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ABSTRACT
Due to increasing threats on power systems from various extreme events such as adverse weather
and cyber/physical attacks, research on power grid resilience is recently gaining a substantial
traction. In this study, we evaluate the transmission grid resilience using the local topological
summaries derived under a framework of topological data analysis (TDA) and more conventional
power system reliability metrics. The dynamics of persistent topological features after an extreme
event are examined to evaluate the impact on the underlying network structure. In addition,
a framework based on an optimal power flow model is developed to investigate power system
reliability metrics under extreme events. The developed methods are applied to a synthetic power
system that is built on the footprint of the Texas power system. By comparing the TDA summaries
with the power system reliability metrics, our findings show that local topological summaries can
successfully reflect changes in the grid resilience.
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1. Introduction

Power systems are critical infrastructures that are vul-
nerable to extreme events such as natural disasters,
extreme weather, or pernicious human actions
(National Academies of Sciences & Medicine, 2017).
Due to its pivotal role in modern life, power system
outages usually affect millions of people and pose great
threats to everyday life, economic prosperity, and
national security. The Northeast blackout of 2003
throughout parts of the Northeastern and Midwestern
United States is estimated to affect at least 55 million
people in Canada and the United States. The severe
blackouts in India in 2012 affect over 600 million people
or about 9% of the world population. In addition, grow-
ing evidence shows that the entire electricity supply
chain, including generation, transmission, and distribu-
tion, is vulnerable to climate change (Chandramowli &
Felder, 2014). Therefore, there exists a critical need to
improve the resilience of power systems, such that
major outages are less frequent, their impacts on society
are reduced, and recovery is more rapid.
Resilience is defined as the capacity to anticipate,

prepare for, respond to, and recover from significant
disruptions (Sharma et al., 2018; Wilbanks & Kates,
2010). Due to its complex and interdisciplinary nature,
previous studies have been conducted over a wide range
of domains (Čaušević et al., 2019; Gasser et al., 2019;

Wang et al., 2016). Graph theory and measures of com-
plex network analysis have been applied to a variety of
studies on the resilience of power systems (Ezzeldin &
El-Dakhakhni, 2019). The electric power systems are
often represented as networks/graphs, and the resilience
and/or robustness of the power grid is then evaluated by
assessing the dynamics of the topological properties of
the graph, such as the node degree distribution, cluster-
ing coefficient, average path length, giant component
size, etc. Holmgren (2006) examines the error and attack
tolerance of the Nordic and the western United States
transmission grids by scrutinizing the topological char-
acteristics of the networks. Chassin and Posse (2005)
develop a simple model to estimate the topology of the
North American Eastern and Western power grids,
which are combined with the scale-free network con-
nectivity probability distribution to estimate the loss-of-
load probability (LOLP). Chassin and Posse (2005) also
compare the values of LOLP with other LOLP estimates
previously obtained using standard power engineering
methods. Ezzeldin and El-Dakhakhni (2019) scrutinize
the robustness of the Ontario power network by evalu-
ating several key network metrics. Guidotti et al. (2016)
develop a unified methodology to model the network
dependencies and interdependencies and incorporates
the methodology in a six-step probabilistic procedure to
assess the resilience of critical infrastructure. In several
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studies (Cuadra et al., 2015; Pagani & Aiello, 2013;
Rueda et al., 2017), a network with higher network
robustness under extreme events is linked to higher
clustering coefficient, lower average path length and/or
higher mean degree. Furthermore, Wang et al. (2019)
assess the structural robustness of the transmission net-
work for central China by using percolation theory and
the giant component size under random and deliberate
node-based events. Percolation theory is based on quan-
tifying the proportion of the network that is still con-
nected after extreme events.
However, while assessment of grid resilience via these

topological metrics reflects structural vulnerability
under extreme events, it fails to reveal the grid dynamics
that underlies power system operation. Historically,
large-scale blackouts are triggered by simple faults,
which evolve into cascading failure of other critical
components due to violation of power system operation
limits and eventually lead to catastrophic events
(National Academies of Sciences & Medicine, 2017).
Therefore, it is critical to examine the indicators related
to power grid operation, such as reliability and security.
Functionally, power system reliability is usually evalu-
ated using metrics that reflect end-use demand satisfac-
tion. Therefore, the power grid resilience characteristics
are analyzed based on indicators that can measure sys-
tem operating reliability. Liu et al. (2016) present
a framework for analyzing the resilience of an electric
power grid with integrated microgrids in extreme con-
ditions by introducing several indices to measure the
impact of extreme events. Trakas and Hatziargyriou
(2017) utilize a stochastic program to improve the resi-
lience of a distribution system exposed to an approach-
ing wildfire. Ouyang and Duenas-Osorio (2014)
conduct a resilience assessment of electric power sys-
tems to hurricanes by simulating the response of power
systems based on a DC power flow model. Rocchetta
et al. (2018) assess power system resilience by evaluating
the expected energy not supplied using a vectorized
emulator of the power flow solver to reduce the compu-
tational effort. The comparison between results from the
emulator and the conventional more computationally
expensive power flow method indicates similar accu-
racy. Similarly, Fang et al. (2014) simulate cascading
failures in a network and quantify its resilience using
a network-centric and a power flow model, where both
models give similar results.
In this study, we evaluate the grid resilience using

metrics from topological data analysis (TDA) and con-
ventional power system reliability metrics. The interface
of TDA encompasses algebraic topology, machine
learning, statistics, and data science, and this offers
a platform to systematically infer from the geometric

