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Abstract—A hierarchical flow model provides us the oppor-
tunity to monitor network traffic in datacenters, at once, from
coarser (aggregate flows) to finer granularity (individual flows).
Per-flow traffic measurement based on an idea of counter-
sharing is memory-efficient by recording the sizes of all flows
in a shared array of physical counters. Through this approach,
flows at the same level record their sizes in uniformly sized
virtual counter arrays constructed from the shared memory.
However, flows at the same level have vastly different sizes.
The virtual counter arrays for large flows must be big enough
to uniformly distribute errors it contains. However, when large
virtual counter arrays are used to record small flow sizes, the
arrays accumulate more errors than the recorded flows’sizes,
thereby affecting the accuracy of the estimations. The paper
introduces the concept of differentiated virtual counter arrays,
where the number of virtual counters allocated to each flow is
based on its historical size. We derive a mathematical formula
for flow-size estimation when recording flow sizes with flexible
number of virtual counters and develop a heuristic algorithm to
calculate how many virtual counters are assigned to each flow.
Through experiments, we demonstrate that our solution is more
accurate by up to 75% for aggregate flows and by up to 100%
for small base flows compared with the prior art.

I. INTRODUCTION

Modern datacenters’ traffic has been growing at a rate of
25% annually and this trend will continue into the future
[1]. This places ever increasing strain on how fast packets
must be processed on the line cards of datacenter switches. In
addition, the demand of diverse traffic measurement to support
sophisticated network management only adds more to the
stress [2]. Therefore, additional measurement tasks need to be
designed efficiently to compete less on the limited resources
such as SRAM on the data plane of a router, while at the
same time delivering accurate and usable results.

The widely-used tool for traffic measurement is NetFlow
[3], which measures the size of each flow such as the number
of packets and other statistics. Per-flow monitoring is essen-
tial in modern network management for generating a traffic
matrix, traffic engineering, clients’ billing, network security,
among others [4]-[9]. NetFlow is however costly in memory.
There are several memory-efficient probabilistic measurement
approaches based on counter-sharing architectures [5], [10]—
[14]. They reduce memory requirement by sharing counters
among different flows and providing approximate answers for
flow statistics.

However, most prior work considers disjoint flows that do
not share any packet. Therefore, each arrival packet will be
recorded exactly once for the flow that it belong to. That is
however not the case in datacenter traffic measurement: A dat-
acenter is typically organized in a hierarchical structure, where
racks are connected via top-of-rack switches to aggregation
switches then to core routers, each rack consists of a number
of servers that connect to a top-of-rack switch, and each
server may host a number of VMs. In order to learn traffic
distribution in a datacenter, we may want to measure traffic
between any two racks, traffic between any two servers (in
different racks), and traffic between any two VMs (in different
racks). While the top-of-rack and aggregation switches are
often off-the-shelf products, we assign the measurement tasks
to the core routers which can be modularized for additional
functions. We call the packets from one rank (server, VM) to
another as a rack (server, VM) flow. Obviously, each rack flow
contains a number of server flows, and each server flow may
contain a number of VM flows. These flows can be organized
in a three-level hierarchy, with rack flows at the top, server
flows at the second level, and VM flows at the bottom level.
It is no longer true that each packet belongs to one and only
one flow. Instead, it belongs to a VM flow, a parent server
flow that contains the VM flow, and a parent rack flow that
contains the server flow. If we use the traditional approaches
of traffic measurement, we will have to record the packet three
times, one for each flow that it belongs to, which increases
the processing overhead by threefold.

Chen et al [6] proposed hierarchical virtual counters (HVC)
to process packets belonging to a flow hierarchy. Consider a
packet p that belongs to a VM flow f3, its parent server flow
f2, and the parent rack flow f;. HVC assigns a number s3 of
virtual counters to record f3, a number s of virtual counters
to record f5, and a number ny of virtual counters to record f1,
where the reason the counters are called virtual is because they
are shared with other flows at the same level. The key is that
the virtual counters for f3 are a subset of virtual counters for
f2, which are in turn a subset of those for f;. By recording
packet p in any counter for f3, the packet is automatically
recorded for fy and f; as well. That is, processing the packet
once, it is recorded for three flows that it belongs to.

