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Abstract. Dynamically transitioning between individual and collaborative 
learning activities during a class session (i.e., in an un-planned way, as-the-need-
arises) may have advantages for students. Existing orchestration tools are not de-
signed to support such transitions. This work reports findings from a technology 
probe study that explored alternative designs for classroom co-orchestration sup-
port for dynamically transitioning between individual and collaborative learning, 
focused on how control over the transitions should be divided or shared among 
teachers, students, and orchestration system. This study involved 1) a pilot in an 
authentic classroom scenario with AI support for individual and collaborative 
learning; and 2) design workshops and interviews with students and teachers. 
Findings from the study suggest the need for hybrid control between students, 
teachers, and AI systems over transitions as well as for adaptivity and/or adapta-
bility for different classrooms, teachers, and students’ prior knowledge. This 
study is the first to explore human–AI control over dynamic transitions between 
individual and collaborative learning in actual classrooms.  
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1 Introduction and Background 

Individual and collaborative learning activities are often combined in educational prac-
tice to support social learning experiences [1, 2]. For instance, many widely-used in-
structional methods (e.g., Think-Pair-Share [3] and Jigsaw [4]) use individual phases 
to promote productive collaboration. In addition, individual and collaborative modes of 
learning may have complementary strengths for supporting learning efficiently [5]. For 
example, collaborative learning offers opportunities for mutual elaboration and co-con-
struction of knowledge, or sense-making; whereas individual learning promotes induc-
tion and refinement as learning mechanisms [5].  

Given these hypothesized complementary strengths of individual and collaborative 
learning, it may be fruitful to have students transition dynamically between individual 
and collaborative learning, as the need arises for given students (e.g., when there are 
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diminishing returns in one learning mode at moments where the other might be more 
effective). Doing so would mean teaming up students in ways that are not fully pre-
planned, but are instead determined opportunistically based on unfolding learning situ-
ations – whether by an instructor or by educational software. Orchestrating this kind of 
dynamic switching in classrooms has been recognized as a major challenge in teaching 
practice [6-8]. Prior research has focused on designing tools for supporting teachers in 
orchestrating either individual (e.g., [9]) or collaborative learning (e.g., [10, 11]) sce-
narios, or individual and collaborative learning phases on CSCL scripts (e.g., [12]). 
However, these tools have typically been designed with the assumption that a class of 
students progresses through instructor- or student-led activities in a pre-planned, rela-
tively synchronized manner [11].  

The assumption that transitions are pre-planned breaks down in personalized class-
rooms such as those where students work with AI-based learning technologies [13]. In 
practice, teachers dynamically switch between individual and peer tutoring activities. 
For instance, prior work suggests that during AI-supported class sessions, teachers 
sometimes orchestrate transitions between individual and collaborative learning on the 
fly (e.g., by pairing one student to tutor another who may currently be struggling) [14, 
15]– although they desire greater support from the AI in doing so [8, 15-17]. 

In recent years, several projects have begun to explore the design of technologies to 
support such human–AI co-orchestration: the division or sharing of classroom orches-
tration between different agents in the classroom (e.g. teachers, students, and AI-based 
systems) [18, 19]. Prior research has explored the design of teacher-centered orchestra-
tion tools, which allow teachers to offload some decision-making during class, by del-
egating some student pairing suggestions to the AI system. While offloading was an 
important goal for teachers, in these studies they also desired a certain amount of con-
trol over AI systems’ decision-making regarding student pairing [8]. That is, they re-
jected the notion of orchestration systems that operate purely as autonomous agents. 
Yet, it remains unclear what degree of control would be desirable versus overburdening 
or distracting to teachers in these contexts [8, 17]. Meanwhile, other work has found 
that students desire some agency over these decisions as well, and reject the idea of 
either teachers or AI systems having full control [17]. As this mixed bag of findings 
indicates, many open questions remain regarding how best to distribute the task of co-
orchestrating dynamic transitions between students, teachers and AI systems.  

