
Online Spread Estimation with Non-duplicate
Sampling

Yu-E Sun†‡, He Huang∗‡, Chaoyi Ma‡, Shigang Chen‡, Yang Du§, Qingjun Xiao¶

†School of Rail Transportation, Soochow University, P. R. China
∗School of Computer Science and Technology, Soochow University, P. R. China

‡Department of Computer and Information of Science and Engineering, University of Florida, USA
§School of Computer Science and Technology, University of Science and Technology of China, P. R. China

¶School of Cyber Science and Engineering, Southeast University, P. R. China
E-mails: {sunye12,huangh}@suda.edu.cn, ch.ma@ufl.edu, sgchen@cise.ufl.edu, jannr@mail.ustc.edu.cn, csqjxiao@seu.edu.cn

*He Huang is the corresponding author.

Abstract—Per-flow spread measurement in high-speed net-
works has many practical applications. It is a more difficult
problem than the traditional per-flow size measurement. Most
prior work is based on sketches, focusing on reducing their space
requirements in order to fit in on-chip cache memory. This design
allows measurement to be performed at the line rate, but it has
to accept tradeoff with expensive computation for spread queries
(unsuitable for online operations) and large errors in spread
estimation for small flows. This paper complements the prior art
with a new spread estimator design based on an on-chip/off-chip
model which is common in practice. The new estimator supports
online queries in real time and produces spread estimation with
much better accuracy. By storing traffic data in off-chip memory,
our new design faces a key technical challenge of efficient non-
duplicate sampling. We propose a two-stage solution with on-
chip/off-chip data structures and algorithms, which are not only
efficient but also highly configurable for a variety of probabilistic
performance guarantees. The experiment results based on real
Internet traffic traces show that our estimator reduces the mean
relative and absolute error by around one order of magnitude,
and achieves both space-efficiency and accuracy-efficiency in flow
classification for small flows compared to the prior art.

Index Terms—Traffic measurement, sampling, spread estima-
tion.

I. INTRODUCTION

Per-flow spread measurement on a packet stream in high-
speed networks is a fundamental problem with many practical
applications [1]–[4]. Different from counting the number of
packets (i.e., flow-size measurement) [5]–[8], a spread mea-
surement task estimates the number of distinct elements in
each flow, where flows can be TCP flows, P2P flows, or
any other types defined based on application-specific inter-
ests, and elements may be destination/source addresses, ports,
other header fields, or payload content. For instance, we may
consider all of the packets sent from the same source as a per-
source flow, and elements can be distinct destination addresses
carried in the packets of the flow. As an application, measuring
the number of distinct destinations from each external source
at the gateway helps identify scanners. By defining flows
and elements differently, spread measurement can be used in

many other applications, including worm monitoring, DDoS
detection, and content access profiling [9], [10].

The function of traffic measurement can be implemented
either entirely on the network processor chip (where the packet
stream is forwarded) or using off-chip memory to record traffic
data. The former has the advantage of keeping up with the line
rate, while the latter has the advantage of leaving precious on-
chip resources to key network functions, such as routing-table
lookup, access control, and traffic engineering. Most sketch-
based prior work chooses the on-chip approach [11]–[16].
Their designs focus on how to reduce their space requirements
in order to fit in on-chip memory. To do so, they have to
make a tradeoff to sacrifice in other regards. For example, their
compact data structures make it harder to query for a flow’s
spread, which will require scanning hundreds or thousands
of bits or registers [11], [12], [17]–[19]. Therefore, they are
more suitable for offline queries instead of online queries that
are triggered by packet inspection in live traffic. Moreover,
their designs make sure that the accuracy of spread estimation
is good for large flows, but not necessarily for small flows
due to space-accuracy compromise. However, small-spread
flows are sometimes important to certain applications, for
example, detection of stealthy denial-of-quality attacks, where
the attackers stay low-key to avoid detection that focuses on
large flows [19].

This paper adopts an on-chip/off-chip design which is much
less investigated. Not only does our choice complement the
prior work, but it makes sense for two reasons: First, on-chip
resources are often limited due to speed, power, and price con-
siderations [20]. Second, unlike per-flow size measurement,
which needs only a counter for each flow, per-flow spread
measurement requires much more resources because we have
to remember which elements are new and which are duplicates
that have already been carried in the previous packets —
measuring the spread of a flow only counts the new elements.
Moreover, modern network traffic is huge, which aggravates
the resource demand. For instance, we observe that one-hour
traffic trace downloaded from CAIDA [21] can easily include

1

2440
Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:34:12 UTC from IEEE Xplore.  Restrictions apply. 



over multiple millions of per-source flows, tens of millions of
distinct elements (e.g., destinations), and billions of packets
where duplicate elements are numerous.

Our choice of using off-chip memory for traffic measure-
ment is actually typical in practice (NetFlow [22], [23]) and
has been studied for flow-size and heavy-hitter measurements
[24]–[27]. But there is no prior work on per-flow spread
measurement under this model. To compensate the difference
between on-chip speed and off-chip access, a sampling module
will be needed on-chip to randomly select a subset of packets
for recording. Sampling is simple for flow-size measurement
because each packet is treated independently with the same
sampling probability. It is however tricky for flow-spread
measurement because duplicates cannot be sampled and on-
chip operation must be efficient, which prevents us from using
conventional methods to search for duplicates.

This paper proposes an efficient spread estimator based
on an on-chip/off-chip design that supports online spread
estimation, which may be performed even on a per-sampled-
packet basis (for instance, to trigger alerts when flow spread
exceeds a threshold for real-time scanner or DDoS detection).
We introduce a new non-duplicate sampling method. Using
only a bit array, its online operation is very simple and
efficient. Our method does not sample each packet with
the same probability, but it ensures that each element is
sampled with the same probability when it appears for the first
time, while its duplicates will not be sampled. All sampled
elements are recorded in off-chip memory, where it takes a
counter access to answer the query for a flow’s spread. Our
method combines simple operation with sophisticated control
for probabilistic performance guarantees, such as bounded
absolute error in spread estimation, bounded relative error,
or probabilistic assurance on threshold-based classification.
We perform extensive experiments based on real Internet
traces downloaded from CAIDA [21]. The experimental results
show that our spread estimator achieves much smaller spread
estimation error, and incurs much smaller on-chip footprint
than the prior art.

