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Abstract. Educational AI (AIEd) systems are increasingly designed and 
evaluated with an awareness of the hybrid nature of adaptivity in real-world 
educational settings. In practice, beyond being a property of AIEd systems alone, 
adaptivity is often jointly enacted by AI systems and human facilitators (e.g., 
teachers or peers). Despite much recent research activity, theoretical and 
conceptual guidance for the design of such human–AI systems remains limited. 
In this paper we explore how adaptivity may be shared across AIEd systems and 
the various human stakeholders who work with them. Based on a comparison of 
prior frameworks, which tend to examine adaptivity in AIEd systems or human 
coaches separately, we first synthesize a set of dimensions general enough to 
capture human–AI hybrid adaptivity. Using these dimensions, we then present a 
conceptual framework to map distinct ways in which humans and AIEd systems 
can augment each other’s abilities. Through examples, we illustrate how this 
framework can be used to characterize prior work and envision new possibilities 
for human–AI hybrid approaches in education. 
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1 Introduction 

Moving beyond a focus on adaptivity as a property of AIEd systems alone, AIEd 
research increasingly acknowledges that, in practice, adaptive learning experiences 
may be jointly enacted by AI and human facilitators (e.g., [7; 15; 24; 30; 47; 58; 70]). 
For instance, recent work indicates that in K-12 classrooms using AI tutoring software, 
the sequence of educational activities students receive is often driven by a combination 
of AI-based activity selection and the dynamic decision-making of classroom teachers 
(who may selectively override algorithmic recommendations) [53]. Other work has 
explored the nature and impacts of human–human interactions during AI-supported 
class sessions, finding that these interactions can play critical roles in mediating AIEd 
technologies’ effectiveness [25; 26; 30; 41; 48; 70]. Building upon such observations, 
a number of recent projects have begun to explore how AIEd systems might more 
effectively work together with human facilitators, to amplify their abilities and leverage 
their complementary strengths [18; 24; 26; 42; 47; 66; 70]. 
    As the AIEd community increasingly turns its attention to human–AI hybrid 
approaches for education, some conceptual guidance may be helpful in navigating this 
broad design space and in differentiating between fundamentally different kinds of 
hybrid approaches. Different configurations of AIEd systems and humans, designed to 
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integrate human and AI abilities in different ways, may yield very different outcomes 
(e.g., [26; 55; 66; 70]). In this paper, we begin to map the diverse ways in which 
adaptivity may be shared among humans and AIEd systems, to aid the community in 
(1) organizing prior work through the lens of human–AI hybrid adaptivity, and (2) 
envisioning new possibilities for human–AI hybrid approaches in education. To this 
end, we present a conceptual framework for human–AI hybrid adaptivity in education. 
Drawing upon multiple existing frameworks for adaptive support—here defined 
broadly as support that is responsive to unfolding learning situations in pursuit of 
educational goals—we begin by synthesizing a set of dimensions general enough to 
capture human–AI adaptivity (Section 2). Using these dimensions, we then introduce 
distinct ways in which humans and AI might augment each other’s abilities, illustrating 
the framework’s utility via examples of new directions it surfaces (Section 3). 

