OF FLOWS WITH SPREAD LARGER THAN 10000

into its virtual bitmap will also be reduced, which will in turn
improve estimation accuracy. The final accuracy is determined
by the combined effect of the above two factors.

We define the absolute estimation error of a flow as the
absolute difference between the flow’s actual persistent spread
and its estimated spread. We measure the average absolute
estimation error per flow, which is defined as the sum of all
flows’ absolute estimation errors divided by the number of
flows in an experiment. TABLE III shows the average absolute
errors under different settings, with the memory u varying
from 0.065MB to 0.5MB, k = 4, and sampling probability p
from 1 to 0.1. From the table, as p decreases, the absolute
errors first increase when u is small (such as 0.125MB),
with the reduced noise balancing out much of the impact by
higher sampling errors. However, when p becomes very small
(such as 0.1), the sampling errors start to dominate, causing
significant increase in average absolute errors. With the same
sampling probability, as the memory increases, the absolute
errors decrease, which is expected because more memory
reduces bit sharing and thus noise.

Most applications are interested in super-spreaders,
i.e., flows with large spreads. TABLE IV presents the average
relative estimation errors among flows whose 1-persistent
spreads are greater than 10, 000 under the same parameter
settings as in TABLE III. From the table, as u decreases,
the relative error increases. Moreover, the optimal value of
m is related to p, i.e., a larger p will record more elements in
the virtual bitmap and generally need a larger virtual bitmap.
However, the relative error will increase with m when u is very
small due to there are too many noises in the virtual bitmap.
In the case, decreasing the value of p can help decrease the
noise and further get a better accuracy.

VI. USE STUDY: DETECT AND FIND THE

STEALTHY DDOS ATTACKERS

A. Stealthy DDoS Attack Detection

Consider a classical DDoS attack, where a number of
attacking hosts send service requests to a target server at their

highest rates in order to overwhelm the server’s processing
capacity so as to prevent legitimate requests from being served.
In such an attack, we can identify the attackers by measuring
the request rates. Now consider a stealthy DDoS attack, where
the attackers slow down their request rates below a threshold,
e.g., one or even zero request in each measurement period.
This makes it difficult to separate attackers from legitimate
users that show up in a single period because they all make
at least one request. However, if we look at a number t of
periods, things will become different. To perform a sustained
attack, attackers will not stop after making a request in a single
period. They need to persistently send requests in the duration
of attack that consists of many periods.

For this study, we use per-destination flows, where packets
from all source addresses (attackers and legitimate users)
to the same destination address (a server) constitute a flow.
By measuring the k-persistent spreads of all flows, we can
detect a potential stealthy DDoS attack if we observe an
usually high persistent spread for a server — there are too
many source addresses (potential attackers) that are sending
requests to the server persistently.

Unlike the attackers, most normal users tend to use a server
intermittently with less persistency [26]. By analyzing normal
real-world Internet traffic traces from CAIDA, we observe
that the k-persistent spreads of per-destination flows decrease
rapidly as k increases, which confirms that most users in
normal traffic traces do not exhibit persistent behavior in
server access. From Table. II, we can see that most normal
users are present in no more than 3 out of 8 periods. As k
increases, the number of users accessing a server in at least
k periods decreases quickly. Our data analysis shows that
k = 4 can be an appropriate parameter that filters out most
legitimate users when we apply k-persistent spread estimation
for stealthy DDoS attacks. (In practice, the value of k should
be set based on the normal traffic examination in the network
of application.)

