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Abstract—Traffic measurement is key to many network man-
agement tasks such as performance monitoring and cyber-
security. Its aim is to inspect the packet stream passing through a
network device, classify them into flows according to the header
fields, and obtain statistics about the flows. For processing big
streaming data in size-limited SRAM of line cards, many space-
sublinear algorithms have been proposed, such as CountMin and
CountSketch. However, most of them are designed for specific
measurement tasks. Implementing multiple independent sketches
places burden for online operations of a network device. It
is highly desired to design a universal sketch that not only
tracks individual large flows (called heavy hitters) but also
reports overall traffic distribution statistics (called moments).
The prior work UnivMon successfully tackled this ambitious
quest. However, it incurs large and variable per-packet processing
overhead, which may result in a significant throughput bottleneck
in high-rate packet streaming, given that each packet requires
65 hashes and 64 memory accesses on average and many times
of that in the worst case. To address this performance issue,
we need to fundamentally redesign the solution architecture
from hierarchical sampling to new progressive sampling and
from CountSketch to new ActiveCM+, which ensure that per-
packet overhead is a small constant (4 hash and 4 memory
accesses) in the worst case, making it much more suitable for
online operations, especially for pipeline implementation. The
new design also makes effort to reduce memory footprint or
equivalently improve measurement accuracy under the same
memory. Our experiments show that our solution incurs just
one sixteenth per-packet overhead of UnivMon, while improving
measurement accuracy by three times under the same memory.

I. INTRODUCTION

The line rate in modern high-speed networks has reached
hundreds of Gbps or multiple Tbps. Meanwhile it becomes a
common practice to let switches/routers inspect their packet
streams for network performance monitoring, event detection,
or threat identification against worm activities, DDOS attacks,
scanning, etc. Network operators often need to collect a variety
of different statistics and measurements, including per-flow
sizes [1], [2], heavy hitters [3]–[8], and aggregated information
about flow distributions (called moments such as entropy and
variance) [9], [10], which may be used to detect anomalies in
overall traffic patterns. Most existing algorithms are designed
for specific measurement tasks. Moreover, the aforementioned
measurements may need to be conducted under various differ-
ent flow definitions [6], [7], which will cause the number of
measurement tasks to multiply.

Implementing a large number of tasks separately occu-
pies significant on-chip memory/computing resources that are
shared by other network functions. The prior research ad-
dresses the problem in two directions. One is taken by OpenS-
ketch [7], which allows different tasks to share a common
set of primitive implementation components. This paper is
interested in the other direction taken by UnivMon [6], which
is to design a universal sketch that can estimate per-flow sizes,
identify heavy hitters and measure various moments at once.

UnivMon opens the door for a promising but challenging
research direction. But its hierarchical sampling design incurs
large and extraordinarily-varying overhead per packet, requir-
ing 65 hashes and 64 memory accesses on average, with the
worst-case numbers being 257 hashes and 256 memory ac-
cesses. The benefit of a universal sketch over multiple sketches
— which each requires a few hashes and memory accesses
per packet — is significantly weakened with such a high
per-packet processing overhead. Therefore, it is practically
important to investigate new, efficient universal sketches that
not only perform multiple tasks but do so at a cost similar to
some of the single-task sketches.

In this paper, we present a Light-weight Universal Sketch
(LUS), which is light-weight in terms of processing overhead
and space requirement. It has two major technical innovations.
One is called progressive sampling that records each packet
exactly once in a single sketch, whereas hierarchical sampling
in UnivMon records each packet in a variable number of
sketches (four on average), where both LUS and UnivMon em-
ploy multiple sketches for moment measurements. We give the
algorithms that identify heavy hitters and compute moments
based on the data recorded from progressive sampling. Single
sketch update per packet makes our design more suitable
for pipeline implementation on the data plane of a high-
speed switch. The other innovation is a new sketch called
ActiveCM+ which takes less memory, fewer hashes and fewer
memory accesses than the CountSketch [4] used by UnivMon.
Combining the above two techniques, our LUS incurs 5 hashes
(which can be reduced to two) and 3.18 memory accesses per
packet on average. Our trace-based experiments also reveal
that the measurement accuracy of LUS is about 3 times better
than that of UnivMon under the same amount of memory
for two reasons. First, under the same memory, ActiveCM+

1

974
Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:37:18 UTC from IEEE Xplore.  Restrictions apply. 



has more counters than CountSketch, which helps improve
accuracy. Second, progressive sampling records each packet
just once, which helps reduce noise in the sketches.

II. PROBLEM DEFINITION

In this section, we formulate our network flow measurement
problem, and describe the key performance metrics.

A. Definition of Flow Statistics
From a stream of IP packets, we can extract a sequence of

tuples 〈f1, c1〉, . . ., 〈ft, ct〉, . . ., where 〈ft, ct〉 is the pair of
flow ID and packet size extracted from the t-th IP packet, ft
is the flow ID with 1 ≤ ft ≤ F , and ct is the size of the
packet. Flow ID may be defined as source IP/Port, destination
IP/Port, or the tuple 〈srcIP, srcPort, dstIP, dstPort, Protocol〉,
depending on different monitoring applications. In this paper,
we treat “stream” and “flow” as two different concepts: A
stream is an arbitrary interleaving of IP packets belonging to
a number of flows that are concurrently transmitted.
Per-Flow Size. Let nf be the size of a flow f . When a packet
〈ft, ct〉 arrives, we increase the size of flow ft by one (or by
the size of the packet ct). Hence, nf is the number of packets
(or bytes) that belongs to the flow f . Our algorithm to present
later cab support the counting of the number of packets. It can
also be extended easily to count the number of bytes. Let n
be the combined sizes of all flows. Clearly, n =

∑
1≤i≤F nf .