2 Framing “Adaptivity”: Synthesizing Existing Frameworks 

Several frameworks have been developed to characterize adaptivity in education. In 
this paper, we build upon a small set of prior frameworks [3; 21; 50; 51; 56; 57; 61; 65] 
to inform our thoughts about what a more encompassing framework should include. In 
selecting this set we aimed to consider influential work across multiple research areas, 
including AIEd [3; 21; 50; 65], computer-supported collaborative learning (CSCL) [56; 
61; 65], teacher cognition [57], and classroom orchestration [51]. We searched broadly 
for theoretically oriented articles that focus on characterizing adaptive instructional 
behavior. While the resulting selection of prior frameworks is not intended to be 
exhaustive, this set presents several interesting contrasts and overlaps. 
    Each of the frameworks considered offers a lens to examine particular aspects of 
adaptive learning systems, while abstracting over others. As discussed below, some 
frameworks, such as the Adaptivity Grid [3] and Plass’s framework [50] provide high 
resolution lenses to analyze what an adaptive system might respond to and when an 
adaptive system might respond, but do not, for example, offer explicit language for 
describing how an adaptive system might respond (see Action space below). 
Meanwhile, other frameworks focus much of their resolution towards characterizing 
the design space for instructional support actions. For example, VanLehn [65] and 
Rummel [56] offer ways of characterizing how and when a system might respond, yet 
do not offer language for what to respond to (see Perceptual capabilities below). One 
possible reason for these differences is that different frameworks have tended to focus 
on different kinds of adaptive learning systems. A related possibility is that because 
different frameworks are grounded in different research literatures (e.g., CSCL versus 
AIEd [65]) they are heavily influenced by the state of the empirical literature within 
each community. For example, the Adaptivity Grid [3] offered finer-grained 
distinctions in areas where there was much existing empirical work at the time of 
writing, but offered coarser-grained distinctions where less prior work existed. 
    In the remainder of this paper, we adopt a broad framing of adaptivity in terms of 
perception-action cycles [11; 44; 62; 65] enacted by decision-making agents or systems 
of agents (e.g., AI, students, and teachers) [56], in service of specified educational goals 
[56; 65]. Building from prior frameworks, in this section we provide a set of dimensions 
that are general enough to encompass prior frameworks, while also providing language 
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rich enough to characterize a broad possibility space for human–AI hybrid adaptivity. 
Whereas prior frameworks focus on providing partial views of agents’ adaptive 
behavior, as discussed above, our dimensions draw from multiple frameworks to 
provide a more encompassing perspective (cf. [43]). At the same time, we abstract over 
dimensions from these prior frameworks in the interest of generalizing across a broad 
range of instructional systems and contexts. For instance, six of the dimensions 
proposed in [56] are collapsed into the Actions dimension below, given that all of these 
dimensions capture properties of instructional support actions in CSCL. 
    Goals and Targets: Adaptive instruction presupposes educational goals, or 
outcomes that the adaptive behavior is intended to bring about (which may vary by 
student or group and may change over time). For example, some AIEd systems may be 
designed to adapt instruction with the ultimate goal of improving student learning 
outcomes within a domain, whereas others may adapt with the goal of helping students 
become better self-regulated learners or collaborators. Notably, only some prior 
frameworks for adaptive instruction provide vocabulary to describe the end goal(s) of 
the adaptivity. Rummel [56] explicitly names goals as the first dimension that needs to 
be defined upfront of designing any support. Both Rummel [56] and VanLehn [65] 
further distinguish between the ultimate goals of the support (e.g., the kind of change 
the adaptivity is intended to produce in students), and the immediate targets of the 
support (e.g., whether the support targets cognitive versus metacognitive knowledge). 
    Perceptual capabilities: Decision-making agents can adapt to unfolding learning 
situations only to the extent that they can perceive (i.e., sense and interpret [11; 20]) 
and represent these situations. An agent’s ability to perceive particular variables of a 
learning situation defines what it can potentially adapt to. In addition to variables that 
are directly observable, this may also include ones that the agent is able to infer from 
observable attributes (e.g., inferring a student’s or teacher’s current knowledge from 
patterns in their recent behavior). In an Intelligent Tutoring System (ITS), the system’s 
perceptual capabilities are defined by its student modeling capabilities, which may 
include unobservable, inferred constructs such as “help avoidance” or “frustration” [13; 
