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Abstract. Educational Al (AIEd) systems are increasingly designed and
evaluated with an awareness of the hybrid nature of adaptivity in real-world
educational settings. In practice, beyond being a property of AIEd systems alone,
adaptivity is often jointly enacted by Al systems and human facilitators (e.g.,
teachers or peers). Despite much recent research activity, theoretical and
conceptual guidance for the design of such human—Al systems remains limited.
In this paper we explore how adaptivity may be shared across AIEd systems and
the various human stakeholders who work with them. Based on a comparison of
prior frameworks, which tend to examine adaptivity in AIEd systems or human
coaches separately, we first synthesize a set of dimensions general enough to
capture human—AI hybrid adaptivity. Using these dimensions, we then present a
conceptual framework to map distinct ways in which humans and AIEd systems
can augment each other’s abilities. Through examples, we illustrate how this
framework can be used to characterize prior work and envision new possibilities
for human—AlI hybrid approaches in education.
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1 Introduction

Moving beyond a focus on adaptivity as a property of AIEd systems alone, AIEd
research increasingly acknowledges that, in practice, adaptive learning experiences
may be jointly enacted by Al and human facilitators (e.g., [7; 15; 24; 30; 47; 58; 70]).
For instance, recent work indicates that in K-12 classrooms using Al tutoring software,
the sequence of educational activities students receive is often driven by a combination
of Al-based activity selection and the dynamic decision-making of classroom teachers
(who may selectively override algorithmic recommendations) [53]. Other work has
explored the nature and impacts of human—human interactions during Al-supported
class sessions, finding that these interactions can play critical roles in mediating AIEd
technologies’ effectiveness [25; 26; 30; 41; 48; 70]. Building upon such observations,
a number of recent projects have begun to explore how AIEd systems might more
effectively work together with human facilitators, to amplify their abilities and leverage
their complementary strengths [18; 24; 26; 42; 47; 66; 70].

As the AIEd community increasingly turns its attention to Auman—AI hybrid
approaches for education, some conceptual guidance may be helpful in navigating this
broad design space and in differentiating between fundamentally different kinds of
hybrid approaches. Different configurations of AIEd systems and humans, designed to



integrate human and Al abilities in different ways, may yield very different outcomes
(e.g., [26; 55; 66; 70]). In this paper, we begin to map the diverse ways in which
adaptivity may be shared among humans and AIEd systems, to aid the community in
(1) organizing prior work through the lens of human—Al hybrid adaptivity, and (2)
envisioning new possibilities for human—Al hybrid approaches in education. To this
end, we present a conceptual framework for human—AlI hybrid adaptivity in education.
Drawing upon multiple existing frameworks for adaptive support—here defined
broadly as support that is responsive to unfolding learning situations in pursuit of
educational goals—we begin by synthesizing a set of dimensions general enough to
capture human—AlI adaptivity (Section 2). Using these dimensions, we then introduce
distinct ways in which humans and Al might augment each other’s abilities, illustrating
the framework’s utility via examples of new directions it surfaces (Section 3).

2 Framing “Adaptivity”: Synthesizing Existing Frameworks

Several frameworks have been developed to characterize adaptivity in education. In
this paper, we build upon a small set of prior frameworks [3; 21; 50; 51; 56; 57; 61; 65]
to inform our thoughts about what a more encompassing framework should include. In
selecting this set we aimed to consider influential work across multiple research areas,
including AIEd [3; 21; 50; 65], computer-supported collaborative learning (CSCL) [56;
61; 65], teacher cognition [57], and classroom orchestration [51]. We searched broadly
for theoretically oriented articles that focus on characterizing adaptive instructional
behavior. While the resulting selection of prior frameworks is not intended to be
exhaustive, this set presents several interesting contrasts and overlaps.