II. PRELIMINARIES

A. System model

A flow under measurement in high-speed networks consists
of all packets that share the same values in a pre-defined
subset of the header fields, which together form the flow label.
Flow spread is defined as the number of distinct elements in
each flow, where elements are defined based on application
requirements. The problem is to estimate the spread of each
flow.

We adopt an on-chip/off-chip model. A sampling module is
placed on the network processor chip. We use a bit array,
denoted as B, in the sampling module to help select new
elements carried in the packet stream and filter out duplicates.
Time is divided into epochs. All bits in B are reset to zeros at
the beginning of each epoch. A recording/estimation module
is implemented in off-chip memory to record the sampled
elements and answer online queries in real time.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

E
st

im
at

ed
 S

p
re

ad

Actual Spread

(a) p = 1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

E
st

im
at

ed
 S

p
re

ad

Actual Spread

(b) p = 0.1

Fig. 1: Spread estimation by the estimator proposed in [19]
with 0.11MB on-chip memory.

B. Prior Art and Limitations

Most existing spread estimators [11], [12], [17]–[19] are
sketch-based under a different system model, where the whole
sketch data structure is placed in on-chip memory. This model
choice results in three limitations that the proposed work in
this paper will address. First, the whole data structure has to
be very compact. Consequently, such spread estimators do not
keep track of flow labels. Given a flow label, they can answer
the flow’s spread, but they have to rely on external means
to record the flow labels. Second, their estimation formulas
are expensive to compute. Hence, the periodically recorded
data structures will be sent to an offline server, which answers
queries on flow spread. This is ok for many applications based
on offline traffic analysis, but it is also restrictive for online
applications. Third, due to compactness in their data structures,
the accuracy in spread estimation has to give, particularly for
small flows.

Take the spread estimator in [19] as an example. It shares a
single physical bitmap among all of the flows to record their
elements statistically under a novel concept of virtual bitmaps.
However, on-chip compactness requires aggressive space shar-
ing, which results in significant errors for small/medium flows.
We use one minute traffic downloaded from CAIDA as our test
dataset, which contains 589740 per-source flows and 907463
distinct destinations (elements). By setting the packet sampling
rates at 1 and 0.1, respectively, the experimental results are
as shown in Fig. 1 in log scale, where each point represents
a flow with its x coordinate being the actual spread and its
y coordinate being the estimated spread. The more a point
deviates from the equality line y = x, the less accurate the
estimation is. Clearly, small flows suffer very large (relative)
errors. Moreover, estimating the spread of each flow requires
examining thousands of bits.

C. Our Goal

We aim to fill the gap left by the prior art by addressing
their limitations. Our goal is to design an efficient on-chip/off-
chip spread estimator, which works with a small on-chip space
and a larger off-chip memory to provide online accurate per-
flow spread estimation that records flow labels, incurs very
low query overhead, and achieves good performance for both
large and small flows. Our estimator design should have the
following performance guarantees.

2

2441
Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:34:12 UTC from IEEE Xplore.  Restrictions apply. 



• Missed-sampling bound: Due to the probabilistic nature
of sampling, some small flows may not be sampled. We
want to ensure that the probability for a flow with spread
greater than n not to be sampled is bounded by ϵ, where
n and ϵ are user-specified parameters.

• Relative and absolute error bounds: We want to ensure
that the relative error of the flows with spreads greater
than n is bounded by δ with probability 1 − ϵ, and that
the absolute error of the flows with spreads smaller than
n is bounded by δ′ with probability 1 − ϵ, where n, δ,
δ′, and ϵ ∈ (0, 1) are user-specified parameters.

• Probabilistic guarantee in flow classification: We want
to identify the flows whose spreads are greater than a
threshold T with the following probabilistic guarantee as
defined in [28]: Given a lower bound l and an upper
bound h with l < T < h, the probability for a flow with
spread greater than h not to be identified is bounded by
1−α, and probability for a flow with spread smaller than
l to be mis-identified is bounded by β, where T , l, h, α
and β are user-specified parameters.

III. SPREAD ESTIMATION BY NON-DUPLICATE SAMPLING

A. NetFlow and Packet Sampling

NetFlow [22], [23] and its non-Cisco equivalents enable
routers to measure per-flow statistics (such as number of
packets and number of bytes for every TCP flow during
each epoch). Modern routers process packets at high speed
through network processor chips and switching fabrics, where-
as per-flow statistics are typically stored in off-chip memory.
There is a mismatch between the rate at which packets are
forwarded on-chip and the rate at which per-flow statistics
are updated off-chip. Sampling is the common technique to
compensate such a mismatch. The sampling probability p
may be determined based on the ratio of off-chip memory
throughput and packet forward rate. Let r be the highest line
rate and t be the achievable off-chip throughput for traffic
measurement considering both on-chip processing and off-chip
memory access/processing. We can set p to a constant t

r and
perform per-packet sampling, where each packet is selected
independently with a probability of p for updating the statistics
of the flow that the packet belongs to.

B. Packet Sampling and Spread Measurement

Packet sampling is fine for per-flow size statistics in terms
of number of packets or number of bytes. For such statistics,
every packet (byte) worths the same as any other. However, it
is not suitable for per-flow spread statistics, where each packet
carries an element, which may be new or a duplicate that has
appeared in earlier packets and thus should not be sampled or
recorded.

