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Estimating Cardinality for Arbitrarily Large Data
Stream With Improved Memory Efficiency
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Abstract— Cardinality estimation is the task of determining the
number of distinct elements (or the cardinality) in a data stream,
under a stringent constraint that the input data stream can be
scanned by just one single pass. This is a fundamental problem
with many practical applications, such as traffic monitoring of
high-speed networks and query optimization of Internet-scale
database. To solve the problem, we propose an algorithm named
HLL-TailCut, which implements the estimation standard error
1.0/

√
m using the memory units of four or three bits each,

whose cost is much smaller than the five-bit memory units
used by HyperLogLog, the best previously known cardinality
estimator. This makes it possible to reduce the memory cost
of HyperLogLog by 20%∼45%. For example, when the target
estimation error is 1.1%, state-of-the-art HyperLogLog needs
5.6 kilobytes memory. By contrast, our new algorithm only needs
3 kilobytes memory consumption for attaining the same accuracy.
Additionally, our algorithm is able to support the estimation of
very large stream cardinalities, even on the Tera and Peta scale.

Index Terms— Data streams, cardinality estimation, random
hashing.

I. INTRODUCTION

CARDINALITY estimation is the task of determining
the number of distinct elements in a data stream,

which is presented as a sequence of elements and can be
examined by only one pass. This problem has attracted sig-
nificant attention over the past decades, due to its impor-
tant role in many application domains, e.g., real-time traffic
monitoring in high-speed networks [5], [11]–[14], [20] or
in software-defined networks [21], query plan optimization
in large-scale database [10], in-network query aggregation in
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wireless sensor networks [17], and file significance evaluation
in P2P systems [18].

Practical Importance: In the domain of online traffic mon-
itoring of high-speed networks, the cardinality estimation
problem can be used to detect traffic anomalies, such as
network IP/port scan and distributed denial-of-service (DDoS)
attacks [11], [12], [20]. For instance, if we treat all the packets
originated from a same source IP as a data stream, then we
can detect whether this source IP is a network scanner by
counting the number of distinct destination IP/port addresses
in its outward packet stream. A similar estimator can be used
to detect whether a server is under DDoS attack, if we treat
all the packets towards a common destination IP as a data
stream and estimate the number of distinct source addresses
in this stream. For other application examples, a server farm
may learn the popularity of its hosted contents by tracking
the number of distinct users that request for each file, and an
institutional gateway may perform cardinality estimation on
outbound URL requests to measure the popularity of external
web content for caching priority.

According to a recent paper [10], many data analysis
systems developed by Google, including Sawzall, Dremel and
PowerDrill, need to estimate the cardinalities of very large data
sets (e.g., the number of distinct search queries on google) on
a daily basis. As pointed out in [10], cardinality estimation
over large data sets presents a challenge in terms of compu-
tational resources, and memory in particular; for PowerDrill,
a non-negligible fraction of queries historically could not be
computed since they exceeded the available memory.

Prior Art: Although the cardinality can be easily computed
using space linear in the cardinality, for many applications,
this is impractical as it requires too much memory. Therefore,
a large number of algorithms have been developed to produce
an approximate estimation of the cardinality based on a
summary or “sketch” of the data stream, whose occupied space
in memory is merely on a sublinear level. Typical sketch-based
algorithms include PCSA [9], MultiresolutionBitmap [7]
(a generalization of LinearCounting [19]), MinCount [3], [4],
LogLog [6], HyperLogLog [8], and just list a few.

We make a quick comparison of existing cardinality esti-
mators in Table I. In the third column, each register may
be a partial machine word of a few bits, independently
producing a coarse estimation of the cardinality (or say,
a machine word may hold multiple registers). To mitigate the
high variation of a single register and improve the estimation
accuracy, a number m of registers must be used. The second
column presents the relationship between the standard error
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TABLE I

A COMPARISON OF POPULAR CARDINALITY ESTIMATORS

and the value of m, where m refers to the number of
registers (or the number of bits for MultiresolutionBitmap,
or the number of memory units used by MinCount). The total
memory cost of an estimator is m multiplied by the size of
a register (or 1 bit for MultiresolutionBitmap, or 32 bits for
MinCount).

In the last column, we list the memory needed by each
algorithm to control the standard error around 2% of the actual
cardinality, which shows the progress in memory saving over
the past decades: If we use PCSA as the initial benchmark,
the seminal work of LogLog reduces the memory cost by more
than half. The followup HyperLogLog (HLL) further cuts the
memory cost by over 30%. Therefore, HLL is the state-of-the-
art algorithm and has been widely adopted by IT industries,
such as Google [10], Ask.com [16], PostgreSQL, file-sharing
P2P systems [18], and network security systems for DDoS and
scan detection [8], just to list a few.

It may appear that the cardinality estimators in Table I
already have small memory overhead (on the scale of KBs),
and meanwhile can provide good estimation accuracy of about
2% error. Further reducing their memory cost does not seem
to be a critically important issue. However, many applications
need a large quantity of estimators to work simultaneously.
Take network traffic anomaly detection as an example. A core
router often receives millions of traffic flows in just a few
minutes. In order to monitor the behavior of all flows, it has to
allocate a cardinality estimator for each flow [11], [12], [20].
For Google’s applications, the number of estimators that work
simultaneously becomes much larger, greater than one billion
under extreme cases [10]. Hence, the total memory overhead,
which is the per-estimator memory cost multiplied by the
number of estimators, will be a huge value that could easily
overwhelm the memory available on devices that maintain
these estimators. For example, on a high-speed router, the on-
chip SRAM available for online anomaly detection is merely
on the scale of MBs [11], [12], [20], and on Google servers,
the DRAM available for tracking keyword popularity is also
limited, typically on the scale of GBs for a commodity
server [10]. As a summary, reducing the memory cost of a
single estimator is an important problem with practical value.

Our Contribution: This paper will present a new cardinality
estimator named HLL-TailCut. As shown at the bottom row
of Table I, when comparing with the state-of-the-art Hyper-
LogLog, our algorithm can reduce the memory consumption
of a single estimator again by 20%∼45%. A great contribution

is that we reduce the size of each register from 5 bits to
4 bits (or 3 bits) without degrading the accuracy in cardinality
estimation, which represents an extreme in compactness that
has not been achieved before. Our technique is called long tail
cutoff that compresses the information across all registers and
meanwhile reduces the variance among the registers, which
in turn reduces the standard error in cardinality estimation.
Consequently, not only do we have smaller-size registers,
but also use fewer registers to attain the same accuracy if
compared with the previous algorithms [6], [8], [9]. More-
over, unlike HyperLogLog which has limited operating range
within 109, our algorithm can support the counting of data
streams at the Tera or Peta scale. It has no estimation bias
on the entire measurement range, even when handling small
cardinalities.

The rest of the paper is organized as follows. Section II
reviews the development history of cardinality estimation algo-
rithms. Section III elaborates the best known algorithm called
HyperLogLog to motivate our work. Section IV revisits the
problem of cardinality estimation and solves it by maximum
likelihood estimation. Section V proposes a technique of long
tail cutoff to reduce the memory of HyperLogLog, which
however causes negative estimation bias. Section VI proposes
our HLL-TailCut+ algorithm based on maximum likelihood
estimation to address the negative bias issue. Section VII eval-
uates the performance of proposed algorithm by simulations.
Section VIII concludes the paper.

II. RELATED WORK

Cardinality estimation problem is to count the number of
distinct elements in a stream, wherein each element is allowed
to appear more than once. A key challenge is that the stream of
elements can be scanned by just one pass to obtain the result,
due to the constraint of limited processing time or memory.

Linear-Space Solutions: A naive solution for this problem
is to use a hash table to memorize all the elements seen
so far, in order to filter the duplicated ones. This solution
has the advantage of knowing the exact cardinality. But it
needs memory linear to the stream cardinality, which in
most applications, is far too large to be kept in available
memory.

