
Scalable and Balanced Policy Enforcement Through
Hybrid SDN-Label Switching

Olufemi Odegbile∗ Shigang Chen† Youlin Zhang‡
Department of Computer and Information Science and Engineering

University of Florida, Gainesville, Florida, USA
Email: ∗oodegbile, †sgchen, ‡ylzh10@ufl.edu

Abstract—Software-defined networks facilitate automatic poli-
cy enforcement with dynamic routing of flows through a sequence
of middleboxes that offer the required network functions. As a
result, network policy enforcement based on middleboxes, which
is tedious and error-prone to perform in traditional IP networks,
is greatly simplified. However, TCAM-based flow tables in SDN
are small and energy-demanding, which limits the scalability
of policy enforcement. This paper proposes a hybrid SDN-
label switching scheme that combines TCAM-based switching (in
SDN) at the network edge with label switching in the network
core to provide scalable policy enforcement without compro-
mising per-flow management capability. A linear optimization
is proposed to balance workloads among the middleboxes. We
demonstrate on OMNET++ that our proposed solution incurs
much smaller processing/communication overhead and achieves
better load-balancing when comparing with the prior art.

I. INTRODUCTION

Essential to network management is the enforcement of
various network policies. For example, network administrators
may want to restrict access of blacklisted addresses to critical
infrastructures, reduce rates of clients whose total traffic
exceed a threshold, or implement alternative paths to the
shortest paths for large flows. One way for policy enforcement
is to use middleboxes that offer critical services such as
firewalling, intrusion detection, proxing, load balancing and
traffic measurement [1]. However, tedious manual placement
and configuration of middleboxes are error-prone and unable
to dynamically respond to changes in the networks [2].
Network administrators must therefore deploy an efficient,
accurate and scalable enforcement strategy.

Software-defined networks (SDN) provide a flexible ap-
proach of enforcing network-wide policies. Through a cen-
tralized architecture, SDN switches can be configured to steer
packets through a sequence of middleboxes irrespective of
their placement within the network. In addition, the SDN
controller can dynamically respond to changes in the network.
For example, the controller can reconfigure switches with new
rules to reroute large flows so as to ease traffic congestion.
However, while traditional IP networks are incredibly scal-
able, SDN scales poorly due to limited TCAMs available to
store flow rules [3]–[6]. The memory requirement of SDN is
further exacerbated because flow rules are not only used for
routing but also policy enforcement. As a result, scalability
is a major issue in large datacenters, which require a large
number of rules to enforce their network policies [7].

There are several prior solutions for improving SDN s-
calability. Flows can be aggregated with wildcard rules to
efficiently utilize flow tables. However, this approach can still
require a large number of flow rules and is unsuitable for
per-flow policy enforcement [5]. In another solution based on
source routing [8], the controller configures ingress switches
to embed a path into each incoming packet’s header. Subse-
quently, interior switches simply forward packets based on the
routing information contained in their headers. Source routing
increases packet length by a variable amount dependent on
path length. It degrades routing performance and may cause
packet fragmentation. Besides, there is a hardware limitation
to the allowable segment length (Maximum Segment Length
Depth) [9] and the optimal path encoding problem is an APX-
hard problem [10].

This paper attempts to address the TCAM-induced scala-
bility problem of SDN without losing the flexibility of fine-
grained per-flow policy enforcement or causing performance
degradation and packet fragmentation. We observe that the
scalability issue is most serious in the network core where all
flows from the network edge converge towards and traverse
through. Our solution follows a decades-long network design
principle: pushing network complexities to the edge and
keeping the core simple [11], [12]. The idea is that if TCAM
is too small and unscalable in the core, we shall replace it
with something else that is scalable and can be implemented
in SRAM or other types of memory, while the flexibility of
SDN is still retained at the edge. To this end, we propose
a hybrid SDN-label switching design, which keeps TCAM-
based flow tables at edge switches and uses label switching at
core switches, both of which are configured by the controller.
In our new design, the transition from SDN switching to label
switching happens at the edge SDN-capable switches. Label
switching can be efficiently implemented by a label-indexed
hash table. Note that core switches may be label-switching
capable only or SDN-label capable in which case TCAM-
based flow tables can be used for network functions (such as
traffic engineering) other than policy enforcement considered
in this paper.