Each of the frameworks considered offers a lens to examine particular aspects of
adaptive learning systems, while abstracting over others. As discussed below, some
frameworks, such as the Adaptivity Grid [3] and Plass’s framework [50] provide high
resolution lenses to analyze what an adaptive system might respond to and when an
adaptive system might respond, but do not, for example, offer explicit language for
describing how an adaptive system might respond (see Action space below).
Meanwhile, other frameworks focus much of their resolution towards characterizing
the design space for instructional support actions. For example, VanLehn [65] and
Rummel [56] offer ways of characterizing how and when a system might respond, yet
do not offer language for what to respond to (see Perceptual capabilities below). One
possible reason for these differences is that different frameworks have tended to focus
on different kinds of adaptive learning systems. A related possibility is that because
different frameworks are grounded in different research literatures (e.g., CSCL versus
AIEd [65]) they are heavily influenced by the state of the empirical literature within
each community. For example, the Adaptivity Grid [3] offered finer-grained
distinctions in areas where there was much existing empirical work at the time of
writing, but offered coarser-grained distinctions where less prior work existed.

In the remainder of this paper, we adopt a broad framing of adaptivity in terms of
perception-action cycles [11;44; 62; 65] enacted by decision-making agents or systems
of'agents (e.g., Al, students, and teachers) [56], in service of specified educational goals
[56; 65]. Building from prior frameworks, in this section we provide a set of dimensions
that are general enough to encompass prior frameworks, while also providing language



rich enough to characterize a broad possibility space for human—AI hybrid adaptivity.
Whereas prior frameworks focus on providing partial views of agents’ adaptive
behavior, as discussed above, our dimensions draw from multiple frameworks to
provide a more encompassing perspective (cf. [43]). At the same time, we abstract over
dimensions from these prior frameworks in the interest of generalizing across a broad
range of instructional systems and contexts. For instance, six of the dimensions
proposed in [56] are collapsed into the Actions dimension below, given that all of these
dimensions capture properties of instructional support actions in CSCL.

Goals and Targets: Adaptive instruction presupposes educational goals, or
outcomes that the adaptive behavior is intended to bring about (which may vary by
student or group and may change over time). For example, some AIEd systems may be
designed to adapt instruction with the ultimate goal of improving student learning
outcomes within a domain, whereas others may adapt with the goal of helping students
become better self-regulated learners or collaborators. Notably, only some prior
frameworks for adaptive instruction provide vocabulary to describe the end goal(s) of
the adaptivity. Rummel [56] explicitly names goals as the first dimension that needs to
be defined upfront of designing any support. Both Rummel [56] and VanLehn [65]
further distinguish between the ultimate goals of the support (e.g., the kind of change
the adaptivity is intended to produce in students), and the immediate fargets of the
support (e.g., whether the support targets cognitive versus metacognitive knowledge).

Perceptual capabilities: Decision-making agents can adapt to unfolding learning
situations only to the extent that they can perceive (i.c., sense and interpret [11; 20])
and represent these situations. An agent’s ability to perceive particular variables of a
learning situation defines what it can potentially adapt to. In addition to variables that
are directly observable, this may also include ones that the agent is able to infer from
observable attributes (e.g., inferring a student’s or teacher’s current knowledge from
patterns in their recent behavior). In an Intelligent Tutoring System (ITS), the system’s
perceptual capabilities are defined by its student modeling capabilities, which may
include unobservable, inferred constructs such as “help avoidance” or “frustration” [13;
21; 29]. A human teacher’s perceptual capabilities can be understood as the range of
phenomena the teacher is capable of sensing and inferring about a learning situation. In
realistic contexts, this may depend on factors such as the teacher’s current attentional
load [51; 52], as well as the teacher’s skill in noticing instructionally relevant events
and drawing correct inferences based on potentially limited observations [51; 57; 59].
As noted above, some, but not all prior frameworks included explicit language to
characterize an adaptive agent’s perceptual capabilities. The Adaptivity Grid [3]
categorized previously published empirical evaluations of adaptive learning
technologies, in part, based on whether they adapt instruction based on perceptions of
students’ prior knowledge & knowledge growth, their path through an activity, their
affective & motivational states, their SRL strategies, metacognition, & effort, or based
on a notion of learning styles. Similarly, Plass (2016) categorized adaptive learning
technologies based on whether they adapt instruction based on perceptions of affective,
cognitive, motivational, or socio-cultural variables [50].