21; 29]. A human teacher’s perceptual capabilities can be understood as the range of 
phenomena the teacher is capable of sensing and inferring about a learning situation. In 
realistic contexts, this may depend on factors such as the teacher’s current attentional 
load [51; 52], as well as the teacher’s skill in noticing instructionally relevant events 
and drawing correct inferences based on potentially limited observations [51; 57; 59]. 
As noted above, some, but not all prior frameworks included explicit language to 
characterize an adaptive agent’s perceptual capabilities. The Adaptivity Grid [3] 
categorized previously published empirical evaluations of adaptive learning 
technologies, in part, based on whether they adapt instruction based on perceptions of 
students’ prior knowledge & knowledge growth, their path through an activity, their 
affective & motivational states, their SRL strategies, metacognition, & effort, or based 
on a notion of learning styles. Similarly, Plass (2016) categorized adaptive learning 
technologies based on whether they adapt instruction based on perceptions of affective, 
cognitive, motivational, or socio-cultural variables [50]. 
    Action space: An agent’s ability to adapt instruction is also delimited by the set of 
responses or instructional moves it has at its disposal [56; 57; 61; 62; 65]. For instance, 
an ITS or a human tutor might try to adapt the kinds of help they provide to a student 
in their class based on their perceptions of the student’s current knowledge state. 
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However, the tutor’s ability to adapt will be limited by the instructional moves they 
currently have in their repertoire (e.g., providing correctness feedback, presenting a 
worked example, or prompting a self-explanation). Some, but not all, of the frameworks 
we reviewed included dimensions to characterize an agent’s action space. Soller [61] 
and VanLehn [65] distinguish between actions that mirror an agent’s perceptions back 
to students or human facilitators, actions that present an agent’s assessments of what it 
perceives, and coaching actions (e.g., providing advice). Rummel [56] presents 
multiple related dimensions classifying instructional support actions, for instance the 
directivity of an action (i.e., whether and to what extent the action presents explicit 
guidance). In addition, VanLehn [65] and Rummel [56] both characterize instructional 
actions in terms of their recipient or addressee (e.g., whether a system presents 
information to a student, a group of students, or an instructor), and Rummel further 
specifies whether a student (or group of students) is the direct target of an action, or 
whether the action is mediated through other actors in the learning environment (e.g., 
where an adaptive system suggests that a teacher or peer tutor help a given student). 
    Decision policies: An agent’s adaptive behavior can be understood in terms of 
decision policies: sets of rules that map (in a potentially non-deterministic manner) 
from perceived learning situations or states to particular actions that the agent will take 
in response [62]. For example, an agent might adaptively respond to detected student 
frustration by acknowledging or mirroring the student’s frustration [21; 50; 65]. 
However, many alternative decision policies exist. The system might instead respond 
to detected frustration by selecting alternative activities for the student to work on, or 
by asking the student whether the system should alert their teacher/peers that they need 
help [28]. Prior frameworks do not typically provide explicit dimensions to categorize 
“types” of decision policies (e.g., “responding to affect with affective responses” or 
“mastery learning based activity selection policies”), although such categorizations 
often appear in practice when empirically comparing different forms of adaptivity. 
    Granularity and Timing: Finally, many prior frameworks provide dimensions 
dedicated to describing when a system adapts instruction (e.g., [3; 50; 51; 56; 65]). That 
is, the frequency or granularity at which the perception-action cycle is enacted. This 
may occur, for instance, once per task or per step of a task [3; 56; 65], once per turn in 
a conversation [56], or even once per design iteration (when considering systems that 
are iteratively improved based on data) [3]. Plass [50], Prieto [51], and Rummel [56] 
also distinguish the timing of the adaptation; e.g., whether the adaptation occurs prior 
to the instructional activity, in the midst of the activity, or afterwards [50; 51; 56]. 
    Many frameworks for adaptive instructional support have been developed, with each 
offering a lens to examine particular aspects and particular kinds of adaptive learning 
systems. The set of high-level dimensions presented in this section are intended to 
capture essential components of adaptive learning systems, informed by a comparison 
across frameworks (cf. [43]). In the next section, we use these dimensions to explore 
distinct ways for adaptivity to be shared across humans and machines. 