structure and form of datasets. With the TDA-based
metric, the transmission network is represented by an
edge-weighted, undirected graph, and extreme events
are represented by the removal of edges or nodes from
the graph. The dynamics of persistent topological fea-
tures after extreme events are examined and compared
with the transmission network's original features. The
motivation here is to capture the evolving structural
dynamics (deformation) of the network due to the
events. The structural deformation of the network is
viewed as a proxy of the impact of the events on the
network. In addition, we also develop a framework
based on the optimal power flow (OPF) model and
investigate conventional power system reliability
metrics under extreme events. The developed frame-
work is applied to a synthetic power system that is
built on the footprint of the Texas power system.
Insights are then drawn from the comparison between
the topological metrics and the power system reliability
metrics.
The contributions of this paper are twofold. First, the

method of TDA is employed to examine the structural
deformation of the graph representation of a real-world-
sized transmission network. While traditionally many
other graph characteristics are used, very few studies
scrutinize the TDA summaries. In addition, the TDA
summaries are compared against traditional reliability
metrics of the transmission grid by examining their
correlation coefficients, and their relations are further
explained.
The paper is structured as follows: Section 2 details

the methods used in TDA as well as the framework
based on the OPF model. Section 3 gives an overview
of the data used in our analysis. Section 4 presents the
results and Section 5 concludes this paper.

2. Resilience quantification methodology

2.1. Graph representation of extreme events

A power transmission network typically consists of
buses and branches. Buses may correspond to power
generating plants and substations feeding demand.
Branches may represent any series of devices in the
network, such as transmission lines, transformers, or
flexible alternating current transmission devices. The
topological structure of a transmission network can be
represented by a graph G, which is defined as a pair of
sets of nodes V and edges E. Each element in the set of
edges E represents a link between two nodes from the
set V . Depending on whether edges have orientations or
not, a graph can be directed or undirected. Therefore,
a transmission network can be represented by a finite,
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nonempty, undirected graph G ¼ ðV;EÞ, where the set
of nodes V represents all buses and the set of edges E
represents all branches in the transmission network.
Note that although directed graphs are used in analyzing
the actual flow of power in a network, we treat the
transmission system as an undirected graph and the
direction of power flow on a branch is determined by
its sign. Figure 1(a) shows a simple 3-bus system with
two generators and a load, which is represented by
a graph with 3 nodes and 3 edges.
The above representation of a power transmission

network assumes equally weighted edges. While this
representation can capture the topological structure of
a network, real-world power system performance is also
measured with a diverse set of indicators, whose mag-
nitude must be strictly limited within proper ranges. For
example, the magnitude of power flow on
a transmission line must be bounded by its thermal
rating. Therefore, weight ρ can be assigned to edges in
a graph to represent the characteristics associated with
the edges and the graph becomes a weighted graph,
which can be represented by G ¼ ðV;E; ρÞ. Such
weights may represent costs, lengths or capacities,
depending on the problem at hand. For a transmission
network, the weight of an edge can be a thermal rating
of that edge.
Given the above graph representation of power trans-

mission networks, an extreme event can be represented
by the removal of a node, edge or a subgraph. An edge-
based event represents the removal of one or more
edges, which are commonly associated with line

contingencies, such as tripping of a transmission line,
or failure of transformers. By contrast, a node-based
event represents bus-related contingencies, e.g., power
plant outage or substation failure. Note that removal of
a node also leads to the removal of all edges that are
connected with the node, while removal of an edge does
not affect its endpoints. As shown in Figure 1(b), the
removal of transmission line between bus 1 and bus 2
results in a system with three buses but only two trans-
mission lines, while in Figure 1(c), the removal of bus 2
also leads to failure of transmission line 1–2 and 3–2,
resulting in a system with only two buses and one
transmission line.

2.2. Topological data analysis in vulnerability
analysis

Topological data analysis provides a mathematical
foundation and systematic data science machinery for
understanding the structure (shape) underlying the
observed data. Therefore, TDA-based resilience
metrics primarily reflect the structural response of
transmission networks to various hazards. For
instance, there is no direct relation between the num-
ber of p-dimensional holes detected by TDA and
power system reliability. However, the TDA summa-
ries can be employed to track changes within local
topology and geometry of power systems under attacks
and failures. Recently, several studies (Islambekov
et al., 2018; Ofori-Boateng et al., 2019; n.d.) analyze
power grid resilience under node- and edge-based

(a) The full graph. (b) Remove one edge. (c) Remove one node.

Figure 1. Graph representation of a 3-bus transmission network.

SUSTAINABLE AND RESILIENT INFRASTRUCTURE 3



events via various persistent homology tools within the
TDA framework, such as, for instance, the dynamics of
Betti numbers and persistence diagrams.
Additionally, we postulate that a transmission net-

work is more resilient if it is able to preserve most of its
local topological structure after an event. In this study,
our goal is to analyze the dynamics of persistent topo-
logical features under both node- and edge-based events
following different removal strategies.
Let G ¼ ðV;E; ρÞ be an (edge)-weighted graph repre-

senting the given transmission network. For a specific
threshold (or scale) νj > 0 and for u; v 2 VðGÞ,
a subgraph Gj can be obtained by only keeping edges
with weights ρuv $ νj. Therefore, the adjacency matrix

Aj ¼ ðajuvÞ of Gj is defined as:

ajuv ¼
1 if ðu;vÞ 2 E and ρuv $ νj
0 otherwise:

!