With proper parameter setting, we estimate the k-persistent
spreads of flows based on the data structures and the estimation
procedure described in Section IV. If the k-persistent spread

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: EFFICIENT K-PERSISTENT SPREAD ESTIMATOR FOR TRAFFIC MEASUREMENT 1473

TABLE V

THE ACTUAL AND ESTIMATED k-PERSISTENT SPREAD WHEN u = 0.5MB, m = 32768B DURING ATTACK

of a flow is abnormally large, i.e., larger than a thresh-
old that most flows in normal traffic traces will fall under,
we classify the flow’s destination as a potential victim of
stealthy DDoS attack and raise a flag for the network admin
to further investigate. One problem is that our data structures
in Section IV do not record the individual persistent elements,
i.e., the exact source addresses that persistently access the
server. To identify these stealthy attackers, we need to augment
k-persistent spread measurement with additional information.

B. Finding Stealthy DDoS Attackers

After a potential stealthy DDoS attack is detected through
k-persistent spread measurement, the router will be instructed
to use a Bloom filter to help find the attackers. A Bloom
filter is a space efficient data structure for encoding a set,
and has a controlled false positive ratio, i.e., the probability
for any non-member to be mis-classified. Each Bloom filter is
a bit array that is initialized to zero at the beginning of each
measurement period. When an element arrives, it randomly
maps to l bits in the array by l independent hash functions, and
sets those bits to one. To check whether an element e is in the
set or not, we can map e to l bits in the array again (by using
the same independent hash functions as it recorded). If all l
bits are one, we claim that b belongs to the set; otherwise b
does not belong to the set. Next, we will show how to combine
Bloom filter in our original design to find the stealthy DDoS
attackers.

Suppose the router detects flow f is under attack in period r.
From the (r +1) period, it allocates a separate Bloom filter to
flow f in each period until f is not under attack. Let Ai,f be
the Bloom filter of mf bits that encodes the elements of f in
period i. When an element 〈e, f〉 arrives in period i, the router
first hash e to the H(f ⊕ H(H(e)))th bit of the physical bit
array B. Then, it hashes e to l bits of Ai,f separately by
l independent hash functions H1(. . .), H2(. . .), . . . , Hl(. . .),
and sets those bits to one. At the end of period i, Ai,f is
offload to a server.

After t periods, the server has t Bloom filters, A =
{Ar+1,f , Ar+2,f , . . . , Ar+t,f} for flow f . The server first joins
the information of A by performing bitwise SUM, and the
resulted counter is denoted as A∗. Then, it upload A∗ to
the router. After receiving A∗, the router starts to find the
stealthy DDoS attackers. For each arrival element e of flow
f , the router hashes e into l counters of A∗ by hash functions
H1(. . .), H2(. . .), . . . , Hl(. . .). If the value of all these coun-
ters in A∗ are no less than k, e has a high probability to be
an attacker, and the router will drop this packet; Otherwise,

e should be a legitimate user and the router will forward this
packet to the destination. The intuition, a stealthy attacker,
which shows in at least k out of t measurement periods, always
maps to same l locations in Bloom filters for f , and increase
the value in these locations by one at least k times. Therefore,
the corresponding counter of a stealthy attacker in A∗ is always
equal or larger than k. At the end of each period, the server
will update A∗ based on the Bloom filters of the last t periods
until there is no attack.

Due to the hash conflict, a legitimate user may be
mis-classified as an attacker. Next, we discuss the false positive
ratio, which is the probability of a legitimate user that may
be mis-classified as an attacker in our mechanism. Let VA∗,k

be the fraction of counters in A∗ whose values are no less
than k. An element e of a legitimate user randomly maps to l
counters, and each counter has a chance of VA∗,k to be no less
than k. The probability for all the l corresponding counters of
A∗ no less than k (thus causing mis-classification) is (VA∗,k)l.

C. Experimental Results

1) Stealthy DDoS Attack Detection: In this part of exper-
iment, we test the performance of our method under some
artificially created stealthy DDoS attack. In particular, we add
DDoS attack to those flows in TABLE II, and assume existing
users are legitimate users. The number of illegal users for
each flow is equal to the number of legitimate users. We let
each illegal user randomly drop 2 ∼ 4 measurement periods
in each estimation period. The experimental results are shown
in TABLE V.