Building upon these prior findings, the current work takes a technology probe ap-
proach in live middle school classrooms, to inform the design of co-orchestration sup-
port for pairing students and initializing brief, unplanned collaborative interludes dur-
ing individual work with AI-based tutoring software. Our focus is on understanding 
how best to distribute control over the dynamic teaming up of students between teacher, 
students, and the orchestration system. To the best of our knowledge, no prior work has 
explored how best to support human–AI control over dynamic transitions between in-
dividual and collaborative learning in authentic classrooms. Also, this work differs 
from CSCL literature on dynamic and automated forms of group formation (e.g. [20, 
21]) by emphasizing the role of the different actors during the orchestration of dynamic 
pairing, instead of focusing on the AI technology for pairing up students.  
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In this paper, we explore design challenges and opportunities for human–AI control 
over dynamic transitions in the classroom by (1) illustrating student and teacher activity 
in relation to each pairing policy, (2) exploring students’ and teachers’ feedback regard-
ing the experience of dynamic switching, and (3) understanding teachers’ desires for 
support and control.  

2 Methods 

2.1 AI-based Classroom Technologies Used 

As platform to explore our vision of dynamically switching students between indi-
vidual and collaborative learning modes, we used two AI-based tutoring systems, 
namely, Lynnette, which supports individual problem-solving practice, and APTA 2.0, 
which supports mutual peer tutoring, a form of collaborative learning. Both systems 
support practice in linear equation solving for middle school students. The use of APTA 
2.0 helps to address a challenge that has been reported in prior CSCL work [5] and that 
we have also observed ourselves when teachers spontaneously team up students, 
namely, that it is difficult for middle-school students (12-14-year-olds) to collaborate 
effectively. Lynnette provides step-by-step guidance in the form of hints and feedback, 
as students individually solve equations (e.g. solve for x: x+3 = 9). It also keeps track 
of students’ mastery of detailed skill components, as they progress in the problem sets, 
to support a form of individualized mastery learning. Lynnette is implemented as a rule-
based Cognitive Tutor [22] within the CTAT/Tutorshop architecture [23]. 

To support collaborative learning, we implemented a new version of APTA (Adap-
tive Peer Tutoring Assistant), developed originally by Walker, Rummel, and Koedinger 
[24]. This system adaptively coaches one student (the “peer tutor”) in tutoring another 
student (the “tutee”) with advice about both tutoring and mathematics. It does so using 
two rule-based cognitive models, one that captures peer tutoring strategies, one that 
captures equation-solving knowledge (The latter is shared with Lynnette.) APTA 2.0 
supports two different interfaces, one where the tutee (i.e., the student being helped) 
solves linear equations (Fig. 1 - top), and another through which the student in the peer 
tutor role monitors the tutee’s work and provides guidance (Fig. 1 - bottom). The peer 
tutor marks their tutee’s problem-solving steps as correct or incorrect, accesses hints 
about equation solving generated by Lynnette, and receives messages from APTA 2.0’s 
coaching model on how to improve tutee’s skills and give good advice (e.g., “Well 
done! Tutor, do you have a better sense of what your partner is doing?”, Fig. 1 - bot-
tom). APTA 2.0 connects with Lynnette, which compares the tutee’s input to possible 
correct solutions, so that APTA 2.0 can give the peer tutor feedback on whether their 
marking of the tutee’s steps is correct. APTA 2.0 also presents a chat module where 
tutees and tutors can communicate during the assignment. For example, tutees can ask 
for help and tutors can give hints on the current step (Fig. 1, chat component). Chat 
messages are classified as help type (e.g., next-step help, previous-step help, both and 
not help) [25]. The classification result is then used to feed the coaching model and 
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provide adaptive advice to the tutor. APTA 2.0 assesses students’ collaboration skills 
using its model of collaboration with a variant of Bayesian Knowledge Tracing.  

While Lynnette and APTA have been used in prior classroom studies separately and 
have each separately shown improved learning gains [24, 26, 27], this is the first at-
tempt to combine both AI-systems for dynamically switching between individual and 
collaborative learning activities.  