Next, we identify a simplicial complex (afinite collection
of simplices) within each Gj; j ¼ 1; . . . ; n. Basically, a k-
simplex is the convex hull of kþ 1 points. Thus, a node is
a 0-simplex, an edge is a 1-simplex, a triangle is a 2-simplex,
etc. With simplicial complexes, we are able to (combinato-
rially) approximate the hidden geometry of a network.
Given a sequence of n thresholds ν1 < ν2 < . . . < νn, we
can obtain a hierarchically nested sequence of graphs
G1 & G2 & . . . & Gn. This procedure is known as
a network filtration. In this study, the Vietoris-Rips (VR)
filtration is used to extract topological features from the
given transmission network due to its computational effi-
ciency. For νj > 0, the Vietoris-Rips complex is defined as
VRj ¼ fσ ' Vjρuv ¼ dðu; vÞ $ νj;"u; v 2 σg, i.e., VRj
contains all the k-node subsets of Gj, j ¼ 1; . . . ; n, which
are pairwise connected by an edge as simplices of dimen-
sion k( 1. Therefore, we obtain a sequence of VR com-
plexes given a sequence of threshold νj by applying VR
filtration to a graph.
With the sequence of VR complexes

VR1 & VR2 & . . . & VRn, we are able to determine the
count of topological features in the form of Betti num-
bers. For a given simplicial complex, the pth Betti num-
ber (βpÞ reflects the count of p-dimensional holes
presented in the topological surface. For example,
Betti-0 (β0) gives the count of connected components
and Betti-1 (β1) corresponds to the count of one-
dimensional holes (Delfinado & Edelsbrunner, 1995).
By detecting the pth Betti number of each of the
sequence of VR complexes, we obtain a n-dimensional
vector of the pth Betti numbers
βp ¼ ðβp;1; βp;2; ) ) ) ; βp;nÞ. The structural evolution of
a transmission network under an extreme event can be

evaluated using the relative change in the vector of Betti
numbers defined as follows:

Δβp ¼
k βp ( β

0

pk2
k βpk2

where p ¼ 0; 1, and βp and β
0

p represent the vector of the
pth Betti numbers for the original graph and the graph
after an event, respectively (Islambekov et al., 2018).
In addition to the sequence of Betti numbers, the

lifespan of topological features can be represented by
persistence diagrams and barcodes (Carlsson, 2009;
Ghrist, 2008; Kerber et al., 2016; Zomorodian, 2010).
A persistence diagram is a multi-set of paired scale
values corresponding to the birth and death times of
topological features. In turn, persistence barcodes dis-
play the birth and death times of each topological fea-
ture with a horizontal bar. The (dis)similarity between
persistence diagrams D1 and D2, which are extracted
from graph G1 and G2, can be analyzed via a distance
measure (Kerber et al., 2016; Otter et al., 2017).
A commonly used distance measure is the Wasserstein
distance (Wasserman, 2018), which is defined as

WrðD1;D2Þ ¼ inf
γ
ð
X

x2D1
jjx( γðxÞjjr1Þ

1=r;

where r * 1, γ ranges over all bijections between D1 and
D2, and jjzjj1 ¼ maxi jzij.

2.3. Power system reliability metrics

Resilience of a power network is defined as its capability
to withstand system failure incurred by hazardous
events, to reduce the impact of the events on customers,
and to restore to normal operating status after the
events. Grid resilience can be enhanced in a variety of
ways, such as to build a system with sufficient redun-
dancy (Wang et al., 2016). However, these measures
usually come at additional costs. Although it is possible
to design systems that can withstand all major failure
events, the expenses of building and maintaining such
systems can be prohibitively high. Therefore, an ade-
quate reliability margin can serve as guidelines for the
assessment of system resilience. Although there are
myriad resilience metrics proposed (Willis & Loa,
2015), there are no generally agreed upon resilience
metrics that are used widely, and most of the proposed
metrics remain immature. Therefore, we follow tradi-
tional transmission reliability metrics to examine power
grid resilience. Note that the concepts of reliability differ
from resilience. While reliability metrics primarily eval-
uate resource adequacy and operating reliability, resili-
ence is a broader concept that also accounts for the
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power grid’s capability to withstand random events,
manage and ameliorate the consequences of an event
once it occurs, and rapidly recover from an event.
Reliability metrics are grouped into those applied to

generation and transmission systems and those for the
distribution system (National Academies of Sciences &
Medicine, 2017). We examine loss-of-load probability
(LOLP) and expected unserved energy (EUE), two con-
ventional reliability indices that are widely used in
resource planning of generation and transmission sys-
tems (Allan et al., 2013; North American Electric
Reliability Corporation, 2018). LOLP is defined as the
probability of system daily peak or hourly demand
exceeding the available generating capacity during
a fixed period. Note that LOLP can be calculated by
either using only the daily peak loads or all the hourly
loads in each study period. During time t 2 T, a loss-of-
load event (It) occurs if total system load exceeds the
maximum available system generating capacity:

It ¼
0; if

P
Pmaxg *

P
b2B Lb

1; if
P
Pmaxg <

P
b2B Lb

!
(1)

where Pmaxg indicates the capacity of generator g and Lb
denotes the load at bus b. The LOLP over the entire
period T can be given by the following equation:

LOLP ¼ 1
T

X

t2T
It (2)

Another reliability metric is EUE, which measures the
summation of the expected number of megawatt hours
of load that will not be served in a given time period.
Different from LOLP, which only accounts for the dura-
tion of loss-of-load, EUE is an energy-centric measure
that also considers the magnitude of loss-of-load. EUE
can be either expressed in megawatt hours, or normal-
ized based on the total number of megawatt hours of
load:

EUE ¼
P
t2T EUEtP
t2T Lt

(3)

where EUEt represents the energy that is not supplied
and Lt denotes the load during time t. Therefore, the
normalized EUE is a dimensionless scalar that ranges
from 0 to 1.
While LOLP and EUE can be used to measure

resource adequacy in resource planning, daily power
network operation is also subject to a wide range of
constraints that are not considered in resource planning,
such as power flow limits, bounds of voltage levels and
phase angles. Such operating schedules are typically
determined by solving OPF models, which are formu-
lated as a mathematical program aiming at minimizing

the total production cost or transmission loss by opti-
mizing dispatch and control settings of power systems.
This type of problem underlies a diverse set of applica-
tions in modern power system engineering, such as
economic dispatch, unit commitment, state estimation,
stability and reliability assessment (Wood &Wollenberg,
2012). The OPF problem explicitly enforces security
constraints to meet the physical operating limits of the
power network. While the OPF problem can determine
dispatch settings during normal operation, network con-
tingencies may lead to infeasibility under extreme events.
Therefore, we develop a relaxed OPF model by adding
slack variables to the load balance constraint, which are
activated when a limited supply is present due to con-
tingency. A penalizing cost is also added to the objective
function to prevent the slack variables from being acti-
vated at normal operating status. The complete model
formulation is given below.