3 A Conceptual Framework for Human–AI Hybrid Adaptivity 

In the following we present a conceptual framework for human–AI hybrid adaptivity 
in education, examining the same set of basic components (goals/targets, perception, 
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action, decision policies, and granularity/timing) while broadening our focus. We use 
this framework both to characterize prior work and to envision new possibilities, based 
upon distinct ways in which humans and AIEd systems might augment one another: (1) 
Goal Augmentation, (2) Perceptual Augmentation, (3) Action Augmentation, and (4) 
Decision Augmentation. Within each category, possibilities exist both for augmenting 
performance (in which humans and AI systems, assumed to have complementary 
strengths and weaknesses, augment one another’s abilities at “runtime”, but without 
necessarily producing lasting changes in behavior) and for co-learning (in which 
humans and AI systems help one another improve over time). Finally, we discuss how 
the Granularity and Timing of adaptivity might be understood in human–AI systems. 

3.1 Goal Augmentation: Informing Each Other’s Instructional Goals 

A key way for humans and AIEd systems to support one another is by influencing each 
other’s goals. To a large extent, AIEd technologies encode the assumptions and goals 
of those who design and develop them—whether explicitly, via objective functions that 
a system’s adaptive policies optimize towards, or implicitly, through design decisions 
that promote certain goals over others. However, the goals baked into an AIEd system 
may not always align with those of humans in real-world educational contexts [24; 46; 
53]. For example, ITSs used in K-12 school contexts often implement mastery-based 
activity selection policies, allowing each student to progress through the curriculum at 
their own pace. Yet prior work suggests that teachers often struggle to balance their 
desire to implement such personalized classrooms with external pressure to keep 
classes “on schedule”. In practice, teachers often opt to manually push students forward 
in the curriculum if they are slower to master certain skills [24; 53], sometimes even if 
they are aware that doing so may harm students’ learning [24; 28]. As of yet, little work 
in AIEd has explored the design of supports for goal augmentation. 
AIEd informing human goals. It may not always be desirable for AIEd systems to 
adapt to human facilitators’ instructional goals. For instance, in some cases, teachers’ 
or peer tutors’ goals may be fundamentally at odds with known instructional best 
practices. Future systems could play an important role in helping humans productively 
reflect upon their goals, helping them refine these goals or consider alternatives [4; 19]. 
Humans informing AIEd goals. Human facilitators may hold critical, on-the-ground 
knowledge about their instructional contexts and personal goals, to which AIEd systems 
would not typically be privy. Building upon the above example, ITSs might be even 
more effective in classroom contexts if designed to accept teachers’ input regarding the 
goals they should be optimizing towards. By enabling teachers to help shape the 
system’s goals, the system could in turn help teachers more effectively navigate trade-
offs between competing goals (e.g., by supporting teachers in deciding when to push 
students ahead in the curriculum, while causing minimal harm to their learning [28]). 

3.2 Perceptual Augmentation: Leveraging Complementarity in Perception 

A second way for AIEd systems and humans to augment one another is by enhancing 
each other’s abilities to perceive instructionally relevant information, or opportunities 
for action. This may take the form of (1) extending what the other is able to sense (i.e., 
what information is made available to them, prior to further interpretation [11; 20]); (2) 
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guiding how the other distributes their attention; or (3) guiding how the other interprets 
incoming information. Each of these broad possibilities is discussed in turn, below. 
 

Augmenting sensing and attention.  
AIEd systems can be designed to extend what humans are able to sense and notice about 
learners, learning, or their own teaching, or from the other direction, to help humans 
augment what AIEd systems sense and notice. Thus far, more work in AIEd has focused 
on supporting AI→human than human→AI augmentation in this area. 
AIEd augmenting human sensing and attention. A number of AIEd systems have 
been developed to help human facilitators sense information to which the AI would 
otherwise have unique access (e.g., [2; 5; 26; 38; 40; 55; 69; 70]). Prior work has 
focused on augmenting what learners and peer tutors are able to sense and notice about 
a learning situation. For example, the Adaptive Peer Tutoring Assistant (APTA) 
supports peer tutors in recognizing opportunities for effective intervention, in the 
context of ongoing peer tutoring [70]. In the context of self-regulated learning with an 
AI tutor, the Help Tutor supports students in monitoring their own help-seeking 
behavior, and in noticing cases where they may be using the software’s help functions 
in maladaptive ways [2]. More recently, several projects have focused on designing 
ways to keep human teachers in the loop in AI-supported classrooms (e.g., [27; 40; 47; 
68]). For example, the Lumilo teacher smartglasses are designed to direct teachers’ 
attention, during a class session, to situations that an AI tutor may be poorly suited to 
handle on its own, or which require a teacher’s further assessment [26; 27]. In each of 
the above examples, there is potential for future AIEd systems not only to augment 
human facilitators’ abilities in-the-moment, but also to help humans learn to notice 
relevant features of a learning situation even when in-the-moment support is 
unavailable [2; 19; 59; 70].  
Humans augmenting AIEd sensing and attention. From the other side, humans may 
have relevant on-the-ground knowledge to which AIEd systems are likely to be blind. 
AIEd systems may be designed so that humans can help them perceive such 
information. For instance, future systems might be designed to allow teachers and 
parents to update individual student models with relevant information about the 
student’s broader context; e.g., whether the student is currently facing at-home 
difficulties that may impact their performance (cf. [9]). Similarly, an AIEd system 
might be designed to periodically poll students regarding their subjective feeling of 
knowing particular skills that are targeted by the instruction [12; 36]. In addition to 
having humans input information directly, some research has begun to explore 
approaches in which humans teach AIEd systems, via demonstration, to perceive 
instructionally relevant features to which they should attend in the future (e.g., [35]). 
 