 

2.2 Design, Participants and Procedure 

To explore designs of human-AI co-orchestration support for dynamically transitioning 
between individual and collaborative learning in classrooms, we conducted a technol-
ogy probe study in middle school classrooms. Our study focused primarily on issues of 
control (i.e., how can teacher, students, and AI together bring about effective transi-
tions?). Following Hutchinson et al.’s conception of technology probes [28, 29], our 
goals were to: (1) better understand how unplanned dynamic pairing plays out in au-
thentic AI-supported classroom settings, (2) conduct technical field tests of an early 
prototype of a co-orchestration system to support dynamic pairing, and (3) provide 
teachers and students with the necessary context to provide rich, experientially-
grounded design feedback and ideas for future human-AI co-orchestration tools. 

 
Fig. 1. APTA 2.0 interfaces for students in the tutee (top) and tutor (bottom) role. 
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Three seventh-grade math teachers (1 female, 2 male) from a middle school in a city 
in the US were recruited. Teachers were asked to use the two AI-based tutoring systems 
during their normal classroom period. A total of 118 students from six classes (see Ta-
ble 1), used Lynnette and APTA 2.0 for practicing linear equations. All students had 
received prior instruction on linear equations before. Thus, the focus was on practice. 

Based on prior design explorations with students and teachers [8, 15, 17], we se-
lected and varied the policies for dynamically transitioning between individual and col-
laborative learning. Each class was randomly assigned to one of three the policies de-
scribed below. Once the decision to switch given students from one learning mode to 
another was made, the switch was actuated, in the system, by a (remote) member of the 
research team. In the future, the steps to do so will be fully automated.  

Student pairing policy. Under this policy, students were encouraged to request help 
from a classmate (tutor) if they felt they were stuck on a problem. They could select 
several peers (based, e.g., on their affinity) by filling in and then submitting a request 
form. The system (simulated by the remote researcher) initialized a peer tutoring as-
signment by matching the tutee with their first option listed on the request form. If that 
option was not available (e.g., because the requested partner was working on another 
peer tutoring assignment), the system tried to match the tutee with the second option 
listed, and so on, until fulfilling the help request.  

Teacher pairing policy. Under this policy, teachers were encouraged to identify a stu-
dent (tutee) who could potentially benefit from a peer tutoring activity together with a 
partner (tutor). The teacher could then request that the system (simulated by the remote 
researcher) pair them up. The teacher could also request to see information about each 
student’s skill mastery in Lynnette, to help with pairing decisions. 

AI system pairing policy. An AI system (simulated by the remote researcher who con-
stantly monitored students’ equation-solving skills as assessed by Lynnette) imple-
mented a policy of teaming up a lower-knowledge student with a higher-knowledge 
student. The remote observer was instructed to identify students who, for one of the ten 
skills being monitored (e.g., cancel constant terms), had a probability of knowing – as 
estimated by Bayesian Knowledge Tracing [30] – below 50% for the tutee and above 
75% for the tutor. If the candidate tutor was already paired up with another student, 
then the observer would choose the next best match, based on any other skill, and ulti-
mately chose, at random, a student who had not been paired up before. 

During two regular class periods, each lasting 45 minutes, students performed the fol-
lowing tasks: First, they followed a mini-tutorial on how to use Lynnette and APTA 
2.0. Second, students started to work individually using Lynnette. Third, starting after 
15 minutes of working individually, students were dynamically teamed up using the 
pairing policy selected for the given class. Peers (tutee and tutor) were asked to stop 
their individual work and solve a set of peer tutoring assignments. Following the peer 
tutoring assignment, which usually involved three problems to solve, students returned 
to their individual assignments. Fourth, students participated in a discussion workshop 
led by the teacher to discuss their experiences about the pairing policy (e.g., Did you 
like to be paired with a peer to solve linear equations? Would you prefer to select your 
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peer? Would you let the teacher, or the system pair you up with someone?) and the 
overall activity (e.g., Did you enjoy working with the software?)  

Afterwards, teachers participated in interviews to explore their needs, preferences, 
and reservations regarding the design of co-orchestration support, building upon their 
experience during the classroom study. We conducted two semi-structured interviews 
sessions, each lasting about 30 minutes: one including two teachers (A and B) and the 
other with one teacher (C). Ideally, all teachers would have experienced all three pairing 
policies during the classroom part of the study, but that was not feasible for this study. 
Therefore, to give each teacher an impression of the pairing policy they did not experi-
ence, we prepared a set of storyboards representing the three pairing policies (student, 
teacher, or AI system choice). For example, Fig. 2 depicts a storyboard for the AI sys-
tem pairing policy. Teachers were asked to review these storyboards, and a researcher 
led the conversation regarding co-orchestration opportunities (e.g., Who should have 
the agency over the pairing policy? Who should accept or reject the initialization of a 
peer tutoring activity?) and their preferences.  