min
X

g2G
FgðPgÞ þ

X

b2B
M ) Sb (4a)

s:t: Bθ ¼ CgP ( Lþ S; (4b)

Pming $ Pg $ Pmaxg ;"g 2 G; (4c)

θminb $ θb $ θmaxb ;"b 2 B; (4d)

Sb * 0;"b 2 B: (4e)

where function FgðÞ is the cost function for generator
g 2 G, and M is the penalty cost for slack variable Sb,
which is introduced in (4b) to denote shedded load at
bus b 2 B. The cost functions are typically modeled in
a convex form, e.g., quadratic or piecewise linear func-
tions, to ensure global optimality. The relaxed load
balance constraint is enforced in (4b), where B is the
imaginary part of system admittance matrix, Cg is the
generator connection matrix, L is the vector of load at
each bus, and S is a vector of slack variables Sb.
Constraints (4c) and (4d) together limit dispatch setting
points within system tolerances. Finally, constraint (4e)
ensures the shedded load must be non-negative.
The relaxed load balance constraint in (4b) implies

that load shedding can be determined by examining the
slack variable Sb. Under optimality conditions, a positive
Sb indicates the shedded load at bus b, which implies the
occurrence of loss-of-load. Therefore, the criterion of
the occurrence of a loss-of-load event in (1) becomes:

It ¼
0; if

P
b2B Sb ¼ 0

1; if
P
b2B Sb > 0

!
(5)
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In addition, the EUE during time t can also be given by
the slack variable Sb:

EUEt ¼
X

b2B
Sb (6)

2.4. Reliability analysis framework

Due to the unpredictability of random events, a critical
rule in the U.S. is the NERC ðn( 1Þ rule, which specifies
that the grid shall continue to operate in the Normal
State following the loss of one generating unit, transmis-
sion line, or transformer (Wood & Wollenberg, 2012).
The rationale behind is that the initial outage of one
component could result in violations on other compo-
nents, which further lead to cascading outages.
Therefore, the ðn( 1Þ rule ensures no single compo-
nent outage will result in other component outages.
While the ðn( 1Þ contingency analysis assesses sys-

tem reliability under single component outage, random
hazardous events such as a stormmay cover a large area,
which could lead to outages of more than one compo-
nent. Therefore, it is desirable to examine system relia-
bility when outages happen to more than one
component. As described in Section 2.1, an extreme
event is simulated by randomly removing one or more
nodes or edges. In this study, we examine the topologi-
cal and reliability metrics defined in the previous sec-
tions after multiple network components are removed.
In addition, another motivation of this study is to iden-
tify the critical components of which removal will lead
to a greater impact on the grid resilience. This analysis is
conducted by scrutinizing the changes in the metrics to
the number of removed components. For example,
when an equal number of nodes are removed,
a greater EUE indicates that the removed nodes play
a greater role in the grid resilience in terms of unserved
energy.
A significant number of studies have been conducted

to analyze grid resilience by examining topological sum-
maries when network components are removed (Albert
et al., 2004; Chassin & Posse, 2005; Holmgren, 2006;
Kim et al., 2017; Rosato et al., 2007). Most studies
assume the network components are removed following
a fixed order based on a selected attribute of the com-
ponents. The selected attribute can be topological sum-
maries of the nodes or edges, such as degrees of nodes,
or engineering parameters, such as thermal ratings of
transmission lines, or rated voltage levels of substations.
In our study, the network components are removed in
two ways: random removal, where the nodes or edges
are removed in a totally random order, and ordered
removal, where the network components are ranked

based on one of their attributes, and then removed
following the rank. We use the random removal as
a baseline, which reflects the intrinsic grid resilience
against natural events. By contrast, the ordered removal
reflects how the selected attribute is related to grid
resilience, i.e., by comparatively examining the response
of resilience metrics when network components are
removed following the order of different attributes,
one can identify the most critical one and enhance
grid resilience by applying protective measures.
The selected attributes used in this study are tabu-

lated in Table 1. We examine both thermal rating of
transmission lines and degree of nodes. In graph theory,
the degree of a node is the number of edges connecting
to the node and a node of greater degree may represent
a substation that is connected with more transmission
lines. Typically, a transmission hub plays important
roles in the power grid, which may further imply greater
importance in grid resilience.
Therefore, for each ordered removal, we define

a sequence of nodes or edges that follow descending
orders of a given attribute. For nodes, an ordered
sequence can be expressed by:

v1; v2; ) ) ) ; vi; ) ) ) ; vNV
where vi 2 V;NV ¼ jVj, and the selected attribute ai
associated with node vi satisfies the following inequalities:

a1 * a2 ) ) ) * ai * ) ) ) * aNV
Similarly, for edges a sequence can also be given:

ðu1; v1Þ; ðu2; v2Þ; ) ) ) ; ðuj; vjÞ; ) ) ) ; ðuNE ; vNEÞ

where ðuj; vjÞ 2 E;NE ¼ jEj, and the selected attribute bj
associated with edge ðuj; vjÞ satisfies the following
inequalities:

b1 * b2 ) ) ) * bj * ) ) ) * bNE
For an event where k edges/nodes are removed, the first
k elements from the given sequence are removed. Then,
the power grid after the event is represented by the
subgraph consisting of the remaining nodes and edges.
After an event, a power grid may be split into several

isolated grids, which are also known as islands. An
island is a subset of components of the original network
that is isolated from the original network. Since there is

Table 1. The attributes by which edges/nodes are ordered.
Attribute Notes

Edge Random Random removal
MVA Thermal ratings of transmission lines.
sumDegree Sum of degrees of end nodes.

