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Abstract: Reconstructing images from multi-view projections is a crucial task both in the computer 

vision community and in the medical imaging community, and dynamic positron emission 

tomography (PET) is no exception. Unfortunately, image quality is inevitably degraded by the 

limitations of photon emissions and the trade-off between temporal and spatial resolution. In this 

paper, we develop a novel tensor based nonlocal low-rank framework for dynamic PET 

reconstruction. Spatial structures are effectively enhanced not only by nonlocal and sparse features, 

but momentarily by tensor-formed low-rank approximations in the temporal realm. Moreover, the 

total variation is well regularized as a complementation for denoising. These regularizations are 

efficiently combined into a Poisson PET model and jointly solved by distributed optimization. The 

experiments demonstrated in this paper validate the excellent performance of the proposed method 

in dynamic PET. 

Keywords: dynamic positron emission tomography (PET), non-local; tensor decomposition; low-

rank approximation; compressed sensing; reconstruction; distributed optimization 

 

1. Introduction 

Positron emission tomography (PET) seeks to obtain radioactivity distributions by collecting 

numerous photons emitted by the annihilations of positrons that come from the isotope-labeled tracer 

injected in living tissue. Correspondently, considering the unique traits of physiological and 

molecular imaging, PET is universally and irreplaceably required in clinic imaging, especially in 

cancer diagnoses [1], lesion detection [2], and functional supervision in vivo. However, despite its 

predominance for functional imaging, PET is dwarfed in resolution due to limitations either from 

acquisition time or the injection dose when compared with other structural medical imaging systems 

such as magnetic resonance imaging (MRI) and computed tomography (CT). Moreover, in dynamic 

PET imaging, where the time-varying radioactivity concentration at each spatial location is obtained, 

the structural information and denoising performance are more critical, along with increasing 

demands for time activity curves (TAC) for different regions of interest (ROI). Under this framework, 

reliable algorithms for dynamic PET reconstruction have been discussed and debated for decades. 

Initial attempts at PET reconstruction included the famous analytic filtered back-projected (FBP) 

[3] based algorithms, least squares (LS) [4], and the maximum likelihood-expectation maximization 

(ML-EM) [5] method. Although milestones, problematic conditions [6] always accompany the 

optimization of the mentioned algorithms (i.e., the solution might be sensitive to trivial fluctuation 

and thus consequently increase noise along the iterations). Thus, much effort has been devoted to 

this topic, among which the maximum a posteriori (MAP) [7] strategy, or penalized ML method [6], 
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have become the key to the solution. The main idea for this strategy is to integrate regularization 

terms, or image priors from a Bayesian perspective, into the reconstruction model. There are various 

representative regularizations, including the weighted quadratic penalty [8], Gibbs prior [9], Gauss–

Markov prior [10], Huber prior [11], total variation [12], and so on. More recently, especially for 

dynamic imaging, temporal priors are starting to be introduced in reconstruction (e.g., the tracer 

kinetics model [13–15], kernel model [16], and dose estimation [17]). 

Nevertheless, in spite of the significant progress achieved by researchers, traditional 

reconstruction algorithms are still open to question. For one thing, traditional methods, to a large 

extent, only focus on denoising behavior while ignoring the structural information within the images. 

This has undoubtedly created a greater divide within the increasing clinical demand for resolution. 

The other problem, which is of greater significance, is that the trade-off between the temporal and 

the spatial resolution constantly degrades the quality of the dynamic reconstruction (i.e., a better 

temporal resolution requires more frequent sampling within a given duration, which causes fewer 

photon counts for each frame, thus undermining the spatial resolution, and vice versa). 

In this paper, we explore a potential solution for the mentioned dilemma by providing a novel 

tensor based nonlocal low-rank framework in dynamic PET reconstruction. Several efforts have been 

devoted to related topics. Low rank decomposition [18] and non-negative matrix  

factorization [19–21], on the one hand, have been found to be able to capture the inner temporal 

correlation in a dynamic PET. On the other hand, the nonlocal feature, which refers to the abundant 

self-similar structures within an image, are excellently adopted in image denoising (e.g., the nonlocal 

means (NLM) [22], weighted nuclear norm minimization (WNNM) [23], block-matching 3D 

denoising (BM3D) [24], nonlocal restoration [25], and nonlocal representation [26]). Moreover, in [27], 

Dong et al. demonstrate the existence of nonlocal self-similarities and sparse features in MRI images. 