Flow Moment. The g-moment of the stream is the functional
sum of the flow size nf for all flows f ∈ [1,F ]:

Lg =
∑

1≤f≤F g(nf ), (1)

where g(x) is a monotonic function bounded by x2. Typical
definitions of the function g are given as follows.
• If g(x) = x0 = 1, then Lg is called the zeroth-order

moment, and it is equal to the number of flows F .
• If g(x) = x, then Lg is called the first-order moment, and

it is equal to the combined size of all flows: Lg = m.
• If g(x) = x log x, then Lg is the entropy of the sizes of

all flows, which can be used to measure the diversity of the
size distribution of all flows.
• If g(x) = x2, then Lg is the second-order moment of the

sizes of all flows, which can be used to calculate the variance
of the size distribution of all flows.
Flow moment can quantify the overall condition of the

network traffic. We can measure the flow moment Lg at regular
time intervals and obtain a time series about this metric. Then,
by testing whether its short-term change exceeds a threshold,
we may detect the anomalous events in flow size distribution.
Heavy Hitters. Intuitively, a heavy hitter is a flow whose size
contribute a lot to the flow moment Lg . More formally, a heavy
hitter is any flow f whose size is larger than a threshold αLg:

Hg = {f | g(nf ) ≥ αLg}. (2)

where α is a pre-defined small ratio between zero and one,
and Hg is the set of all heavy hitters. When g(x) = x, we call
Hg the first-order heavy hitters. When g(x) = x2, we call Hg

the second-order heavy hitters or L2 heavy hitters.

B. Performance Metrics

For many applications, it is unnecessary to determine the
precise values of heavy hitters and flow moments. It suffices
to provide only their approximated values with bounded error.

Heavy Hitter Estimation. Let Ĥg be the estimation for the
set of heavy hitters Hg in (2). The probability for the identified
heavy hitters Ĥg to include all the actual heavy hitters Hg must
be greater than 1− δ, where δ is called failure probability.

Pr{Hg ⊆ Ĥg} ≥ 1− δ (3)

For each identified heavy hitter f ∈ Ĥg , we must generate an
estimation n̂f for its flow size nf , and guarantee the relative
estimation error g(n̂f )−g(nf )

g(nf )
is bounded by a threshold ±ε at

a probability of at least 1− δ. More formally, we must ensure

∀f ∈ Ĥg, P r
{
|g(n̂f )− g(nf )| ≤ ε g(nf )

}
≥ 1− δ. (4)

Moment Estimation. For the moment Lg defined in (1), let
L̂g be its estimated value. Its relative estimation error L̂g−Lg

Lg
is bounded by the threshold ±γ at a probability at least 1−η.

Pr
{
|L̂g − Lg| ≤ γLg} ≥ 1− η (5)

For an efficient solution of flow-level measurement, two
other performance metrics exist besides estimation accuracy.

Memory Overhead. A sketch, as deployed in a router/switch,
depends on the on-chip memory of line card to keep up with
line speed. However, on-chip memory is size-limited and has
to be shared with other network functions. For a measurement
function, there is a tradeoff between the allocated memory and
the accuracy: The more memory is given, the better accuracy
it will provide. Hence, the memory cost to satisfy pre-defined
measurement error bound is an important performance metric.

Packet Processing Cost. The time cost of processing a packet
is composed of two parts: hash computations and memory
accesses. The results of hash computations are typically used
for two purposes: perform packet sampling or locate a random
memory unit to access. Since sampling is often performed only
once for a packet, updating multiple memory units in a sketch
dominates the packet processing cost, which involves multiple
hash computations and memory reads/writes. Clearly, updating
too many memory units can easily consume up the tight time
budget per packet, especially when the line speed of a network
switch/router evolves to hundreds of Gbps or multiple Tbps.

C. Applications to Network Monitoring

As discussed earlier, a g-moment of the packets passing
through a switch can be estimated for an arbitrary g function
upper bounded by g(x) = x2. Next, we show a range of mea-
surement tasks that can be undertaken by the universal sketch.
• Heavy hitter detection is to identify the heavy flows that

occupy more than a fraction α of the total network traffic as
in (2). Configuring a function g(x) = x, the universal sketch
will output a list of heavy flows whose packet frequencies
are larger than α fraction of the total number of packets.
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• DDoS detection is to detect whether a host is under dis-
tributed denial of service attack [7]. We can do so by
checking if more than k unique flows from different sources
are sending packets to the host. To implement this function,
we can deploy a universal sketch to monitor the packets
towards this host and set the g function to g(x) = x0.
• Entropy estimation: Suppose we want to monitor the traffic

towards a sensitive destination IP. We classify the packets
into flows by the source IPs, and we define the flow entropy
as E = −

∑
1≤f≤F

nf
n log

nf
n . A heavy change of this

metric may indicate the sensitive destination IP is under
attack. Since n can be easily recorded by a single counter,
the core task is to estimate the moment

∑
1≤f≤F nf log nf .

• Global iceberg detection: Consider a network consist of N
distributed nodes (e.g., switches). Suppose a flow is a per-
destination flow whose packets have a common destination
IP. The packets of a flow f may span multiple monitoring
nodes. We want to detect the presence of the flows whose
total frequency exceed a certain threhold. Suppose each node
independently monitors its network traffic using a universal
sketch. Later the sketches at different nodes can be fetched to
a central server to perform the offline analysis. Our universal
sketch can easily support this global merging operation.

III. PRIOR ART AND MOTIVATION

We first introduce the most related work, explain a serious
performance issue, and then provide motivation for our work.

A. Per-flow Size Sketches

Many compact data structures have been proposed to esti-
mate per-flow sizes, such as CountMin (CM) [3], Conservative
Update (CU) [11], Count Sketch (CS) [4] and Virtual Active
Counters (VAC) [2]. They do not keep the flow IDs. Given a
flow ID, they can provide an estimate of the flow’s size.