A well-known algorithm that can approximate the stream
cardinality is LinearCounting (LC) [19]. It distributes all
the stream elements uniformly among a bit array, so that
each element can be encoded as the index of a bit in the
array. Duplicated stream elements will be mapped to the
same bit index, and hence are filtered automatically. LC can
provide the best accuracy among all the known cardinality
estimators, however under a strict condition that there is
sufficient memory space roughly linear to the cardinality
[16]. Otherwise, its accuracy will degrade severely. Since our
interest is to estimate very large cardinality values on Giga or
Tera scale, LC is no longer attractive, as it requires too much
memory.

Sublinear-Space Solutions: Researchers have developed a
whole range of algorithms that requires only sublinear memory
space [3], [4], [6]–[9]. A frequently used method for reducing
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memory cost is sampling. An example is Multiresolution-
Bitmap [7] that designs a sequence of LC structures, whose
sampling probabilities decrease exponentially. Another exam-
ple is MinCount [3], which records only the k smallest hash
values for a stream of data items. For both algorithms, their
memory efficiency is worse than LogLog and HyperLogLog,
as reported by a comparison study [2].

PCSA (Probabilistic Counting with Stochastic Averaging)
also prepares a sequence of sampled subsets, but it reduces
their sampling probability exponentially, until the probability
becomes so small that a sampled subset has no data [9].
For the ease of understanding, the sequence of sampled
subsets is depicted in Fig. 1 as a sequence of buckets,
whose probability of receiving stream elements reduces by
the series 2−1, 2−2, 2−3, . . . , 2−w. To record whether each
bucket has received any stream elements, PCSA allocates a
bit array in memory: If a bucket receives nothing and remains
empty, its corresponding bit is zero; Otherwise, the bit is
one. The × mark in Fig. 1 represents that a bit is either zero
or one.

By maintaining the state of this bit array upon stream
element arrivals, PCSA always knows the index of the leftmost
empty bucket, which is denoted in Fig. 1 by the symbol M ′.
Such a bit array is called a register, which can give an indepen-
dent estimation of stream cardinality as 2M ′

. Hence, if a PCSA
register is given w bits memory, the range of its estimated
cardinality is as large as 2w, which is a key advantage of
PCSA. Of course, the estimation by a single register will be
highly inaccurate. For improving the accuracy, PCSA uses a
technique called stochastic averaging that allocates multiple
registers to produce independent estimations, and returns the
average value of their estimations.

The memory efficiency of PCSA still leaves much space
for improvement: Its register size must be log2 nmax + O(1)
bits, where nmax is the upper bound of measured cardinality.
In contrast, a follow-up algorithm called LogLog reduces the
memory per register to only log2 log2 nmax + O(1) bits [6].
Such significant memory compression is because, instead of
maintaining the state of entire bit array like PCSA, LogLog
records only the index of the rightmost non-empty bucket,
which is denoted by the symbol M in Fig. 1.

HyperLogLog (HLL) is a variant of LogLog for improving
accuracy [8]. Both of them depend on the observation of
position M shown in Fig. 1, but they adopt different methods
for aggregating the estimation results by a set of registers.
LogLog uses geometric averaging, while HLL uses harmonic
mean, and its purpose is to mitigate the impact of outlier reg-
isters with abnormally large estimations, thereby appreciably
increasing the quality of estimations. As shown in Table I,
the expected error of HLL is 1.04/

√
m, which is much smaller

than that of LogLog 1.30/
√

m. In a word, HyperLogLog is
the state-of-the-art algorithm.

After years of development, it appears to be very difficult to
further compress the memory cost of a cardinality estimator.
However, our HLL-TailCut estimator can save memory cost
of HLL again by 20%∼45%, based on a long tail cutting
technique to be proposed in this paper. Our estimator can
reduce the size of a register to four bits (or three bits),

Fig. 1. Observation used by PCSA and HyperLogLog.

which is much smaller than the five-bit register used by
HLL, and meanwhile it provides the expected relative error
of 1.0/

√
m. Therefore, our HLL-TailCut+ algorithm can both

reduce the per-register memory cost, and discard large outliers
to improve accuracy.

III. TRADITIONAL HYPERLOGLOG

In this section, we introduce the traditional HyperLogLog
(HLL) algorithm by details, and then identify its inadequacies,
which motivate the design of our own algorithms.

A. Basic Idea of HyperLogLog

For the ease of understanding, we firstly explain the estima-
tion procedure of a single HLL register. As shown in Fig. 1,
when this register receives a stream of elements, it distributes
these elements exponentially among a sequence of buckets,
i.e., the probability for the buckets to receive elements reduces
exponentially by the series 2−1, 2−2, 2−3, . . ..

For implementing this exponential distribution, a hash
function h is applied to each stream element e. Let us focus on
the binary representation of a hash value h(e). The probability
of observing the bit pattern 0ρ−11 at its beginning is 1/2ρ,
where ρ is one plus the number of leading zeros. For instance,
if the hash value h(e) has no leading zeros, then ρ(1 . . .) = 1,
and the probability of observing the bit pattern is 1/21. If there
are three leading zeros, then ρ(0001 . . .) = 4, and the chance
of observing the bit pattern is 1/24. Therefore, we can simply
regard the symbol ρ as the index of the bucket a stream
element e has been mapped to.

A HLL register will record the largest ρ value for all its
input elements, or say, the register will record the position
of the rightmost non-empty bucket, which is denoted by M
in Fig. 1. Because the probability for this bucket to receive
elements is 1/2M , intuitively, a good estimation for the
number of elements the register receives could be 2M .

However, the cardinality estimation 2M by a single register
is highly variant. For mitigating the high variance, a tech-
nique called stochastic averaging is adopted: The input data
stream S is pseudorandomly split into m substreams and then
fed into m registers. Each register counts the cardinality of its
input substream independently. When needed, their results are
aggregated to estimate the cardinality of the data stream S.
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B. Detailed Algorithm Procedure

Suppose we have allocated m registers M0, M1, . . ., Mm−1.
The procedure of HyperLogLog can be divided into two parts:
an online component that processes each stream element and
records critical information into the set of registers, and an
offline analysis component that recovers the stream cardinality
information from the register set.

Online Component: For an element in stream S, we apply
the hash function h to it1, and the resultant hash value is
denoted by x. For the binary representation of x, let j be
its initial p bits, where p = log2 m or m = 2p, and let x′ be
its remaining bits:

x = h(e), j = 〈x1x2 · · ·xp〉, x′ = 〈xp+1xp+2 · · · 〉.

The integer j decides that the register Mj receives this stream
element. The integer x′ is a hash value that updates Mj:

Mj := max
(
Mj , ρ(x′)

)
, (1)

where := is the assignment operator, and max(a, b) is a
function that returns the greater value of its two parameters.
As stated before, ρ(x′) is one plus the number of leading zeros
in the binary format of x′, for instance, ρ(0001 . . .)=4. Hence,
when the jth substream is nonempty, the register Mj records
the index of the rightmost nonempty bucket as in Fig. 1.

Offline Analysis Component: Each register Mj in the reg-
ister set with 0 ≤ j < m can give an estimation 2Mj for the
cardinality of its substream. For aggregating the substream
cardinalities, HLL uses the normalized harmonic mean:

n̂ = αm · m2 · ( ∑
0≤j<m 2−Mj

)−1
, (2)

where αm is a bias correction constant: α16 = 0.673, α32 =
0.697, α64 = 0.709, αm = 0.7213/(1+1.079/m) if m≥ 128.

This formula can produce unbiased estimation results only
when the cardinality n is large enough. HyperLogLog has
proposed to use LinearCounting when n̂ by (2) is smaller than
2.5m. The formula of LinearCounting is n̂ = −m log(z/m),
where z is the number of registers Mj that are equal to
zeros.

C. Shortcomings of HyperLogLog

HyperLogLog is an excellent algorithm that provides the
relative standard error 1.04√

m
at the cost of 5m bits mem-

ory. Its high accuracy and memory compactness have trig-
gered extensive adoption in IT industries, e.g., Google [10],
Ask.com [16] and PostgreSQL. However, this algorithm still
possesses two inadequacies which open doors to further
improvements.

1The hash function h recommended by a technical blog [1] is Murmur3
hash or City hash functions, which performs better than Jenkins and Spooky
hash. Moreover, since the stream cardinality could be as large as 109, the hash
function must be 64 bits long (rather than 32 bits), in order to make negligibly
small the chance of hash collisions among different stream elements [10].