Tunnelling between middleboxes in [2], [13] can help
reduce the number of flow entries for each flow, but their
method still requires TCAM-based flow table entries in the
network core, in particular at the switches that directly connect
to the middleboxes, which contrasts to our proposed solution

978-1-7281-0962-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:42:10 UTC from IEEE Xplore. Restrictions apply.

that eliminates the need of TCAM-based flow tables in the
core and is therefore more scalable.

The contributions of this paper are summarized as follows:
We propose a new hybrid SDN-label switching architecture,
which uses label switching to achieve scalability at the net-
work core, while using SDN switching for flow identification
and label assignment at the edge. We present a load-balanced
design for per-flow policy enforcement which routes packets
to a series of required middleboxes subject to the middlebox
capacity constraints. Finally, we evaluate the scalability of our
design and the effectiveness of our load-balanced enforcement
method on OMNET++ [14].

II. NETWORK MODEL AND PROBLEM
STATEMENT

A. Network Model

A large SDN-capable enterprise network consists of a cen-
tralized controller, SDN-capable edge switches each directly
connected to a subnet, label-switching core switches that
interconnect the edge switches, and middleboxes that are
deployed in the core (each connecting to a core switch at a
chosen location) to implement various required network func-
tions such as firewalling, proxying and intrusion detection.
The controller has the complete knowledge of the network
topology, collect measurements from the switches, determine
the policy enforcement paths for all flows, and configure both
the edge switches and the core switches for their SDN flow
tables (based on openFlow [15]) and label-switching tables,
respectively. Refer to Figure 1 for an example, where the flow
table and the label-switching table will be explained later.

Because SDN switching is optional in the core and label
switching is intended for scalable policy enforcement, we need
a routing structure for traffic that does not match any policy.
For this purpose, we adopt the approach of [6] that integrates
traditional routing into SDN networks for better scalability.
We stress that the work [6] does not consider policy en-
forcement or label switching, and thus it is orthogonal to our
work. Following [6], the switches run a traditional routing
protocol such as OSPF [16] to provide the default shortest
paths using the traditional routing tables, while flow tables
(for SDN-capable switches) are used for traffic engineering
as in [6] and label-switching tables are used in the core for
policy enforcement.

B. Problem Definition

A network policy p is defined as an ordered pair 〈d, a〉,
where d is a traffic descriptor (identifying flows that match
this policy) and a is an ordered action list of required network
functions. For example, d may specify a source subnet prefix,
a destination subnet prefix, and a destination port, with other
fields being wildcards by default, and a may be firewalling,
which requires all matching flows to go through a middlebox
that implements the firewall function.

Given an arbitrary set of network policies defined by users,
the problem is how to configure all edge/core switches such
that any flow that matches a certain policy 〈d, a〉 will be routed

gateway

In

FW

edge switch x

Out

Internet

Out

In

In

core switch y
controller

subnet A

Incoming
Label

Incoming
Interface

Outgoing
Label

Outgoing
Interface

l In l FW
l FW null Out

(b) Label switching table at core switch y (SRAM)

Dest.
Port

Incoming
Interface

Other
Fields Label Fwd.

80 In * l Out

(c) Fow table at edge switch x (TCAM)

Traffic

descriptor (d)
 web traffic from subnet A

Action list (a) forward to FW

(a) user policy at the controller

Fig. 1: Architecture of hybrid SDN-label Switching (HSLS).

through a series of middleboxes that implement the network
functions in the exact order specified by the action list a. If
there are multiple matching policies, we take the first one.