The exiting studies for low-rate DDoS attack detection are
based on some observed attack characteristics, such as the
abnormal change of the size of each element [19], the corre-
lation coefficient of malicious and legitimate traffic [1], and
the persistent traffic volume [26]. For example, [19] and [1]
assume that the low-rate DDoS is periodic, which means the
traffic size of the attacked flow is periodically changing. [26]
assumes that the stealthy DDoS attacker will keep connection
with the attacked server during all measurement periods.
However, attackers may escape the detection by changing their
attack characteristic. Based on the observation of the flows in
the real-world Internet traffic traces used in our experiments,
the k-persistent spreads decrease rapidly with the increase
of k. Most of the users only contact with their target server
for at most 3 measurement periods. In the following, we will
show that our estimator can detect the stealthy attack as long
as the stealthy attackers will keep connection with the target
sever significantly longer than legitimate users. Since most of

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

1474 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

TABLE VI

THE RATIO OF MIS-CLASSIFIED ELEMENTS WHEN u = 0.5MB, m = 32768B DURING ATTACK

elements stay in a flow for at most 3 measurement periods,
we can choose k = 4. Obviously, low-rate stealthy attackers
can hardly organize an efficient attack or be distinguished
from legitimate users if they only stay in a flow during less
than 4 measurement periods. Thus, we let each illegal user
randomly drop 2 ∼ 4 measurement periods in each estimation
period.

Since k = 4 is an appropriate value for the data used in
our experiment, the 4-persistent elements should be viewed
as illegal users. Based on the experimental results, we found
that the value of the 4-persistent spread is close to the actual
number of illegal users added to each flow, which validates
the accuracy and effectiveness of our estimator against stealthy
DDoS attack.

However, we cannot assert a server is under attack or not
by estimating the t-persistent spread. For example, the true
value of 8-persistent spread of server 224.243.44.1 is only
677, which is much smaller than 90818 (the total number of
illegal users and legitimate users). Therefore, the MVPE fails
to detect the stealthy DDoS attack, let alone estimating the
scale of the attack.

2) Finding the Stealthy DDoS Attackers: We demonstrate
that we can detect a flow is under DDoS attack or not based on
our k-persistent estimator. In this part of experiment, we test
the performance of the proposed method based on Bloom
filters to find the stealthy DDoS attackers. We again add
DDoS attackers as in Section VI-C.1, and set the length of
one measurement period is one minute. After 8 measurement
periods, we detect that the flows in TABLE V are under DDoS
attack. Then, we allocate a Bloom filter with the optimal
setting, i.e. mf = Nf,1l

ln 2 for each flow f that is under attack,
where Nf,1 is the average number of 1-persistent elements of
flow f in previous measurement periods.

The detection results are as shown in TABLE VI, which
shows the false positive ratio of our method. For the
k-out-of t persistent spread measurement, we must wait until
all t periods end, which is 8 minutes in our experiment.
The computation time is less than a minute on a desktop.
It should be much smaller when the real deployment uses a
more powerful server. Hence, the time for detection is slightly
more than 8 minutes. In the analysis of Section VI, we assume
that all the k-persistent elements are attackers. The estimated
number of mis-classified elements and the false positive ratio
(denoted as �) are shown in the second and the fourth columns
of TABLE VI, respectively. From this table, we observe that
our Bloom filter based can find the k-persistent elements
efficiently with a very small false positive ratio.

VII. RELATED WORK

To the best of our knowledge, there is no prior work on k
out of t persistent spread measurement. For the network traffic

measurement, a large body of studies have been devoted to
the passive flow size or flow spread estimation, which take
advantage of the built-in components in routers or switches to
monitor the passing traffic passively.