Fig. 2. Probability of register values, when m =512 and load fac-
tor n

m
= 100.

Threat of Outliers: As mentioned before, the observation
used by HyperLogLog, which is the value of each register
Mj , is highly variant. To give an impression of the high
variance, we illustrate in Fig. 2 the probabilistic distribution for
a register to carry an arbitrary value k. The plot (a) is drawn in
normal scale, and the plot (b) is drawn by log scale for Y-axis.
The mathematical formula of this probabilistic distribution will
be described later in Eq. (3). Here, the two plots show that
it is a right-skewed distribution with a long tail stretching
out to the right side of the peak. Note that this property of
Mj distribution has no relation with the input stream data.
It originates from the uniform distribution of hash function h.

The registers whose value strongly deviates from the peak
are called outliers, which are most likely to exist on the
right-side long tail of the distribution as illustrated in Fig. 2(b).
In order to mitigate the impact of the outliers existing on
the right tail that have abnormally large register values, HLL
adopts harmonic average to aggregate the estimation results of
a register set. Our intuition is to completely remove the impact
of large outliers, by cutting off the right-side long tail on such a
histogram, which contains plenty of outliers instead of useful
information. It may appear that the outlier rejection can be
easily implemented by discarding the registers whose values
are much larger than the average. However, the difficulty is
that, as the stream cardinality n increases, the register value
distribution will move right as a whole. So does the tail cutoff
point which separates the main part of the distribution and the
rightside long tail with outliers. Then, the problem is how to
maintain the cutoff point dynamically as more elements arrive.

Inefficient Register Encoding: The second inadequacy of
HyperLogLog is its inefficient encoding of each register
state. The number of bits given to each register is a cen-
tral problem for the design of a cardinality estimator. If a
register can be given a smaller number of bits, more reg-
isters can be created from a pre-allocated memory block
to support more accurate cardinality estimation. For Hyper-
LogLog, the size of a register is five bits long, so that
the cardinality estimation by a single register can be up
to 225 ≈ 4 × 109. With the surging demand to process
Internet-scale big data, a cardinality estimator needs to support
the counting at the tera- or peta-scale. A recent paper proposed
to expand the register size to six bits, to support this large
cardinality scenario [10]. On the contrary, we propose to
reduce the register size to four bits or even to three bits, and
meanwhile support the same large operating range.
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Our inspiration comes from the Fig. 2(b), where only the
sixteen highest bars between 4 and 19 have their probabilities
larger than 0.01%. It implies that, when the number of
registers m is on the scale of thousands, the spread of a register
set (i.e., the largest register value minus the smallest register
value) is less than sixteen in most cases. From the perspective
of information theory, it is redundant to use five bits to
encode each register. Four bits may be sufficient for most
cases.

Moreover, in Fig. 2(a), only for the eight highest bars
between 5 and 12, their probabilities are greater than 2%.
These eight bars are the most informative part of a histogram,
and other bars are more prone to contain outliers, which
implies the possibility of abandoning the rightside tail for
outlier rejection and giving each register only three bits.

Conclusion: Our idea is that the memory per register may be
compressed to four bits or even three bits. Due to the smaller
register size, we can precisely record the frequencies only for
a few highest bars of the register value distribution in Fig. 2.
The outlier bars in the rightside long tail and far from the peak
have to be truncated. Later in Section V-C, we will quantify
the information loss due to tail truncation, by analyzing the
probability of “overflow” event for a register. Thanks to the
smaller register size, we can allocate a larger number of
registers from the same memory budget, which drives down
the estimation error. Hence, what we have proposed is lossy
compression of registers, and the challenge is how to avoid its
side effect.

IV. MLE-BASED HYPERLOGLOG

HyperLogLog has a minor inadequacy: When estimating
small cardinalities between 2m and 5m, its formula in (2) is
strongly biased, as shown later by Fig. 8(a) in the simulation
section. This is the region where HyperLogLog makes a
switch between LinearCounting and the closed-form formula
in (2). To ensure unbiased cardinality estimations in the entire
measurement range, we will apply an alternative estimator to
fine tune the result, if the estimated cardinality by (2) falls
in the biased region. Our alternative formula is based on
MLE (maximum likelihood estimation). The analysis in this
section is the theoretical foundation of our algorithm to present
later.

A. Maximum Likelihood Estimator

In this subsection, we will present a maximum likelihood
estimator for the number of distinct elements in a data
stream.

The following theorem presents the probabilistic distribution
for a HLL register to take a k value, which is shown in Fig. 2.

Theorem 1 (Probability of Register Value): Given m
HyperLogLog registers and suppose the cardinality is n, the
probability for the jth register Mj to take a certain value k is

Pr{Mj = k}=

{(
1 − 1

m

)n
if k = 0,

(1 − 1
m2k )n − (1 − 1

m2k−1 )n if k ≥ 1.

(3)

Proof: Check Appendix VIII for a detailed proof. �
For an arbitrary non-negative k value, let Nk be the number

of registers, among the m registers, which carry the k value.
If observing exactly Nk registers carrying a particular k value,
the probability of this observation is Pr{Mj = k}Nk , assum-
ing these registers are mutually independent. Then, the com-
bined probability of making the observations N0, N1, . . . , N∞
for all the k values from zero to infinity is as follows, under
the condition that the stream cardinality is n.

Pr{N0, N1, . . . , N∞ | n} = m!
N0!N1!...N∞!

∞∏
k=0

Pr{Mj = k}Nk

However, it is impossible to measure the number of regis-
ters Nk for an arbitrarily large k value up to infinity, because
each register are given limited memory space (typically 5 bits).
We use a symbol K to characterize a register’s up-bound
capacity of recording k value. For example, if each register
is given 5 bits, then it can record a limited range of k values
starting from 0 up to 25 − 1 = 31, and in this case, K = 32.
If each register is of 4 bits, then the threshold K = 24 = 16.
Considering this upper limit of recording k values, the above
probability function needs to be modified, assuming only the
availability of the observations N0, N1, . . . , NK−1.

Pr{N0, N1, . . . , NK−1 | n}
≈ m!

N0!N1!...NK−1!

K−1∏
k=0

Pr{Mj = k}Nk

This probability function is also called the likelihood of
unknown parameter n, when given the observations about the
number of registers carrying each value: N0, N1, . . . , NK−1.

L(n |N0, N1, . . . , NK−1)

≈ m!
N0!N1!...NK−1!

K−1∏
k=0

Pr{Mj=k}Nk (4)

This likelihood function of cardinality n has to be an approxi-
mation, due to the limited recording capacity of HLL registers.
This is in fact a shortcoming of HyperLogLog (HLL): A HLL
register records the position of the rightmost non-empty bucket
as shown in Figure 1. When the cardinality is too large, this
position may exceed the capacity of a register and needs to
round down to some smaller value. We call it the “overflow”
event - the recording value exceeds the capacity of a HLL
register. Hence, the largest register value in (4) is K − 1
rather than infinity. But the approximation error of (4) can
be safely neglected. This is because we apply the maximum
likelihood method only to address the strong bias problem
of HyperLogLog between 2m and 5m, so that HyperLogLog
will have unbiased estimation in the entire measurement range.
When the cardinality is that small, the “overflow” events of
HLL registers happen very rarely. The overflow probability
will be modelled later by the Eq. (13) as Pr{Mj ≥ K}.

Applying the well-known maximum likelihood estimation,
we can find the best n value that maximizes this log-likelihood
function, and we use the symbol n̂ to denote this optimized
estimation of the stream cardinality n.

n̂ = arg max
n

logL(n | N0, N1, . . . , NK−1) (5)
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B. Gradient Ascent Solution for MLE

In this subsection, we present our solution to the MLE
optimization problem in (5). Although it is viable to solve this
problem symbolically by finding the closed-form root to the
equation ∂

∂n logL(n | N0, N1, . . . , NK−1) = 0, this solution
will be complex and have low flexibility (We will demonstrate
this point in the next section, when the symbol K is configured
to some other value smaller than 25). Therefore, we choose to
solve this optimization problem numerically.