III. NETWORK POLICY ENFORCEMENT BY HYBRID
SDN-LABEL SWITCHING

A. Design of Hybrid SDN-label Switching

Our primary design goal is to push network policy en-
forcement decisions to edge switches and the controller, while
leaving interior network simple and mostly to forward packets.
To this end, we replace flow-table forwarding (from SDN)
with lightweight label switching in the network interior. In
particular, the core switches use label-switching tables (LST),
which are proactively configured by the controller, to route
packets through a series of required middleboxes and then to
the destinations. As shown in Figure 1, LST has four fields
compared to a much larger number of fields in SDN’s flow
table. The four fields are Incoming Label, Incoming Interface,
Outgoing Label, and Outgoing Interface. In contrast, the edge
switches still use the flow tables of SDN, with one extra label
field.

For each switch, the controller pre-computes a certain
number of alternative enforcement paths for each policy that
can be applied to traffic through the switch. For example,
consider an arbitrary policy 〈d, a〉, where d overlaps with
traffic through an edge switch x. The controller may first find
the shortest enforcement path through a series of middleboxes
as specified in a by a modified Dijkstra’s algorithm. It then
removes those middleboxes, and tries to find another shortest
path that does not overlap with the first one. This process
repeats until no more enforcement path can be found. Multiple

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:42:10 UTC from IEEE Xplore. Restrictions apply.

paths are used for the purpose of load balancing. We will
refer to the shortest enforcement path through any series of
middleboxes as specified in a as the shortest policy path
(SPP). The controller will assign a different label to each
enforcement path for this policy at switch x. It will also
instruct all core switches along each enforcement path to
configure their label-switching tables by adding proper entries
so that the received packets with the matching incoming label
will be forwarded correctly to the next hop on the path.

When the edge switch x receives the first packet of a flow
f , it will send a packetIn massage to the controller, which
searches for a matching policy. If there is one, the controller
will look up for the pre-computed enforcement paths of the
policy, select one path (by hashing the flow ID to one of
the paths), and send the corresponding label in a flowMod
message back to x. The edge switch x will create a flow-table
entry with the received label for f . All subsequent packets of
f will match this entry, and switch x will embed the label of
the entry in the packets, either by inserting a label header or
piggybacking the label in the unused header fields (such as
such as TOS byte and fragmentation offset if the network is
configured to avoid fragmentation).

For flows that do not match any policy, they may be routed
through pre-established default paths, or the controller may
dynamically allocate a (shortest or load-balanced) path and
configure the edge switch and the core switches along the
path with dynamically assigned labels.

When a core switch y receives a packet of f , it extracts
the label from the packet header and looks up in its LST to
retrieve an outgoing label and an outgoing network interface.
The packet will be forwarded to the outgoing interface after
the label carried in its header is substituted by the outgoing
label. Once the last network function applicable to the packet
is enforced, the label embedded in its header is removed.
Henceforth, the packet is routed along the default routing path
provided by the traditional routing protocol.

At the core switches, their label-switch tables are indexed
by labels and can be implemented as hash tables in SRAM
or other types of memory. At the edge switches, the tradi-
tional flow tables perform multi-field matching as specified in
OpenFlow, which requires TCAM.

B. Load-Balancing Policy Enforcement

As discussed in Section III-A, for each policy, the controller
pre-computes and deploys a number of alternative enforce-
ment paths from each edge switch whose traffic overlaps with
the policy. When a new matching flow arrives at the edge
switch, we can randomly choose one from the alternative
paths for enforcement. This simple method does not con-
sider traffic dynamics and middlebox capacities, and it may
result in unbalanced load distribution among the middleboxes,
overloading some while underutilizing others. To solve this
problem, we introduce a load-balanced path selection method.
Below we first give the notations in our formulation and then
present the optimization.