Flow size refers to the number of packets for each active
flow during a certain measurement period. Chen et al. pro-
pose a scalable counter architecture which can achieve better
memory efficiency with high estimation accuracy [4]. [17],
[21], [35], [36], [37] also focus on memory efficiency per-flow
traffic estimation by introducing the similar statistical memory
sharing. Flow spread estimation (also known as the flow
cardinality estimation) mainly aims to estimate the number
of distinct elements for each flow during a predefined time
period [10], [23], [27], [29]. In [29], Yoon et al. design a
new spread estimator which can achieve good performance
in a very tight memory space through building a virtual bit
vector. Paper [30] provides a three-stage framework, called
OpenSketch, to pipeline the traffic measurement tasks and
use flow-size measurement as example. Paper [24] proposes
a two-level filtering scheme to find the sources which are
connected to a large number of distinct destinations. Papers
[2] and [3] study the problem of estimating the distinct
element volume and finding the k-heavy hitters in the sliding
window model. Paper [11] presents an algorithm to find the
flows with spread larger than the threshold. However, all
these studies are designed to measure flow spread or identify
super spreaders in one measurement period and a sliding time
window. They do not keep track of persistent elements over
multiple measurement periods or multiple sliding windows.
Nor do they monitor persistent elements within a time window.
They do not measure the number of times any element appears
over time for persistency measurement.

To solve this problem, the research on flow’s persistent
spread estimation has been attracted more attention since it
can detect the long-term network anomalies, such as stealthy
DDoS attack or network scan. In [26], authors present a
persistent spread estimation method by using the multi-virtual
bitmaps for the tight memory scenario. The proposed method
can estimate the number of distinct elements which per-
sist in all the predefined t time periods. Zhou et al. [34]
propose a highly compact Virtual Intersection HyperLogLog
(VI-HLL) architecture for the persistent spread measurement
for big network data. Dai et al. [5], [6] concentrate on finding
the persistent items in data streams or distributed datasets.
Literature [15] studies the privacy preserving persistent traffic
measurement for the intelligent transportation. We have pro-
posed a new problem called k-persistent spread estimation,
which measures the number of distinct elements that persist
in a flow for at least k out of t predefined number of time
periods. The design is based on the observation that the active
time for the stealthy attackers are often longer than most of
the legitimate users. Further, we find that the most of the

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: EFFICIENT K-PERSISTENT SPREAD ESTIMATOR FOR TRAFFIC MEASUREMENT 1475

malicious users will occupy most of the scanning time periods
instead of all the time periods. These observations make the
study of k-persistent spread estimation more challenge and
meaningful. Due to the very limited size of on-chip SRAM,
it is highly desirable to design a light weight estimator. There
have been plenty of cardinality estimators proposed in [8],
[10], [12], [13], [25], however, these methods will cause
accuracy degradation due to the limited memory space. Thus,
we choose the data structure of virtual bitmaps which can
achieve very high estimation accuracy.

VIII. CONCLUSION

In this paper, we propose a new k-persistent spread estima-
tor that is able to measure the volume of elements that stay in
a flow for at least k out of t predefined measurement periods.
This is the first work that studies the generalized persistent
estimation problem without the limiting assumption that an
element either appears in all periods or appears in one period.
The new estimator combines bitwise AND for joining bitmaps,
an iterative algorithm in persistent spread computation, and
virtual bitmaps with sampling. They together provide a flexible
framework for accurately estimating k-persistent spreads in
a tight memory space. Experiments based on real traffic
trace demonstrate the performance of the proposed estimator,
particularly the estimation accuracy under various parameter
settings. The results also show that it outperforms the prior
art on the special case of persistent spread estimation that
the existing work is designed for. Finally we provide a use
case against DDoS attacks to demonstrate how to apply the
proposed estimator to solve real-time world problems.

REFERENCES

[1] A. Ain, M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Rank cor-
relation for low-rate DDoS attack detection: An empirical evaluation,”
IJ Netw. Secur., vol. 18, no. 3, pp. 474–480, 2016.