Action space: An agent’s ability to adapt instruction is also delimited by the set of
responses or instructional moves it has at its disposal [56; 57; 61; 62; 65]. For instance,
an ITS or a human tutor might try to adapt the kinds of help they provide to a student
in their class based on their perceptions of the student’s current knowledge state.



However, the tutor’s ability to adapt will be limited by the instructional moves they
currently have in their repertoire (e.g., providing correctness feedback, presenting a
worked example, or prompting a self-explanation). Some, but not all, of the frameworks
we reviewed included dimensions to characterize an agent’s action space. Soller [61]
and VanLehn [65] distinguish between actions that mirror an agent’s perceptions back
to students or human facilitators, actions that present an agent’s assessments of what it
perceives, and coaching actions (e.g., providing advice). Rummel [56] presents
multiple related dimensions classifying instructional support actions, for instance the
directivity of an action (i.e., whether and to what extent the action presents explicit
guidance). In addition, VanLehn [65] and Rummel [56] both characterize instructional
actions in terms of their recipient or addressee (e.g., whether a system presents
information to a student, a group of students, or an instructor), and Rummel further
specifies whether a student (or group of students) is the direct target of an action, or
whether the action is mediated through other actors in the learning environment (e.g.,
where an adaptive system suggests that a teacher or peer tutor help a given student).

Decision policies: An agent’s adaptive behavior can be understood in terms of
decision policies: sets of rules that map (in a potentially non-deterministic manner)
from perceived learning situations or states to particular actions that the agent will take
in response [62]. For example, an agent might adaptively respond to detected student
frustration by acknowledging or mirroring the student’s frustration [21; 50; 65].
However, many alternative decision policies exist. The system might instead respond
to detected frustration by selecting alternative activities for the student to work on, or
by asking the student whether the system should alert their teacher/peers that they need
help [28]. Prior frameworks do not typically provide explicit dimensions to categorize
“types” of decision policies (e.g., “responding to affect with affective responses” or
“mastery learning based activity selection policies”), although such categorizations
often appear in practice when empirically comparing different forms of adaptivity.

Granularity and Timing: Finally, many prior frameworks provide dimensions
dedicated to describing when a system adapts instruction (e.g., [3; 50; 51; 56; 65]). That
is, the frequency or granularity at which the perception-action cycle is enacted. This
may occur, for instance, once per fask or per step of a task [3; 56; 65], once per turn in
a conversation [56], or even once per design iteration (when considering systems that
are iteratively improved based on data) [3]. Plass [50], Prieto [51], and Rummel [56]
also distinguish the timing of the adaptation; e.g., whether the adaptation occurs prior
to the instructional activity, in the midst of the activity, or afterwards [50; 51; 56].

Many frameworks for adaptive instructional support have been developed, with each
offering a lens to examine particular aspects and particular kinds of adaptive learning
systems. The set of high-level dimensions presented in this section are intended to
capture essential components of adaptive learning systems, informed by a comparison
across frameworks (cf. [43]). In the next section, we use these dimensions to explore
distinct ways for adaptivity to be shared across humans and machines.

3 A Conceptual Framework for Human—-Al Hybrid Adaptivity

In the following we present a conceptual framework for human—AI hybrid adaptivity
in education, examining the same set of basic components (goals/targets, perception,



action, decision policies, and granularity/timing) while broadening our focus. We use
this framework both to characterize prior work and to envision new possibilities, based
upon distinct ways in which humans and AIEd systems might augment one another: (1)
Goal Augmentation, (2) Perceptual Augmentation, (3) Action Augmentation, and (4)
Decision Augmentation. Within each category, possibilities exist both for augmenting
performance (in which humans and Al systems, assumed to have complementary
strengths and weaknesses, augment one another’s abilities at “runtime”, but without
necessarily producing lasting changes in behavior) and for co-learning (in which
humans and Al systems help one another improve over time). Finally, we discuss how
the Granularity and Timing of adaptivity might be understood in human—AlI systems.