As shown in Figure 1, nonlocal low-rank [28,29] features exist not only in ordinary natural images 

but also in PET reconstructed images. Furthermore, as will be illustrated in Section 3, we promote the 

use of matrix based nonlocal low-rank features in a novel tensor form and successfully apply it to 

dynamic PET reconstruction. In this way, the structures are not only enhanced spatially by the image 

itself but simultaneously completed by relevant frames across the temporal dimension. 

The main contributions are listed as follows: 

(1). An innovative form of a nonlocal low rank tensor constraint is adopted in the Poisson’s model, 

which captures data correlation in multiple dimensions in dynamic PET, beyond just 

spatiotemporal correlation. For one thing, without any additional information, Poisson’s model 

exploits the temporal information among the frames themselves, effectively complementing 

the structures in low-active frames and recovering severely corrupted data. For the other, it 

exploits the spatial information from nonlocal self-similarities within each frame, thereby 

enhancing the structured sparsity for each image. 

(2). As an additional regularization, the total variation (TV) constraint is employed to extract local 

structure and further complement the denoising function. On the other hand, the expectation–

maximization method is employed as a fidelity term to incorporate hidden data in the objective 

function and thus increase efficiency in optimization. 

(3). In the optimization procedure, we develop a distributed optimization framework inspired by 

the alternative direction method of multipliers (ADMM) [30]. In this way, the mentioned terms 

can be explicitly organized in a united objective function and effectively handled as three 

subproblems during the iterations. 
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(a) (b) 

Figure 1. The nonlocal low-rank validation on images. For each random-selected exemplar patch  

(e.g., 5 × 5 sized), there can be found ample similar patches within the image itself. (a) By stretching 

the exemplar patch and its similar patches into vectors, a corresponding feature matrix (e.g., 25 × 30 

sized) can be formulated. (b) The rank distribution for the matrices which is formulated from given 

images. Up: the monarch; Down: Positron emission tomography (PET) scan of an Alzheimer’s 

patient’s brain. 

2. Background 

2.1. Dynamic PET Imaging Model 

Typically, during the detection procedure, the PET scanner collects the emitted photons and then 

pre-processes them into so-called sinogram data as the input of the reconstruction. For dynamic PET, 

let the sinogram matrix 𝒀 = [𝒚ଵ, 𝒚ଶ, . . . , 𝒚௧ , . . . 𝒚்] ∈ ℝெ × ்  denote the collection of sinogram data 

vectors, where 𝑡 = 1,2, . . . , 𝑇  denotes the index of the frames; and sinogram vector  𝒚௧ = {𝑦௧௤ , 𝑞 = 1,⋅⋅⋅, 𝑀} ∈ ℝெ  denotes the sum of the photons collected in the t-th frame, where q 

represents the index of the total M pairs of detectors. Correspondently, 𝑿 = [𝒙ଵ, 𝒙ଶ, . . . , 𝒙௧ , . . . 𝒙்] ∈ℝே × ் denotes the collection of the images that are supposed to be recovered, where vector  𝒙௧ ∈ ℝே  represents the t-th frame. Since Poisson distribution uses inherited PET systems, the 

reconstruction of each frame can be successfully modeled by the affine transformation: 𝒚௧ ∼ Poisson{𝐲̄௧}  s.t.  𝐲̄௧ = 𝐸(𝒚௧) = 𝑮𝒙௧ + 𝒓௧ + 𝒔௧, (1)

where 𝒚̄௧  is the expectation of 𝒚௧ ; 𝑮 ∈ ℝெ×ே is the system matrix; and 𝒓௧  and 𝒔௧  represent the 

random coincidence and scatter coincidence, which inevitably contain heavy noise. In this way, we can 

obtain the likelihood function of 𝒚௧ as 

Pr( 𝒚௧|𝒙௧) = ෑ 𝑒ି௬̄೟೜ 𝑦̄௧௤ ௬೟೜𝑦௧௤!ெ
௤ . (2)

Instead of maximizing Label (2), we estimate 𝒙௧  by minimizing the negative log-likelihood 

version for the convenience of optimization: 

min𝒙೟ P(𝒙௧) = min𝒙೟ − log( Pr( 𝒚௧|𝒙௧)) = min𝒙೟ ෍ 𝑦̄௧௤ − 𝑦௧௤ log( 𝑦̄௧௤)ெ
௤   𝑠. 𝑡.   𝒚̄௧ = 𝑮𝒙௧ + 𝒓௧ + 𝒔௧ , (3)

where the constant term log( 𝑦௧௤!) is left out. 
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Therefore, in the scale of dynamic reconstruction, Equation (3) can be transformed into 

min𝑿 P(𝑿) = min𝑿 ෍ ෍ 𝑦̄௧௤ − 𝑦௧௤ log( 𝑦̄௧௤)ெ
௤

்
௧     𝑠. 𝑡.   𝒚̄௧ = 𝑮𝒙௧ + 𝒓௧ + 𝒔௧ . (4)