Let E be the set of edge switches, e ∈ E refer to an edge
switch, P be the set of policies, p ∈ P refer to a policy,
Pe ⊂ P be the set of policies that overlap with traffic through
edge switch e, and He,p be the set of alternative enforcement
paths for a policy p at an edge switch e. Clearly, all paths in
He,p start from e. Let M be the set of middleboxes, m ∈M
refer to a middlebox, and c(m) be the capacity of m.

Let Fe,p be the set of all flows received by e that match
p ∈ Pe, f ∈ Fe,p refer to a flow, Te,p be the total
traffic volume of all flows in Fe,p during the most recent
measurement period, and Tf be the traffic volume of a flow
f in the most recent period. The values of Te,p and Tf ,
∀f ∈ Fe,p, are measured by edge switch e and reported to the
controller. Let t(he,p) be the portion of traffic Te,p that should
be routed through an enforcement path he,p ∈ He,p in order
to achieve load balancing among the middleboxes. We will
compute (and then enforce) the optimal traffic distributions
t(he,p), ∀e ∈ E, p ∈ Pe, he,p ∈ He,p, by solving the following
load-balancing linear programming optimization.

min λ

s.t.∑
he,p∈He,p

t(he,p) = Te,p, ∀e ∈ E, p ∈ Pe∑
e∈E,p∈Pe

∑
he,p∈He,p:m∈he,p

t(he,p)

≤ λ · c(m),∀m ∈M
t(he,p) ≥ 0, ∀e ∈ E, p ∈ Pe, he,p ∈ He,p

λ ≤ 1

(1)

The first constraint ensures that traffic portions on all alter-
native enforcement paths sum up to the total traffic volume
expected. The second constraint ensures that the aggregate
traffic load on each middlebox does not exceed its capacity,
where λ is the largest load factor among all middleboxes,
which we will minimize. Eq. 1, being a linear optimization
problem, can be solve in polynomial time.

After t(he,p), ∀e ∈ E, p ∈ Pe, he,p ∈ He,p, are determined,
the controller calculates a weight for each path in He,p as

w(he,p) =
t(he,p)∑

he,p∈He,p
t(he,p)

. (2)

The above weights are essentially the normalized traffic por-
tions, such that they add to one, i.e.,

∑
he,p∈He,p

w(he,p) = 1.
The controller wants to make sure that the traffic at e matching
p is distributed among the paths in He,p in proportion to the
he,p values, i.e., in proportion to the weights w(he,p). Since
the weights are summed to one, for each new flow arriving
at e matching p, the controller will simply select a path from
He,p with a probability of w(he,p) for each path he,p. This
can be easily implemented by hashing the flow ID to a random
number in [0, 1] and checking which segment it falls as the
weights w(he,p) divide [0, 1] into |He,p| consecutive segments.

C. An Example

We illustrate our load-balanced policy enforcement method
in Figure 2. We show how a network policy p in Figure

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:42:10 UTC from IEEE Xplore. Restrictions apply.

proxy

fw1 fw2

Out

e1

e2 e3

e4

c2c1

c3

Controller

subnet Bsubnet A

(b) possible enforcement paths for p

In In

Traffic

descriptor (d)
 web traffic from subnet B

Action list (a) fw → proxy

(a) user policy p

weight = 0.3 c1 l 1 weight = 0.7 c2 l 2
first path second path

Dest.
Port

Incoming
Interface

Other
Fields Label Fwd.

80 In * l 2 c2

(c) flow table at e3 (TCAM) Incoming
Label

Incoming
Interface

Outgoing
Label

Outgoing
Interface

l 1 e2 l 1 fw1

l 1 fw1 l 3 c3

(d) label switching table at c1 (SRAM)

Incoming
Label

Incoming
Interface

Outgoing
Label

Outgoing
Interface

l 2 e3 l 2 fw2

l 2 fw2 l 3 c3

(e) label switching table at c2 (SRAM)

Incoming
Label

Incoming
Interface

Outgoing
Label

Outgoing
Interface

l 3 c1, c2 l 3 proxy

l 3 proxy null Out

(f) label switching table at c3 (SRAM)

Fig. 2: An example of policy enforcement by hybrid SDN-label switching

2.a can be enforced with our method. First, the controller
pre-computes two possible enforcement paths for p. Each en-
forcement path is characterized by its weight (i.e., probability
of being chosen), outgoing interface and path label. After
executing Eq. 1 & 2, the weights of the paths are 0.3 and
0.7, respectively; see Figure 2.b. This implies that 30% of
the traffic from subnet B that matches p (web traffic) will be
routed along the first enforcement path while the remaining
70% will be routed along the second enforcement path.