CM [3] maintains a two-dimensional array of counters with
d rows, where d is typically set to 4. For each packet, it hashes
the flow ID (from the packet header) to a counter in each of
the d rows, and increases the counter by one. Its per-packet
overhead is thus d hashes and 2d memory accesses, one read
and one write for each of the d hashed counters. CU [11] reads
all d hashed counters but only writes back the smallest one(s).
To query the size of a flow, CM/CU reports the smallest value
of the d hashed counters as the estimate.

Instead of increasing the d hashed counters by one, CS [4]
differs from CM/CU by adding a +1/-1 hash value to each
hashed counter, where a +1/-1 hash function will pseudo-
randomly map a flow ID to +1 or -1. The per-packet overhead
of CS is 2d hashes and 2d memory accesses. To query the size
of a flow, CS reports the medium or mean of the d hashed
counters, where d is set to 8 for good accuracy. Each counter
in CM, CU or CS is often 32 bits long for a range up to 232−1.

VAC [2] uses virtual active counters to improve memory
efficiency. However, its query needs to operate on hundreds
of counters (instead of 4 or 8), which makes it less suitable
for online queries.

For all the above sketches, measurement accuracy depends
on two factors. One is the total number of packets from all
flows that are recorded. Each flow shares its hashed counters
with other flows. As the number of packets from other flows
increases, the error in the shared counters will increase. The
second factor is the memory allocated to the sketch. When the
memory increases, the number of counters increases and the
error deceases due to less sharing.

B. Universal Sketch

It will be too expensive to implement separate modules for
different measurement tasks, such as per-flow sizes, heavy
hitters, and various moments. OpenSketch [7] provides a
framework to share common components among different
measurement tasks, which are still treated individually.

Universal sketch that can handle different measurement
tasks at once is an under-investigated subject. UnivMon [6]
is the first and arguably only true universal sketch. It uses
a series of ` + 1 Counter Sketches (CS) [4], denoted as Ci,
0 ≤ i ≤ `, where ` is set to 15 in the original paper. It
performs hierarchical sampling on the flows, with probability
1
2i for Ci, 0 ≤ i ≤ `. That is, all flows are sampled for C0

and their packets are recorded in C0. Half of the flows in C0

are sampled to be also recorded in C1. Similarly, half of the
flows in C1 are sampled to be again recorded in C2, and so on.
Without going to details, such recording in the `+ 1 sketches
will allow us to estimate all moments defined in Section II.

C. Performance Issue

UnivMon has a serious performance issue due to its high
per-packet processing overhead. Recall that the overhead of
CS is 2d hashes and 2d memory accesses. Each packet is
expected to be recorded in multiple CS sketches. That number
is 1 × 1 + 1

2 × 2 + 1
4 × 3 + 1

8 × 4 . . . = 4 on average. But
in the worst case, a packet will be sampled for recording in
all `+ 1 sketches. Therefore, the average per-packet overhead
is 8d + 1 hashes and 8d memory accesses, while the worst-
case overhead is 2d(`+ 1) + 1 hashes and 2d(`+ 1) memory
accesses, where we need one hash for sampling.

If we use the typical values of d = 8 and ` = 15 for
CS and UnivMon respectively, the overhead of UnivMon is
65 hashes and 64 memory accesses per packet on average,
while the worst-case numbers are 257 hashes and 256 memory
accesses! Although the worst-case numbers rarely occur, they
do suggest extraordinarily varying per-packet overhead, which
is not welcome in processing a high-rate packet stream,
particularly for pipeline implementation.

D. Our Goals

We have three goals in this paper. The first goal is to address
the performance issue in designing a universal sketch. We
will decrease the average per-packet overhead to 5 hashes
and 3.18 memory accesses and the worst-case overhead to
5 hashes and 8 memory accesses. In order to achieve this
goal, we have to abandon hierarchical sampling and introduce
new progressive sampling (with its algorithms for heavy hitters
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and moments), which records each packet in exactly one of
` + 1 sketches. We also abandon CS and introduce a new
ActiveCM+ sketch, which is more compact and requires much
fewer writes. Furthermore, we discuss how to reduce 5 hashes
of our solution to just two per packet, one for sampling and
one for ActiveCM+.

Our second goal is to improve measurement accuracy. In-
stead of recording each packet in four CS sketches on average
by UnivMon, we record each packet in one ActiveCM+ sketch,
which means each of our `+ 1 sketches records one fourth of
the packets that a sketch in UnivMon records on average. As
we explained earlier, with fewer packets recorded, we reduce
error in the counters and thus improve measurement accuracy.

Our third goal is to reduce memory use. We reduce each
counter in ActiveCM+ to 16 bits, yet with a larger range than
a 32-bit counter in CS. Therefore, we can reduce the memory
of each sketch by half. Or if we use the same amount of
memory, we can double the number of counters, which again
help improve measurement accuracy.

IV. ACTIVECM+ SKETCH

We present a new ActiveCM+ sketch, which will be used
by our progressive universal sketch in the next section. We
first introduce the design of a compact data structure called
ActiveCM. Next, we describe its probabilistic recording, query
operation and hash acceleration. By adding a heavy-hitter
filter, our final sketch is called ActiveCM+.

A. ActiveCM Data Structures

ActiveCM (Active Count-Min) adopts a compact data struc-
ture with two techniques: counter sharing and counter com-
pression, which allow an arbitrary number of flows to share
limited on-chip memory pre-allocated for traffic measurement.

Counter sharing: As shown in Figure 1, a single physical
counter array PC∗ is constructed from the allocated memory.
Let m be the number of counters in PC∗. These counters are
shared by all flows no matter how many they are.