Augmenting interpretation. 
AIEd systems can also be designed to support humans in interpreting and drawing 
inferences from what they notice, or to assist humans in shaping or mediating AIEd 
systems’ interpretations of the events they are able to sense. 
AIEd augmenting human interpretation. Beyond extending human sensing capacities, 
AIEd systems may also support human facilitators in productively interpreting and 
reflecting upon the information available to them. Whereas some technologies are 
designed to present information to humans with low-level, minimally pre-interpreted 
data (e.g., “number of help requests”) [4; 5; 16], several of the AIEd systems discussed 
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above, including APTA, the Help Tutor, and Lumilo rely upon advanced student 
modeling techniques (e.g., automated detectors of “help abuse” or “help avoidance” 
behaviors). Thus, beyond augmenting human sensing and attention, these systems 
perform a considerable amount of pre-interpretation on behalf of human facilitators or 
learners [5]. Emerging lines of research are beginning to explore the design of interfaces 
that can more actively guide humans towards particular interpretations of learning data 
(e.g., [17]) or interfaces that can scaffold humans in more productive forms of reflection 
(e.g., [19]). However, it remains an open question for future research how best to 
productively guide human interpretation, while still leveraging (rather than 
diminishing) humans’ unique inferential capacities [5; 14; 17; 23; 33]. 
Humans augmenting AIEd interpretation. Future AIEd systems may be designed to 
support human facilitators in detecting cases where the AI misinterprets learning data 
(e.g., by misclassifying patterns in collaborating groups’ behaviors) and to provide 
corresponding feedback in order to shape these interpretations in more meaningful 
directions. As of yet, the question of how AIEd systems can be designed to effectively 
elicit and learn from such feedback remains underexplored (cf. [9; 10; 14; 23; 34; 54]). 

3.3 Action Augmentation: Leveraging Complementarity in Action Spaces 

A third way in which AIEd systems and humans can work together to support more 
adaptive instruction is by augmenting and extending the other’s capacities for 
instructional action. In particular, AIEd systems and humans can (1) enhance each 
other’s ability to perform particular kinds of instructional actions, and relatedly expand 
the range of actions available to each; and (2) enhance each other’s scalability and 
capacity for action. Each of these broad possibilities is discussed below.  
 

Enhancing ability and expanding the availability of actions. 
Many open research and design opportunities exist for human–AI systems that augment 
and expand each other’s action spaces. Just a few examples are presented below. 
AIEd augmenting human actions. AIEd systems may be designed to support human 
facilitators in providing more effective help. For example, while a human coach works 
with a student, a future AIEd system might follow along with what the coach is doing, 
and adaptively present educational resources (e.g., relevant readings, videos, or practice 
materials) that support their current goals [28; 70]. Alternatively, a system may respond 
during or after human coaching by adaptively providing feedback on the quality of the 
instruction (e.g., the clarity of a particular explanation the coach provides), to help the 
coach adjust and improve over time (cf. [19; 28; 70]). 
Humans augmenting AIEd actions. Humans can also augment the set of instructional 
moves available to an AIEd system by either customizing or creating new actions for 
the system. For example, AIEd systems may be designed to adaptively deliver hints 
written by peers or instructors (cf. [22; 28; 72]). Authoring tools have been developed 
to support non-programmer authoring, but further research is needed to support easy 
authoring in everyday educational settings (e.g., by teachers or students) [1; 29; 37; 39]. 
 