When maximizing the log-likelihood function in (4),
we guide the iterative search for the best n estimated value
based on the gradient direction of log-likelihood function.
We use the following iterative optimization procedure to obtain
an optimized estimation of stream cardinality n:

n̂(i+1) = n̂(i)+η · ∂
∂n̂(i) logL(n̂(i) | N0, N1, . . . , NK−1), (6)

where n̂(i) is the current cardinality estimation, n̂(i+1) is
the next-round estimation, B is the smallest value among
all registers, η is the optimization step size equal to
αm2Bm, and ∂

∂n logL(n | N0, N1, . . . , NK−1) is the gradient
of log-likelihood function whose expression is in Eq. (7).
After tens of optimization steps, we will obtain an unbiased
cardinality estimation. But this estimation is a floating number.
We need to round it to a closest integer, as our final estimation
result.

We analyze the derivative of log-likelihood function
over n:

∂

∂n
logL(n | N0, N1, . . . , NK−1)

= ∂
∂n

K−1∑
k=0

Nk log Pr{Mj = k}

=
K−1∑
k=0

Nk

∂
∂n Pr{Mj=k}
Pr{Mj=k} , (7)

where ∂
∂nPr{Mj = k} for any k value is in given Theorem 2.

Theorem 2 (Derivative of Register Probability): For the
probability of a HLL register to carry an arbitrary value k,
its first-order derivative is as follows.

∂
∂nPr{Mj = k}=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − 1
m

)n log(1 − 1
m

) if k = 0

(1− 1
m2k

)n log(1− 1
m2k

) −

(1− 1
m2k−1

)n log(1− 1
m2k−1

)
if k ≥ 1

(8)

Proof: Directly follow the conclusion in Theorem 1. �
We will prove that our steepest ascent method in (6) always

converges to the global optimal solution. Firstly, we analyze
the second-order derivative ∂2

∂n2 logL. From (7), we have

∂2

∂n2 logL(n | N0, N1, . . . , NK−1)

=
∑K−1

k=0 Nk

(
∂2

∂n2 Pr{Mj=k}
)

Pr{Mj=k}−
(

∂
∂n Pr{Mj=k}

)2

Pr{Mj=k}2 .

(9)

It is easy to very, when k = 0, the nominator is equal to
(1− 1

m )n log2(1− 1
m)(1− 1

m )n−(1− 1
m )2n log2(1− 1

m )=0. When

Fig. 3. Likelihood of cardinality estimate n̂, when m = 512 and n =5m.

k ≥ 1, the nominator is equal to (an log2 a−bn log2 b)(an−
bn) − (an log a − bn log b)2 = −(log a − log b)2 anbn, where
a = 1 − 1

m2k , and b = 1 − 1
m2k−1 . As a result, the second-

order derivative ∂2

∂n2 logL is always negative, indicating that
the first-order derivative ∂

∂n logL is a monotonic function with
respect to the cardinality n. This implies that there is at most
one solution that can make ∂

∂n logL equal to zero, and the
log-likelihood function will have only one local optima.

To illustrate the convergence, we set m = 512 and n = 5m,
and we draw the log-likelihood function logL(n | N0, N1, . . . ,
NK−1) and its derivative ∂

∂n logL in Figure 3. For simplicity,
we suppose each observation Nk, 0 ≤ k < 32, is equal to
its expected value m · Pr{Mj = k} as defined in (3). The
plot (a) shows that logL has only one local maximum. Our
steepest ascent method will converge to this global optima.
The plot (b) shows that the derivative of logL is monotonic,
and the equation ∂

∂n logL = 0 has only one solution n = 5m.
To speed up the convergence rate, we can obtain a good

initial guess of the cardinality n by the closed-form for-
mula in (2). Recall that this cardinality estimation is biased
when it is between 2m and 5m, and our key purpose is
to mitigate this bias problem of HyperLogLog using the
steepest ascent method. Hence, we use the gradient direction
in (7) to fine tune the cardinality guess to an optimized
position with no bias. Since we apply the MLE method
only in the small region n ∈ (2m, 5m), we can neglect its
shortcoming of higher computational cost than the closed-form
formula (2).

In (6), we set the optimization step size as η = αm2Bm for
the following reason. On the one hand, the step size should
not be too small, which would otherwise cause the conver-
gence to be slow. Since each register satisfies the inequality
Mj ≥ B, we know αm2Bm is proportional to HyperLogLog’s
cardinality estimation n̂, according to its estimation formula
in (2). Such an adaptive step size prevents slow convergence
for large cardinalities. On the other hand, the step size should
not be too big, which would otherwise degrade accuracy.
We know that the gradient at the optimal point is zero. When
our cardinality guess moves close to the optima, the amplitude
of log-likelihood gradient ∂

∂n logL(n | N0, N1, . . . , NK−1)
approaches to zero. For example, it is smaller than 0.1 in
our experiment of Fig. 3(b). We also know that the step size
η = αm2Bm is at least four times smaller than the cardinality
estimation n̂, since the base B, whose probability distribution
is shown in Fig. 4(b), is no larger than the peak minus two,
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Fig. 4. When m = 512 and n/m = 100, the probability for a HLL register
to take a value no less than a bound k, and the probability of base register.

as shown by the register value distribution in Fig. 2(a). Then,
the multiplication result of the gradient and the step size will
be small as we step towards the maxima; for instance, it is
no more than 1/40 of the cardinality under estimation in our
experiment, which can help converge to an accurate solution.

V. HLL-TAILCUT ALGORITHM

In this section, we reduce the size of each HLL register from
five bits to four bits. We call the new algorithm HLL-TailCut,
which applies the long tail cutoff technique to the register
value distribution in Fig. 2. Compared with HLL, HLL-TailCut
has two advantages: It is 20% more memory efficient, and it
supports the counting of Tera- or Peta-scale cardinalities.

A. Base Register and Offset Registers

Our basic idea is to use a shared base register for storing the
smallest value among the set of HyperLogLog registers, so that
the m registers only need to store their offsets relative to the
base register. Intuitively, the offset stays in a much smaller
range than 25 (see Fig. 2) and can be encoded by less than five
bits. In following, we explain how to maintain the base register
and the m offset registers, upon the arrival of stream elements.

Let B be a base register that records the smallest value of
the HLL register set. Hence, we have B ≥ 0.

B = min
0≤j<m

Mj

With this base B, each register M̃j is now called an offset
register that records only its offset relative to B. When a
stream element arrives, we need to memorize its occurrence
by updating the offset register M̃j . To serve this purpose,
we modify the register updating Eq. (1) as

M̃j := max
(
M̃j, ρ(x′) − B)

, (10)

where M̃j is the jth offset register to which an arrival element
is mapped, ρ(x′) is the index of the bucket chosen by the
element, and ρ(x′) − B is the offset of the bucket index
from B.

Handle Overflow of Offset Register: We define each offset
register to be four bits long. Thus, an offset register’s recording
capacity K is 24 = 16, implying that the recorded offset
value must be smaller than K = 16. However, occasionally,
the offset values ρ(x′) − B of some stream elements are at

least K. We use the term “overflow” to refer to the attempts
of updating the offset register M̃j to the K value or above.

In order to address the overflow event, we scan the m offset
registers to find the smallest offset value, which is denoted as
ΔB. If ΔB is non-zero, it tells that the shared base register B
can be increased by this amount to reduce the offset value
stored in each offset register. We call this operation “base
register update”: As B increases by ΔB, each offset register
M̃j must be decreased by ΔB, since they record offsets
to B.

Thanks to this base updating operation, we have a base
register B that increases dynamically as more stream element
arrives. Essentially, our purpose is to use a set of truncated reg-
isters B + M̃j to record the cardinality information. Although
each offset register M̃j with a limited number of bits must be
smaller than K, the base register B can grow arbitrarily large.
Therefore, we can count very large cardinalities on Tera or
Peta scale without giving more bits to offset registers.

After the increase of the base register by ΔB, the new offset
value ρ(x′) − B in (10) may become smaller than K. If it is
true, the overflow event disappears. Otherwise, the overflow
problem can not be resolved, and the jth offset register has
to be truncated by the cutoff bound K as follows. Later in
Section V-C, we will theoretically analyze the probability of
unresolvable overflows.