We use an example to show the difference between size
measurement and spread measurement. Consider a flow of
1000 packets. Suppose we measure the flow size in number
of packets and perform packet sampling with p = 0.1. We use
an off-chip counter r to record the number of sampled packets
in this flow and estimate the flow size to be r

p . Now consider

a flow of 1000 packets, each carrying an element. We want to
measure the flow spread, i.e., the number of distinct elements
in the flow. Per-packet sampling with p = 0.1 will select about
100 packets for off-chip recording. However, in case that all
1000 packets carry the same element, doing so is completely
unnecessary. We should instead sample at most one packet
of the flow and perform at most a single off-chip recording
because all other packets are duplicates. This will save off-chip
memory throughput for other tasks such as higher sampling
of other flows with more distinct elements.

For spread measurement, a flow of 1000 packets carrying
the same element is equivalent to a flow of 1 packet carrying
that element. The actual packet sampling rates of different
flows should be different, depending on their densities of dis-
tinct elements, which are, however, unknown when sampling
is performed on each individual packet.

C. Non-duplicate Sampling

We introduce a new concept called non-duplicate sampling,
which is to select each distinct element in any flow with a
given probability p, in contrast to traditional sampling that
selects each packet with probability p.

Consider the previous flow of 1000 packets carrying the
same element e. Still let p = 0.1. Traditional packet sampling
will select about 100 packets and record the same element
that many times, whereas non-duplicate sampling will select
e with probability 0.1 when it appears for the first time — if
it is selected, we record it; otherwise, we do not record it. All
subsequent 999 appearances will be ignored.

Clearly, the implementation of non-duplicate sampling over
a packet stream will still require sampling decision on a per-
packet basis, but the method of traditional sampling will need
to be replaced with something that will not only remember
what we have seen so far (to avoid duplicates), but also possess
the precision of ensuring that each distinct element has exactly
a chance of p being selected, no matter how early (or late) the
element appears in the packet stream and how many times it
appears.

D. Desired Properties

Before we present our solution for non-duplicate sampling,
we give a list of desired properties for such a solution. First,
because sampling operations are performed online on a per-
packet basis, we want them to be simple. The simpler, the
better. Second, existing sketch-based spread estimators (such
as Bitmap [4], [29], [30], FM [31], HLL [2], [32], and virtual
sketches [13], [33]) do not support efficient online queries.
We will not use them in this paper, but prefer a solution that
supports real-time access to the spread of any flow. Third,
while the online operations are kept simple, they should still
provide great flexibility in quantitatively controlling spread
measurement in terms of missed-sampling bound, absolute
error bound, relative error bound, and probabilistic guarantee
in flow classification, as defined in Section II-C.

3

2442
Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:34:12 UTC from IEEE Xplore.  Restrictions apply. 



E. Two-stage Solution for Non-duplicate Sampling

We propose a two-stage solution for non-duplicate sam-
pling. Its on-chip data structures include a bit array B of m
bits and a counter c, which are all initialized to zeros at the
beginning of each measurement epoch. The purpose of the bit
array is two-fold: One is to filter out duplicates and the other
is to serve for second-stage sampling.

The first stage is element sampling with a variable probabil-
ity p′ whose value increases over time. We will discuss how to
dynamically adjust the value of p′ shortly. Element sampling
is performed as follows: From each arrival packet, the router
extracts the flow label f and the element ID e. It performs a
hash h = H(e⊕ f), where H is a hash function whose range
is [0, X), and ⊕ is the XOR operator. If and only if h < p′X ,
the element is selected (sampled) by the first stage.

The second stage is element filtering. The router hashes the
element pseudo-randomly to a bit in B by computing h′ =
H ′(e ⊕ f) mod m, where H ′ is another independent hash
function. There are two cases to consider: (1) If B[h′] = 0, it
means that the router never sees this element before. In this
case, it sets B[h′] to 1, increases c by 1, and sends the flow
label f to off-chip memory for recording if e is sampled by
the first stage. (2) If B[h′] = 1, it means that the router has
seen an element hashed to the bit. The element may be e from
f or another one setting the same bit due to hash collision. We
nonetheless filter out e of f , and thus take no further action.
Note that our goal is not to record each element at its first
appearance, but to record it with a preset probability, which
we will show how to achieve below.

Consider an arbitrary element e from an arbitrary flow f .
When it first appears in the packet stream, element sampling
(first stage) has a probability of p′ to select the element, and
element filtering (second stage) has a probability of m−c

m to
hash onto a bit of zero, which will trigger off-chip recording
if e is selected at the first stage. Combining the above two
stages, the probability of recording a new element at its first
appearance is p′m−c

m . We want to set it to a constant value
p = t

r , which is pre-determined based on the line rate r and the
achievable off-chip throughput t as explained in Section III-B.
Hence,

p′
m− c

m
= p

p′ =
mp

m− c
.

(1)

The sampling probability p′ at the first stage increases as the
number c of recorded elements increases. The maximum value
of c should be limited to m(1 − p) when p′ becomes 1. The
current measurement epoch has to terminate after c reaches
its maximum value. To avoid premature epoch termination,
we may double the bit array size m until it is large enough to
prevent c from reaching its maximum.

All subsequent appearances of the same element e in flow
f will be hashed to the same bit in B (which is already set to
1) and thus automatically filtered out.

Consider the first appearance of a new element again. The

probability for it to not be selected at the first stage is 1− p′.
The probability for it to be selected at the first stage but hashed
to a bit of 1 is p′ c

m . Combining these two cases with (1), the
probability for the element to not be recorded is

(1− p′) + p′
c

m
= 1− p, (2)

which matches the expectation of non-duplicate sampling.
In the worst case, when packets arrive at the highest rate r

and they all carry different elements, each having a probability
of p being recorded off-chip (under the two-stage solution), the
off-chip throughput will be rp = t, which is achievable.

F. Off-chip Recording and Online Spread Estimation

We want to stress that our bit-array filter B serves a different
purpose from the bitmaps in [1], [4]. Our filter is used to assist
sampling, whereas those bitmaps are used as per-flow data
structures in spread estimation.