To preserve students’ privacy, we conducted live classroom observations rather than 
audio/video recording classroom sessions. An observer and a researcher were present 
during each class period. The observer took observational notes regarding teachers’ and 
students’ behaviors using a tool with pre-configured categories (e.g., teacher explaining 

 
Fig. 2. A storyboard showcasing the pairing policy led by the AI system. 
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instructions to the whole classroom). The researcher took notes during students’ work-
shop sessions and teachers’ interviews. All logged data generated by Lynette and APTA 
were collected in the DataShop repository [31] for further analysis.   

3 Analysis, Results and Findings 

We aimed to understand design challenges and opportunities for human–AI control 
over dynamic transitions in the classroom by (1) illustrating student and teacher activity 
in relation to each pairing policy, (2) exploring students’ and teachers’ feedback regard-
ing the experience of dynamic switching, and (3) understanding teachers’ desires for 
support and preferences for control.  

To address our aims, we analyzed the software log data and classroom observation 
notes from six classes, along with notes from post-hoc workshop discussions with stu-
dents and semi-structured interviews with teachers. Qualitative data was analyzed fol-
lowing a content analysis procedure [32]. Quotes of interest were selected by two re-
searchers, and then summarized first, in relation to the specific aims of this study (as 
presented above) and then, according to each pairing policy. This resulted in a set of 
insights related to each aim and pairing policy, which are described below.  

3.1 Student and Teacher Activity 

Based on the data logs from Lynnette and APTA 2.0 (see Table 1), we found that the 
Student pairing policy yielded fewer peer tutoring assignments (16/41) than the 
Teacher pairing policy (26/31) and the AI system pairing policy (38/46).  

In the Student pairing policy, in which students were encouraged to request to work 
with a peer when needed, 16 out of 41 students (39.5%) engaged in a peer tutoring 
assignment. Given the rather large difference in the number of peer tutoring assign-
ments between the two classes who experienced this condition (see Table 1), we ana-
lyzed the behavior and characteristics of these two classes from observations and inter-
views. Only four students from class 1 engaged in peer tutoring assignments possibly 
because the students in this class were more confident and had more advanced math 

Table 1. Students distribution for individual and peer tutoring assignments per class and pairing 
policy. 

Pairing policy Class Teacher Individual Peer tutoring 

Student (n=41) 
1 A 17 4 
2 B 24 12 

Teacher (n=31) 
3 B 16 14 
4 B&C 15 12 

AI system (n=46) 
5 B 26 20 
6 B&C 20 18 
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skills than those in class 2 as mentioned by their teacher (“class 1 is a high-achieving 
classroom”, Teacher A). As for students from class 2, half of students worked on a peer 
tutoring assignment, a low number compared to the other two conditions (e.g., 14 out 
of 16 students from class 3 worked on a peer tutoring activity). Evidently, not all stu-
dents are equally motivated to work on collaborative learning activities. For instance, 
the majority of students from class 2 stated that “they would prefer working alone.”  

In the Teacher pairing policy, the teacher was the instigator of the dynamic pairing. 
Table 1 shows that 26 out of 31 students (83.9%) of students in this condition engaged 
in a peer tutoring activity, meaning that the teacher was able to make decisions about 
how to pair up students by herself (14 out of 16 students), and by requesting information 
from students’ skills, which were retrieved from Lynnette (12 out of 15 students). While 
a deep data analysis would be needed to understand if this pairing strategy led to more 
effective peer tutoring activities than other pairing strategies, these results suggest that 
retrieving assessments of students’ mastery of math skills from the AI system could 
potentially help teachers to make informed decisions for pairing up students. 