M̃j := max
(
M̃j, min(ρ(x′) − B, K − 1)

)
(11)

For a fraction of stream elements, their ρ(x′) may be smaller
than the current value of the base register B. In this case,
the new offset variable ρ(x′)−B will be negative, and Eq. (11)
will leave the offset register M̃j unchanged. Our handling of
this case is consistent with the basic idea of HyperLogLog:
Each HLL register Mj maintains the position of the rightmost
non-empty bucket in Fig. 1, so that each HLL register can give
an independent cardinality estimation 2Mj . Our HLL-TC is to
approximate a HLL register Mj by a truncated register B+M̃j ,
where the base B keeps track of the smallest value among
all HLL registers. When an update ρ(x′) is smaller than B,
it is of course smaller than any HLL register. Eq. (1), which
updates each HLL register Mj upon the arrival of stream
elements, shows that each HLL register will be unchanged.
Hence, the base B that tracks the minimum of all HLL registers
will stay the same, and so does the offset M̃j . In summary,
we can safely ignore the case ρ(x′) ≤ B. This won’t affect
the cardinality estimation result.

B. Pseudocode of HLL-TailCut

In this subsection, we describe the procedure of the
HLL-TailCut algorithm (abbreviated as HLL-TC), which can
be divided into two parts: an online component that updates
the base register B and offset registers M̃j , 0 ≤ j < m, upon
the arrival of stream elements, and an offline component that
estimates the stream cardinality n using these registers.

We present the pseudocode of the online component in
Algorithm 1. We use the term “truncated register” to refer
to the sum of base register B and offset register M̃j . The
Algorithm 1 essentially maintains a set of truncated registers
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Algorithm 1 Online Component of HLL-TailCut

1 initialize B and M̃j to zero, for each j ∈ [0, m)
2 foreach element e in data stream S do
3 x := h(e), j := 〈x1 x2 · · ·xb〉, x′ := 〈xb+1xb+2 · · · 〉
4 if ρ(x′) − B ≥ K then // detect overflow
5 ΔB := min0≤j<m M̃j

6 if ΔB > 0 then
7 B := B + ΔB // update base register
8 foreach j ∈ [0, m) do M̃j := M̃j − ΔB
9

10 M̃j := max
(
M̃j, min(ρ(x′) − B, K − 1)

)

B + M̃j , 0 ≤ j < m. Different from the HLL register Mj

maintained by (1), these truncated registers chop off the long
tail of a histogram (like in Fig. 2) by the bound B + K, and
the chopped part is stacked above the (B+K−1)th bar, due to
the line 10. Thus, the resultant histogram will exhibit an edge
peak distribution with a spike close to the tail truncation point.

The computational complexity of the online component of
our HLL-TC does not increase when the cardinality to estimate
is very large. The most expensive operation of Algorithm 1 is
the lines 5∼9, which scan the m offset registers to find the
smallest offset value and update B. However, we perform this
operation only when an arrival element triggers the overflow
event at line 4. Its probability is 2B+K−1, which reduces
exponentially as the increase of base register B. Therefore,
the computational cost of Algorithm 1 actually reduces when
the cardinality of the data stream grows very large.

Since the Algorithm 1 no longer maintains the HLL register
Mj , we need to modify the offline estimation equation in (2),
using the newly designed base register B and offset registers
M̃j . A straightforward solution is to replace Mj by the jth
truncated register B + M̃j .

n̂ = αm · m2 · ( ∑
0≤j<m 2−(B+M̃j)

)−1
(12)

In this formula, we use the harmonic averaging to aggregate
the cardinality estimation results 2B+M̃j of different registers
B+M̃j, 0 ≤ j < m. The harmonic mean technique is inherited
from HyperLogLog [8], which is to mitigate the impact of
large outliers in a register value distribution (see the right-side
long tail of Fig. 2(b)). Therefore, our HLL-TC algorithm can
provide a reliable cardinality estimation when there are a group
of outliers far away from the peak.

If the cardinality estimate n̂ by (12) is between 2m and 5m,
we will use the MLE estimator in (5) to fine tune the estimated
result and make it unbiased. If n̂ by (12) is smaller than 2m,
LinearCounting is more accurate: n̂ = −m log(z/m), where
z is the number of registers B + M̃j that are equal to zeros.

C. Theoretical Analysis of HLL-TC

This subsection will prove our HLL-TC in (12) can produce
unbiased cardinality estimations. An intuitive explanation is,
when each offset register is given four-bits memory and the

cutoff bound K is 16, the truncated long tail in the register
value distribution has negligibly small probability mass.

Previously, we have given in (3) the probability for a HLL
register to carry an arbitrary k value. In the following theorem,
we present Pr{Mj ≥ k}, the probability for a register to carry
a value of at least k, which is called the tail probability.

Theorem 3 (Probability of Smallest Register): The proba-
bility for a register to carry a value of at least k is

Pr{Mj ≥ k} =

⎧⎨
⎩

1 if k = 0

1 − (1 − 1
m2k−1

)n if k ≥ 1,
(13)

Proof: Directly derived from Theorem 1. �
From the tail probability in (13), we can analyze the value

distribution of the base register B:

Pr{B = b} = Pr{B ≥ b} − Pr{B ≥ b + 1}, where (14)

Pr{B ≥ b} = Pr{∀j, Mj ≥ b} =
∏

0≤j<m Pr{Mj ≥ b}

=

{
1 if b = 0,(
1 − (1 − 1

m2b−1 )n
)m

if b ≥ 1.

Suppose the number of registers m is 512 and the load factor
n/m = 100. Under this parameter setting, Fig. 4(a) plots the
tail distribution of HLL register values in (13), and Fig. 4(b)
plots the value distribution of base register in (14). We have
two findings about Figure 4.

Firstly, that the base register B is quite stable, and often
alternates between two neighboring values. As shown in
Fig. 4(b), in most cases, B takes one of the two values,
i.e., 4 and 5 when m = 512 and n

m = 100. The conclusion
is similar when we examine other settings of the number of
registers m and the load factor n

m .
Secondly, in Fig. 4(a), the tail probability Pr{Mj ≥ k}

reduces exponentially as the k value grows. We define the
“overflow” probability as the chance for a register to take
a value at least B + K, after an estimator with m registers
accepts a data stream with cardinality n. An offset register
with �log2(K)� bits can only record a value smaller than K
and has to be truncated. Suppose each offset register is given
four bits. Then, the tail cutoff bound is B+16, and the overflow
probability is Pr{Mj ≥ B + 16}. In Fig. 4(a), if the base B
is 4, the overflow probability Pr{Mj ≥ 4+16} = Pr{Mj ≥
20} is as small as 0.02%. Since our HLL-TC assumes four
bits per register, the overflow probability is negligibly small,
and a truncated register B + M̃j can closely approximate a
HLL register Mj with no obvious information loss. As a
result, we can use the closed-form equation in (12) similar
to HyperLogLog to estimate the stream cardinality.

HLL-TC has two advantages compared with HyperLogLog:
Memory cost can be reduced by 20% under the same accu-
racy constraint, and Tera/Peta-scale large cardinalities can
be accurately estimated. HLL-TC inherits a good attribute
called “composable” from HyperLogLog: Suppose multiple
HLL-TC estimators are deployed at distributed sites. For each
estimator, its base register B and offset registers M̃j can be
transmitted to a central server, which has abundant resources
to recover the set of HyperLogLog registers B + M̃j for each
estimator. Then, the server can merge the multiple estimators
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Fig. 5. Performance of HLL-TailCut allocated with 512 offset registers, each
of which is given four bits memory.

to determine the union cardinality of the data streams at
distributed sites [8].

However, when each offset register is given only three bits,
the overflow probability Pr{Mj ≥ 4 + 8} = Pr{Mj ≥ 12}
grows to 4.6%. The high overflow rate will cause estimation
bias problem in Fig. 6(a), which is compensated by HLL-TC+
in Section VI using maximum likelihood estimation.

D. Accuracy Evaluation of HLL-TailCut

We empirically evaluate how the estimated result by (12)
is affected, when we truncate the right-side tail of a HLL
histogram by the bound B +K when K = 16. Our evaluation
results in Fig. 5 verify that the tail cutoff across B+16 causes
negligibly small bias to the cardinality estimation by (12).