Physical Counter Array

Virtual Counter Arrarys

⋯

Flow 1
Flow 2

Flow n

⋯
Flow f

packet size +cPacket e
e

flow label f
PCf[0]

Hf(0) Hf(3) Hf(1)Hf(2)

PCf[1] PCf[2] PCf[3]

⋯

Fig. 1. Counter Sharing in ActiveCM

Each flow is assigned a virtual counter array, shown as a
small row of d counters in Figure 1, which is typically set to 4
(as our experimental results suggest). Let PCf be the virtual
counter array for flow f . The ith counter in PCf is denoted
as PCf [i], 0 ≤ i < d. We construct this virtual counter by
randomly choosing a physical counter from the array PC∗:

PCf [i] = PC∗[Hi(f)], 0 ≤ i < d, (6)

where Hi is a pseudorandom hash function, which can be
implemented from a master hash function H:

Hf (i) = H(f ⊕R[i]) mod m, 0 ≤ i < d (7)

where ⊕ is the XOR operator and R is an array of d randomly
selected constants.

Counter compression: We use a variant design of active
counters [12] in PC∗. Each counter PC∗[i], 0 ≤ i < m,
is 16 bits long, which are split into two parts: (1) PC∗[i].α
contains the first 5 bits, which is an exponent, and (2) PC∗[i].β
contains the remaining 11 bits, which serves as a counter in
units of 2PC∗[i].α — namely, PC∗[i].β will be increased by
one after an expected number of 2PC∗[i].α packets are received.
Moreover, the counter PC∗[i].β is in fact 12 bits long, with
an implicit leftmost bit of 1. The value of PC∗[i], written in
the form of a function V , is

V (PC∗[i]) = PC∗[i].β × 2PC∗[i].α + 211+PC∗[i].α − 211, (8)

where multiplying 2PC∗[i].α can be implemented by shifting
PC∗[i].β to the left for PC∗[i].α bits. The term 211+PC∗[i].α

accounts for the leftmost implicit bit of 1. At the very
beginning before any packet is counted, both PC∗[i].α and
PC∗[i].β are zeros, the implicit leftmost bit would cause an
initial value of 211, which needs to be corrected, as shown by
the last term in the formula. The purpose of the above design
will become clear when we describe its operations.

Consider a simplified example where where PC∗[i].α =
10001b = 17 and PC∗[i].β = 0...011b = 3. Then, the value
of PC∗[i] is 3× 217 + 211+17 − 211 = 134608896.

The maximum value of PC∗[i].α is 25 − 1 = 31. The
maximum value of the counter PC∗[i].β with an leftmost
implicit bit is 212− 1 = 4095. Hence, the maximum counting
range is 231×4095+241−211, far greater than a 32-bit counter.
Because the counter PC∗[i].β increases in units of 2PC∗[i].α,
the error may be as large as 2PC∗[i].α. But the relative error,
2PC∗[i].α

V (PC∗[i])
, is related to the length of PC∗[i].β and bounded

by 1
211 , which is very small.

B. ActiveCM Operations

ActiveCM has two main operations: recording arrival pack-
ets and querying a flow’s size. For simplicity, we assume that
ActiveCM increments each virtual counter PCf [i] by one,
when a packet of a flow f arrives, with the purpose to count
the number of packets. In fact, this algorithm can be easily
extended to count the number of bytes for each flow.

Probabilistic Recording: At the beginning of each mea-
surement period, all active counters in PC∗ are reset to zeros.
When a packet of flow f arrives, we record it in all d counters
in PCf . Consider an arbitrary counter PCf [i], 0 ≤ i < d,
which is in fact PC∗[Hi(f)]. We increase it by one with a
probability of 1

2PCf [i].α ; the increment will happen after an
expected number of 2PCf [i].α packets arrive. Clearly, we need
to read PCf [i] in order to compute the probability, whereas
the chance of writing back after increment is 1

2PCf [i].α , which
decreases rapidly as PCf [i].α increases. As the number of
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packets increases, the average number of writes per packet
approaches toward zero.

When we increase PCf [i].β by one, if it overflows, it will
become zero and we need to increase the exponent PCf [i].α
by one. Our active-counter design makes these operations
extremely simple: we simply treat PCf [i] as a two-byte
counter and increase it by one, without having to separately
consider the first 5 bits for PCf [i].α and the remaining bits for
PCf [i].β. More specifically, if the lower 11 bits of PCf [i] are
ones, after increasing by one, they will automatically become
zeros and the upper 5 bits will automatically increase by one.

An example of increasing PCf [i] is shown in Figure 2. Sup-
pose the exponent PCf [i].α is zero. The recording probability
is 1. The counter PCf [i].β will always be increased whenever
a packet of flow f arrives. Suppose now PCf [i].β = 1...1
as shown in the figure. With an implicit leftmost bit of 1,
it contains 12 bits of 1. One additional packet will cause it
overflow to become 10...0, which is an implicit leftmost 1
and 12 bits of 0. There is only 11-bit room in PCf [i].β. We
scale it to 11 bits of 0 by increasing the exponent PCf [i].α.
The final result is also shown in the figure, which is simply
the previous value of PCf [i] plus one.

Before Packet e
e

e
After Packet e

100% update

50% unchanged

75% unchanged ⋯⋯

⋯⋯

⋯⋯

retention probability

0 1 0 000 0 0

0 0 1 110 0 0

0 1 0 000 0 0

1 0 0 000 0 0

OR

OR
50% incremented

update probability
0 1 0 100 0 0

1 0 0 100 0 0
25% incremented

⋯⋯

α β

Fig. 2. Three examples for recording a packet in an active counter

Querying: When querying the size of a flow f , we locate
the d active counters in PCf , and return their minimum value
as the estimated flow size n̂f .

n̂f = min0≤i<d{V (PCf [i])}. (9)

Hash Acceleration: ActiveCM requires d hashes per
packet. For theoretical analysis, it is desired that the d hashes
are independent. But when efficiency outweights, this re-
quirement may be relaxed in practice. We propose a hash-
acceleration method that uses one hash to replace the d ones.
It performs well in our experiments.