In fact, they could be complementary to each other, with
ours for on-chip duplicate removal and theirs as off-chip data
structures for recording flow elements. However, bitmaps have
limited estimation ranges. More sophisticated sketches, such
as FM [31], HLL [2], [32], and their virtualized versions
[13], [33], have very large ranges. But all these sketches
(including bitmaps) do not support online queries because
they are expensive to compute, having to synthesize data from
hundreds or thousands of bits or registers.

In order to support efficient online queries, we opt not to use
these sketches as our off-chip data structures. We observe that,
after non-duplicate sampling, each time an element from f is
recorded, it must be a new one that is not seen before, which
is why we only send the flow label f off-chip for recording.
Our off-chip data structures include a hash table to store the
flow labels, each with a counter. When we record f for the
first time, it is inserted into the hash table with its counter
value set to 1. After that, when f is recorded again (because
its other elements are sampled), we find its entry in the hash
table and increase the counter by 1.

For an online query on the spread of flow f , we only need
to hash f to find its table entry and return its current counter
value divided by the sampling probability p.

The simple operations of non-duplicate sampling has an
immediate benefit of online efficiency, both in spread mea-
surement and real-time queries. Yet, simplicity does not nec-
essarily limit functionality. We show in the next section that
the proposed spread estimator can be flexibly configured for
various probabilistic performance guarantees.

IV. PERFORMANCE ANALYSIS

In this section, we show how to configure the system
parameters of the proposed estimator for different probabilis-
tic performance guarantees, such as the flow miss-sampling
bound, relative and absolute error bound, and probabilistic
guarantee in flow classification.

4

2443
Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:34:12 UTC from IEEE Xplore.  Restrictions apply. 



A. Miss-sampling bound

A flow will miss if none of its elements are sampled. Define
the miss-sampling probability as the probability for a flow
miss. Given two values n and ϵ, our design can ensure that
the miss-sampling probability for a flow with spread greater
than n is bounded by ϵ through proper system parameter
configuration.

Consider an arbitrary flow f with spread nf . Each element
of f has a probability of p to be sampled, and then the
probability for none of f ′s elements to be sampled is (1−p)nf .
Since (1 − p)n ≥ (1 − p)nf when nf ≥ n, our design can
bound the miss-sampling probability within ϵ for flows with
spread greater than n if (1− p)n ≤ ϵ, i.e.,

p ≥ 1− ϵ1/n. (3)

Let N be the total number of distinct elements in the current
epoch. At the end of the epoch, all of them will have set their
hashed bits in the filter, and from Section III-E we know that
the number c of bits that are ones in the filter reaches its
maximum value of m(1 − p). The percentage of bits in the
filter that are zeros is thus m−c

m = p. According to [11], [29],
N can be approximated as −m ln p. From (3), we should set
m as

m = − N

ln p
≥ − N

ln(1− ϵ1/n)
. (4)

The value of N can be estimated based on the measurements
in prior epoches, for example, as the moving average of the
prior measurements, each being the total number of sampled
elements in an epoch divided by p. Let N̂ be such an estimate.
Substituting N with its estimate, we can practically set m as
follows:

m ≥ − N̂

ln(1− ϵ1/n)
. (5)

B. Relative and absolute error bounds

We now show how to configure the system parameters
to bound the relative and absolute errors of the proposed
estimator.

Consider an arbitrary flow f . Let cf be the counter value
of f ’s table entry and Pr{cf = k} be the probability for
cf = k. We further consider an arbitrary subset Sf,k of k
elements of flow f ; there are Ck

nf
ways to form such a subset.

Denote the complement of the subset as Sf,−k, which consists
of all elements of flow f that are not included in Sf,k. The
probability for all of the elements in Sf,k to be sampled is
pk, and the probability for no element in Sf,−k to be sampled
is (1 − p)nf−k. Then, we have the probability for all of the
elements in Sf,k to be sampled and all of elements in Sf,−k

that are not to be sampled, namely pk(1− p)nf−k. Note that
there are Ck

nf
ways to form a subset Sf,k. Thus, we have

Pr{cf = k} = Ck
nf
pk(1− p)nf−k. (6)

Suppose we want to ensure the relative (absolute) error of
flows whose spreads are greater (smaller) than n is bounded
by δ (δ′) with probability 1− ϵ.

Since each sampled element will be estimated as 1
p ele-

ments, ⌈(nf − δ′)p⌉ ≤ cf ≤ ⌊(nf + δ′)p⌋ should stand if we
want to bound the absolute error of flow f within δ′. Based
on (6), the probability for the estimated spread of flow f not
distributed in [nf − δ′, nf + δ′] is

p2 = 1−
⌊(nf+δ′)p⌋∑

j=⌈(nf−δ′)p⌉

Cj
nf
pj(1− p)nf−j . (7)

Therefore, the absolute error of flow f is bounded by δ′

with probability 1− ϵ if the following inequality stands:

1−
⌊(nf+δ′)p⌋∑

j=⌈(nf−δ′)p⌉

Cj
nf
pj(1− p)nf−j ≤ ϵ. (8)

Note that p2 is increased with increasing nf , which means
the flow with large spread has a high probability to have a
greater absolute error than the flow with small spread. Thus,
we can obtain the optimal value of p by solving (9), which
ensures that the absolute error of the flows whose spreads are
smaller than n is bounded by δ′ with probability 1− ϵ:

1−
⌊(n+δ′)p⌋∑

j=⌈(n−δ′)p⌉

Cj
np

j(1− p)n−j = ϵ. (9)

Similar to the analysis for the absolute error bound, we can
obtain the optimal value of p by solving (10), which ensures
the relative error of the flows whose spreads are greater than
n is bounded by δ with probability 1− ϵ:

1−
⌊(1+δ)np⌋∑

j=⌈(1−δ)np⌉

Cj
np

j(1− p)n−j = ϵ. (10)

C. Upper bounds of relative and absolute errors

Next, we analyze the upper bounds of the relative and
absolute errors.