Subfigure (a) illustrates the estimation bias E(n̂ − n)/n,
where n is the actual cardinality and n̂ is the estimated
value. Subfigure (b) depicts the relative standard deviation
of estimated results

√
V ar(n̂)/E(n̂). We illustrate both the

results of LinearCounting and HLL-TC, which are configured
with the same number of memory units: LinearCounting is
given m =512 bits, and HLL-TC is given m = 512 offset
registers. Plot (a) shows that HLL-TC in (12) can produce
unbiased estimations, when the cardinality n is larger than
5m = 2560. It also shows LinearCounting generates unbiased
estimations for cardinalities smaller than 2 m = 1024. Hence,
the two formulas are complementary with each other. Later in
simulation section, we will illustrate why it is better to use
the MLE estimator in (5) when 2m < n < 5m. It is more
obvious when the number of register m is a few thousands.

The expected relative error of HLL-TC is the same with
the error of HyperLogLog [8]: 1.04√

m
, where m is the number

of offset registers. The expected relative error is mainly
determined by the number of offset registers m that can be
created from the allocated memory. It has no strong relation
with the stream cardinality n to estimate. For example, suppose
the memory cost of HLL-TC is 257 bytes and the base
register occupies just one byte. Then, 512 offset registers can
be created, and the relative estimation error is expected to
be 1.04√

512
≈ 4.6%. This is consistent with the experimental

result in Fig. 5(b). When m = 512, the standard deviation
of HLL-TC is 4.6%, but it converges to 4.6% only when the
cardinality n is larger than 10m = 5120. When the number
of offset registers m increases to 4096, the memory cost

Fig. 6. Performance of HLL-TailCut configured with 512 offset registers,
each of which is given three bits memory.

of HLL-TC is about 2 kilo bytes, and the relative error is
1.04√
4096

≈ 1.6%.

VI. HLL-TAILCUT+ ALGORITHM

In this section, we reduce the size of each offset register to
three bits, and save the memory cost by over 40% than HLL.

A. Bias Problem of the Naive HLL-TailCut

When the offset register size reduces to three bits, we assign
the cutoff bound K to 23 = 8, and then we can reuse the online
component in Algorithm 1 to maintain the base register B and
each offset register M̃j , upon the arrival of stream elements.
However, the offline analysis component in (12) used by the
naive HLL-TailCut has a serious “estimation bias” problem,
which will be identified and explained as follows.

HLL-TC adopts an estimation equation in (12) similar to
HyperLogLog. For this solution, we illustrate its experimental
results in Fig. 6. The subfigure (a) shows that HLL-TC with
cutoff bound K = 8 produces the estimation bias of −5.2%.
This is because, when the offset register is three bits and K
reduces to eight, the percentage of registers truncated by (11),
called overflow probability, will greatly increases to about 5%.
Thus, a non-negligible fraction of offset registers are truncated.

To make things worse, in Fig. 6(a), the bias of HLL-TC
exaggerates to −5.2% by a non-linear curve, implying that we
cannot compensate such bias simply by applying a constant
corrector to the biased estimation result.

Interestingly, the standard deviation of HLL-TC decreases
from 4.6% shown in Fig. 5(b) to 4.4% shown in Fig. 6(b).
This is because more outliers in the long tail are discarded,
as the tail cutoff bound changes from 16 to 8. More aggressive
outlier rejection brings a small degree of accuracy gain.

B. Probabilistic Model of Truncated Register

To address the negative bias problem of HLL-TC, we will
propose a HLL-TailCut+ algorithm, which modifies the
MLE-based HyperLogLog algorithm discussed in Section IV.
We have already depicted its performance in Fig. 6. Plot (a)
shows that it can provide unbiased estimations in the entire
range, and plot (b) shows that it has comparable accuracy with
HLL-TC.

Before introducing this new algorithm, in this subsection,
we analyze the probability of a truncated register B + M̃j
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to exhibit an arbitrary k value. The key difficulty for this
analysis is that, during the execution time of the online
component, the shared register B is not a fixed value, but
gradually increases as the register set receives more and more
stream elements.

We begin by defining several notations. Let b be the final
value which the base register B has been updated to. Note
that b is typically a small value even for a very large stream
at the scale of 109. For example, let the number of registers
m be 1024. When the stream size n equals 102 m, the b value
alternates between 4 and 5, as in Fig. 4(a). When n increases
to 106 m (about 109), the b value grows only to 17 or 18.

As the base register B undergoes the step-by-step increase
in the range of [0, b], the register set consisting of m offset
registers will receive different numbers of stream elements.

• When B is equal to 0, we assume that the register set
receives n0 distinct stream elements.

• When B is equal to 1, the register set receives n1 stream
elements that are distinct from the previous n0 elements.

• …
• When B is equal to b, the register set receives nb stream

elements that are distinct from the elements n0, n1, . . . ,
nb−1 received when B is equal to the previous values.

The purpose of our problem is to estimate the total cardinality
n of the data stream, which is equal to n0 + n1 + . . . + nb.

Let M̃
(0)
j , M̃

(1)
j , . . . , M̃

(b)
j be the values of the jth offset

register, when the base register B is fixed to 0, 1, . . . , b and
the register set independently receives n0, n1, . . . , nb distinct
elements, respectively. For example, M̃

(1)
j is the value of

jth offset register, when the base register B is fixed to 1 and
the register set receives n1 unique elements that are totally
different from the n0 elements received when B is still zero.

After the register set receives all the n = n0 +n1 + . . .+nb

stream elements, the jth truncated register B + M̃j becomes

B + M̃j = max(B + M̃
(0)
j , B + M̃

(1)
j , . . . , B + M̃

(b)
j ).

Because B+ M̃
(0)
j ,B + M̃

(1)
j , . . . ,B + M̃

(b)
j are independent,

the cumulative probability for B+M̃j (i.e., the probability for
the jth truncated register to carry a value of at most k) is

Pr{B + M̃j ≤ k | n0, n1, . . . , nb}
=

∏
0≤i≤b Pr{B + M̃

(i)
j ≤ k | ni}. (15)

Here, it needs the cumulative distributions of the jth truncated
register Pr{B+M̃

(i)
j ≤ k | ni}, when the base register is fixed

to a value i ranging from 0 to b. If the base register is equal to
b value, the cumulative distributions Pr{B + M̃

(b)
j ≤ k | nb}

is given in the following theorem. When the base register is
equal to other values 0, 1, . . ., or b − 1, we can easily obtain
their corresponding cumulative probability, if we replace the
symbol b in (16) by 0, 1, . . ., or b − 1, respectively.

Property 1 (Cumulative Distribution of Truncated Register
B + M̃

(b)
j With Fixed Base Register): When the base register

B is fixed to a value b and the register set receives nb distinct
elements, the probability for the truncated register B + M̃

(b)
j

to exhibit a value of no more than k is as follows.

Pr{B + M̃
(b)
j ≤ k | nb}

=

⎧⎨
⎩

(
1 − 1

m2k

)nb if 0 ≤ k ≤ b + K − 2

1 if k ≥ b + K − 1
(16)

Proof: Directly derived from Theorem 1. �
By applying (16) to (15), we can obtain the cumulative

probability of the jth truncated register Pr{B+ M̃j ≤ k | n0,
n1, . . . , nb}. We refrain from expanding this formula, which
otherwise will become too complicated. Then, with the cumu-
lative probability in (15), we can derive the probability density
function for the jth truncated register B + M̃j .

Pr{B + M̃j = k | n0, n1, . . . , nb}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if k < b

Pr{B + M̃j ≤ k | n0, n1, . . . , nb} if k = b

Pr{B + M̃j ≤ k | n0, n1, . . . , nb} −
Pr{B + M̃j ≤ k−1 | n0, n1, . . . , nb}

if k > b

(17)

Here, the probability for the truncated register to take a value
less than b is zero, because the base register B increases to b
after receiving all the n elements, which makes it impossible
for the truncated register B + M̃j to be smaller than b.