When we experiment with HVC, we discover an overlooked

978-1-7281-8275-9/20/$31.00 ©2020 IEEE
DOI 10.1109/BigCom51056.2020.00025

122

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:30:14 UTC from IEEE Xplore. Restrictions apply.



problem: It sets the same value for s3 (so, 1) for all flows
at the same level of the hierarch. The VM flows are each
recorded in sz virtual counters, the server flows are each
recorded in s, counters, and the rack flows are each recorded
in s; flows. However, flows at the same level have vastly
different sizes. Assigning them with the same number of
virtual counters causes significant performance problems. For
example, if we set s3 (or sa, 1) large, that helps large flows
but makes the measurement of small flows really inaccurate
due to excessive noise from counter sharing. If we set it small,
that helps most small flows but causes large measurement
errors for some as the noise from large flows are now
concentrating in a small number of counters.

In this paper, we introduce the concept of differentiated
memory allocation (DMA) in hierarchical traffic measure-
ment, which allows different flows to have different numbers
of virtual counters. We combine HVC with differentiated
memory allocation to improve traffic measurement accuracy,
while still ensuring that each packet is processed once for
all flows that it belongs to. DMA adaptively decides on
the number of virtual counters that record the packets of
each flow based on the flow’s historical size in previous
measurement periods. Consequently, a larger flow will use
a larger number of virtual counters. As the flow size evolves
over time, its allocated number of counters will also change.
Our contributions is summarized as follows: We first derive
a mathematical formula for flow-size estimation under D-
MA and prove its unbiasness. We then propose a heuristic
algorithm to determine (offline) how many virtual counters
are allocated to each flow at each hierarchy level, subject to
a user-defined accuracy requirement. Finally, through trace-
based experiments, we demonstrate that traffic measurements
based on DMA are significantly more accurate than the prior
art.

II. FLOW MODEL AND PROBLEM STATEMENT

With the example of rack/server/VM flows in the introduc-
tion, we give a generalized, formal model for datacenter flow
hierarchy as follows: Consider a flow hierarchy of [ levels,
where flows at the same level share no packet. A parent
flow f; at the jth level contains a number of n subflows
Flens Fs o R at (G + Dth level, where 1 < j < I
and n € Z*. By definition, f; = ;L f},,. We will refer to
flows at the Ith level as base flows, while flows at other levels
are called aggregate flows, each consisting multiple subflows
at a lower level. Any packet that belongs to a base flow f;
also belongs to all its parent flows at the (I — 1)th level (f;—1)
to the first level (f1).

This paper studies how to improve the accuracy in estimat-
ing the sizes of all flows in the above hierarchical flow model
through differentiated memory allocation (DMA), which may
assign different numbers of virtual counters to flows at any
given level. The flow size is defined by the number of packets
in a flow. We require that a packet incurs only one counter
update regardless of the number of flows that the packet
belongs to. DMA allows us to better utilize the memory

TABLE I
Notations | Definition
C an array of counters
m the size of C
l the number of levels in an hierarchy
gj an aggregate flow at jth level, 1 <7 <
g a base flow at /th level
Cy, virtual counter array of a flow g;
Sg; the length of Cy,
Sg; estimated length of Cy,
n total size of all flow in a measurement period
Ng; actual size of a flow g;
Mg, estimated size of a flow g;
nycj the number of packets recorded in Cy,
Hy (7)) a master hash function
® the XOR operator
Ry, a set of random numbers of size sg4; for a flow
9j
Xk,g ; a random variable representing the number of
packets recorded by a virtual counter at an index
k in Cy,
Lo the corresponding percentile for a confidence
level « in a standard normal distribution
¢ an accuracy threshold, specifying a user-defined
confidence interval

allocated at a core router for hierarchical flow measurement,
resulting in better traffic estimation accuracy.

ITI. HIERARCHICAL TRAFFIC MEASUREMENT WITH
DIFFERENTIATED MEMORY ALLOCATION

In this section, we first describe the construction of d-
ifferentiated virtual counter arrays, which we will refer to
as differentiated memory allocator (DMA). Afterwards, we
describe how the per-flow differentiated virtual counter array
is updated online during packet forwarding. Finally, how the
size of each flow at all levels are estimated at the end of a
measurement interval is discussed.

A. Construction of Virtual Counter Arrays

Virtual counter arrays are pseudo-randomly constructed
from a physical array C' of m counters, each of which are
reset to zero at the beginning of each measurement period. A
counter in C' is denoted as C[i], i € [0,m).