Let Ef
a be the absolute error of the proposed estimator for

flow f . Let A1 be the event that all of the elements of f
are sampled, and A2 be the event that none element of f is
sampled. Then, we have that the upper bound of Ef

a is equal to
max{Ef

a,A1
, Ef

a,A2
}, where Ef

a,A1
(Ef

a,A2
) is the value of Ef

a

when event A1(A2) happens. The probability for A1 happens
is

PA1,f = pnf . (11)

When A1 happens, the absolute error of each element of
flow f that will bring is 1

p − 1. Then, we have

Ef
a,A1

= nf (
1

p
− 1). (12)

For a given flow f , the probability that A2 happens is

PA2,f = (1− p)nf . (13)

5

2444
Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:34:12 UTC from IEEE Xplore.  Restrictions apply. 



When A2 happens, the spread of f will be estimated as
zero. Thus, we have Ef

a,A2
= nf .

Combined with the analysis above, we have the upper bound
of the absolute error of the proposed estimator for flow f ,

max{Ef
a,A1

, Ef
a,A2

} = max{nf (
1

p
− 1), nf}, (14)

and, further, we have the upper bound of the relative error of
the proposed estimator for flow f ,

max{
Ef

a,A1

nf
,
Ef

a,A2

nf
} = max{1

p
− 1, 1}. (15)

Note that the upper bound of the absolute and relative errors
for flow f are, respectively, equal to nf and 1 when p ≥ 0.5.

D. Probabilistic guarantee in flow classification

In some applications, such as DDoS detection and scanner
detection, we must monitor the flows with abnormal spreads,
i.e., identify all of the flows whose spreads exceed a certain
threshold in each measurement period, where the threshold is
a system parameter. In other words, we want to classify flows
into two types based on whether their spreads are abnormally
large or not. Due to the fact that the limited SRAM only allow
us to record part of the information of each flow, a precise flow
classification is not feasible [4], [28], [30]. Thus, we adopt
the probabilistic performance objective from [28].

Let h and l be two positive integers, and n̂f be the estimated
value of nf . The objective is to identify the flows whose
spreads are greater than a threshold T with the following
probabilistic guarantees: identify any flow whose spread is
h or larger with a probability no less than α and identify
any flow whose spread is l or smaller with a probability no
more than α, where l < T < h. There are two kinds of
false identification. The first one identifies flow f if nf ≤ l,
which is defined as a false positive. The second one is non-
identification when nf ≥ h, which is treated as a false
negative. Then, the objective can be expressed in terms of
conditional probabilities:

Pr{identifyf as an abnormal flow |nf ≤ l} ≤ β,

Pr{mis-identifyf as an abnormal flow |nf ≥ h} ≥ α,
(16)

where β is the false positive probability and 1−α is the false
negative probability. The above objective is to bound the false
positive ratio by β and the false negative ratio by 1−α. In the
following, we show that the proposed estimator can achieve
the above objective by proper parameter settings.

Let Pr{cf ≤ k} (Pr{cf ≥ k}) be the probability for cf ≤
k (cf ≥ k). Based on (6), we have:

Pr{cf ≤ k} =
k∑

j=0

Cj
nf
pj(1− p)nf−j ,

P r{cf ≥ k} =

nf∑
j=k

Cj
nf
pj(1− p)nf−j .

(17)

Given a threshold T , the flow with an estimated spread no
less than T will be identified as an abnormal one. Since the
spread of a flow will be estimated as no less than T when
cf ≥ ⌈Tp⌉, the probability for a flow f to be identified as an
abnormal one is:

Pr{cf ≥ ⌈Tp⌉} =

nf∑
j=⌈Tp⌉

Cj
nf
pj(1− p)nf−j . (18)

To achieve the above objectives, the following should be
satisfied:



nf∑
j=⌈Tp⌉

Cj
nf
pj(1− p)nf−j ≤ β, ∀nf ≤ l;

nf∑
j=⌈Tp⌉

Cj
nf
pj(1− p)nf−j ≥ α, ∀nf ≥ h.

(19)

By solving (19), we can obtain the minimum value of p that
satisfies the above constraints. Note that the upper bound of
absolute error for a flow with a spread less than l is l( 1p −1) if
the spread of this flow is overestimated. Then, the probability
for f to be identified as an abnormal flow is zero if we set
T ≥ l

p , i.e., Pr{identify f as an abnormal flow |nf ≤ l} = 0

when h ≥ l
p .

V. EXPERIMENTAL RESULTS

We use five minute of data downloaded from CAIDA [21] as
our dataset. This dataset has 1689780 distinct per-source flows,
3150740 distinct elements, and 152163629 packets. Our goal
is to estimate the spread of per-source flows in this dataset.

A. Estimation Accuracy

In this part of the experiments, we evaluate the performance
of our estimator and compare it with ESD and the estimator
proposed in [12] under different sizes of on-chip memory.

Fig. 2 - Fig. 4 and TABLE I compare our estimator, ESD,
and the estimator in [12] on spread estimation accuracy. In this
set of experiments, we set the parameter m of all the estimators
to the optimal value of our estimator under the given p, and
the size of the virtual bitmap of ESD and [12] to the minimum
value that can supply a large enough estimation range for all
of the flows. The experimental results show that our estimator
works much better than the existing ones. This is because the
existing studies use on-chip memory to store the traffic data
for estimation, which requires aggressive space sharing and
further results in significant errors for small/medium flows.
However, our estimator only uses on-chip memory to filter
out the duplicates and help sample the passing element, but
stores the traffic data in off-chip memory. Thus, our estimator
can work in a much smaller on-chip memory while achieving
higher estimation accuracy than the existing studies.

From the experimental results, we also found that ESD
and the estimator proposed in [12] fail to obtain an accurate
estimation for flows with spreads less than 50 when the

6

2445
Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:34:12 UTC from IEEE Xplore.  Restrictions apply. 