After computing one 64-bit hash value on flow f , we split
it into d segments and use each segment in place of Hi(f) to
select a counter from PC∗ for the virtual counter array of f .
For example, if d = 4, each segment of the hash value is 16
bits long and can be used to select a counter from a physical
array with m ≤ 216. If m is larger, we will need to perform
addition hash(es) for more hash bits.

C. ActiveCM+

ActiveCM records a packet stream and provides size es-
timate of any given flow, just as CM and CS do, but using
smaller memory. Next we extend it for tracking the top-k

heavy hitters. To do so, we augment ActiveCM with a min-
heap to keep k flow IDs and an associated counter for each ID.

The prior method of combining a CM/CU/CS sketch with a
min-heap is as follows [3]: When a packet of flow f arrives,
we record the packet in the sketch and also in the min-heap
if f is found there. While recording the packet in the sketch,
we also make a query on the size of f . If the estimated size
is smaller than that of the min-heap root, we will remove the
flow in the current root node while adding f and its estimated
size to the min-heap. The per-packet overhead of this method
include both the sketch operation and the min-heap operation.

Adopting a design choice similar to [13], we use the min-
heap as a frontal filter to the sketch such that the packets of
top-k heavy hitters only incur overhead for the min-heap, but
not for the sketch. More specifically, if the flow ID is in the
min-heap, we increase its counter and bypass the sketch. Only
if the flow is not in the min-heap, we update the sketch. When
we remove a flow f (with its counter c) from the min-heap,
we put it back to the sketch by replacing each counter smaller
than c in the virtual counter array of f with the value of c.
The impact of min-heap filtering is significant because a small
number of large flows often accounts for a large proportion
of the traffic. By our experiments, when d = 4, ActiveCM+
sketch performs 3.18 memory accesses per packet on average,
even less than d, thanks to the min-heap filter. Such a design is
particularly beneficial when we can implement the min-heap
in hardware such as FPGA due to its small size or within a
high-speed cache and using SIMD on the processor chip [13].

V. ANALYSIS OF ACTIVECM

In this section, we will prove that the absolute error of the
flow size estimation in (9) by our ActiveCM is upper bounded:
Pr{n̂f ≥ nf + (n − nf ) 2d

m } ≤
(
1
2

)d
. As a result, when the

sketch sizes m and d are configured large enough, the heavy
hitters defined in (2) can be identified with accuracy guarantees
of (3) and (4). Due to page limit, we leave this detailed proof
to a technical report for the extended version of this paper.

Let n be the total number of packets for all flows. For an
arbitrary flow f , let nf be its actual flow size. Let nd be the
number of packets mapped to the virtual active counter array
PCf of flow f . Note that, due to counter sharing, other flows
may also have their packets mapped to PCf . Hence, nd is the
flow f ’s size plus the noise introduced by other flows. Let Y
be the number of “noise” packets (from other flows) that are
recorded by the d counters in PCf . We have

Y = nd − nf . (10)

Let m be the number of active counters in PC∗. Then, the
probability that a virtual counter of the flow f introduces noise
is 1
m . Since each “noise” packet is mapped d times to update d

different counters, the noise Y follows a Binomial distribution.

Y ∼ Binom
(
d(n− nf ), 1

m

)
(11)

The flow f has d active counters in PCf to give d indepen-
dent estimations about its size, which are later combined by
(9). The estimated value given by PCf [i] using (8) is denoted
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by n̂d. Here, we omit the symbol i, since clearly each counter
PCf [i] follows the same probability distribution. According to
[2], under the (a+ b)-bit counter scheme, the estimated value
n̂d have the following expected value and variance.

E(n̂d) = nd, V ar(n̂d) =
0.6742n2

d

2a (12)

This equation states that n̂d is an unbiased estimation of nd.
Its standard deviation, which depends on the number of bits a
(by default, a = 11) given to the coefficient α, is very small.

According to (10), considering the noise problem of the
virtual counter array PCf , let Y = l with l ∈ [0, d(n− nf )],

E(n̂d |Y = l) = nd = nf + l. (13)

Combining it with equations (10), (11) and (12), we can obtain
the relationship between n̂d and nf .

E(n̂d) =
∑d(n−nf )
l=0 E(n̂d |Y = l) · Pr(Y = l)

=
∑d(n−nf )
l=0 (nf + l) ·

(
d(n−nf )

l

)
( 1
m )l(1− 1

m )d(n−nf )−l

= nf + (n− nf ) dm (14)

Combining formula (14) with Markov’s inequality, the error
bound of a single virtual active counter is as follows.

Pr(n̂d ≥ nf + (n−nf ) 2d
m ) = Pr(n̂d − nf ≥ (n− nf ) 2d

m )

≤ m
2d(n−nf ) (E(n̂d)− nf )

= m
2d(n−nf ) (n− nf ) dm = 1

2 (15)

Since the estimated size n̂f of the flow f is the minimum
value of the d virtual active counters, combining equations (9)
and (15), the estimation n̂f is upper bounded:

Pr(n̂f ≥ nf + (n− nf ) 2d
m )

=
∏

0≤i<d Pr(n̂d
(i) ≥ nf + (n− nf ) 2d

m ) ≤
(
1
2

)d
. (16)

VI. PROGRESSIVE UNIVERSAL SKETCH

We present a new universal sketch named LUS. We firstly
introduce the motivation and basic idea behind our design.
Next, we describe its detailed algorithm procedure, which is
divided into packet insertion phase and moment query phase.

A. Basic Idea

We propose a progressive sampling techique. We create an
array of subsketches M0,M1,M2, . . . ,M` in memory. Their
flow sampling probability reduces exponentially: The flows in
the 0th subsketch M0 have 100% sampling probability; The
flows in Mj+1 is a 50% pseudorandom sample of the flows
in Mj . Our idea is that, when a packet arrives carrying a flow
ID f , we update the last subsketch where f is sampled. The
benefit is that only one subsketch, instead of variably multiple
subsketches, needs to update per arrival packet. We call this
algorithm light-weight universal sketch (LUS).