Enhancing scalability and capacity. 
Much prior research in AIEd has focused on augmenting human scalability, whereas 
relatively less research has targeted the reverse direction. However, many open 
questions remain in each direction, which emerging work is beginning to tackle. 
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AIEd augmenting human scalability. AIEd systems have often been promoted as 
“scaling up” some of the benefits of one-on-one tutoring, effectively providing each 
student with their own, personal AI tutor [6; 31; 58; 64]. In doing so, AIEd systems can 
serve as teachers’ aides [24; 73], helping human coaches or teachers personalize 
instruction beyond what might otherwise be feasible, while also freeing up humans’ 
limited time and attention for other activities (e.g., providing socio-emotional support 
or coaching for students most in need) [22; 24; 58; 73]. Thus, one way in which AIEd 
systems can augment human scalability and capacity is through selective delegation 
[27]. Some research has begun to explore the design of AIEd systems that adaptively, 
dynamically delegate instructional roles between AI systems, teachers, and peers, based 
upon an awareness of trade-offs between the instructional ability and capacity of each 
[28; 47; 49; 63]. A second emerging way for AIEd systems to help human facilitators 
scale their efforts is by supporting them in teaching the AI tutor (as discussed below), 
transferring their unique expertise and pedagogical preferences into a system that can 
reach more students than they themselves can [37, 39, 60, 74]. 
Humans augmenting AIEd scalability. It can also be useful to consider the ways in 
which human facilitators can (and in practice, often do) support AIEd systems in 
scaling. Increased scalability risks reducing a system’s fit with particular educational 
contexts, as system developers design solutions to fit constraints of multiple contexts 
simultaneously [32; 45; 46]. On-the-ground facilitators may support AIEd systems in 
scaling to diverse contexts by adapting the way these systems are implemented in use 
to the needs of their local contexts (e.g., [24; 30; 46; 58]). For example, when classroom 
teachers use AIEd systems that are poorly aligned with their school’s existing 
curriculum, they may selectively assign particular modules to students, overriding the 
systems’ built in sequencing algorithms in the interest of providing better aligned 
learning experiences [23; 45]. Future AIEd systems may be explicitly designed to 
facilitate such adaptability (e.g., local customizations and overrides) [16], improving 
their chances for adoption across varied contexts of use [22; 24; 28; 45]. 

3.4 Decision Augmentation: Leveraging Complementarity in Decision-making 

Beyond informing each other’s goals or augmenting each other’s capacities for 
perception and action, a fourth major way in which AIEd systems and humans can work 
together is by helping each other make more effective pedagogical decisions (i.e., 
helping each other more effectively link between perception and action). Prior work 
has explored forms of both AI→human and human→AI decision augmentation. 
However, much additional research is needed in order to fully realize the visions of 
AIEd systems as, for instance, effective decision support and professional development 
tools [5; 19; 23; 24; 66] and as teachable machines [37; 39; 60; 74]. 
AIEd augmenting human decision-making. In addition to providing instruction to 
students directly, AIEd systems may be designed as decision support for human 
facilitators, helping humans take more effective instructional actions in particular 
learning situations [2; 26; 27; 66; 67; 70]. To an extent, all forms of human 
augmentation discussed thus far can function as forms of decision support. Indeed, 
decision support is often conceptualized as a continuous spectrum rather than a binary 
design choice [5; 56; 65; 71]. For instance, perceptual augmentation may enhance 
decision-making by directing humans’ attention towards learning phenomena that 
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require their further assessment or action [5]. However, AIEd systems may also be 
designed to support human decision-making more directly and explicitly. For example, 
an AIEd system might automatically suggest effective ways for a human facilitator to 
help a group of students, in the moment, based on its perceptions of the students’ and/or 
facilitator’s current states (effectively functioning as hints or bug messages, targeted 
for a human in an instructional role rather than a learner; see [27; 28; 68; 70]). With 
knowledge of a facilitator’s instructional goals, future AIEd systems might help the 
facilitator make more informed trade-offs between competing goals or nudge them 
away from practices that are at odds with their goals [28]. Such systems could function 
not only as decision support, but also as professional development, helping humans 
improve over time, potentially even in the absence of such support [19; 27; 28; 70]. 
Humans augmenting AIEd decision-making. AIEd systems may also be designed to 
help human facilitators mediate or shape these systems’ instructional decision-making. 
Mediation may occur in practice where a facilitator such as a teacher overrides a 
decision made by an AIEd system (e.g., by selecting an alternative activity for a student 
to work on, or an alternative group for a student to collaborate with, rather than ones 
selected by the system) [5; 24; 47; 49]. As discussed under Goal Augmentation above, 
such overriding behavior occurs regularly in K-12 classroom contexts; as noted, 
although teachers’ overrides can often be seen as adaptive, they can also be maladaptive 
when they detract from (some) goals for the instruction. In addition to mediating AIEd 
systems’ decision-making, humans might also help systems learn more effective 
policies or ones better suited to their particular educational contexts [23]. Recent work 
on machine teaching for AIEd suggests promise for approaches in which humans teach 
the AI to teach through feedback and demonstrations [37; 39]. However, further 
research is needed to develop interaction paradigms for machine teaching that are fast 
and intuitive enough for everyday use in educational settings [60; 74]. 