C. Maximum Likelihood Estimator

As the probability for a truncated register B + M̃j to carry
an arbitrary k value is available in (17), the only problem
that remains is how we use this parameterized probabilistic
model with b unknown variables n0, n1, . . . , nb, to generate
an unbiased estimation of the total stream cardinality n.

We address the problem by estimating the b unknown
parameters one by one. When the base register B is about
to increase from zero to one, we estimate n0, the number of
distinct elements received. To accomplish this task, since the
base B is still zero, we can use directly the maximum likeli-
hood estimator in Section IV. Note that when the estimation
of n0 is smaller than m, we will use instead the estimated
result by LinearCounting [19] for better accuracy, as inspired
by the work [16] that argues LinearCounting is more accurate
than HyperLogLog if given enough memory space.

Then, following the principle of mathematical induction,
we assume that the stream cardinalities n0, n1, . . . , nb−1 all
have been estimated as n̂0, n̂1, . . . , ˆnb−1, at the time that the
base register B is about to update to 1, 2, . . . , b, respectively.
Based on them, we will further estimate the next unknown
variable nb. The likelihood function of nb is as follows.

L(nb | N0, N1, . . . , Nb+K−1)
= m!

N0!N1!...Nb+K−1!

· ∏b+K−1
k=b Pr{B + M̃j = k | n̂0, n̂1, . . . , ˆnb−1, nb}Nk

(18)
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TABLE II

APPLY HLL-TC+ TO DATA STREAMS WITH

16 × 109 DISTINCT ELEMENTS

The probability density function Pr{B+M̃j = k | n0, n1, . . . ,
nb} of truncated register B+M̃j is in (17). We replace the true
values of n0, n1, . . . , nb−1 by their estimated values in (18).

The likelihood function in (18) has a complicated math-
ematical expression after expansion. It is difficult to find a
closed-form solution that can maximize this likelihood in (18).
Hence, we numerically search for the optimal model parameter
n̂b using the derivative of the log-likelihood function as a
heuristic. Let n̂b be an optimized estimation that can maximize
the log-likelihood function. Then, we have

n̂b = arg max
nb

logL(nb | N0, N1, . . . , Nb+K−1). (19)

We solve this maximum log-likelihood problem by a steepest
ascent method. Its implementation details is in Appendix VIII.

Because the stream cardinalities n0, n1, . . . , nb all have
been estimated, we can obtain an estimation of the total stream
cardinality as n̂ = n̂0 + n̂1 + . . . + n̂b. We call this algorithm
HLL-TailCut+ (abbreviated as HLL-TC+). Unlike HLL-TC,
this algorithm has no bias problem as illustrated in Fig. 6(a).

As to the convergence of the steepest ascent method,
we can prove the log-likelihood function in (19) has only one
local maxima, by proving the second-order derivative of the
log-likelihood function is always negative. By (18), we have

∂2

∂nb
2 logL(nb | N0, N1, . . . , Nb+K−1)

=
b+K−1∑

k=b

Nk

(
∂2

∂nb
2 Pr{B+M̃j=k}

)
Pr{B+M̃j=k}−

(
∂

∂nb
Pr{B+M̃j=k}

)2

Pr{B+M̃j=k}2 ,

where Pr{B+M̃j = k} is an abbreviation for Pr{B+M̃j =
k | n̂0, n̂1, . . . , ˆnb−1, nb}, which is defined in (17). It is not
difficult to verify that the nominator of each term is negative.
The proof is similar to the convergence proof in Section IV-B.
The key is to treat each Pr{B+M̃

(i)
j ≤ k | ni}, i < b, in (15)

as a fixed value. Due to page limit, we omit the detailed steps.

D. Analysis of Memory Cost

The memory cost of HLL-TC+ is the number of offset
registers m multiplied by three bits, and its relative standard
error is roughly 1.0√

m
. We obtain this relative error 1.0√

m
by

applying HLL-TC+ to a fixed cardinality (e.g., ten million) for
ten thousand times, and then calculating the relative standard
deviation of estimated results. Later in Table II, we will
use more extensive experiments to verify this relative error
equation also applies for other m values and other n values.

Since the standard error of HLL-TC+ is 1.0√
m

and that of
HLL is 1.04√

m
, we can show HLL-TC+ only needs 55% memory

of HLL to attain the same accuracy. Let mHLL-TC+ (or mHLL)
be the number of registers used by HLL-TC+ (or HLL). Then,

Fig. 7. Compare cardinality estimators with the same 1.54 k bits memory.

we have 1.0√
mHLL-TC+

= 1.04√
mHLL

, to attain the same accuracy. Since
the register size of HLL is five bits and that of HLL-TC+ is
only three bits, the memory cost of HLL-TC+ divided by that
of HLL is MemoryHLL-TC+

MemoryHLL
= 3 bits·mHLL-TC+

5 bits·mHLL
≈ 3

5 · ( 1.0
1.04

)2 ≈ 55%.

VII. EXPERIMENTS

In this section, we evaluate the performance of our proposed
HLL-TC and HLL-TC+ algorithms, and compare them with
state-of-the-art algorithms, including HyperLogLog (HLL) [8]
and HyperLogLog+ (HLL+) [10]. Note that we have shared
online the source code of all these four algorithms [15].

A. Experiment Setup

For each cardinality estimator, we will evaluate two perfor-
mance metrics: the average estimation bias and the average
estimation error when given a same amount of memory.
We will evaluate the performance of the cardinality estimators
under three different scenarios. First, we assume very limited
memory budget, no more than a few hundreds bytes per
stream, to support cardinality measurements with coarse accu-
racy ranging from 4% to 10%. Second, we assume the avail-
able memory is several kilobytes per stream, which enables
highly accurate estimations with the expected errors lower
than 2% or even 1%. Third, we would like to verify whether
our HLL-TailCut+ estimator can support the measurement of
extra large streams whose cardinalities exceed 4 × 109. This
bound is important since a five-bit HLL register can only count
cardinalities up to 225 ≈ 4× 109.

B. Coarse-Accuracy Estimation

We consider the coarse accuracy σ ≈ 4.4%. Then, the
number of registers m should be (1.0/0.044)2 ≈ 512 for
HLL-TC+, occupying 512×3 = 1.54 k bits memory. We give
the same amount of memory to the other three algorithms, and
depict their performance in Fig. 7.

Fig. 7(a) shows that all four algorithms are approximately
unbiased. Fig. 7(b) shows that the estimation error of HLL is
slightly smaller than the error of HLL+. This is because HLL
defines the register size to be five bits to support the counting
of data on Giga scale, while HLL+ enlarges the register size
to six bits, to extend the operating range to Tera or Peta scale.
Hence, when given the same memory budget, HLL+ can
allocate a smaller number of registers than HLL. Fig. 7(b)
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Fig. 8. Compare cardinality estimators with the same 24.58k bits memory.

also shows that our HLL-TC and HLL-TC+ algorithms can
provide smaller estimation error. This is because HLL-TC and
HLL-TC+ have compressed the register size to four bits and
three bits, respectively. Given the same amount of memory,
they can allocate more registers to achieve higher accuracy.

C. Fine-Accuracy Estimation

We consider the estimation error σ ≈ 1.1%. To achieve
such fine accuracy, HLL-TC+ needs about (1.0/0.011)2 ≈
8192 registers, which occupies 24.58k bits memory. We give
the same amount of memory to the other three algo-
rithms, and evaluate their performance. Fig. 8(b) shows that
HLL-TC+ provide the best accuracy among the four algo-
rithms, and its expected error is 1.0/

√
m ≈ 1.1%.

Fig. 8(a) shows that HLL has a high spike that is strongly
biased. This is because, in the small region around 2.5m =
2.5 · 8192 · 3 bits

5 bits ≈ 12288, HLL makes a switch between
LinearCounting and its raw estimation equation in (2). This
bias problem has also been elaborated by previous work [10].
As shown in Fig. 8(a), this bias problem has been solved
by HLL+, HLL-TC and HLL-TC+, however using different
methods. HLL+ corrects the bias in a brute-force way [10]: It
empirically calculates the bias of 200 hundred reference values
in the small region from 2m to 5m, and then interpolates
between the 200 reference points to determine the correction
to apply for any given raw estimation value by (2). In contrast,
our HLL-TC addresses this problem elegantly, by substituting
the Eq. (2) with a MLE estimator in (5), within the small
region from 2m to 5m. Our HLL-TC+ also does not have the
bias problem, because it uses the MLE estimator in (19).