When a packet arrives in Figure 3, we use its flow ID f
to generate a pseudorandom bit array, where each bit equals
to one with 50% probability. Clearly, the probability for this
array’s leading j bits are all ones is 1/2j . If it happens, the
flow f is sampled in the jth subsketch. Assume the leading

j∗ bits are all ones and the (j∗ + 1)th bit is zero. We call j∗

the longest run of leading ones. In this case, f is sampled in
the 0, 1, . . . , j∗th subsketches but not in (j∗+ 1)th subsketch.
We update only the j∗th subsketch to record the packet
information, whose number of memory accesses is less than 4,
since the subsketch is implemented by ActiveCM+ with d = 4.

The progressive sampling technique brings another benefit:
The moment estimation error can be reduced by more than
half in experiment than UnivMon. The reason is as follows.
UnivMon updates all the subsketches 0, 1, . . . , j∗, where j∗

is the last subsketch having f sampled. UnivMon also uses
all these subsketches to query the flow size of f when it
estimates the flow moments. However, different subsketches
in this list have different estimation accuracy of flow f . Since
the j∗th subsketch Mj∗ has the smallest sampling probability,
f experiences the least noise from other flows to affect its size
estimation and has the best accuracy in Mj∗ . So we use only
Mj∗ for the size estimation of f . Better estimation accuracy of
heavy hitters will bring higher accuracy in moment estimation.

The third advantage of LUS sketch is that we significantly
reduce the time cost of computing moment estimations. We
do not use a time-expensive recursive formula like [14], which
estimates a moment by reading the entire array of subsketches.
Instead, as the arrival packet changes the j∗th subsketch, we
use a simplified formula to incrementally update our moment
estimation. As a result, our time cost of querying the flow
moment is negligbly small, even when it is queried per packet.

B. Detailed Algorithm Procedure
Our algorithm can be divided into two phases, as shown in

Figure 3. The insertion phase processes a stream of packets
and squeeze them into an array of subsketches1. In the query
phase, each subsketch reports the heavy hitters among its sam-
pled flows. We use such information to estimate the moment
of the 0th subsketch whose sampling probability is 100%.
Insertion Phase. Recall that the flows appearing in the jth
subsketch is sampled with 50% probability in the (j + 1)th
subsketch. Let S0 be the set of all flows IDs. Let Sj be the
set of sampled flow IDs in the jth subsketch. Then, we have

S0 = {1, 2, . . . ,F}, Sj = {f | f ∈Sj−1 ∧ hj(f) = 1},(17)

where h is the hash function applied to the flow ID f for
sampling. We interpret the hash value h(f) as a bit array. Let
hj(f) be the jth bit of this array. Clearly, when the j leading
consecutive bits of h(f) are all ones, we have f ∈ Sj , and we
say the flow f is sampled in the jth subsketch Mj .

The pseudocode of the insertion phase is given in Algorithm
1. When an IP packet arrives carrying a flow ID f , instead of
updating each subsketch Mj with 0 ≤ j ≤ j∗ and satisfying
f ∈ Sj , the line 4 updates only the j∗th subsketch with

j∗ = min
(
`, arg max

j

{∧
1≤i≤j hi(f) = 1

})
. (18)

1A subsketch is normally implemented by ActiveCM+. But to make the last
subsketch M` more accurate, it is implemented by a hash table to record the
per-flow sizes of sampled flows. Since the number of subsketches is above 12,
e.g., 14, it is sufficient to let the hash table to hold about 100 flows. All flows
recorded in this hash table are regarded as heavy hitters of the last subsketch.
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Fig. 3. Architecture of LUS sketch for time-efficient moment estimation.

Here,
∧

1≤i≤j hi(f) = 1 implies the leading j bits of h(f) are
all ones, arg maxj finds the longest run of leading consecutive
ones in the bit array of h(f), min(. . .) returns the minimum
value of its parameters, and ` is the largest subsketch label.

The last subsketch M` records the per-flow size information
of all flows in S`. This is because any flow f ∈ S` has at least
` consecutive leading ones in h(f), making its j∗ equal to `
by (18). For another subsketch Mj with j < `, it records only
the flows in the relative complement set Sj \ Sj+1. This is
because any flow f ∈ Sj+1 has at least j + 1 consecutive
leading ones, making its j∗ larger than j by (18).

Algorithm 1: LUS Insertion Phase
Input: Packet stream 〈f1, c1〉, . . . 〈ft, ct〉, . . . 〈fn, cn〉
Output: Heavy hitters sets {Ĥ0, . . . , Ĥ`} among the

sampled flows {S0, . . . , S`}, respectively
1 From an arrival packet, get flow ID f and packet size c;
2 Compute a hash value h(f) from the flow ID f ;
3 Calc j∗ = min

(
`, arg maxj

{∧
1≤i≤j hi(f) = 1

})
;

4 Insert the tuple 〈f, c〉 to the subsketch Mj∗ with Ĥj∗

filter, and query Mj∗ for a flow size estimate n̂f ;
5 if flow f is a heavy hitter in the filter Ĥj∗ then
6 Use the tuple 〈f, n̂f 〉 to update the sets of heavy

hitters {Ĥj∗−1, . . . , Ĥ0} among {Sj∗−1, . . . , S0};
7 end

Query Phase. This phase can estimate the flow moment of the
sampled flows in each subsketch. Let Lj be the moment of
the sampled flows Sj in the jth subsketch, 0 ≤ j ≤ `. Then,

Lj =
∑
f∈Sj g(nf ), (19)

where Sj is the set of sampled flows as in (17), nf is the size
of flow f , and g(x) is a monotonic function bounded by x2.
Since the last subsketch is simply a hash table to hold all flows
in S`, the moment L` can be estimated as L̂` =

∑
f∈S` g(n̂f ).