Assume that the controller probabilistically selects the
second enforcement path. Then edge switch e3 is configured to
insert l1 in the header of a packet from subnet B that matches
p before forwarding the packet to core switch c2 (see Figure
2.c). At the same time, c2 is configured to first forward the
packet to firewall fw2 (see the first entry of Figure 2.e) and
then switch its label to l3 before forwarding the packet to core
switch c3 (see the second entry of Figure 2.e). Similarly, c3
is configured to first forward the packet to the proxy (see the
first table entry of Figure 2.f) and then remove its label before
routing the packet along the default routing path provided by
a traditional routing protocol (see the second entry of Figure
2.f).

IV. PERFORMANCE EVALUATION

In this section we perform numerical evaluation of the
proposed policy enforcement solution and compare it with
the prior art.

A. Evaluation Settings

Our evaluation is performed with OMNET++ [14] and IN-
ET [17], which provides the standard internet protocol stacks.
First, we compare our hybrid SDN-label switching method
on policy enforcement with the hop-to-hop method and the
tunnel method in [2]. To remove the restriction imposed by

the TCAM-based flow table of limited size, the hybrid method
replaces it with label switching in the core. For the hop-
by-hop and tunnel methods, we set the size to 1500 entries,
following [2], [6]. When a flow table is overflown, we need
to remove some existing rules (which may be done based on
a policy such as least-used first) to make room for new ones,
which generates additional overhead between switches and the
controller when packets from the removed flows show up and
their flow rules have to be put back. This overhead is what
we will compare. Second, we compare our load-balancing
(LB) path selection method with two alternative methods: 1)
the single path method that puts all flows matching a policy
at a switch on the same shortest enforcement path, and 2)
the random path selection method that randomly chooses one
from the pre-computed alternative enforcement paths.

Our evaluation uses two topologies. The first real topology
is based on a campus backbone topology, which comprises
two main core routers connecting 16 core routers. Each core
router is connected to 10 edge routers. The second topology
is randomly generated based on the Waxman model [18].
It comprises 25 core routers interconnected based on the
Waxman model [18]. Similarly, each core routers is connected
to 10 edge routers.

We consider four types of network functions: firewalling
(FW), intrusion detection (IDS), web proxing (WP) and traffic
measurement (TM). The number of middleboxes offering
these network functions are 8, 8, 4 and 4, respectively, which
reflect their different frequencies of appearance in the policies
we enforce with our solution. Each middlebox is randomly
connected to a core router.

Our experiments use three types of policies. Each first-type
policy matches a certain popular external web address and
requires all http traffic towards the destination to go through
FW→ IDS→ Proxy. It is assigned 32 alternative enforcement

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:42:10 UTC from IEEE Xplore. Restrictions apply.

paths going through half middleboxes of each type, i.e., 4×4×
2 = 32. Each second-type policy matches a certain external
address under security watch and all inbound flows from that
address goes through FW→ IDS. It is assigned 16 alternative
enforcement paths. Each third-type policy matches a specific
pair of source/destination addresses under bandwidth watch
and their flows are sent through IDS → TM. It is assigned 8
alternative enforcement paths.

In each evaluation run, the number of policy-matching flows
ranges from 30000 to 300000, and their sizes follow a power
law distribution in the range from 1 to 5000 packets. The
total number of packets in these flows ranges from 1000000
to 10000000. These flows are randomly assigned to the three
policy types, each having one third of the flows.