[2] E. Assaf, R. B. Basat, G. Einziger, and R. Friedman, “Pay for a sliding
Bloom filter and get counting, distinct elements, and entropy for free,”
in Proc. IEEE INFOCOM, Apr. 2018, pp. 2204–2212.

[3] V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou,
“Nearly optimal distinct elements and heavy hitters on sliding windows,”
in Proc. APPROX-RANDOM, 2018, pp. 1–22.

[4] M. Chen, S. Chen, and Z. Cai, “Counter tree: A scalable counter
architecture for per-flow traffic measurement,” IEEE/ACM Trans. Netw.,
vol. 25, no. 2, pp. 1249–1262, Apr. 2017.

[5] H. Dai, M. Li, A. X. Liu, J. Zheng, and G. Chen, “Finding persistent
items in distributed datasets,” IEEE/ACM Trans. Netw., vol. 28, no. 1,
pp. 1–14, Feb. 2020.

[6] H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong, “Finding persistent items
in data streams,” Proc. VLDB Endowment, vol. 10, no. 4, pp. 289–300,
Nov. 2016.

[7] X. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic lossy counting:
An efficient algorithm for finding heavy hitters,” ACM SIGCOMM
Comput. Commun. Rev., vol. 38, no. 1, pp. 7–16, 2008.

[8] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,” in
Proc. Eur. Symp. Algorithms, 2003, pp. 605–617.

[9] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, Aug. 2003.

[10] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high-speed links,” IEEE/ACM Trans. Netw., vol. 14,
no. 5, pp. 925–937, Oct. 2006.

[11] S. L. Feibish, Y. Afek, A. Bremler-Barr, E. Cohen, and M. Shagam,
“Mitigating DNS random subdomain DDoS attacks by distinct heavy
hitters sketches,” in Proc. 5th ACM/IEEE Workshop Hot Topics Web
Syst. Technol., Oct. 2017, pp. 1–6.

[12] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “HyperLogLog: The
analysis of a near-optimal cardinality estimation algorithm,” in Proc.
Anal. Algorithms (AofA), 2007, pp. 137–156.

[13] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” J. Comput. Syst. Sci., vol. 31, no. 2, pp. 182–209,
Oct. 1985.

[14] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in practice: Algo-
rithmic engineering of a state of the art cardinality estimation algorithm,”
in Proc. 16th Int. Conf. Extending Database Technol. (EDBT), 2013,
pp. 683–692.

[15] H. Huang, Y.-E. Sun, S. Chen, H. Xu, and Y. Zhou, “Persistent
traffic measurement through vehicle-to-infrastructure communications,”
in Proc. ICDCS, Jun. 2017, pp. 394–403.

[16] H. Huang et al., “You can drop but you can’t hide: K-persistent
spread estimation in high-speed networks,” in Proc. IEEE INFOCOM,
Apr. 2018, pp. 1889–1897.

[17] T. Li, S. Chen, and Y. Ling, “Fast and compact per-flow traffic mea-
surement through randomized counter sharing,” in Proc. INFOCOM,
Apr. 2011, pp. 1799–1807.

[18] P. Lieven and B. Scheuermann, “High-speed per-flow traffic measure-
ment with probabilistic multiplicity counting,” in Proc. INFOCOM,
Mar. 2010, pp. 1–9.

[19] H. Liu and M. S. Kim, “Real-time detection of stealthy DDoS attacks
using time-series decomposition,” in Proc. IEEE Int. Conf. Commun.,
May 2010, pp. 1–6.

[20] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. ACM SIGCOMM, 2016, pp. 101–114.

[21] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kab-
bani, “Counter braids: A novel counter architecture for per-flow mea-
surement,” ACM SIGMETRICS Perform. Eval. Rev., vol. 36, no. 1,
pp. 121–132, 2008.