The moment estimation needs each subsketch to report a set
of heavy hitters. Let Hk be the set of heavy hitters among the
sampled flows Sk. Similar to the heavy hitter definition in (2),

Hj = {f | f ∈ Sj ∧ g(nf ) ≥ αLj}. (20)

The identifcation of heavy hitters Hj among the sampled flow
set Sj has been implemented by Algorithm 1 at lines 4-7.

We may use the same method proposed by the original the-
oretical work [14] to estimate the moment of the flow set Sj .

L̂j = 2L̂j+1 +
∑

f∈Ĥj
(1− 2hj+1(f))g(n̂f ) (21)

This recursive formula computes the moment of each subs-
ketch, from the last to the 0th subsketch, and outputs the mo-
ment estimation L̂0 whose flow sampling probability is 100%.
Its high computation cost prevents to perform evaluation per
packet for supporting online estimation of moments. We will
dramatically reduce the time cost by only estimating the mo-
ment L0, and we update L̂0 incrementally when each packet
arrives. The pseudocode of our solution is in Algorithm 2.

Algorithm 2: LUS Query Phase

Input: Heavy hitters {Ĥ0, . . . , Ĥ`}, Moment function g
Output: Moment estimation L̂0 of the flow ID set S0

1 if the flow ID f of the arrival packet is a heavy hitter
in Ĥj∗ then j′ = j∗; else return L̂0;

2 Calc the increment of L̂j∗ as ∆f = g(n̂f
new)− g(n̂f

old)
3 for j = j∗ − 1, . . . , 0 do
4 if f ∈ Ĥj then j′ = j; else break;
5 end
6 return L̂0 = L̂0 + 2j

′
∆f ;

When a packet with flow ID f comes, we locate the j∗th
subsketch, where j∗ is the largest index of the subsketch
where f is sampled as in (18). To save computational time
cost, our Algorithm 2 avoids to update all moment estimations
L̂j∗ , . . . , L̂0. It updates only the moment estimation L̂0 of the
complete flow set S0, which network operators are interestd
in. Here, we suppose L̂0 is held in on-chip high-speed cache,
closer to processor than off-chip memory, so that the time cost
of accessing the memory unit of L̂0 is negligbly small.

At line 1, we check whether f is a heavy hitter among the
sampled flow set Sj∗ . If not, we ignore the packet and leave
the moment estimation L̂0 unchanged. If f is not a heavy hitter
in Sj∗ , f will not be in other sampled sets Sj with j < j∗. So
we can ignore the packet. This is because, when the subsketch
index j reduces, the sampling probability increases, and the
flow set Sj expands. This will make it more difficult for f to
become a heavy hitter among Sj than among Sj∗ .

Now, we know the flow f is a heavy hitter among Sj∗ .
At line 2, we compute ∆f , which is the increment of the g-
moment of Sj∗ caused by the arrival packet. Here we need

7
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both the old and the new size estimations of flow f , which
can be obtained when we update the subsketch Mj∗ at line
4 of Algorithm 1. Note that line 2 is in accordance with
(21), since f ∈ Ĥj∗ and hj∗+1(f) = 0. At lines 3-5, we
search for the flow set Sj′ with the smallest index (or the
largest sampling probability), where f remains a heavy hitter
(i.e., f ∈ Ĥj′ ). Therefore, the moment L̂j′ increases by ∆f ,
which is consistent with (21). Now, we know f is not a heavy
hitter but a mouse flow in Sj′−1, . . . , S0. To estimate the
increases of moments Lj′−1, . . . , L0, we need to multiply ∆f

by 21, . . . , 2j
′
, respectively. Line 6 only updates the moment

estimate L̂0 by adding 2j
′
∆f . It is our estimate of moment L0.

The heavy hitters Hj in (20) have been estimated as Ĥj ,
by Algorithm 1. It can be proved that, if Ĥj can satisfy the
accuracy constraints in (3) and (4), then the g-moment Lg of
all flows (in this section, L0 for short) can be estimated with
accuracy constraint in (5). The proof is somewhat similar to
[14]. We leave the proof to the extended version of this paper.

VII. EXPERIMENTAL EVALUATION

In this section, we implement several existing heavy hitter
detection sketches, including CountMin Sketch (CM) [3],
Conservative Update Sketch (CU) [11], Count Sketch (CS) [4],
Virtual Active Counter (VAC) [2], and Self-Adaptive Counters
for CountMin (SA-CM) [15]. We compare their performance
with our ActiveCM+ when given the same memory, to show
the advantage of ActiveCM+ for online tracking heavy hitters.
Next, we compare our LUS sketch with UnivMon [6] to show
its performance advantage for online estimating flow moments.
Our IP traffic traces for evaluation are from CAIDA [16].
Performance Metrics. We consider the application scenario
of online tracking heavy hitters and online estimating moments
for the prompt detection of network anomalies. Hence, for the
high-speed packet stream, we suppose the insertion of packet
information into the sketch and the querying of flow states are
performed per packet. This places stringent demand on packet
processing throughput. Therefore, we will evaluate the packet
throughput (quantified by items per second), which is primarily
determined by the average number of hashes and memory
accesses per packet for insertion and querying. We will also
evaluate the average estimation accuracy of heavy hitters and
flow moments, which have been formalized in Section II-B.