3.1  Goal Augmentation: Informing Each Other’s Instructional Goals

A key way for humans and AIEd systems to support one another is by influencing each
other’s goals. To a large extent, AIEd technologies encode the assumptions and goals
of those who design and develop them—whether explicitly, via objective functions that
a system’s adaptive policies optimize towards, or implicitly, through design decisions
that promote certain goals over others. However, the goals baked into an AIEd system
may not always align with those of humans in real-world educational contexts [24; 46;
53]. For example, ITSs used in K-12 school contexts often implement mastery-based
activity selection policies, allowing each student to progress through the curriculum at
their own pace. Yet prior work suggests that teachers often struggle to balance their
desire to implement such personalized classrooms with external pressure to keep
classes “on schedule”. In practice, teachers often opt to manually push students forward
in the curriculum if they are slower to master certain skills [24; 53], sometimes even if
they are aware that doing so may harm students’ learning [24; 28]. As of yet, little work
in AIEd has explored the design of supports for goal augmentation.

AIEd informing human goals. 1t may not always be desirable for AIEd systems to
adapt to human facilitators’ instructional goals. For instance, in some cases, teachers’
or peer tutors’ goals may be fundamentally at odds with known instructional best
practices. Future systems could play an important role in helping humans productively
reflect upon their goals, helping them refine these goals or consider alternatives [4; 19].
Humans informing AIEd goals. Human facilitators may hold critical, on-the-ground
knowledge about their instructional contexts and personal goals, to which AIEd systems
would not typically be privy. Building upon the above example, ITSs might be even
more effective in classroom contexts if designed to accept teachers’ input regarding the
goals they should be optimizing towards. By enabling teachers to help shape the
system’s goals, the system could in turn help teachers more effectively navigate trade-
offs between competing goals (e.g., by supporting teachers in deciding when to push
students ahead in the curriculum, while causing minimal harm to their learning [28]).

3.2  Perceptual Augmentation: Leveraging Complementarity in Perception

A second way for AIEd systems and humans to augment one another is by enhancing
each other’s abilities to perceive instructionally relevant information, or opportunities
for action. This may take the form of (1) extending what the other is able to sense (i.e.,
what information is made available to them, prior to further interpretation [11; 207); (2)



guiding how the other distributes their attention; or (3) guiding how the other interprets
incoming information. Each of these broad possibilities is discussed in turn, below.

Augmenting sensing and attention.

AIEd systems can be designed to extend what humans are able to sense and notice about
learners, learning, or their own teaching, or from the other direction, to help humans
augment what AIEd systems sense and notice. Thus far, more work in AIEd has focused
on supporting AI—human than human—AI augmentation in this area.

AIEd augmenting human sensing and attention. A number of AIEd systems have
been developed to help human facilitators sense information to which the Al would
otherwise have unique access (e.g., [2; 5; 26; 38; 40; 55; 69; 70]). Prior work has
focused on augmenting what learners and peer tutors are able to sense and notice about
a learning situation. For example, the Adaptive Peer Tutoring Assistant (APTA)
supports peer tutors in recognizing opportunities for effective intervention, in the
context of ongoing peer tutoring [70]. In the context of self-regulated learning with an
Al tutor, the Help Tutor supports students in monitoring their own help-seeking
behavior, and in noticing cases where they may be using the software’s help functions
in maladaptive ways [2]. More recently, several projects have focused on designing
ways to keep human teachers in the loop in Al-supported classrooms (e.g., [27; 40; 47;
68]). For example, the Lumilo teacher smartglasses are designed to direct teachers’
attention, during a class session, to situations that an Al tutor may be poorly suited to
handle on its own, or which require a teacher’s further assessment [26; 27]. In each of
the above examples, there is potential for future AIEd systems not only to augment
human facilitators’ abilities in-the-moment, but also to help humans learn to notice
relevant features of a learning situation even when in-the-moment support is
unavailable [2; 19; 59; 70].