Suppose that G = {g;},.,,; is a sequence of hierarchical
flows, where g; is a base flow and its parents at the (I—1)th to
the first level are g;_1, - - - , g1, respectively. Let C,, represents
the virtual counter array used to record packets belonging
to g; at jth level, where 1 < j < [. Since the flows in G
are dependent, we also construct a dependent virtual counter
array for each flow. To this end, each flow selects a number
of counters from its parent flow to construct its own virtual
counter array. The first level flow g;, which has no parent
flow, constructs its virtual counter array by randomly selecting
a number of counters from C.

In HVC [6], the virtual counter arrays of all flows on
the same level are of the same size. In order to improve
hierarchical measurement accuracy, we allocate differently
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sized virtual memory to each flow on the same level. Let
the differentiated length of Cy, be s,,. We will discuss in
detail how to calculate s, in Sectlon IV. In what follows, we
describe how the virtual counters in Cy; are pseudo-randomly
selected from Cq] .» which is the virtual counter array of
gj—1, where g;_1 is the parent flow of g;.

Cy, k] = Cy,_ [Hi(g;)], 0 <k < s, (1

where Hy (), 0 < k < 54, are independent hash functions.
Instead of selecting counters with Sg; different hash functions,
we can use a master hash function Hy,(-) in the following
way:

C

9j [k] = ng—l [HM(gj & jo [k])], 0<y< Sg;» (2)

where R, is a set of s, random numbers and & is the XOR
operator. For the first level flow g;, we have

Cy, [k] = ClHum(g1 @ Ry, [K])], 0 <k <55, ()

B. Online Data Encoding

Consider a switch processing a data stream consisting of
multiple flows. For an arrival packet, the switch first extract
a pre-defined label (from the packet’s header) to identify
hierarchical flows g1, go, - -, ¢; to which the packet belongs,
where ¢g; is the parent to go, and gs is the parent to g3, and
so on. For example, suppose that a hierarchical flow model
has 4 levels and destination IPv6 address is the label used to
identify the base and aggregate flows. The fourth level flow
is identified by 48-bit prefix; the third level flow is identified
by 32-bit prefix; the second level flow is identified by 24-bit
prefix; the first level flow is identified by 16-bit prefix..

Next, the switch randomly select a counter from the virtual
counter array of g; and increase it by 1. That is,

Cy k"] == Cy [k*] + 1, for some k* € [0,54,). (4)
From (2), we can rewrite the left hand side of (4) as
Cgl [k:*] = Cgl71[H1W(gl eBPLQL [k*])] (5)

Because the Cy,_, is constructed from Cy, ,, the virtual
counter in (5) is equivalent to the following virtual counter
in Cy,_,:

Cgl[k*]: gi— 2[HM(gl 1@R91 1[HM(91@R91[ ])D] (6)

We continue in this reasoning to reach the following corre-
sponding physical counter:

Cy [k
= C[Hum(g1 © Ry, [Hrm (g2 ® Ry, [ -

- Hur (g0 @ R, [K7])])])]
(M
Note that none of the virtual counter arrays is actually con-
structed during online encoding. The only operation executed
by the switch after receiving a packet is to increase the
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physical counter in (7) by 1. That is,

ClHwm(91 © Ry, [HM(g2 @ Ry, -
- Hy(91© Ry, [K*DD)] += 1.

(3)
C. Offline Flow Size Estimation

The flow size estimation is done offline at the end of a
measurement period, when the values of the counters in C
are copied to a hard disk or uploaded to a centralized server
or controller. Let n be the total size of all flows. Because
each arrival packet only updates one physical counter in C,
n= Z;":_Ol C[k]. Suppose that the actual size of a flow g; at
an arbitrary level j, 1 < j <1, is Ng, . To obtain an estimated
value of ng,, denoted as ﬁg]., we first reconstruct the respective
virtual counter arrays of g; and g;_; as follows:

Cy, k] = C[Hn (g1 ® Ry, [Ha (92 © Ry, [+
- Hy(g; @ Ry, [K])])])]
0<Ek<sy,.
and
ng—l [k} = C[HM(gl @ Rg1 [HM(Q’Z 2] Rgz [ o

. 'Hl\l(gj—l ©® Rg]_1[k])})])}
0<k<sy_,

The derivation of 7y, follows similar mathematical approach
proposed in HVC [6], where virtual counter arrays of uniform
length are used to encode flow-size information of flows at
the same level in an hierarchy. In contrast, we propose a
more accurate estimator (compared to HVC) by using virtual
counter array of variable length to store the number of packets
belonging to each flow.