However, optimization merely by Equation (4) is ill-conditioning—i.e., the reconstruction is 

vulnerable to accumulated iterative noise accompanying the iteration. The predominant solution to 

this shortcoming is to include the regularization terms in Equation (4) as the image prior. Thus, the 

object function of PET reconstruction can be written as min𝑿 Ψ(𝑿) = min𝑿 P(𝑿) + R(𝑿), (5)

where P(𝑿)  denotes the fidelity term defined in Equation (4), and R(𝑿)  denotes the  

regularization term. 

2.2. Tensor Decomposition 

Just like the matrix, the low-rank approximation of the tensor is also inevitably based on tensor 

decomposition. At present, the strategies for tensor decomposition mainly fall into three groups: the 

CANDECOMP/PARAFAC [31] (CP) decomposition methods, Tucker decomposition [32,33] 

methods, and tensor-singular value decomposition [34–36] (t-SVD) methods. Because of the stability 

and efficiency inherited in their optimization, t-SVD has aroused increasing interest among the 

community. 

As shown in Figure 2, for a three-way tensor 𝓐 ∈ ℝ௡భ×௡మ×௡య, t-SVD shares the same form as the 

matrix SVD: 𝓐 = 𝓤 ∗ 𝓢 ∗ 𝓥், (6)

where 𝓤 ∈ ℝ௡భ×௡భ×௡య and 𝓥 ∈ ℝ௡మ×௡మ×௡య  are orthogonal tensors [37]; 𝓥்  represents the conjugate 

transpose [34] of 𝓥 ; 𝓢 ∈ ℝ௡భ×௡మ×௡య is a f-diagonal tensor in which each frontal slice 𝓢(௜) is a diagonal 

matrix [35]; and ∗ denotes the t-product [37,38]. 

 

Figure 2. Illustration of tensor-singular value decomposition (t-SVD) upon an 𝑛ଵ × 𝑛ଶ × 𝑛ଷtensor [35]. 

In this paper, we proposed a nonlocal tensor low-rank framework for dynamic PET 

reconstruction, where the tensor low-rank approximation is efficiently and effectively conducted by 

a t-SVD based method. The details of this method will be illustrated in Section 3. 

3. Method 

In this paper, we proposed a novel reconstruction framework that can jointly recover, denoise, 

and (mostly) critically complete the structures in the dynamic PET imaging system. The overall 

procedure is illustrated in Algorithm 1. 
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Algorithm 1: Dynamic PET reconstruction via Nonlocal Low-rank Tensor Approximation and 

Total Variation 

Input: Sinogram 𝑌 and system matrix 𝑮, weighting parameters 𝛼, 𝛽, 𝜆, 𝜂, and the reference 

frame index 𝑡௥.  

1: Initialization: 𝑘 = 0, 𝑿଴ = FBP(𝐘). 

2: Repeat: 

3:   Compute the patch sets 𝑆௧௥௜（௞）, ∀𝑖 based on the 𝑡௥-th frame 𝒙௧௥(௞) using (7).  
                                                      ⊳ 𝓛 − subproblem 

4:   Construct the nonlocal featured tensor 𝓧௜(௞+1), ∀𝑖 by (8) and (9). 

5:   Approximate the low-rank tensor𝓛௜(௞ାଵ), ∀𝑖 by adopting t-SVT method in (13) and (21). 

6:   Construct 𝜴 by updating the differential vector 𝝎௧(௞ାଵ), ∀𝑡 via (22). 
                                                      ⊳ 𝝎 − subproblem 

7:   Update the Lagrangian multiplier 𝒗௧(௞ାଵ), ∀𝑡 via (23). 

8:   Repeat:                                           ⊳ 𝑿 − subproblem 

9:        E-step: Introduce the expectation variable 𝑐̂௧௤௝ and construct the 𝑿 −relevant objective 

function Ψ(𝑿) in (24). 

10:       M-step: Update 𝑥௧௝(௞ାଵ), ∀𝑡, 𝑗 using (25) and (26). 

11:  Until: Inner Relative change 
(𝑿(ೖశభ)ି𝑿(ೖ))𝑿(ೖశభ) < 10ିହ 

12:𝑘 ← 𝑘 + 1 

13: Until: Relative change
(𝑿(ೖశభ)ି𝑿(ೖ))𝑿(ೖశభ) < 10ି଺ 

14: Output: Reconstructed image sequence 𝑿(௞). 
3.1. Nonlocal Low Rank Tensor Approximation 

The nonlocal tensor regularization consists of two parts: forming the nonlocal tensor within the 

recovered frames and formulating the low-rank property in the formed tensors. 