10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

E
st

im
at

ed
 S

p
re

ad

Actual Spread

(a) ESD

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

E
st

im
at

ed
 S

p
re

ad

Actual Spread

(b) [12]

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

E
st

im
at

ed
 S

p
re

ad

Actual Spread

(c) Ours

 0

 1

 2

 3

 4

 5

 6

ESD [12] Ours

M
e
a
n
 A

b
so

lu
te

 E
rr

o
r

 

(d) Mean absolute error

Fig. 2: Spread estimation accuracy of ESD, the estimator proposed in [12] and our estimator when p = 0.8.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

E
st

im
at

ed
 S

p
re

ad

Actual Spread

(a) ESD

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

E
st

im
at

ed
 S

p
re

ad

Actual Spread

(b) [12]

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

E
st

im
at

ed
 S

p
re

ad

Actual Spread

(c) Ours

 0

 2

 4

 6

 8

 10

ESD [12] Ours

M
e
a
n
 A

b
so

lu
te

 E
rr

o
r

 

(d) Mean absolute error

Fig. 3: Spread estimation accuracy of ESD, the estimator proposed in [12] and our estimator when p = 0.4.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

E
st

im
at

ed
 S

p
re

ad

Actual Spread

(a) ESD

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

E
st

im
at

ed
 S

p
re

ad

Actual Spread

(b) [12]

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

E
st

im
at

ed
 S

p
re

ad

Actual Spread

(c) Ours

 0

 5

 10

 15

 20

ESD [12] Ours

M
e
a
n

 A
b
so

lu
te

 E
rr

o
r

 

(d) Mean absolute error

Fig. 4: Spread estimation accuracy of ESD, the estimator proposed in [12] and our estimator when p = 0.1.

allocated on-chip memory is 4.48 bits per element (p = 0.8),
for flows with spreads less than 100 when the allocated on-
chip memory is 1.09 bit per element (p = 0.4), and for almost
all of the flows when the allocated on-chip memory is 0.43
bit per element (p = 0.1). Our estimator is clearly the winner.
It reduces the mean absolute error of all flows by around one
order of magnitude compared to the prior art.

TABLE I presents the mean relative error of our estimator,
ESD, and the estimator proposed in [12] for flows with
different spread intervals. Compared to the existing ones, the
experimental results show that our estimator reduces the mean
relative error of all of the flows (or flows with spread smaller
than 100) by around one order of magnitude. As the spreads of
flows increases, the gap between our estimator and the existing
ones becomes smaller. However, our estimator always works
better than the existing ones on the flows with any spread,
especially when the allocated on-chip memory is small.

We then show the performance of our estimator on bounding
the absolute and relative errors. Given a set of bounds, we can
obtain the optimal value of p based on (8) and (10). TABLE
II shows the optimal values of p under different settings. The

second to sixth columns present the optimal value of p that
can ensure that the absolute errors of the flows with a spread
smaller than n are bounded by δ′ with probability 99%, and
from the seventh to eleventh columns present the optimal value
of p that can ensure that the relative errors of the flows with
spreads greater than n are bounded by δ with probability 99%.
From this table, we found that our estimator can bound the
relative error (absolute error) in 25% (250) for the flows with
spreads greater (smaller) than 1000 with probability 99% when
p = 0.1. However, the mean relative error of ESD is 82%
as shown in TABLE I, which indicates that our estimator
not only has a higher accuracy than the existing ones in the
small/medium flow spread estimation, but also in large flow
spread estimation.

B. Flow mis-classification probability

Finally, we compare the flow mis-classification probability
of our estimator and ESD, which are what ESD was designed
for. The first set of experiments compares our estimator and
ESD for the amount of memory that they need to satisfy the
constraints given in (19). We set T = (h + l)/2. TABLE

7

2446
Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:34:12 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Mean relative error

spread all flows 1 ∼ 100 101 ∼ 1000 1001 ∼

p
algorithm

ESD [12] ours ESD [12] ours ESD [12] ours ESD [12] ours

0.05 19.60 19.20 1.85 19.60 19.20 1.85 0.34 0.34 0.25 0.88 0.88 0.05
0.1 17.12 16.75 1.71 17.13 16.76 1.71 0.27 0.27 0.17 0.82 0.82 0.03
0.3 9.28 9.04 1.25 9.28 9.04 1.25 0.15 0.15 0.09 0.55 0.55 0.02
0.5 6.22 6.09 0.87 6.22 6.09 0.87 0.10 0.10 0.06 0.54 0.54 0.01
0.7 4.23 4.16 0.53 4.23 4.16 0.53 0.07 0.07 0.04 0.54 0.54 0.01
0.9 2.91 2.89 0.18 2.91 2.89 0.18 0.05 0.05 0.02 0.39 0.39 0.01

TABLE II: Optimal value of p under different settings (ϵ = 0.01)

n
Absolute Error Relative Error

δ′ = 50 δ′ = 100 δ′ = 150 δ′ = 200 δ′ = 250 δ = 0.05 δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25

200 0.34 0.11 0.06 0.03 0.02 0.92 0.76 0.58 0.45 0.34
500 0.57 0.25 0.13 0.08 0.05 0.84 0.57 0.37 0.25 0.17
1000 0.73 0.40 0.23 0.14 0.10 0.73 0.40 0.23 0.14 0.10
1500 0.80 0.50 0.31 0.20 0.14 0.64 0.31 0.17 0.10 0.07
2000 0.84 0.57 0.37 0.25 0.18 0.57 0.25 0.13 0.08 0.05

III shows the memory requirements of our estimator and ESD
with respect to α, β, h, and l, which were computed according
to the methods proposed in [19] and this work. However, ESD
has a limited estimation accuracy for the flows with small
spread. We cannot obtain the required memory space of ESD
when h is too small or the gap between h and l is too small.
Hence, we use a short bar to indicate the required memory
space of ESD in this case.