Let ng and n | be the number of packets recorded in
5.1
Cy, and Cy,_,, respectively. Clearly, n? = Z:]o Cy, k]

s -1
and nf = >,"" " Cy | [k]. Let Xz~ 4 be a random

variable representlng the number of packets recorded by a
virtual counter at an arbitrary location k* in Cy,. X~ 4, can
be written as a sum of two random variables as follows:

©

where Yj« ;. is the number of packets contributed by g;
to Cy,[k*] and ey 4, is the number of packets contributed
by other flows to C, [k*]. From the point of view of gj,
ex~,g; is the amount of noise contained in C,;[k*]. The
maximum value of Y. 4, is ng,. The probablhty that a packet
belonging to g; is recorded in Cg, [k*] is s— Since each

Xk*,gj = Yk*,gj + €k*.g; 5

packet independently updates a virtual counter, 7Yk* , follows
a binomial distribution:
. 1
Yk*,gj ~ Bino (ngj, Sg]) (10)

Next, we find the approximate distribution of ey~ .. Note that
all the packets, which belong to other flows, that can poten-
tially update Cy, [k*] are already stored in C,,_,. Therefore,
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the maximum value of ey 4. is nc . . The probability
that a packet belonglng to other chlldren ﬂows of gj_1 is
recorded in Cy, [k*] is - , because the packet chooses from

. J .
Sg,,_, virtual counters. Also, because of independent counter

updates, €k ,g; follows a binomial distribution:

. 1
ekeg, ~ Bino (n?i fngj,s—> (11)
gj—1
: c
Since Ng._, > Ng;,
, c 1
ek ,g; ~ Bino Ng, 15 . (12)
9i—-1
By taking the expected value of (9), we have that
E(Xk*,gj) = E(Yk*&j + ek’*,gj)
= E(Yk*igj) + E(ek*igg‘)
ng. nY
= 9 4 91 (13)
Sg; Sgi—
We can rewrite (13) as
Sg.
ng, = 59, E(Xpe g,) — —2—nf . (14)
gj—1
By replacing E(Xj~4;) with the instance value

1 quj

counters Cg, , our size estimation is

Cy,[k], which is the average value of virtual

Sg;—
nC
SSom g o
When k£ = 1, the flow size of the base flow g; is
S91—
g, = Z Cou [k : (16)

IV. ACCURACY OF DMA

In this section, we deal with how to calculate the length of
virtual counter array of each flow in an hierarchy. As in the
previous section, consider a sequence of hierarchical flows
g1,92,- -+ , g1, where g; is a parent flow to go, which is in
turn a parent flow to g3, and so on. Given a flow g; at a
level 7 > 1, our idea is to calculate Sg; the length of a
virtual counter array of g;, that ensures the actual size of g;
is within a user-defined confidence interval of our estimation
in (15). For example, a user may specified that the actual flow
size is within 10% of the estimated size. In order to derive
the confidence interval of 7, we first derive its mean and
variance in what follows:

A. Mean and Variance of i,

Mean: We can calculate the mean of ny, by taking the
expected value of (15) as follows:

S
95

Z Cq] o

E(hg,) =E 95 e (O
891 1

) A

From (9),
sgj—l Sg;—
ng (k] = Z Xk, :9;
k=0
SJJ Sg;—
- Z Yk,g] + Z €k,g;

Sgl

= + Z €k,g;

where ey, 4. is amount of the number of packets contributed
by other flows to virtual counter Cy, [k]. This implies that

gg‘] Gg]
E Z Cy, k] | = BE(ng,) + E Z Chyg;
Sg;—
+ Z Pk 9]

_ ng c
=Mng; + E(ngjfl). (18)

Sgj-1 '

By substituting (18) into (17), we have that

E(ng;) = ny, 19)

This also implies that our estimator in (15) is unbiased.
Variance: We start by deriving the variance of Xy, 4., where
k is an index in Cy;. From (9), we have that

Var(Xy,g,) = Var(Yeg,) + Var(er,,), (20)

because Yy 4, and ey 4, are independent. Since Yy 4. follows
a binomial distribution, it variance is

. 1
fg; (1 - ) 1)
ng ng

By substituting (21) and Var(ey,q;) obtained in Appendix A
into (20), we have that