[22] S. Ramabhadran and G. Varghese, “Efficient implementation of a
statistics counter architecture,” in Proc. ACM SIGMETRICS, Jun. 2003,
vol. 31, no. 1, pp. 261–271.

[23] M. Roesch et al., “Snort-lightweight intrusion detection for networks,”
in Proc. 13th USENIX Conf. Syst. Admin. (LISA), 1999, vol. 99, no. 1,
pp. 229–238.

[24] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum,
“New streaming algorithms for fast detection of superspread-
ers,” in Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS), 2005.
[Online]. Available: https://www.ndss-symposium.org/ndss2005/new-
streaming-algorithms-fast-detection-superspreaders/

[25] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-time
probabilistic counting algorithm for database applications,” ACM Trans.
Database Syst., vol. 15, no. 2, pp. 208–229, Jun. 1990.

[26] Q. Xiao, Y. Qiao, M. Zhen, and S. Chen, “Estimating the persistent
spreads in high-speed networks,” in Proc. IEEE ICNP, Oct. 2014,
pp. 131–142.

[27] Q. Xiao, Y. Zhou, and S. Chen, “Better with fewer bits: Improving the
performance of cardinality estimation of large data streams,” in Proc.
IEEE INFOCOM, May 2017, pp. 1–9.

[28] M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a spread estimator in small
memory,” in Proc. INFOCOM, Apr. 2009, pp. 504–512.

[29] M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a compact spread estimator
in small high-speed memory,” IEEE/ACM Trans. Netw., vol. 19, no. 5,
pp. 1253–1264, Oct. 2011.

[30] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proc. 10th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2013, pp. 29–42.

[31] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund, “Online
identification of hierarchical heavy hitters: Algorithms, evaluation, and
application,” in Proc. ACM SIGCOMM IMC, Oct. 2004, pp. 101–114.

[32] Q. Zhao, J. Xu, and A. Kumar, “Detection of super sources and des-
tinations in high-speed networks: Algorithms, analysis and evaluation,”
IEEE J. Sel. Areas Commun., vol. 24, no. 10, pp. 1840–1852, Oct. 2006.

[33] Q. Zhao, J. Xu, and Z. Liu, “Design of a novel statistics counter
architecture with optimal space and time efficiency,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 34, no. 1, pp. 323–334, 2006.

[34] Y. Zhou, Y. Zhou, M. Chen, and S. Chen, “Persistent spread measure-
ment for big network data based on register intersection,” ACM Meas.
Anal. Comput. Syst., vol. 1, no. 1, p. 15, 2017.

[35] Y. Zhou, Y. Zhou, M. Chen, Q. Xiao, and S. Chen, “Highly compact
virtual counters for per-flow traffic measurement through register shar-
ing,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016,
pp. 1–6.

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

1476 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

[36] Y. Zhou, Y. Zhou, S. Chen, and Y. Zhang, “Per-flow counting for big
network data stream over sliding windows,” in Proc. IEEE/ACM 25th
Int. Symp. Qual. Service (IWQoS), Jun. 2017, pp. 1–10.

[37] Y. Zhou, Y. Zhou, S. Chen, and Y. Zhang, “Highly compact virtual
active counters for per-flow traffic measurement,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2018, pp. 1–9.

He Huang (Member, IEEE) received the Ph.D.
degree from the School of Computer Science and
Technology, University of Science and Technology
of China (USTC), in 2011. He is currently a Pro-
fessor with the School of Computer Science and
Technology, Soochow University, China. His current
research interests include traffic measurement, com-
puter networks, and algorithmic game theory. He is
a member of the ACM.

Yu-E Sun received the Ph.D. degree from the
Shenyang Institute of Computing Technology, Chi-
nese Academy of Science (CAS), in 2011. She is
currently an Associate Professor with the School of
Rail Transportation, Soochow University, China. Her
current research interests span traffic measurement,
algorithm design and analysis for wireless networks,
and network security.