For the setting of α = 0.9, β = 0.1, and α = 0.95,
β = 0.05, we found that ESD requires more on-chip memory
than our estimator requires when h is small, which indicates
the space-efficiency of our estimator for classifying flows with
small spread. Then, we define the false positive ratio (FPR)
as the fraction of all of the flows with a spread smaller than l
that are mistakenly identified. The false negative ratio (FNR) is
defined as the fraction of all of the flows with a spread greater
than h that are mis-identified. The second set of experiments
compares our estimator and ESD for FPR and FNR. We set
m = 0.5MB, and the experimental results are shown in
TABLE IV. The values of FPR and FNR decrease quickly as
h increases, and our estimator always works much better than
ESD. For example, when h = 100, l = 80 (l = 0.8h), the FPR
and FNR of ESD are 7.64 × 10−5 and 0.0270, respectively.
There are 1689027 flows with spreads less than 80 and 555
flows with spreads larger than 100 in our database. This
means 129 (15) flows are mis-identified (are not identified)
by ESD, which is too many for the applications like scanner
detection. However, only 13 (10) flows are mis-identified (are
not identified) by our estimator in the same setting.

VI. CONCLUSION

This paper proposes an efficient spread estimator that can
answer online spread queries for any flow. Based on a new
concept of non-duplicate element sampling, our estimator
can achieve both space-efficiency and accuracy-efficiency.
The experimental results based on real Internet traffic traces
demonstrate that our new estimator provides great flexibility in
quantitatively controlling spread measurement, and can work

efficiently in a very small on-chip memory space, such as 0.43
bit per element, while the best existing work will fail.

Our future work is to extend research on other network-wide
spread estimation functions, such as persistent spread estima-
tion and per-flow spread estimation over multiple periods.

ACKNOWLEDGEMENT

The research of authors is partially supported by National
Science Foundation (NSF) under Grant No. STC-1562485 and
No. CNS-1719222, in part by the National Natural Science
Foundation of China (NSFC) under Grant No. 61873177,
Grant No. 61672369, and No. Grant 61872080. This work
is also supported by the grant from Florida Cybersecurity
Center. Any opinions, findings, conclusions, or recommenda-
tions expressed in this paper are those of author(s) and do not
necessarily reflect the views of the funding agencies (NSF, and
NSFC).

REFERENCES

[1] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,” ACM
Transactions on Computer Systems (TOCS), vol. 21, no. 3, pp. 270–
313, 2003.

[2] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in practice:
algorithmic engineering of a state of the art cardinality estimation
algorithm,” in Proc. of the 16th International Conference on Extending
Database Technology (EDBT 2013), 2013, pp. 683–692.

[3] P. Lieven and B. Scheuermann, “High-speed per-flow traffic measure-
ment with probabilistic multiplicity counting,” in Proc. of the IEEE
Conference on Computer Communications (INFOCOM 2010), 2010, pp.
1–9.

[4] M. Yoon, T. Li, S. Chen, and J. kwon Peir, “Fit a Spread Estimator
in Small Memory,” in Proc. of the IEEE Conference on Computer
Communications (INFOCOM 2009), 2009, pp. 504–512.

[5] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measurement,”
ACM SIGMETRICS Performance Evaluation Review, vol. 36, no. 1, pp.
121–132, 2008.

[6] Y. Zhou, Y. Zhou, M. Chen, Q. Xiao, and S. Chen, “Highly compact vir-
tual counters for per-flow traffic measurement through register sharing,”
in Proc. of the IEEE GLOBECOM 2016, 2016, pp. 1–6.

[7] Y. Zhou, Y. Zhou, S. Chen, and Y. Zhang, “Per-flow counting for big
network data stream over sliding windows,” in Proc. of the IEEE/ACM
IWQoS 2017, 2017, pp. 1–10.

8

2447
Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:34:12 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: Memory requirements of our estimator and ESD (MB)

h
α = 0.9, β = 0.1 α = 0.95, β = 0.05

l = 0.5h l = 0.6h l = 0.7h l = 0.8h l = 0.5h l = 0.6h l = 0.7h l = 0.8h

ESD ours ESD ours ESD ours ESD ours ESD ours ESD ours ESD ours ESD ours
20 – 0.60 – 1.00 – 1.94 – 6.58 – 0.93 – 1.31 – 3.00 – 6.58
50 1.11 0.31 4.59 0.41 – 0.78 – 1.49 4.14 0.42 – 0.58 – 1.12 – 2.22
100 0.45 0.21 0.84 0.27 3.76 0.40 – 0.76 0.82 0.27 2.36 0.36 – 0.55 – 1.10
200 0.23 0.15 0.38 0.19 0.78 0.26 10.87 0.44 0.37 0.19 0.65 0.24 2.04 0.35 – 0.63
300 0.16 0.14 0.26 0.16 0.48 0.21 1.89 0.34 0.25 0.16 0.42 0.20 0.90 0.28 – 0.47
500 0.10 0.11 0.16 0.14 0.29 0.17 0.77 0.25 0.15 0.13 0.25 0.16 0.48 0.21 2.80 0.34
1000 0.05 0.09 0.08 0.11 0.15 0.13 0.38 0.18 0.08 0.11 0.13 0.13 0.24 0.16 0.99 0.23
2000 0.03 0.08 0.04 0.09 0.08 0.11 0.19 0.14 0.04 0.09 0.07 0.10 0.12 0.12 0.49 0.17

TABLE IV: FPR and FNR of our estimator and ESD when m = 0.5MB

h
FPR FNR

l = 0.5h l = 0.7h l = 0.8h l = 0.5h l = 0.7h l = 0.8h

ESD ours ESD ours ESD ours ESD ours ESD ours ESD ours
20 2.57e-01 2.97e-04 2.21e-01 4.80e-04 1.89e-01 7.98e-04 2.00e-01 4.21e-02 2.34e-01 8.34e-02 2.67e-01 8.34e-02
50 3.53e-02 4.15e-06 2.11e-02 3.14e-05 1.60e-02 5.57e-05 6.43e-02 7.14e-03 9.21e-02 2.29e-02 1.09e-01 3.93e-02
100 3.57e-04 0.00e+00 1.14e-04 2.37e-06 7.64e-05 7.70e-06 9.01e-03 1.80e-03 1.62e-02 7.21e-03 2.70e-02 1.80e-02
200 5.92e-07 0.00e+00 2.37e-06 0.00e+00 8.88e-06 0.00e+00 6.97e-03 0.00e+00 1.05e-02 0.00e+00 1.74e-02 3.48e-03
300 5.92e-07 0.00e+00 1.78e-06 0.00e+00 2.37e-06 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.82e-02 0.00e+00
500 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.37e-06 0.00e+00 0.00e+00 0.00e+00 2.38e-02 0.00e+00 4.76e-02 0.00e+00

[8] ——, “Highly Compact Virtual Active Counters for Per-flow Traffic
Measurement,” in Proc. of the IEEE Conference on Computer Commu-
nications (INFOCOM 2018), 2018.