VCLT‘(kagj) =

Var(Xi, ) = -~ (1 1Jrjilng'”1 1
ar )= — B — B Lt —
k:9i m m — Sg. . Sgi_1
i—a S9i i
(22)
We can rewrite fiy; in (15) as
Sg; Sgj-17
i, = (1= )ZW > e,
gj—1 i=1  f— Sg
(23)
Hence, the variance of ﬁgj is
s 2
Var(ng,) = s, (1 S— ) Var(Xy, q;)
ng—l
(24)

2
Sq.
+ (59.7—1 - 59.7) (s &z ) Var(Xk%gj—l)?

gj—1
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for some k1 € [0,5,,) and ko € [0,s,, ;). The variance
Xk, ,g; and Xy, o, can be obtained from (22). When j = 1,
the variance of g, is

VaT(ngl) = Sglvar(Xk791)7 (25)

for some k € [0, sg, ).

B. Confidence Interval of ngy,

Distribution of Y}, ,.: Consider a virtual counter at a index
k in C,,. For sufficiently large n,ng,, - ,ngy;, and from
(10), Yk 4, can be approximated as the following normal

(1 - 7)) .
9j

Ng, N

Yig, ~ N (i’ 9

Y Sg. Sg.

95 9
Distribution of X, ;. : Similarly, as shown in Appendix B,
€k,g; can also be approximated as a normal distribution.
This implies that Xy ;. is a sum of two independent random
variables. Therefore, X}, can also be approximated as a

normal distribution.

Distribution of 7, : From (23), 7,4, is a linear combination
of Xp g, , = Cy,_,[k], 0 < k < s4,_,. Hence, ny, can be
approximated as the following normal distribution:

fg; ~ N(E(ny,), Var(ig;)) = N(ng;, Var(iy,)),

where Var(fy,,) is in (24). The confidence interval of g, is

Ng, £ Zoy/Var(ng,),

where Z, is the corresponding percentile for a confidence
level « in a standard normal distribution.

(26)

C. Calculation of s4,,8g,," "+ ; 8y,

In this section, we discuss how to determine the differentiat-
ed lengths of virtual counter arrays of hierarchical flows. Let
8g158g0," "+ , 84, be the estimated lengths of virtual counter
arrays of heirarchical flows g1, g2, , g;. The estimation of
8g;» where 1 < j < [, is done offline, before the start
of a measurement period. For example, in a datacenter, a
hypervisor or a centralized controller performs the calculation.

We select s, such that ng,, the actual flow size of g;, is
within a user-defined confidence interval of its estimated size
ﬁgj, where 1 < j < [. To this end, we define the following
function of s,, from (26):

) Zar/Var(ig;)
Sg;) = -
Ng;

Dy (Sgy,- - (27)
Suppose that ¢ is an accuracy threshold, specifying a user-
defined confidence interval. For example, suppose that we
want to ensure that ng, Vj € [1,{], is within 10% of 7,,.
In this case, ¢ is 10%. The problem of finding a s,, subject
to the accuracy condition above is the following inequality:

q)k(sglv e 78gj) < d)v (28)
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Algorithm 1 s, ,s,,,- -+ , 5,4, estimation

Input: ny,,ng,, -+ ,ng,, n, m and ¢
Output: estimated 54, , 5g,, - , 8y,

fori=1---jdo

1:

2 switch (7)

3:  case 1:

4: Obtain 5,4, by solving:
5: q)(sgl) S ¢

6 case 2:

7 Obtain 54, by solving:
8 @(églvsgz) S ¢

9:  case 3:

10: Obtain 54, by solving:
11 (I)(églvggzvsg;a) <¢
12: .. PPN PPN

13:

14:  case j:

15: Obtain &4, by solving:
16: q)(églvggzv"' 7§9j—1739j) <¢
17:  end switch

18: end for

From (27), ® is dependent on actual sizes ng,, - ,ng,,
each of which can be calculated from its historical or estimat-
ed values from the previous measurement periods. Because
® also depends on the lengths of virtual counter arrays of
the parent flows of g;, that is sy, ,s4,_,, we propose a
recursive solution in Algorithim 1 to solving (28). We first
estimate 34,, which is a solution of (28) when j = 1. Then
we sustitute 34, in place of s4, to estimate 5., from (28) when
j = 2. We continue this process until j = [. At this point, we
use previously estimated 8, ,---,5,,_, to estimate 3, from
(28).