Node Random Random removal
sumMVA Sum of thermal ratings of connected lines.
Degree Degree of the node.
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no interconnection between isolated islands, each island
can be viewed as an independent power network. In
addition, since an island only includes a subset of com-
ponents from the original network, it is more likely to be
vulnerable to contingencies. Mathematically, a graph is
called disconnected if it can be partitioned into at least
two subsets of nodes such that there is no edge connect-
ing them. Therefore, the number of isolated islands is
determined by examining the number of subgraphs
after an event. In this study, if the original power grid
is split into multiple islands, we examine the occurrence
of loss-of-load (It;d) and EUE of each island separately.
The system EUE is then calculated by summing up
EUEs of all islands, and the system LOLP is given by
Equation (7).

It ¼
0; if It;d ¼ 0;"d ¼ 1; ) ) ) ;D
1; otherwise

!
(7)

where D denotes the number of isolated islands. The
system LOLP can then be derived by examining all It;d
over the entire time periods using Equation (2).
One challenge in simulating random events that involve

multiple components is to determine the components that
are removed. If k nodes/edges are to be removed from
a graph, there are k! ways to randomly select the k compo-
nents, which approaches infinity as k increases. In addi-
tion, in the ordered removal, the selected attributes such as
thermal ratings of transmission lines may see identical
values shared by many components:

a1 * a2 ) ) ) * ai * aiþ1 ¼ ) ) ) ¼ aiþm * ) ) ) * aNV (8)

Suppose i< k< iþm, then there are at least m
k( i

" #

ways to determine a sequence that includes k removed
components. Although ideally each possible sequence
should be examined, it is computationally prohibitive to
examine all of them as k increases, given that a real-world
-sized network usually has more than thousands of edges
and nodes. Therefore, without loss of generosity, we
repeat our experiments multiple times for the random
removal as well as the ordered removals. For the random
removal, the number of experiments are 50, while for the
ordered removal, the number is given by the smaller value

between
m
k( i

" #
and 50. The repeated experiments are

intended to give a comprehensive evaluation of all possi-
ble events and produce robust results.
The above framework of this study is summarized in

Algorithm 2 where nodes are removed in an ordered
sequence. Edge-based events can be simulated in
a similar fashion. Note that we use 1 year’s daily peak
load to represent 1 year’s load for simplicity. The

implementation of our method is coded in MATLAB
and we use MATPOWER (Zimmerman et al., 2010),
a free and open-source MATLAB package, to solve the
DC-OPF model. A high-performance computing plat-
form equipped with a 20-core Xeon E5-2698 CPU and
256GB of memory is used, where the model can be
parallelized for better time performance.

Algorithm 1 Analysis framework

procedure GRID RESILIENCE ANALYSIS
Initialize node sequence ðv1; ) ) ) ; vNV Þ
for k ¼ k1; ) ) ) ;K do Remove k nodes:
Remove nodes v1; ) ) ) ; vk
D number of islands
for d ¼ 1; ) ) ) ;D do Yearly simulation

for t ¼ 1; ) ) ) ;T do DC-OPF
Calculate It;d and EUEt;d

end for
end for
Calculate LOLP and EUE

end for
end procedure

3. Data

A critical motivation of this study is to apply the pro-
posed method to real-world power systems. However,
due to confidentiality requirements on critical infra-
structure information, data availability of real-world
power systems is usually limited. Therefore, to simulate
real-world power system operation, we use a well-
developed, publicly available synthetic network devel-
oped by Birchfield et al. (Birchfield et al., 2017). Note
that although this test case is entirely fictitious, it shares
significant similarities with real-world power systems in
terms of statistical characteristics found in actual grids.
Modern power system networks are complex intercon-

nected networks, which can be divided into four subnet-
works: generation, transmission, distribution, and loads.
This study focuses only on the transmission network,
which bridges the generators and distribution systems via
substations. Transmission networks are often operated at
tens or even hundreds of kilovolts to reduce transmission
loss over long distances. The transmission network used in
this study is built on the footprint of the Electric Reliability
Council of Texas (ERCOT), which is the independent
transmission operator that serves most of the Texas terri-
tory. By synthesizing public information on population
and generating plants at postal code level, the Texas system
places 2,000 buses. Each bus may be connected to a load,
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a generator or both. The 2,000 buses are connected by
3,206transmission lines, which can be reduced to 2,667
unique edges since one edge may include multiple trans-
mission lines. Therefore, the Texas power grid network is
represented by a graph with 2,000 nodes and 2,667 edges.
We use 1 year’s daily peak load to conduct the reliability

assessment. The hourly load in 2017 is drawn fromERCOT
and rescaled by multiplying a scaling factor such that the
maximum load does not exceed the synthetic network’s
total generating capacity. The scaling factor is calculated by
dividing the given total load from the synthetic network by
the maximum hourly load in 2017 from ERCOT. We
assume a fixed load distribution factor in order to calculate
the load on each bus. Note that although one plain year
consists of 8760 h, we only consider 365 daily peak loads
and use the 365-h load profile to represent the yearly load
profile.

4. Results

4.1. TDA summaries

The changes in the topological summaries are displayed in
Figures 2 and 3. Threemetrics are examined:Δβ0,Δβ1, and

Wasserstein distances. Overall, all three summaries exhibit
increasing trends, indicating greater structural deformation
when more nodes or edges are removed. For example, in
the randomremoval,Δβ0 increases from less than 1%when
10 edges are removed to over 3% when 100 edges are
removed and Δβ1 rises from around 2% to over 10% over
the same range, as shown in Figure 2(a,b). Meanwhile,
Figure 3(a,b) indicates that the random node removal
sees similar yet faster increasing trends than the random
edge-based removal:Δβ0 andΔβ1 rise to 4%and 12%when
60 nodes are removed, as opposed to 2% and 7% when the
same number of edges are removed.
Despite similar increasing trends, significant differences

are also presented across our results. The magnitude of the
increasing trends varies noticeably with the removal stra-
tegies and the topological summaries in the edge-based
events. For example, as indicated in Figure 2(a), the highest
Δβ0 is presented when edges are removed following the
order of the sum of degrees: it increases to over 4% when
100 edges are removed. By contrast, Figure 2(b) shows
removing 100 edges following the same order results in
the smallest Δβ1 value across all three removal strategies.
The node-based events, however, see more consistent

increasing trends across the three removal strategies:
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(c) Wasserstein distance.