In the AI system pairing policy, 38 out of 41 (92.7%) students did peer tutoring as-
signments. Of these peer tutoring partnerships, 78.9% (30 of 38) were chosen based on 
the “ideal” matching criterion, namely, that for at least one of the equation-solving 
skills targeted in the instruction, the tutee’s mastery level was below 50% and the tu-
tor’s mastery level was above 75%. In addition, 15.8% (6 of 38) of peer tutoring part-
nerships were chosen based on the next best match, which required at least one that the 
peer tutor had higher mastery of at least one skill. Finally, 5.23% (2 of 38) were initial-
ized by randomly selecting a peer tutor due to a lack of good candidates. These results 
suggest that the AI system pairing policy seems to be feasible for teaming up students, 
or for suggesting students to be teamed up when teachers want control. 

3.2 Student and Teacher Feedback  

Student pairing policy. All students from class 1 (high-achieving classroom) and some 
students in class 2 (large classroom) liked being able to choose a classmate and not 
being paired by the teacher. A student from class 1 stated that he would prefer “to 
choose someone I can work with better” based on their affinity. However, another stu-
dent argued that he would prefer to “work with someone with a higher skill level”. The 
majority of students in class 2 stated that they would prefer to work alone, and some 
students thought it would be better to ask for help from the teacher instead of a class-
mate.  

Teachers’ views did not align with students’ preferences. Teachers commented that 
they would prefer to have more control over the dynamic transitions. For example, they 
stated that they would like to “have some control over the pairing” and “override stu-
dents’ pairing,” arguing that “some kids don’t work well might choose those who’ll just 
give answers or chat about something else.” Thus, one reason teachers may prefer to 
have the final say over the pairing is a concern that some students may not collaborate 
effectively, and that students’ collaboration skill should be a factor in teachers’ prefer-
ences for teaming up students. Estimates of how well students mastered the collabora-
tion skills could be retrieved from APTA’s coaching model [24]. It is clear as well that 
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teachers prefer to limit non-math related chat interactions on the part of students. This 
concern appears well-founded. Findings from prior work [24] and chat interactions 
from the current study indicate that it is very common for students to exchange off-
topic messages through chat. For instance, for all three pairing policies we found a high 
percentage (84.9%) of tutors’ messages related to off-topic chat entries.  

Teacher pairing policy. The majority of students from class 3 and roughly half of the 
students from class 4 (small classroom) approved of letting the teacher make pairing 
decisions. One student stated: “she [the teacher] knows who is good and who is bad,” 
noting that the teacher could use her prior knowledge of the students’ skills to get a 
productive peer tutoring activity. However, some students from class 3 and class 4 
stated that they would like to choose a classmate to become a tutor “depending on the 
problem [they] are working on,” meaning that they would expect to be helped by a 
friend or someone in the class only if the problem is not too difficult, and otherwise 
would prefer to receive help from the teacher rather than a peer. Although most students 
agreed with the pairing decisions made by their teacher, they also recommended other 
pairing policies. For example, one student mentioned that she would prefer “to get a 
randomized partner because he can get someone new every time.” However, another 
student raised the concern that, with randomized partners, “it could be possible to get 
someone who cannot help you with the problem.” Following up on this idea, other stu-
dents suggested that another pairing policy to match tutees and tutors would be “based 
on a [tutor] skill” or “a qualification of becoming a tutor,” and only students who get 
this skill should be recommended for tutoring other students. These comments from 
students are in line with the implications of some of the teachers’ comments discussed 
above. They raise the interesting idea of a pairing policy that would take into account 
APTA’s assessment of a student’s peer tutoring skills (as mentioned, APTA 2.0 uses 
its model of tutoring skill to assess individual students’ skill in this area).  

Teachers agreed that the teacher pairing policy might be more beneficial for students, 
as the teacher would choose someone who “they can focus better.” However, teachers 
raised some concerns about the orchestration load from teachers’ side, as one teacher 
expressed that “at some point, matching and monitoring individual and peer tutoring 
activities would be bothersome.”  

AI system pairing policy. The majority of students from class 5 (large classroom) 
agreed to be matched by the system, while most from class 6 (low-achieving classroom) 
had a contrasting view, expressing that they would prefer to be able to choose a class-
mate to become their tutor. Comments from students also indicated that they felt sur-
prised to learn who their peer was. One student said that “his peer was a classmate who 
does not talk to him often.” Similar to previous comments about the other pairing pol-
icies, students indicated that the matching of tutees and tutors should be based on skill 
levels. As one student suggested: “if the skill [represented as a horizontal bar in the 
interface] is long, that person should be a tutor.” 