Humans augmenting AIEd sensing and attention. From the other side, humans may
have relevant on-the-ground knowledge to which AIEd systems are likely to be blind.
AIEd systems may be designed so that humans can help them perceive such
information. For instance, future systems might be designed to allow teachers and
parents to update individual student models with relevant information about the
student’s broader context; e.g., whether the student is currently facing at-home
difficulties that may impact their performance (cf. [9]). Similarly, an AIEd system
might be designed to periodically poll students regarding their subjective feeling of
knowing particular skills that are targeted by the instruction [12; 36]. In addition to
having humans input information directly, some research has begun to explore
approaches in which humans teach AIEd systems, via demonstration, to perceive
instructionally relevant features to which they should attend in the future (e.g., [35]).

Augmenting interpretation.

AIEd systems can also be designed to support humans in interpreting and drawing
inferences from what they notice, or to assist humans in shaping or mediating AIEd
systems’ interpretations of the events they are able to sense.

AIEd augmenting human interpretation. Beyond extending human sensing capacities,
AIEd systems may also support human facilitators in productively interpreting and
reflecting upon the information available to them. Whereas some technologies are
designed to present information to humans with low-level, minimally pre-interpreted
data (e.g., “number of help requests™) [4; 5; 16], several of the AIEd systems discussed



above, including APTA, the Help Tutor, and Lumilo rely upon advanced student
modeling techniques (e.g., automated detectors of “help abuse” or “help avoidance”
behaviors). Thus, beyond augmenting human sensing and attention, these systems
perform a considerable amount of pre-interpretation on behalf of human facilitators or
learners [5]. Emerging lines of research are beginning to explore the design of interfaces
that can more actively guide humans towards particular interpretations of learning data
(e.g., [17]) or interfaces that can scaffold humans in more productive forms of reflection
(e.g., [19]). However, it remains an open question for future research how best to
productively guide human interpretation, while still leveraging (rather than
diminishing) humans’ unique inferential capacities [5; 14; 17; 23; 33].

Humans augmenting AIEd interpretation. Future AIEd systems may be designed to
support human facilitators in defecting cases where the Al misinterprets learning data
(e.g., by misclassifying patterns in collaborating groups’ behaviors) and to provide
corresponding feedback in order to shape these interpretations in more meaningful
directions. As of yet, the question of how AIEd systems can be designed to effectively
elicit and learn from such feedback remains underexplored (cf. [9; 10; 14; 23; 34; 54]).

3.3  Action Augmentation: Leveraging Complementarity in Action Spaces

A third way in which AIEd systems and humans can work together to support more
adaptive instruction is by augmenting and extending the other’s capacities for
instructional action. In particular, AIEd systems and humans can (1) enhance each
other’s ability to perform particular kinds of instructional actions, and relatedly expand
the range of actions available to each; and (2) enhance each other’s scalability and
capacity for action. Each of these broad possibilities is discussed below.

Enhancing ability and expanding the availability of actions.

Many open research and design opportunities exist for human—AlI systems that augment
and expand each other’s action spaces. Just a few examples are presented below.
AIEd augmenting human actions. AIEd systems may be designed to support human
facilitators in providing more effective help. For example, while a human coach works
with a student, a future AIEd system might follow along with what the coach is doing,
and adaptively present educational resources (e.g., relevant readings, videos, or practice
materials) that support their current goals [28; 70]. Alternatively, a system may respond
during or after human coaching by adaptively providing feedback on the quality of the
instruction (e.g., the clarity of a particular explanation the coach provides), to help the
coach adjust and improve over time (cf. [19; 28; 70]).

Humans augmenting AIEd actions. Humans can also augment the set of instructional
moves available to an AIEd system by either customizing or creating new actions for
the system. For example, AIEd systems may be designed to adaptively deliver hints
written by peers or instructors (cf. [22; 28; 72]). Authoring tools have been developed
to support non-programmer authoring, but further research is needed to support easy
authoring in everyday educational settings (e.g., by teachers or students) [1; 29; 37; 39].