Chaoyi Ma (Graduate Student Member, IEEE)
received the B.S. degree in information security from
the University of Science and Technology of China,
Hefei, China, in 2018. He is currently pursuing the
Ph.D. degree in computer and information science
and engineering with the University of Florida,
Gainesville, FL, USA. His advisor is Prof. S. Chen.
His research interests include network traffic mea-
surement, big network data, and network security
and privacy.

Shigang Chen (Fellow, IEEE) received the B.S.
degree in computer science from the University of
Science and Technology of China in 1993, and
the M.S. and Ph.D. degrees in computer science
from the University of Illinois at Urbana-Champaign
in 1996 and 1999, respectively. After graduating
from UIUC, he was with Cisco Systems on network
security for three years and helped starting a network
security company, Protego Networks. He joined
the University of Florida as an Assistant Professor
in 2002, and was promoted to an Associate Professor

in 2008 and to a Professor in 2013. He is currently a Professor with the
Department of Computer and Information Science and Engineering, University
of Florida. He has published more than 190 peer-reviewed journal/conference
papers and had 12 U.S. patents. He holds the University of Florida Research
Foundation Professorship and the University of Florida Term Professorship
since 2017. Prof. Chen is an ACM Distinguished Member and an IEEE
ComSoc Distinguished Lecturer. He received the IEEE Communications
Society Best Tutorial Paper Award in 1999, the NSF CAREER Award in 2007,
and the Cisco University Research Award in 2007 and 2012.

You Zhou (Member, IEEE) received the B.S.
degree in electronic information engineering from
the University of Science and Technology of China,
Hefei, China, in 2013. He is currently pursuing the
Ph.D. degree in computer and information science
and engineering with the University of Florida,
Gainesville, FL, USA. His advisor is Prof. S. Chen.
His research interests include network security and
privacy, big network data, and the Internet of Things.

Wenjian Yang received the B.S. degree from the
Department of Mathematics and Computer Science,
Anhui Normal University of China, Wuhu, China,
in 2016. He is currently pursuing the M.S. degree
with the School of Computer Science and Technol-
ogy, Soochow University, Suzhou, China. His cur-
rent research interest is traffic measurement, includ-
ing transportation traffic measurement and network
traffic measurement.

Shaojie Tang (Member, IEEE) received the Ph.D.
degree in computer science from the Illinois Institute
of Technology in 2012. He is currently an Assis-
tant Professor with the Naveen Jindal School of
Management, The University of Texas at Dallas.
His research interests include social networks,
mobile commerce, game theory, e-business, and
optimization. He received the Best Paper Awards
in ACM MobiHoc 2014 and the IEEE MASS
2013. He also received the ACM SIGMobile Service
Award in 2014. He has served in various positions

(as the Chair and a TPC member) at numerous conferences, including ACM
MobiHoc, the IEEE INFOCOM, and the IEEE ICNP. He is an Editor of the
INFORMS Journal on Computing and the International Journal of Distributed
Sensor Networks.

Hongli Xu (Member, IEEE) received the B.S. degree
in computer science and the Ph.D. degree in com-
puter software and theory from the University of
Science and Technology of China in 2002 and
2007, respectively. He is currently a Professor
with the School of Computer Science and Tech-
nology, USTC. He has published over 100 articles
in famous journals and conferences, including ToN,
JSAC, TMC, TPDS, INFOCOM, and ICNP. He held
over 30 patents. His main research interests are
software-defined networks, edge computing, and the

Internet of Thing. He received the Outstanding Youth Science Foundation
from NSFC in 2018. He also received the best paper award or the best paper
candidate in several famous conferences.

Yan Qiao received the B.S. degree in computer
science and technology from Shanghai Jiao Tong
University, China, in 2009, and the Ph.D. degree
from the University of Florida in 2014. She joined
Google Inc., as a Software Engineer. Her research
interests include network measurement, algorithms,
and RFID protocols.

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