Teachers liked the idea of having an AI system pair up students. However, they 
pointed out they should have some control over the AI system’s decisions. One teacher 
mentioned that “he must be able to override the system’s matching decisions.” Teach-
ers also suggested that the system should be able to have some constraints for matching 
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certain students, based, presumably, on their knowledge about students’ characteristics 
and knowledge. For example, a teacher stated that “he would trust the system”, as long 
as it has some constraints such as “never putting these two kids (e.g., Sally and Molly) 
together because I know they don’t work together well.” Furthermore, teachers indi-
cated that the AI system could potentially suggest best matches to teachers, based on 
students’ skills, along with the teacher having the ability to accept or reject a matching 
suggestion. 

3.3 Further Understanding Teachers’ Desires for Support and Control  

When teachers were asked about their desires for support and control of the dynamic 
transitions, they all envisioned hybrid forms of control shared between students, teach-
ers, and AI systems. Additionally, teachers indicated that the control of the dynamic 
transitions should be tailored to class and individual student characteristics, noting that 
the orchestration tool should “preserve flexibility,” because “different classes have dif-
ferent dynamics and skills.” This view is supported through the results presented in 
Section 3.1 and Section 3.2. We explain this view according to three differentiated 
classroom characteristics that emerged from teachers’ interviews.   

High-achieving classrooms. There was a high-achieving classroom in the study (Class 
1): as mentioned, only 4 of 17 students from this class worked on peer tutoring activities 
(see Table 1). Teacher A stated that most of the students from his class were taking 
advanced math classes. Teachers suggested that for this particular class, the pairing 
policy could be co-orchestrated by students and teachers, such that students would have 
some agency with respect to the pairing policy, and the teacher would have the option 
to accept or reject them in the orchestration tool.  

Low-achieving classrooms. In the low-achieving classroom (Class 6), 18 out of 20 
students worked in peer tutoring activities (see Table 1). Their teacher (Teacher B) 
stated that there were several low-achieving students and that usually, the classroom 
dynamics for this class are different from others (e.g., large classes like class 2). Teach-
ers indicated that for this class, orchestration could be divided between the AI system 
and teachers. For example, teacher C indicated that she would let the AI system match 
students according to students’ skills, as long as the system is “able to restrict some 
matchings” depending on students’ characteristics (e.g., affinity). All teachers also sug-
gested that the teacher should be able to accept and reject these pairings. However, 
Teachers B and C opined that, at the same time, the teacher should not become a bot-
tleneck: if the teacher is busy helping another student or doing any other classroom duty 
and does not have the time to accept or reject the pairing, the system should be able to 
proceed and initialize the peer tutoring activity. 

Classroom sizes. During interviews, teachers also noted that their ability to share con-
trol over dynamic pairings with the AI system is constrained by the size of the class – 
a factor that has rarely been explored in prior work on co-orchestration support. For 
instance, one teacher stated that complete teacher control over the dynamic pairing 
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would be feasible in a small class, if “most students could work in individual assign-
ments,” and only a small number of students could benefit from a peer tutoring activity. 
By contrast, in cases where teachers need to orchestrate larger classes, they would pre-
fer to maximize the support from AI systems to offload some of the orchestration tasks, 
as “it would take much time to control and monitor too many students at once.” Thus, 
in larger classes teachers were open to exploring the option of giving most of the agency 
to the AI system to monitor and suggest pairing opportunities. Teachers clearly saw 
value in sharing control over these dynamic transitions with an AI system. 