Figure 2. TDA summaries under edge-based events. Note that the colored bands represent 90% confidence intervals.
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Unlike in the edge-based events where ordered removals
may see lower Δβ0 and Δβ1 than the random removal,
the random removal always exhibits the lowest Δβ0 and
Δβ1 when nodes are removed, as shown in Figure 3(a,b).
In addition, when nodes are removed following the
order of degree values, Δβ0 and Δβ1 values are always
the highest, indicating the greatest structural
deformation.
While the Betti numbers only reflect the number of

k-dimensional holes, the Wasserstein distance gives
a comprehensive and robust evaluation of structural
deformation by neglecting short-lived topological fea-
tures on the persistence diagrams. Figure 2(c) shows
that the random removal still sees the highest increase
of the Wasserstein distance when edges are removed. By
contrast, Figure 3(c) shows that the random removal
results in the lowest increase of the Wasserstein dis-
tance. In addition, the node-based removals present
greater changes in the Wasserstein distance than the
edge-based removals: when 60 edges are randomly
removed, the Wasserstein distance increases to 20,
while when the same number of nodes are randomly
removed, the Wasserstein distance increases to 30.

Therefore, our results suggest that when the same num-
ber of nodes or edges are removed, the node-based
removal leads to greater deformation of network topo-
logical structure, due to the fact that removal of one
node can also lead to the removal of one or more edges
connected with the node. Besides, the differences of
trends across the studied topological summaries indi-
cate that each topological summary characterizes the
structural deformation from a different perspective.

4.2. Reliability metrics

While the TDA summaries reflect structural changes in
a network, power grid reliability is usually measured by
metrics that reflect how the load is met by supply.
Figures 4 and 5 illustrate how the removal of network
components can affect grid reliability by a single case
study. In both cases, a fixed number of nodes or edges
are removed from the original network, and their
impact on grid resilience is evaluated using the magni-
tude of the unserved load. In Figure 4, the total load and
total served load after 80 edges are removed are pre-
sented. Since removing edges only affects transmission
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Figure 3. TDA summaries under node-based events. Note that the colored bands represent 90% confidence intervals.
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lines or transformers, connections between generators
and substations remain intact and the total generating
capacities stay the same. Therefore, the total capacities
are 81 GW across all three cases, enough to supply the
peak load over the studied period. However, although
the grid has sufficient generating capacities, outages of
transmission lines may cause loss-of-load due to trans-
mission congestion. For example, the total unserved
energy in the random removal case (Figure 4(a))
amounts to 350 GWh or 1.7% of the total yearly load.
In addition, ordered removals result in greater loss of
load: the total amount of unserved energy is 914 GWh,
or 4.5% of total yearly load, when the edges are removed
following the order of MVA values, and 420 GWh
(2.1%) following the order of the sum of degree values.
This suggests that it can cause a greater loss of the load
by removing edges with higher thermal ratings or higher
sum of degree values.
In Figure 5(a), when 20 nodes are removed randomly,

the total available capacity drops from 81 GW to 70 GW,

resulting in 212 GWh (1%) of loss of load. In addition,
although the losses of total generating capacity in the two
ordered removals are slightly less than the random
removal, the unserved load in both cases are significantly
higher: it sees 4,000 GWh (20%) and 3,000 GWh (14%)
of total unserved energy when the nodes are ordered by
the sum of MVA and degree values, respectively. Unlike
the removal of edges, the removal of nodes can further
result in the failure of all edges connected with the
removed nodes. Therefore, removal of one node often
leads to loss of multiple edges. In addition, extreme
events occur to a node can also result in the loss of all
connected generators and exacerbate the situation. This
implies that when an equal number of nodes and edges
are removed from the same network, the node-based
removal can result in greater losses in terms of unserved
end-use load. This is proved in the presented results by
the fact that the unserved energy from the case when
only 20 nodes are removed is considerably higher than
the case when 80 edges are removed.
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Figure 4. Time series of daily peak load and served load after 80 edges are removed. Upper edges of the light shaded areas represent
daily peak load in a year, and lower edges of the light shaded areas represent served load. Therefore, the light shaded areas in
between represent the megawatt hour values of the unserved load. The horizontal red lines represent total capacities remaining in the
grid after the event.
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4.3. Dynamic changes in reliability metrics

The results presented above only show the unserved
energy when a fixed number of network components
are removed. To compare the grid reliability metrics
when an increasing number of network components
are removed, the simulation is repeated over a range of
numbers of removed components. Due to greater
impact from node-based events on the grid when
equal numbers of components are removed, the number
of removed nodes ranges from 10 to 60, while the
number of removed edges ranges from 10 to 100.
The results from the edge-based events are illustrated in