3.1.1. Tensor Formulation 

During the optimizing procedure, a temporary estimated image sequence  𝑿 = [𝒙ଵ, 𝒙ଶ, . . . , 𝒙௧ , . . . 𝒙்] ∈ ℝே×் will be obtained after each iteration, where 𝒙௧ ∈ ℝே represents the 

t-th frame of image vector as mentioned in Section 2.1. Similar to Figure 1, numerous W × W sized 

overlapping patches 𝒙෥௧௜ ∈ ℝ௡ (n = W × W) can be extracted from each 𝒙௧, where i denotes the index 

of the image patch. According to the nonlocal self-similar properties, within the image, there are 

plentiful patches that share the same structure with each 𝒙෥௧௜. Based on the Euclidean distance, we 

choose the m nearest patches for each 𝒙෥௧௜: 𝑆௧௜ = {𝑠|||𝒙෥௧௜ − 𝒙෥௧௜,௦||ଶ < 𝜌௧௜}, (7)

where 𝑆௧௜ is the index set of similar patches for the i-th positioned patch 𝒙෥௧௜; and 𝜌௧௜ is the threshold 

value defined by the distance between 𝒙෥௧௜ and its m-th nearest patch. Thus, for each exemplar 𝒙෥௧௜, 
we formulate a matrix:  𝑿௧௜ = [𝒙෥௧௜ , 𝒙෥௧௜,ଵ, . . . , 𝒙෥௧௜,௦, . . . , 𝒙෥௧௜,௠ିଵ], 𝑿௧௜ ∈ ℝ௡ × ௠. (8)

As shown in Figure 1, due to the nonlocal self-similarity, it is fairly assumed that each 𝑿௧௜ is 

low-rank.  

From a dynamic recovery perspective, sets 𝑆௧௜ for 𝑡 = 1,2, . . . , 𝑇 are identical, since the structure 

in dynamic PET is unchanged. Therefore, based on the patch position i, we can construct a 3D tensor 𝓧௜ ∈ ℝ௡ × ௠ × ், whose frontal slices are calculated as 𝓧௜(: , : , 𝑡) = 𝑿௧௜ , 𝑡 = 1,2, . . . , 𝑇. (9)

Figure 3 illustrates the overall procedure for forming a nonlocal tensor. Within each iteration, 

numerous 𝓧௜s for various i positions will be constructed and then approximated by a low-rank 

property. 
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Figure 3. Illustration of tensor construction. The first row represents the temporary recovered image 

sequence. For the randomly chosen patch position i, similar patches can be found within its own frame 

and then grouped into matrices in the second row. By stacking the matrices along the frames, we 

managed to construct a feature tensor 𝓧௜ ∈ ℝ௡×௠×் for position i. 

3.1.2. Low Rank Tensor Approximation 

The next step is the low rank approximation for constructed tensors 𝓧௜ , ∀𝑖. Traditionally, the 

primal model of rank regularization searches for the tensor 𝓛௜, where 𝓛௜ = arg𝓛೔ 𝑚𝑖𝑛𝑟𝑎𝑛𝑘(𝓛௜)  s.t. 𝓛௜ = 𝓧௜. (10)

Nevertheless, this model is non-deterministic polynomial-time (NP) hard, and its direct 

optimization is nonconvex. Taking this situation into account, we choose a surrogate form of 

Equation (10) and turn it into a convex optimization issue: 𝓛௜ = arg min𝓛೔ ଵଶ ‖𝓛௜ − 𝓧௜‖ிଶ + 𝜆‖𝓛௜‖∗. (11)

Here, ‖⋅‖∗ denotes the tensor nuclear norm [39] and ‖⋅‖ி denotes the Frobenius norm. Under 

this circumstance, it is feasible to get a closed-form solution by adopting tensor singular value 

thresholding (t-SVT) [39]: 𝓛௜ = 𝓤௜ ∗ 𝒟ఒ(𝓢௜) ∗ 𝓥௜் , (12)

with 𝓧௜ = 𝓤௜ ∗ 𝓢௜ ∗ 𝓥௜்representing the mentioned t-SVD of 𝓧௜ and 𝒟ఒ(𝓢௜) = 𝐼𝐹𝐹𝑇(ଷ)((𝓢ሜ ௜ − 𝜆)ା), (13)

where （𝑋）ା = 𝑚𝑎𝑥( 𝑋, 0); 𝐼𝐹𝐹𝑇(ଷ)(𝑋) denotes the fast Inverse Fast Fourier Transform (IFFT) of X 

across dimension 3; and 𝓢ሜ ௜=𝐹𝐹𝑇(ଷ)(𝓢௜)  denotes the Fast Fourier Transform (FFT) of 𝓢௜  across 

dimension 3.  