B. Evaluation Results

First, we evaluate the proposed hybrid method with the
hop-to-hop and tunnel methods on processing/communication
overhead in terms of the total number of requests for the con-
troller to set up flow-table entries (rules) for unmatched arrival
packets. This overhead reflects the scalability issue caused
by limited flow-table size. Table I compares the overheads
of the three methods on the Waxman network. The hybrid
method has much smaller overhead than the other methods.
For example, when the total traffic volume is 5000000 packets,
the hybrid method generated less that 20K requests (from
edge switches), compared to approximately 200K and 130K
requests by hop-to-hop and tunnel respectively. We omit the
results on the campus network due to space limitation.

Second, we evaluate the load-balancing method with the
single and random methods on the maximum middlebox load.
The results are presented in Figure 3 and Figure 4 based on
the campus network and the Waxman network, respectively.
The four plots from left to right show the maximum loads on
a firewall (FW), an intrusion detection system (IDS), a web
proxy (WP), and a traffic measurement device (TM), respec-
tively. In each plot, the horizontal axis represents the total
traffic volume (in millions) of all flows in the network, and
the vertical axis represents the maximum load (in millions)
processed by a middlebox. In all four plots, the maximum
loads increase linearly with traffic volume in the network,
and the load-balanced method (LB) has a smaller maximum
load than the single and random methods. For example, in
Fig. 3(a), when the traffic volume is 10M, the maximum load
on FW is 1.74M packets for the single method, 1.13M for the
random method and 0.87M for LB. Similarly, from the results
on the Waxman network in Fig. 4(a), when the traffic volume
is 10M, the maximum load on FW is 2.54M packets for the
single method, 1.13M for the random method, and 0.87M for
LB.

Table II shows the load distribution for each type of
middleboxes in the campus topology. The table shows max-
imum and minimum loads for firewalls, intrusion detection
systems, web proxies, and traffic measurement devices, when
the traffic volume is 10M packets. In our evaluation, the
capacities of the four type of middleboxes are 1M, 1.5M,

1M and 1M respectively. We can see that the load-balanced
method performs better than the single and random methods.
For example, the loads on FWs range from 0M to 2.54M
under single method and from 0.53M to 1.13M under random
method v.s. from 0.75M to 0.87M under LB; the loads on
IDSes range from 0M to 3.69M under single method and from
0.75M to 1.77M under random method v.s. from 1.21M to
1.29M under LB; the loads on WPs range from 0M to 2.06M
under single method and from 0.48M to 1.18M under random
method v.s. from 0.78M to 0.87M under LB; the loads on
TMs range from 0M to 2.16M under single method and from
0.47M to 1.19M under random method v.s. from 0.79M to
0.87M under LB. In general, the single and random methods
overload some middleboxes while others are under-utilized;
the LB method overloads no middlebox.

TABLE I: Comparison of processing/communication over-
heads (rounded to the nearest thousand) of hop-to-hop, tun-
neling and hybrid schemes.

Total number
of packets in
the network

Hop-by-
hop Tunnel Hybrid

500000 21000 5000 2000
1000000 110000 36000 4000
1500000 245000 108000 6000
2000000 422000 208000 8000
2500000 624000 339000 10000
3000000 874000 485000 12000
3500000 1148000 657000 14000
4000000 1423000 838000 16000
4500000 1718000 1032000 18000
5000000 2028000 1274000 20000

TABLE II: Load distribution in maximum and minimum loads
(in number of packets) among middleboxes in a Waxman
topology.