Figure 6. Figure 6(a) shows both the medians and varia-
tions of LOLP as a function of the number of removed
edges in the random removal. Themedian LOLP increases
from around 0.3 to 1.0 as the number of removed edges
increase from10 to 100. The increasing trend of themedian
suggests a greater risk of loss-of-load as more edges are
removed. The 50% confidence intervals, as represented by
the heights of blue boxes, range from 0.1 when k ¼ 10 to
over 0.5 when k ¼ 40, indicating great uncertainties due to
the random nature of the removal. In Figure 6(b,c), both
the mean LOLP and mean EUE present increasing trends

in the random removal: the mean LOLP rises from around
0.4 when k ¼ 10 to 0.9when k ¼ 100, and the mean EUE
rises from around 0.01 to 0.02 over the same range of k.
Figure 6 also shows results from the two ordered

removals, where the edges are ordered by MVA ratings
and sum of degree values. Comparing with the results
from the random events, both ordered removals show
significantly less uncertainties. The two ordered
removals in the edge-based events result in lower
mean LOLP than the random removal. This is consis-
tent with the results presented by the Wasserstein dis-
tance in Figure 2(c), where the random removal results
in the greatest deformation of topological structure.
Nevertheless, although the two ordered removals exhi-

bit lower risk of loss-of-load, the unserved energies in
both cases are higher: as shown in Figure 6(c), the mean
EUE in the random removal rises to only 2% when 100
edges are removed, while the mean EUE surges to 7%
when edges are removed following the order of MVA
values. This indicates that even though the random
removal shows greater mean probabilities of loss-of-
load, the impact on electricity supply is less severe than
the ordered removals. In particular, the mean unserved
energy when edges are removed by following the order of
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(a) Random removal. (b) Ordered removal based on sumMVA.
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Figure 5. Time series of daily peak load and served load after 20 nodes are removed. Upper edges of the light shaded areas represent
daily peak load in a year, and lower edges of the light shaded areas represent served load. Therefore, the light shaded areas represent
the megawatt hour values of an unserved load. The horizontal red lines represent total capacities remaining in the grid after the event.
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MVA ratings is considerably greater than the other two
cases: around 8% of total annual electric demand is
unserved when 100 edges with the greatest MVA ratings
are removed, while the other two removals only lead to
less than 3% of unserved energy. This is possibly due to
the pivotal role of the transmission lines with greater
MVA ratings in the transmission grid resilience.
In addition, the random removal presents significant

greater uncertainties associated with LOLP. As shown in
Figure 6(b), the widths of the 90% confidence intervals of
the random removal are greater than 0.7, while in the
ordered removals the widths are less than 0.5.
Furthermore, the uncertainties associated with EUE are
significantly lower than LOLP, as shown in Figure 6(c),
the widths of the 90% confidence intervals of the random
removal are less than 0.02 most of the time. This indicates
that the LOLP is a less robust evaluation metric of grid
reliability than the EUE when the edges are randomly
removed.
The results from the node-based events are presented

in Figure 7. Note the number of removed nodes spans 10
to 60. Similar to the random edge-based events, the LOLP
in the random removal also scatters over dispersed
ranges, especially when the number of removed nodes
ranges from 30 to 50, as depicted in Figure 7(a). The

median LOLP increases from around 0.3 to 0.9 as the
number of removed nodes increases from 10 to 60.
Likewise, the increasing trend of the median suggests
a greater risk of loss-of-load as more nodes is removed.
However, unlike in the edge-base events where the ran-

dom removal presents the highest mean LOLP, both
ordered removals exhibit a significant greater mean LOLP
than the random removal, as shown in Figure 7(b). For
example, the mean LOLP in the random removal starts at
0.4 when k ¼ 10 and rises to 0.8 when k ¼ 60. By contrast,
the mean LOLP roared to 1 when k ¼ 20 and stays con-
stant thereafter in both ordered removals. These results
imply that the grid is likely to suffer from a 100% chance
of loss-of-load even only 20 nodes are lost in the two
ordered removals.
As presented in Figure 7(c), the mean EUE values

follow a similar increasing trend as the mean LOLP
shows. In the random removal, although the mean LOLP
rises to over 0.8 when 60 nodes are removed, the rise of the
mean EUE value is marginal: it reaches 0.02 when k ¼ 60,
only slightly higher than 0.01 when 10 nodes are removed.
Therefore, similar to the edge-based removal, even though
there are great chances of loss-of-load in the random
removal, the magnitude of each loss-of-load event is
small. By contrast, the two ordered removals present

 10  20  30  40  50  60  70  80  90 100
Number of removed edges (k)

0.2

0.4

0.6

0.8

1

LO
LP

(a) LOLP in the random events.

20 40 60 80 100
Number of removed edges (k)

0.2

0.4

0.6

0.8

1

M
ea

n 
LO

LP

random
MVA
sumdegree

(b) Mean LOLP of different events.

20 40 60 80 100
Number of removed edges (k)

0

0.02

0.04

0.06

0.08

0.1
M

ea
n 

no
rm

al
iz

ed
 E

U
E

random
MVA
sumdegree

(c) Mean EUE.

Figure 6. Reliability metrics from the edge-based events. Note that in (b) and (c) the colored bands represent 90% confidence intervals.
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considerably higher unserved electric demand: the mean
EUE increases from less than 0.1 at k ¼ 10 to over 0.6at
k ¼ 60 in both ordered removals, indicating a significant
impact on the power system reliability.
Similar great uncertainties associated with LOLP are

observed for the random removal, while both ordered
removals present narrower 90% confidence intervals. In
addition, Figure 7(c) also presents more concentrated
results of EUE than LOLP. This further implies that EUE
is a more robust metric than LOLP in terms of grid
reliability.
In order to examine the relations between the TDA

summaries and reliability metrics, the correlation coeffi-
cients are adopted. As demonstrated in Tables 2 and 3, the
coefficients vary with the removal strategy and the metrics.
Generally, the EUE exhibits a stronger correlation with the
TDA summaries than the LOLP does, especially in the
node-based removals. This is probably due to the fact that
the LOLPs soon hit the upper bound of 1 in the ordered
node-based removals. In addition, while the EUE is
strongly correlated with all TDA summaries, the correla-
tion is slightly stronger with Betti-1 in the edge-based
removal, and with the Wasserstein distance in the node-
based removal.