4 Discussion and Future Directions 

Motivated by prior findings that suggest that students benefit from alternating dynami-
cally between individual and collaborative activities, where such alternations are not 
pre-planned, but are instigated on the fly, as the need arises, we aimed to understand 
how to divide or share control between teachers, students, and AI systems over stu-
dents’ transition between the two types of learning activities.  
    In line with prior research on co-orchestration, findings from the current study sug-
gest a need for a form of hybrid control shared among students, teachers, and AI sys-
tems [7, 18, 33]. As in prior investigations, students and teachers expressed differing 
preferences regarding how control over peer tutor selection should be distributed 
among teachers, students, and the AI [17]. Students’ feedback regarding pairing poli-
cies indicated that both the Student and Teacher pairing policies were well received. 
However, students were hesitant regarding the AI system policy. In contrast, teachers 
showed a greater affinity towards the Teacher and AI system pairing policies. In addi-
tion, the current work suggests a need for the distribution of control to be sensitive to 
classroom characteristics (e.g., class size and distribution of ability among students) 
and dynamics (e.g., potential for teacher overload). For instance, our findings suggest 
that for high achieving classrooms, in line with prior findings, students and the teacher 
could share control over the pairing by allowing students to select their partner while 
enabling the teacher to have oversight over these selections [17, 33]. As for low achiev-
ing classrooms, our findings point to sharing of control mostly between the teacher and 
the AI system, with the AI system matching students according to their skill mastery or 
peer tutoring (coaching) ability, while also taking teacher-specified constraints into ac-
count (e.g., preventing certain pairs of students from working together, or preventing 
any given student from serving as a peer tutor too often).  

Moving beyond prior work on the design of co-orchestration support, the current 
work points to needs for adaptivity and adaptability for different classroom contexts, 
teacher preferences, and students’ prior knowledge [7]. One example of adaptability in 
a co-orchestration system could be enabling teachers to select the best pairing policy 
based on their particular goals, needs, and classroom dynamics. In a small class, or one 
in which few students are struggling or in need of additional help, teachers may allow 
students, at some point during class, to choose which peers they would like to work 
with – perhaps supported by the AI system. By contrast, in a large class, or one where 
many students go through a rough stretch, teachers might choose to have the AI system 
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take more control over the pairing decisions, within constraints preconfigured by them 
[cf. 8], and with the option of approving, adjusting, or vetoing the system suggestion. 
In addition to adaptability, our findings also suggest promise for co-orchestration sys-
tems that are adaptive to particular teachers’ and classrooms’ needs. For example, a co-
orchestration system might detect the class size or the teacher's current workload and 
in turn adjust how it balances control across teachers, students, and the AI. When the 
teacher has a high workload, the system could intervene by automatically assuming 
greater control over orchestration to support more fluid transitions (e.g., by ensuring 
the teacher is not a bottleneck for pairing decisions). 

While the above examples illustrate how co-orchestration systems can be designed 
to respond to diverse classroom situations, several open research and design questions 
remain. Further research is needed to understand the right balance of teacher, student, 
and AI control over pairing decisions, which our findings suggest may need to be un-
derstood as adaptive to different classroom contexts. In particular, our findings point to 
a need to explore the design space of context-adaptive pairing policies. Future studies, 
conducted in a larger number of classrooms, may shed light on how a broader range of 
classroom characteristics and student’s factors could affect dynamic transitions. 

5 Conclusions 

This exploratory study aimed to address the design of human-AI co-orchestration sys-
tems that meet the complexity of authentic classrooms. To the best of our knowledge, 
this is the first classroom field study to explore human–AI control over dynamic tran-
sitions between individual and collaborative learning. This study yields experientially-
grounded feedback from teachers and students, to inform the design of co-orchestration 
support for dynamic transitions. Moving beyond prior work in this area, which has of-
fered general design recommendations for “average” classroom contexts, this study 
surfaced context-dependent needs for the design of human-AI co-orchestration support. 
General design guidelines for orchestration technologies have emphasized the need to 
carefully consider classroom context and students’ characteristics. Yet little research 
has explored how this goal might be achieved in contexts where orchestration is dis-
tributed among humans and AI systems.  

In sum, this work contributes to the emerging literature on human–AI co-orchestra-
tion, pointing to needs for further research on how particular orchestration tasks can 
best be balanced between teachers, students, and AI systems, and on how the ideal bal-
ance may depend on classroom contextual factors. In turn, the design of new co-orches-
tration supports may facilitate complex yet powerful classroom scenarios, which would 
otherwise be difficult or impractical to implement. 
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