[9] A. Kumar, J. Xu, and J. Wang, “Space-code bloom filter for efficient
per-flow traffic measurement,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 12, pp. 2327–2339, 2006.

[10] F. Hao, M. Kodialam, and T. Lakshman, “ACCEL-RATE: a faster
mechanism for memory efficient per-flow traffic estimation,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 32, no. 1, 2004, pp.
155–166.

[11] M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a compact spread estimator
in small high-speed memory,” IEEE/ACM Transactions on Networking
(TON), vol. 19, no. 5, pp. 1253–1264, 2011.

[12] H. Huang, Y. Sun, S. Chen, S. Tang, K. Han, J. Yuan, and W. Yang,
“You can drop but you can’t hide: k-persistent spread estimation in
high-speed networks,” in Proc. of the IEEE Conference on Computer
Communications (INFOCOM 2018), 2018, pp. 1889–1897.

[13] Y. Zhou, Y. Zhou, S. Chen, and Y. Zhang, “Highly compact virtual
active counters for per-flow traffic measurement,” in Proc. of the IEEE
Conference on Computer Communications (INFOCOM 2018), 2018, pp.
1–9.

[14] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[15] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proc. of the ACM SIGCOMM 2016, 2016, pp. 101–114.

[16] Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized
sketch families for network traffic measurement,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems (POMACS),
vol. 3, no. 3, p. 51, 2019.

[17] Y. Zhou, Y. Zhou, M. Chen, and S. Chen, “Persistent spread measure-
ment for big network data based on register intersection,” in Proc. of
the ACM on Measurement and Analysis of Computing Systems, vol. 1,
no. 1, 2017, p. 15.

[18] Q. Xiao, Y. Qiao, M. Zhen, and S. Chen, “Estimating the persistent
spreads in high-speed networks,” in Proc. of the IEEE 22nd International
Conference on Network Protocols (ICNP 2014), 2014, pp. 131–142.

[19] T. Li, S. Chen, W. Luo, and M. Zhang, “Scan detection in high-speed
networks based on optimal dynamic bit sharing,” in Proc. of the IEEE
Conference on Computer Communications (INFOCOM 2011), 2011, pp.
3200–3208.

[20] Q. Zhao, J. Xu, and A. Kumar, “Detection of super sources and des-
tinations in high-speed networks: Algorithms, analysis and evaluation,”
IEEE Journal on Selected Areas in Communications, vol. 24, no. 10,
pp. 1840–1852, 2006.

[21] CAIDA, “The CAIDA UCSD Anonymized Internet Traces 2016,” http:
//www.caida.org/data/passive/passive 2016 dataset.xml, accessed July
28, 2019.

[22] N. Duffield, C. Lund, M. Thorup, and M. Thorup, “Flow sampling
under hard resource constraints,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 32, no. 1, 2004, pp. 85–96.

[23] N. Duffield, C. Lund, and M. Thorup, “Learn more, sample less: control
of volume and variance in network measurement,” IEEE Transactions
on Information Theory, vol. 51, no. 5, pp. 1756–1775, 2005.

[24] S. L. Feibish, Y. Afek, A. Bremler-Barr, E. Cohen, and M. Shagam,
“Mitigating DNS random subdomain DDoS attacks by distinct heavy
hitters sketches,” in Proc. of the fifth ACM/IEEE Workshop on Hot Topics
in Web Systems and Technologies, 2017, p. 8.

[25] V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou,
“Nearly optimal distinct elements and heavy hitters on sliding windows,”
in APPROX-RANDOM 2018, 2018, pp. 1–22.

[26] X. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic Lossy Count-
ing: An Efficient Algorithm for Finding Heavy Hitters,” ACM SIGCOM-
M Computer Communication Review, vol. 38, no. 1, pp. 7–16, 2008.

[27] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund, “Online Iden-
tification of Hierarchical Heavy Hitters: Algorithms, Evaluation, and
Application,” Proc. of ACM SIGCOMM IMC, pp. 101–114, October
2004.

[28] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum, “New streaming
algorithms for fast detection of superspreaders,” in Proc. of the NDSS
2005, 2005.

[29] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high speed links,” in Proc. of the 3rd ACM SIGCOMM
conference on Internet measurement, 2003, pp. 153–166.

[30] Q. Zhao, A. Kumar, and J. Xu, “Joint data streaming and sampling
techniques for detection of super sources and destinations,” in Proc.
of the 5th ACM SIGCOMM conference on Internet Measurement.
USENIX Association, 2005, pp. 7–7.

[31] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” Journal of computer and system sciences, vol. 31,
no. 2, pp. 182–209, 1985.

[32] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm,” in Discrete
Mathematics and Theoretical Computer Science, 2007, pp. 137–156.

[33] Z. Mo, Y. Qiao, S. Chen, and T. Li, “Highly compact virtual maximum
likelihood sketches for counting big network data,” in Proc. of the
52nd Annual Allerton Conference on Communication, Control, and
Computing (Allerton), 2014, pp. 1188–1195.

9

2448
Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:34:12 UTC from IEEE Xplore.  Restrictions apply. 