3.5 Granularity and Timing in Human–AI Systems 

Finally, we briefly discuss how granularity and timing might be understood in human–
AI systems. When AIEd systems and humans work together, they may each adapt 
instruction at different grain sizes. For instance, in classrooms using step-based tutoring 
software, teachers may provide substep feedback on-the-spot (i.e., feedback on a step 
while the student is, from the system’s perspective, still in the midst of completing the 
step) [23; 27; 30]. While an AIEd system waits for the student to submit their input, a 
human facilitator might perceive an opportunity to intervene within a long pause in 
student typing. The timing of adaptation may also vary across humans and machines. 
For instance, Aleven et al’s “design loop adaptivity” [3] can be viewed as involving a 
form of shared adaptivity in which human facilitators or instructional designers 
repeatedly adapt an AIEd system’s design (informed by educational data and/or their 
own observations) before or after an instructional activity, while the AIEd system in 
turn takes care of adapting to learning situations during the activity. 

4 Conclusions 

AIEd systems are increasingly designed and evaluated with an awareness of the shared 
nature of adaptivity in real-world educational settings. Despite much recent research 
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into human–AI hybrid approaches for education, theoretical and conceptual guidance 
in this area remains limited. Whereas prior frameworks have tended to examine 
adaptivity in AIEd systems or human coaches separately, in this paper we have explored 
how adaptivity may be shared across AIEd systems and the various human stakeholders 
who work with them.  
    Based on a comparison and synthesis of prior frameworks, we have presented a 
generalized set of dimensions, with the goal of capturing essential components of 
adaptive instructional behavior (cf. [43]). Using these dimensions, we have introduced 
a conceptual framework for human–AI hybrid adaptivity in education, suggesting 
distinct ways in which AIEd systems and human facilitators might augment one 
another. Throughout the previous section, we have presented several examples to 
illustrate how this framework can be used both to characterize prior work and to surface 
new possibilities and open questions for human–AI hybrid approaches in education. 
    We view the current framework as a step towards the development of richer theory 
for human–AI hybrid adaptivity in education, and for human–AI hybrid approaches 
more broadly. As an empirical and design science, AIEd needs theory to productively 
guide hypothesis generation, prediction, understanding, and design. Theory can help 
researchers adopt common concepts and vocabulary, which may in turn accelerate 
communication and innovation. Theory can shape—for better or worse—how 
researchers and designers see the world, how they make sense of their observations, 
and what alternatives they are able to envision. The current framework should be 
viewed as a starting point, not a finished product. We invite others in the community 
will challenge this framework and expand upon it.  
    The design space for human–AI hybrid approaches in education is large and 
combinatorial: almost any real case will involve combinations of the categories of 
human–AI adaptivity specified in this framework (e.g., an AIEd system might augment 
human decision-making via a human-augmented perceptual model). It is our hope that 
the present work will help to guide future research and design, assisting others in 
navigating this broad design space, in formulating more useful hypotheses, and in 
differentiating among fundamentally different kinds of human–AI hybrid approaches. 
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