Enhancing scalability and capacity.

Much prior research in AIEd has focused on augmenting human scalability, whereas
relatively less research has targeted the reverse direction. However, many open
questions remain in each direction, which emerging work is beginning to tackle.



AIEd augmenting human scalability. AIEd systems have often been promoted as
“scaling up” some of the benefits of one-on-one tutoring, effectively providing each
student with their own, personal Al tutor [6; 31; 58; 64]. In doing so, AIEd systems can
serve as feachers’ aides [24; 73], helping human coaches or teachers personalize
instruction beyond what might otherwise be feasible, while also freeing up humans’
limited time and attention for other activities (e.g., providing socio-emotional support
or coaching for students most in need) [22; 24; 58; 73]. Thus, one way in which AIEd
systems can augment human scalability and capacity is through selective delegation
[27]. Some research has begun to explore the design of AIEd systems that adaptively,
dynamically delegate instructional roles between Al systems, teachers, and peers, based
upon an awareness of trade-offs between the instructional ability and capacity of each
[28; 47; 49; 63]. A second emerging way for AIEd systems to help human facilitators
scale their efforts is by supporting them in feaching the Al tutor (as discussed below),
transferring their unique expertise and pedagogical preferences into a system that can
reach more students than they themselves can [37, 39, 60, 74].

Humans augmenting AIEd scalability. 1t can also be useful to consider the ways in
which human facilitators can (and in practice, often do) support AIEd systems in
scaling. Increased scalability risks reducing a system’s fit with particular educational
contexts, as system developers design solutions to fit constraints of multiple contexts
simultaneously [32; 45; 46]. On-the-ground facilitators may support AIEd systems in
scaling to diverse contexts by adapting the way these systems are implemented in use
to the needs of their local contexts (e.g., [24; 30; 46; 58]). For example, when classroom
teachers use AIEd systems that are poorly aligned with their school’s existing
curriculum, they may selectively assign particular modules to students, overriding the
systems’ built in sequencing algorithms in the interest of providing better aligned
learning experiences [23; 45]. Future AIEd systems may be explicitly designed to
facilitate such adaptability (e.g., local customizations and overrides) [16], improving
their chances for adoption across varied contexts of use [22; 24; 28; 45].

3.4  Decision Augmentation: Leveraging Complementarity in Decision-making

Beyond informing each other’s goals or augmenting each other’s capacities for
perception and action, a fourth major way in which AIEd systems and humans can work
together is by helping each other make more effective pedagogical decisions (i.e.,
helping each other more effectively link between perception and action). Prior work
has explored forms of both Al—human and human—AI decision augmentation.
However, much additional research is needed in order to fully realize the visions of
AIEd systems as, for instance, effective decision support and professional development
tools [5; 19; 23; 24; 66] and as teachable machines [37; 39; 60; 74].

AIEd augmenting human decision-making. In addition to providing instruction to
students directly, AIEd systems may be designed as decision support for human
facilitators, helping humans take more effective instructional actions in particular
learning situations [2; 26; 27; 66; 67; 70]. To an extent, all forms of human
augmentation discussed thus far can function as forms of decision support. Indeed,
decision support is often conceptualized as a continuous spectrum rather than a binary
design choice [5; 56; 65; 71]. For instance, perceptual augmentation may enhance
decision-making by directing humans’ attention towards learning phenomena that