A. Performance of Heavy Hitter Detection

Packet Throughput. We compare the packet processing
throughput of several heavy hitter detection algorithms in Fig-
ure 4. It shows that the packet throughput of our ActiveCM+ is
about 1.14, 1.16, 1.89 higher than those of the CM, CU and CS
sketches, respectively. The main reason is that our ActiveCM
sketch with d = 4 needs slightly more than four memory
accesses for packet insertion (four reads plus occasionally a
few write backs), while CM, CU, CS sketches need at least
eight memory accesses per packet. The insertion throughput
of VAC is higher than ours, since VAC needs slightly more
than one memory accesses per packet for packet insertion. But
VAC needs a few hundreds memory reads to query the size

of a flow. Hence, the overall throughput of our ActiveCM+
is 18.6 times higher than VAC. SA-CM is perhaps the latest
work for heavy hitter detection [15]. Compared with it, our
ActiveCM+ is still 1.05 times faster, because besides the active
counter technique, we have adopted also the frontal filtering
strategy for heavy hitters, which is proposed in Section IV-C.
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Fig. 4. Compare packet processing throughput.

Estimation Accuracy. Firstly, in Figure 5(a), we compare
the heavy hitter identification accuracy of different algorithms
including CM, CU, CS, VAC, SA-CM and ActiveCM+, when
they are given the same amount of memory. We use precision
( TPs

TPs+FPs ) to quantify the identification accuracy. It shows that
our ActiveCM+ is the highest, about 1.10, 1.04, 1.16, 1.94,1.04
times higher than CM, CU, CS, VAC, SA-CM, respectively.

Secondly, we evaluate the flow size estimation accuracy
based on Average Relative Error (ARE). ARE is the relative
difference between the estimated flow size and the true flow
size: ARE = 1

|N |
∑
f∈N

|nf−n̂f |
nf

, Where N is the set of heavy
flows to be queried, and n̂f is the estimated value of the size
nf of the flow f . Figure 5(b) shows that the AREs of the CM,
CU, CS sketches are higher than the ARE of our ActiveCM+.
This is because ActiveCM+ uses the active counter technique
[12] to compress the counter size by half. As a result, more
counters can be allocated from the same amount of memory
to undertake the counting job, which improves the accuracy.
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Fig. 5. Compare heavy hitters estimation accuracy.

Impact of Virtual Counter Array Size. We evaluate the
impact of d, the size of virtual counter array, on the estimation
accuracy of our ActiveCM+. We plot the evaluation result in
Table I. It shows that we can minimize the estimation error
when we configure d = 4 or d = 5. But smaller d value means
smaller insertion and querying time cost of our sketch. Thus,
d = 4 is the recommended parameter setting for ActiveCM+.

B. Performance of Universal Sketch
In this subsection, we compare the performance of universal

sketches, i.e., UnivMon and our LUS. UnivMon is configured
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TABLE I
IMPACT OF THE VIRTUAL COUNTER ARRAY SIZE d

Value of d
ARE in different Memory size
1 MB 2 MB 3 MB

2 4.042715 1.783720 0.735967
3 3.281323 1.226965 0.367778
4 3.210663 1.008244 0.277993
5 3.416525 0.992986 0.255877
6 3.841261 1.038691 0.265438
7 4.376923 1.117811 0.285739

with 14 hierarchical layers, while LUS is given 10 or 14
subsketches, and has d = 4 for its underlying ActiveCM+.

Firstly, we compare the packet processing throughput in Fig-
ure 6. The plot (a) shows that the insertion throughput of our
LUS is about 4.85 times higher than Univmon. This is because
our LUS uses the progressive sampling technique which only
needs to update one subsketch per packet, and its subsketch is
ActiveCM+, which is more time efficient than CountSketch as
in Fig. 4. The plot (b) shows that, when performing online flow
moment query, our LUS is dramatically higher than Univmon.
This is because we adopt an incremental updating strategy for
moment estimation, which is implemented in Algorithm 2.
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Fig. 6. Compare packet processing throughput

Secondly, we compare the heavy hitter estimation accuracy
in Fig. 7. The plot (a) shows LUS is much more accurate
than UnivMon especially when the memory is limited. This is
because LUS inserts a flow’s packets into a single subsketch,
where the flow is sampled and the sampling rate is the smallest
as in (18). In that subsketch, the noise from other flows is
minimized. The plot (b) shows the LUS always has higher
precision rate for heavy hitter identification than UnivMon.
This is because LUS has better estimation accuracy for flow
sizes, which helps to better differentiate which flows are heavy.
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Fig. 7. Compare heavy hitter estimation accuracy

Thirdly, we compare the moment estimation accuracy of
LUS and UnivMon, including entropy in Fig. 8(a) and 2nd-
order moments in Fig. 8(b). They show that LUS offers better
moment estimation accuracy for most memory size settings,
due to our progressive sampling technique and ActiveCM+,
which attains better heavy hitter estimation accuracy in Fig. 7.
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Finally, we evaluate the impact of the number of subsketches
on the partial flow moments, when the allocated memory is
equal to 0.6MB. We plot the evaluation result in Figure 9.
It shows that UnivMon achieves better moment estimation
accuracy as the number of layers grows, and the accuracy
stablizes when greater than 12. It also shows that the flow
moment accuracy of our LUS is not obviously affected by the
number of subsketches, because our last subsketch is a hash
table that accommodates all sampled flows.
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VIII. CONCLUSION

In this paper, we firstly present a highly efficient counter
sharing architecture for online tracking heavy hitters in a
data stream, called CountMin with Active counters plus
(ActiveCM+). It reduces the number of per-packet memory
accesses by half and reduces the memory footprint by half
than CountMin sketch, thanks to the active counter com-
pression and heavy hitter filtering technique. Next, based on
the ActiveCM+, we present an algorithm called light-weight
universal sketch (LUS), designed for online estimating mo-
ments of flow size distribution. Compared with UnivMon, our
sketch needs 16 times smaller number of per-packet memory
accesses, and provides 3 times better accuracy when given the
same memory. Therefore, our LUS sketch becomes more time-
efficient for online estimating moments, including cardinality,
entropy and second-order moment. We have verified the supe-
rior performance of our algorithm by both theoretical analysis
and experimental results based on CAIDA traces.
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