5. Conclusion and discussion

In this study, the concept of TDA, specifically persistent
homology, is employed to analyze the grid resilience of
regional transmission networks. The transmission net-
work is represented as an edge-weighted, undirected
graph, while extreme events are simulated by removals
of nodes or edges. By examining the changes of three
TDA summaries under extreme events, we demonstrate
how the network topological structure is affected by
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Figure 7. Reliability metrics from the node-based events. Note that in (b) and (c) the colored bands represent 90% confidence intervals.

Table 2. Mean correlation coefficients between the TDA sum-
maries and reliability metrics from the edge-based events.

LOLP EUE
Betti-0 0.930 0.974
Betti-1 0.966 0.992
Wasserstein distance 0.971 0.993

Table 3. Mean correlation coefficients between the TDA sum-
maries and reliability metrics from the node-based events.

LOLP EUE
Betti-0 0.849 0.989
Betti-1 0.808 0.995
Wasserstein distance 0.845 0.990
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extreme events. In addition, we also investigate the
conventional reliability metrics used in resource plan-
ning studies, which reflect grid resilience from the end-
use demand satisfaction perspective.
As demonstrated in the results, both the TDA sum-

maries and power system reliability metrics suggest that
an increased number of removed components leads to
the deterioration of grid resilience. However, the eval-
uated indicators differ significantly when different
removal strategies are adopted. For example, random
removal results in the highest risk of loss-of-load (mea-
sured by LOLP) and Wasserstein distances when edges
are removed, whereas it leads to the lowest LOLP and
Wasserstein distances when nodes are removed. In
addition, both ordered removals lead to greater impact
than the random removal in terms of unserved energy.
Although all three TDA summaries reflect structural

deformation of the transmission network, the results
differ significantly with removal strategies, especially
under the edge-based events. The inconsistency in the
results can be attributed to the difference in the infor-
mation conveyed by the three TDA summaries. For
example, during the network filtration process, the pth
Betti number only accounts for the number of p-
dimensional holes in each subgraph, while
a persistence diagram also records the birth and death
times of each persistent topological feature. In addition,
the framework of persistence diagrams is able to distin-
guish between persistent features and topological noises
by neglecting short-lived features. Since long-lived
motifs are more likely to play an important role in net-
work functionality, the Wasserstein distance gives
a more robust evaluation of the changes in network
functionality. Therefore, greater changes in the persis-
tent topological features indicate greater impact on the
network functionality, which can lead to higher LOLP.
As Figure 2(c) shows, the random removal suggests the
greatest changes in the network’s topological structure,
which agree well with the highest risk of loss-of-load
displayed in Figure 6(b). Similarly, Figures 3(c) and 7(b)
indicate that the random removal exhibits the lowest
Wasserstein distances and LOLPs among all three
removal strategies.
Second, our study not only considers resource ade-

quacy, i.e., the total available system capacity must
exceed peak load, but also system security, i.e., flow
limits on transmission lines. As demonstrated in
Figure 4, although all generating units remain intact
and the system has enough capacity after edges are
removed, loss-of-load can still occur due to loss of
transmission capacities. Further examination of
Figures 6(c) and 7(c) indicate that removal of edges
with higher MVA ratings or nodes with higher sum of

MVA ratings leads to substantially greater unserved
energy, since extreme events occur to these edges or
nodes can considerably reduce the overall transmission
capacity of the transmission network, and lead to sig-
nificantly greater unserved energy due to transmission
congestion.
Several caveats exist in our analysis. First, the DC-

OPF model in our analysis only determines the setting
points of all thermal units without considering unit
commitment (UC) constraints. In real-world opera-
tions, operation of thermal units is subject to a diverse
set of constraints that include minimum on-line time,
ramp rates and start-up and shut-down time (Carrión &
Arroyo, 2006). In order to determine the unit commit-
ment statuses of thermal units, real-world power market
operating schedules are typically determined based on
power market simulations over time scales that range
from day-ahead to real-time on a cost-minimization
basis. Different from the OPF model, which is modeled
as a continuous optimization problem, UC models are
typically modeled as mixed integer programs, which are
significantly more challenging to solve. In this analysis,
we assume all units are online and there are no mini-
mum online power constraints. Since we only consider
1 hour per day, it is realistic to neglect constraints on
unit start-up and shut-down. However, it can inspire
further research directions by considering how random
events may influence multi-timescale market scheduling
and operation.
Another caveat is that the post-event restoration is

not taken into account by using the measure of relia-
bility. Typically, the exact steps and procedures for
restoration vary depending on the nature of the outage
and the damage incurred. While the real-world recovery
process can be simulated using the empirical model (Ji
et al., 2016) or random process (Liu et al., 2016), this
study does not follow such paths due to the complexity
introduced by the lack of specific types or characteristics
of the events.
In addition, the OPF problem in Equation 4 is

formulated with DC power flow constraints (DC-
OPF) as opposed to the complete AC form, which is
also known as the AC-OPF problem (Wood &
Wollenberg, 2012). The simplified DC-OPF model
only includes active power flow terms and drops the
reactive power flow terms, which results in a set of
completely linear power flow constraints and fits in the
field of linear or quadratic programming. The DC-OPF
model is adopted since global optimality is guaranteed
due to convexity. By contrast, the full AC-OPF pro-
blem is modeled as a quadratically constrained quad-
ratic programming (QCQP) problem and the
feasibility region is typically a non-convex set. While
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convex QCQP problems can be solved efficiently, it is
extremely challenging to solve non-convex QCQP pro-
blems (Calafiore & El Ghaoui, 2014). While the accu-
racy of DC-OPF approximation is questionable in
distribution networks, it does not cause systematic
errors in large-scale transmission networks, such as
the one in this analysis.
Last, the developed analytical framework is only

applied to the synthetic power grid of Texas, which
may limit the generalization of our findings to different
transmission networks. While the primary goal of this
study is focused on the method and we only use one
transmission network for demonstration purpose, the
soundness of our study can benefit largely by extending
it to larger power systems with drastically different
topological characteristics, and further insights can be
drawn from comparative studies across different power
systems.
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