require their further assessment or action [5]. However, AIEd systems may also be
designed to support human decision-making more directly and explicitly. For example,
an AIEd system might automatically suggest effective ways for a human facilitator to
help a group of students, in the moment, based on its perceptions of the students’ and/or
facilitator’s current states (effectively functioning as hints or bug messages, targeted
for a human in an instructional role rather than a learner; see [27; 28; 68; 70]). With
knowledge of a facilitator’s instructional goals, future AIEd systems might help the
facilitator make more informed trade-offs between competing goals or nudge them
away from practices that are at odds with their goals [28]. Such systems could function
not only as decision support, but also as professional development, helping humans
improve over time, potentially even in the absence of such support [19; 27; 28; 70].
Humans augmenting AIEd decision-making. AIEd systems may also be designed to
help human facilitators mediate or shape these systems’ instructional decision-making.
Mediation may occur in practice where a facilitator such as a teacher overrides a
decision made by an AIEd system (e.g., by selecting an alternative activity for a student
to work on, or an alternative group for a student to collaborate with, rather than ones
selected by the system) [5; 24; 47; 49]. As discussed under Goal Augmentation above,
such overriding behavior occurs regularly in K-12 classroom contexts; as noted,
although teachers’ overrides can often be seen as adaptive, they can also be maladaptive
when they detract from (some) goals for the instruction. In addition to mediating ATEd
systems’ decision-making, humans might also help systems learn more effective
policies or ones better suited to their particular educational contexts [23]. Recent work
on machine teaching for AIEd suggests promise for approaches in which humans feach
the Al to teach through feedback and demonstrations [37; 39]. However, further
research is needed to develop interaction paradigms for machine teaching that are fast
and intuitive enough for everyday use in educational settings [60; 74].

3.5 Granularity and Timing in Human-AI Systems

Finally, we briefly discuss how granularity and timing might be understood in human—
Al systems. When AIEd systems and humans work together, they may each adapt
instruction at different grain sizes. For instance, in classrooms using step-based tutoring
software, teachers may provide substep feedback on-the-spot (i.e., feedback on a step
while the student is, from the system’s perspective, still in the midst of completing the
step) [23; 27; 30]. While an AIEd system waits for the student to submit their input, a
human facilitator might perceive an opportunity to intervene within a long pause in
student typing. The timing of adaptation may also vary across humans and machines.
For instance, Aleven et al’s “design loop adaptivity” [3] can be viewed as involving a
form of shared adaptivity in which human facilitators or instructional designers
repeatedly adapt an AIEd system’s design (informed by educational data and/or their
own observations) before or after an instructional activity, while the AIEd system in
turn takes care of adapting to learning situations during the activity.

4 Conclusions

AIEd systems are increasingly designed and evaluated with an awareness of the shared
nature of adaptivity in real-world educational settings. Despite much recent research
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into human—AlI hybrid approaches for education, theoretical and conceptual guidance
in this area remains limited. Whereas prior frameworks have tended to examine
adaptivity in AIEd systems or human coaches separately, in this paper we have explored
how adaptivity may be shared across AIEd systems and the various human stakeholders
who work with them.

Based on a comparison and synthesis of prior frameworks, we have presented a
generalized set of dimensions, with the goal of capturing essential components of
adaptive instructional behavior (cf. [43]). Using these dimensions, we have introduced
a conceptual framework for human—AI hybrid adaptivity in education, suggesting
distinct ways in which AIEd systems and human facilitators might augment one
another. Throughout the previous section, we have presented several examples to
illustrate how this framework can be used both to characterize prior work and to surface
new possibilities and open questions for human—Al hybrid approaches in education.

We view the current framework as a step towards the development of richer theory
for human—AlI hybrid adaptivity in education, and for human—Al hybrid approaches
more broadly. As an empirical and design science, AIEd needs theory to productively
guide hypothesis generation, prediction, understanding, and design. Theory can help
researchers adopt common concepts and vocabulary, which may in turn accelerate
communication and innovation. Theory can shape—for better or worse—how
researchers and designers see the world, how they make sense of their observations,
and what alternatives they are able to envision. The current framework should be
viewed as a starting point, not a finished product. We invite others in the community
will challenge this framework and expand upon it.

The design space for human—Al hybrid approaches in education is large and
combinatorial: almost any real case will involve combinations of the categories of
human—AI adaptivity specified in this framework (e.g., an AIEd system might augment
human decision-making via a human-augmented perceptual model). It is our hope that
the present work will help to guide future research and design, assisting others in
navigating this broad design space, in formulating more useful hypotheses, and in
differentiating among fundamentally different kinds of human—AI hybrid approaches.
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