Once the 3,8y, - - - , 84, are estimated through Algorithim
1, the controller forwards them to top-of-rack switches whose
subnet addresses overlap with the identifier/descriptor of the
base flow g;. When a top-of-rack switch receives a packet p
belonging to g;, the switch embeds 3,,,5,, -+, 8;, in the
unused header fields (such as TOS byte and fragmentation
offset if the network is configured to avoid fragmentation)
of p before forwarding it to the next hop. Afterwards, the
embedded lengths of virtual arrays will be retrieved to encode
p by a core switch responsible to monitoring network traffic.

V. EXPERIMENTS

Through extensive simulations, we evaluate the accuracy of
our hierarchical flow-size estimator (DMA), which is designed
based on differentiated virtual memory allocation at each level
of an hierarchy. We also compare our estimator with the state-
of-the-art hierarchical virtual counter (HVC) [6], which uses
virtual counters of the same length to estimate the size of
flows at the same level of an hierarchy.
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Fig. 1: Estimated spreads of aggregate flows under DMA with m = 0.5MB, 1MB, and 2MB memory, respectively. Accuracy
of DMA improves as we allocate more memory.
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Fig. 2: Estimated spreads of aggregate flows under DMA with m = 0.5MB, 1MB, and 2MB memory, respectively. Accuracy

of DMA improves as we allocate more memory.

A. Settings

We simulate a two-level hierarchical flow model in a
datacenter, where a number of severs communicate with one
another. Each sever also hosts a number of virtual machines
(VMs). An aggregate flow at the first level represents the
packets between a pair of servers, while a base flow is the
packets between two VMs, each hosted by different servers.
There are 1000 aggregate flows, each of which contains a
random number of base flows from a range [500,2000]. In
total, there are approximately 600000 base flows. We model
the sizes of base flows following a power law from a range
[1,5000]. As a result, the size of an aggregate flow is from a
range of [1000, 25000].

We solve (28) to calculate the number of virtual counters
assigned to each aggregate flows and large base flows, where
the accuracy threshold ¢ is selected as 10%. The large
base flows contain 500 or more packets. We divide base
flows containing less than 500 packets into the following 5
categories. We use 2, 10, 25, 50, and 100 virtual counters
to encode the sizes of base flows containing less than 10
packets, less than 50 packets, less than 100 packets, less
than 250 packets and less than 500 packets, respectively. In
our implementation of HVC, we use 10000 and 200 virtual
counters to encode the number of packets contained in each

aggregate and base flows, respectively.

The performance metrics used to evaluate the accuracy of
DMA and HVC are average relative error, average absolute
error and average standard error. The estimator with smaller
performace metrics is more accurate than the other.

B. Estimation Accuracy

The first evaluations of the accuracy of our proposed
hierarchical estimator (DMA) are shown Fig. 1-2, where plots
(a), (b), (c) and (d) in each of the two figures are when a switch
allocates 0.5MB, IMB, 2MB and 4MB memory, respectively,
for traffic monitoring. Each point in each plot represents a
flow. The x-axis represents the actual sizes of either aggregate
flows (Fig. 1) or base flows (Fig. 2). The y-axis represents
the estimated sizes of aggregate flows (Fig. 1) and base flows
(Fig. 2). The equality line y = « in each plot is for reference,
such that the closer a point is to the equality line, the more
accurate the corresponding flow-size estimation is. Our results
displayed in plots (a), (b), (c) and (d) in the figures show
that the points are clustered around the equality line, which
demonstrate the accuracy of our estimator. If we compare the
plots within each figure, the points become more clustered as
we allocate more physical memory.

The second set of experiments in Fig. 3 further evaluate
the accuracy of DMA, when the physical memory allocation
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is 0.5MB, 1MB, 2MB, and 4MB. In the Fig. 3(a) and (c),
we show the relative and standard errors of estimated sizes of
aggregate flows, respectively. Similarly, we show the relative
and standard error of estimated sizes of base flows in Fig.
3(a) and (c), respectively. We can see from these figures that
relative and standard deviation approach zero as the flow size
increases. This implies that DMA is highly accurate for large
flows, whose identification is essential for important network
management tasks like traffic engineering and heavy hitter
detection. In addition, as we allocate more memory for 0.5MB
to 4MB, the two errors reduce and approach zero faster.