Middlebox Single Random Load-balancing
(LB)

FW max. 2542757 1125896 872828
FW min. 0 537235 747647
IDS max. 3693028 1768889 1286771
IDS min. 0 750334 1212795
WP max. 2058928 1183453 870169
WP min. 0 484221 777781
TM max. 2163695 1194458 869870
TM min. 0 470034 786199

V. CONCLUSION

This paper proposes a new network policy enforcement
architecture by introducing a hybrid SDN-label switching.
Unlike the tradition software-defined newtorks (SDN), whose
scalability is limited by the TCAM-based forwarding scheme
in the network core, our hybrid architecture uses a highly scal-
able label switching in the network core to enforce network-
wide policies. As a result, the scalability of our hybrid SDN-
label switching is enhanced while still capable of fine-grained
policy management. We formulate a linear optimization for

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:42:10 UTC from IEEE Xplore. Restrictions apply.

(a) Maximum load of a FW (b) Maximum load of a IDS (c) Maximum load of a WP (d) Maximum load of a TM

Fig. 3: Comparison of maximum load on any middlebox in the campus topology

(a) Maximum load of a FW (b) Maximum load of a IDS (c) Maximum load of a WP (d) Maximum load of a TM

Fig. 4: Comparison of maximum load on any middlebox in a Waxman topology

balance traffic distribution among the middleboxes. Through
OMNET++ simulation, we demonstrate that our scheme gen-
erates far fewer processing/communication overheads than
prior arts and the effectiveness of our load-balancing method.

ACKNOWLEDGMENT

This work was supported by National Science Foundation
of US under grants CNS-1719222 and STC-1562485.

REFERENCES

[1] V. Sekar, S. P. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The
middlebox manifesto: enabling innovation in middlebox deployment,”
in Proceedings of the 10th ACM Workshop on Hot Topics in Networks
(HotNets-X). ACM, 2011.

[2] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” in Proceedings of ACM
SIGCOMM. ACM, 2013.

[3] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” in Proceedings of ACM SIGCOMM, vol. 41, no. 4. ACM,
2011.

[4] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with difane,” in Proceedings of ACM SIGCOMM. ACM,
2010.

[5] Y. Zhang, “An adaptive flow counting method for anomaly detection
in sdn,” in Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies. ACM, 2013, pp. 25–30.

[6] H. Xu, H. Huang, S. Chen, and G. Zhao, “Scalable software-defined
networking through hybrid switching,” in Proceedings of IEEE INFO-
COM. IEEE, 2017.

[7] M. Moshref, M. Yu, A. Sharma, and R. Govindan, “vcrib: Virtualized
rule management in the cloud,” in Conference on Networked Systems
Design and Implementation. USENIX Association, 2012, pp. 157–170.

[8] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The Segment Routing Architecture,” Proc. of IEEE GLOBECOM,
2015.

[9] A. Cianfrani, M. Listanti, and M. Polverini, “Incremental deployment of
segment routing into an isp network: a traffic engineering perspective,”
in IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 3146–
3160, Oct. 2017.

[10] A. Hari, U. Niesen, and G. Wilfong, “On the problem of optimal path
encoding for software-defined networks,” IEEE/ACM Transactions on
Networking, vol. 25, no. 1, pp. 189–198, Feb. 2017.

[11] D. D. Clark, Designing an Internet, 1st ed., ser. Information Policy
Series. The MIT Press, 2018.

[12] R. Bush and D. Meyer, “Some internet architectural guidelines and
philosophy,” Request For Comments RFC 3439, December 2002.

[13] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags,” in Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation. USENIX Associ-
ation, 2014.

[14] Omnet++ discrete event simulator. (2019). [Online]. Available:
https://omnetpp.org/

[15] Openflow switch specification v1.5.1. [On-
line]. Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf

[16] J. Moy, “Ospf version 2,” Internet Request For Comments RFC 1247,
July 1991.

[17] Inet framework. (2019). [Online]. Available: https://inet.omnetpp.org/
[18] B. M. Waxman, “Routing of multipoint connections,” IEEE Journal on

Selected Areas in Communications, vol. 6, no. 9, December 1988.

Authorized licensed use limited to: University of Florida. Downloaded on September 01,2020 at 00:42:10 UTC from IEEE Xplore. Restrictions apply.