D. Extra Large Measurement Range

The previous experiments only show the evaluation results
for cardinalities up to one million. In following, we will verify
that our HLL-TC+ can measure extra large streams that have
over four billions distinct elements. Unlike HyperLogLog+
which increases the register size to six bits to support such
large streams, we only need an array of three-bits offset
registers (whose number is m) plus a single base register which
is at least six bits long.

We list in Table II the average estimation bias and error of
our HLL-TC+ algorithm, when it is given different numbers of
registers m, such as 210, 212 and 213. We only show the exper-
imental results of a single stream cardinality value 16 × 109,

since it takes days to process such a large data stream for
ten thousands times. In this table, the second column lists
the average estimation bias of HLL-TC+, which is negligibly
small as compared with its standard deviation shown in the
third column. This implies that our algorithm can unbiasedly
estimate extra large streams beyond the bound of four billions.

The last column of Table II rewrites the standard deviation
of estimated results (shown in the third column) into the form
of a constant divided by

√
m. It shows that the standard

deviation of our algorithm can be accurately approximated by
1.0/

√
m. According to our previous analysis in Section VI-D,

if the expected relative error of HLL-TC+ is 1.0/
√

m, then it
can save 45% memory cost than traditional HyperLogLog.

VIII. CONCLUSION

This paper studies a fundamental problem called car-
dinality estimation, in the domain of one-pass processing
of streaming big data. We present a new solution named
HLL-TailCut, which is able to reduce memory consumption
by 20%∼45% than the state-of-the-art HyperLogLog. This
remarkable improvement originates from a technique we pro-
posed that truncates the right-side long tail of the register
distribution of HyperLogLog. This technique brings two key
benefits — improve estimation accuracy by rejecting outliers
in the long tails, and compress the register size by recording
only sixteen (or eight) highest bars in the histogram of HLL.
Therefore, our algorithm can provide the standard error 1.0√

m
using only four-bit (or three-bit) memory per register. Our
HLL-TailCut has also addressed the strong bias problem of
HyperLogLog in the small region where it switches to Lin-
earCounting for handling small cardinalities. This is achieved
by adopting maximum likelihood estimation technique in this
small region.

APPENDIX A
PROBABILITY OF REGISTER VALUE

In this section, we analyze the probability for a HLL
register to carry an arbitrary value k. Let Vj be the num-
ber of elements that are received by the jth register Mj .
Because all the n stream elements are distributed uniformly
and pseudorandomly among the m registers in a register set, Vj

approximately follows a binomial distribution Binom(n, 1
m ).

Hence, the probability for Vj to be equal to a certain value v is

Pr{Vj = v} = C(n, v)
( 1
m

)v (
1 − 1

m

)n−v
, (20)

where C(n, v) is the number of combinations when drawing
v items from a pool of n items. For this binomial distribution,
we denote its mean value by μ and its variance by σ2.

μ =
n

m
σ2 =

n

m
(1 − 1

m
) (21)

For the case that Vj equals zero and the register Mj receives
no elements, Mj will maintain its initial value of zero. Thus,
the probability for the jth register to be zero is

Pr{Mj = 0} = Pr{Vj = 0} =
(
1 − 1

m

)n
, (22)

by assigning the symbol v to zero in Eq. (20).

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:26:09 UTC from IEEE Xplore.  Restrictions apply. 



XIAO et al.: ESTIMATING CARDINALITY FOR ARBITRARILY LARGE DATA STREAM WITH IMPROVED MEMORY EFFICIENCY 445

For the case that Vj equals a nonzero value v, we examine
what will happen to the jth register if it receives v elements.
The random variable Mj , we recall in (1), is the maximum of v
random variables that are independently and geometrically dis-
tributed according to Pr{Y > k} = 1

2k (as depicted in Fig. 1).
Hence, the accumulative probability function of Mj is

Pr{Mj ≤ k | Vj = v ∧ v > 0} = (1 − 1
2k

)v. (23)

Then, we have

Pr{Mj = k | Vj =v∧v>0} =
(
1− 1

2k

)v−(
1− 1

2k−1

)v
.

Combining the above equation with (20), we obtain the
probability for a register to carry an arbitrary positive value k.

Pr{Mj = k}
=

∑n
v=1 Pr{Vj = v} · Pr{Mj = k | Vj = v ∧ v > 0}

=
n∑

v=1
C(n, v)

(
1
m

)v(1 − 1
m

)n−v[(
1 − 1

2k

)v− (
1 − 1

2k−1

)v]
(24)

However, it is infeasible to use the Eq. (24) to evaluate the
probability for a register to carry an arbitrary value k, which
needs to apply summation over the index v ranging from 1
to n. Note that the stream cardinality n may be as large as
109 in many applications. Hence, we need to simplify the
probability in (24), by eliminating the summation mark

∑
and the symbol v. According to the Binomial theorem,

Pr{Mj = k} =
n∑

v=1
C(n, v)

(
1 − 1

m

)n−v[(
1
m − 1

m2k

)v − (
1
m

− 1
m2k−1

)v] = (1− 1
m2k )n − (1− 1

m2k−1 )n.

APPENDIX B
ITERATIVE NUMERICAL SOLUTION OF HLL-TAILCUT+

In this section, we discuss the HLL-TailCut+ algorithm,
which compresses the size of offset register to only three bits
and can save memory cost of HLL by 45%. We present how to
solve its maximum likelihood problem in (19). We will use the
following iterative optimization method to find the optimized
estimation for nb, the number of distinct elements received by
the register set when the base register B equals b:

l̂n
(i+1)
b

= n̂b
(i) + η

∂

∂n
(i)
b

logL(n(i)
b | N0, N1, . . . , Nb+K−1) (25)

where n̂b
(i) is the current estimation for nb, n̂b

(i+1) is the next
round estimation, η is the optimization step size configured
to αm2bm. The derivative of log-likelihood function over nb,
according to the definition of likelihood function in (18), is

l
∂

∂nb
logL(nb | N0, N1, . . . , Nb+K−1)

=
∑b+K−1

k=0
Nk

∂
∂nb

Pr{B+M̃j =k | n̂0, n̂1, . . . , ˆnb−1, nb}
Pr{B+M̃j =k | n̂0, n̂1, . . . , ˆnb−1, nb}

.

The derivative of Pr{B+M̃j = k | n0, n1, . . . , nb} is obtained
from the derivative of its accumulative distribution function.

∂

∂nb
Pr{B + M̃j = k | n0, n1, . . . , nb}

= ∂
∂nb

Pr{B + M̃j ≤ k | n0, n1, . . . , nb}
− ∂

∂nb
Pr{B + M̃j ≤ k − 1 | n0, n1, . . . , nb}

By the definition of accumulative distribution function
Pr{B + M̃j ≤ k | n0, n1, . . . , nb} in (15), we have

∂
∂nb

Pr{B + M̃j ≤ k | n0, n1, . . . , nb}
= ∂

∂nb
Pr{B + M̃

(b)
j ≤ k | nb}

·
b−1∏
i=0

Pr{B + M̃
(i)
j ≤ k | ni}, (26)

where the derivative ∂
∂nb

Pr{B+M̃
(b)
j ≤ k | nb} can be easily

obtained from Pr{B + M̃
(b)
j ≤ k | nb} in (16).

We still need an initial guess of nb, which is denoted
by n̂b

(1) and will be iteratively optimized by (25). If the
initial guess is of high quality, then the convergence speed of
iterative optimization can be improved. We firstly generate an
estimation n̂ of the total stream cardinality by HLL-TC in (12),
which of course is negatively biased. From the experimental
results in Fig. 6(a), we know that HLL-TC often has −5.2%
estimation bias. So we generate an initial guess of nb as

n̂b
(1) = 1

1+hlltcBias n̂hlltc − n̂0 − n̂1 . . . − ˆnb−1, (27)

where n̂hlltc is the estimation of the total stream cardinality n
by HLL-TC, and hlltcBias is the expected bias of HLL-TC.
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