C. Comparison with prior art

Fig. 4 (a) - (d) compare the accuracy of size measurement of
aggregate flows uder DMA to HVC, when the physical memo-
ry allocations are 0.5MB, 1MB, 2MB and 4MB, respectively.
DMA improves the accuracy of HVC by up to 75%. Fig.
4 shows the improvement of our work for small aggregate,
whose sizes are not more than 10000. Fig. 5(a) compares
the average relative error of estimated sizes of all aggregate
flows obtained from DMA to HVC under different memory
allocations. Clearly, DMA is significantly more accurate than
HVC by improving the accuracy of size measurement by up
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to 50%.

In order to compare the accuracy of DMA with HVC
concerning base flows, we split base flows into two categories:
the flows in the first category contains fewer than 250 packets
and the flows in the second category contains 250 or more
packets. In Fig. 5, plots (b) and (c) show the average relative
error of estimated sizes for the flows in first and second
categories, respectively. As in the case of aggregate flows,
DMA performs significantly (for the first category in Figure
5(b)) or slightly (for the second category in Fig. 5(c)) better
than HVC. Although the average relative error of estimated
sizes, which are obtained from DMA, for small base flows
is higher (compared to that of aggregate flows in Fig. 5), the
corresponding average absolute error of the estimations shown
in Table II still remains relatively small.

TABLE II: The average absolute error of flow-size estimations
that are obtained from DMA for base flows.

Memory (MB) 0.25 0.5 1.0 2.0
Flows with ng, <250 71.12 | 53.63 | 41.03 | 32.06
All flows 93.15 | 69.38 | 52.85 | 41.80

VI. CONCLUSION

This paper proposes an accurate and memory-efficient
hierarchical flow-size estimator through a counter sharing
architecture and differentiated virtual memory allocation. Our
main idea is to determine the number of virtual counters
used to store the number of packets belonging to a flow
based on the actual or estimated sizes, which are obtained
during the past measurement periods, of the flow. We derive
a mathematical formula for our estimator and develop an
heuristic algorithm to select the number of virtual counters to
each flow. Our simulations on a two-levels hierarchical flow
model show that the proposed estimator is at least 40% more
accurate for aggregate flows and 50% more accurate for small
base flows than the prior art.
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APPENDIX A
VARIANCE OF X},

As we discussed in Section III-C, each virtual counter in
Cy, accumulates noise in terms of packets that belong to other
flows. Suppose that k is an arbitrary index in C;. Let Py, be
a collection of packets, which belong to all first level flows
apart from g;. Let P, be the collection of packets that belong
to all ¢th level flows, except g;, whose parent flow is g;_1,
where 1 < i < j. Let n)’ be the size of Py,, where 1 <1i < j.
Clearly, ngPl =n—ng and ni = ng,_, — ng,. We can write
the e 4, in terms of the accumulated noise as

J
Ck.g; = Z €k,gi» (29)
i=1

where €, 4, is a random variable representing the number of
packets from P, recorded in C,[k] and € 4, is a random
variable representing the number of packets from P,, recorded
in Cy, [k], where 1 < i < j. The probability of recording a
packet from P, in Cy,[k] is -L. Similarly, the probability
recording a packet from P, in Cg, [k] is sg#, where 1 <

i—1

i < j. Because each packet independently increases a counter

by 1,
. 1 ) 1
€k,g. ~ Bino | n —ngy, o ~ Bino | n, -
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since n > ngy, and

) 1 , 1
€k,g; ~ Bino <ngi71 Mg T ~ Bino | ng,_,, —
-1 9

9i gi—1

since ng, , > ng,, for 1 <14 < j. Because each ¢, 4, in (29)
is independent, the variance of €k,g; is

J
Var(ey,y,;) = Z Var(ek,g,)
i=1

:n(1_1>+z]:n9i—1(1_ 1 )
m m Sgi—1 Sgi—1

i=2
(30)
APPENDIX B
DISTRIBUTION OF ¢y, gi
»93
For sufficiently large n,ng,, -+, and ng,, €4, can be

approximated as a the following normal distribution:

n n 1
o~ (G (1232)):

and € 4, can also be approximated as the following normal
distribution:

Ng, . Mg, 1
NN( (1_ ))
Sgi—1 Sgi—a Sgi 1

This means that eg 4. is a linear combination of independent
normal random variables. As a result, eg,, can also be
approximated as a normal distribution.
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