3.2. Total Variation Regularization in Dynamic PET 

Apart from nonlocal low-rank tensor regularization, we also incorporate the total variation [40] 

(TV) as a complementary constraint into the dynamic PET reconstruction framework. Unlike the 

nonlocal tensor, the adopted TV regularization focuses on inherited local information within each 

frame. Moreover, this pixel-based regularization compromises patch-based regularization and thus 

improves the denoising performance of the proposed algorithm. 

For each image frame 𝒙௧ ∈ ℝே in the estimated sequence 𝑿 = [𝒙ଵ, 𝒙ଶ, . . . , 𝒙௧ , . . . 𝒙்] ∈ ℝே × ், we 

adopt an l2 formed TV regularization, which is properly formulated in accordance with augmented 

Lagrangian optimization [41,42]: 
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𝑚𝑖𝑛௫೟ೕ ෍ ||𝜔௧௝||ଶ௝   s.t. 𝐷௝𝒙௧ = 𝜔௧௝ for all 𝑗, (14)

where 𝜔௧௝ = 𝐷௝𝒙௧ denotes the discrete gradient of 𝒙௧ at position j; and 𝐷௝ denotes the j-th element of 

the corresponding differential operator 𝑫. Correspondingly, the augmented Lagrangian function can 

be written as: 

min𝜴 DTV(𝜴|𝑿)  = ෍‖𝝎௧‖்
௧ + 𝜂2 ||𝝎௧ − 𝑫𝒙௧||ଶଶ − 𝝂௧(𝝎௧ − 𝑫𝒙௧), (15)

where 𝜴 = [𝝎ଵ, 𝝎ଶ, . . . , 𝝎்] ∈ ℝே × ் represents the collection of discrete gradient vectors 𝝎௧ = 𝑫𝒙௧ 

for each recovered frame; 𝜂 represents the tunable weighting parameters of the quadratic term; and 𝝂௧ represents the updatable multiplier vector. Consequently, this method guarantees the convexity 

of TV regularization, and hence equips the proposed method with global convergence. 

3.3. Expectation Maximization for Fidelity Term 

Indisputably, solving the fidelity term Equation (4), to a large extent, is an essential mission in 

estimating the reconstruction images 𝑋. Regardless of regularization, Equation (4) can be further 

written as:  

min𝐗 P(𝑿) = min𝑿 ෍ ෍ ෍(𝑔௤௝𝑥௧௝ − 𝑐௧௤௝ log( 𝑔௤௝𝑥௧௝))  s.t. 𝑦௧௤ = ෍ 𝑐௧௤௝௤ ,ெ
௤

ே
௝

்
௧ୀଵ  (16)

where 𝑥௧௝   denotes the j-th pixel in image 𝒙௧; 𝑔௤௝ is the qj-th entry in system matrix G, representing 

the contribution of the j-th pixel given to the q-th detector; and the hidden variable 𝑐௧௤௝ represents 

the photon count from the j-th pixel to the q-th detector pair in the t-th frame.  

The main challenge lies in the solving procedure, especially handling the hidden variable 𝑐௧௤௝. In this 

work, we adopt the well-known expectation maximization (EM) [5,43], which introduces ‘complete 

data’ into the model and thus facilitates optimization. In order to solve Equation (18), there are two 

essential steps: 

• E-step: This step employs the expectation 𝑐̂௧௤௝   = 𝐸(𝑐௧௤௝ห𝒙௧, 𝑦௧௤) as the substitute for the hidden 

variable 𝑐௧௤௝ in Equation (18): 𝑐̂௧௤௝ = 𝑔௤௝𝑥௧௝∑ 𝑔௤௝𝑥௧௝ + 𝑟௧௤ + 𝑠௧௤ே௝ 𝑦௧௤ . (17)

• M-step: This step maximizes the likelihood by zeroing the derivative of Equation (19): 𝜕P(𝑿)𝜕𝑥௧௝ = 0 . (18)

The EM algorithm, which will be illustrated in greater detail in the next section, makes our 

proposed framework readily and efficiently solvable. 

3.4. The Overall Optimization Framework 

Based on Equation (5), the overall reconstruction model can be represented as min𝑿 Ψ(𝑿) = min𝑿 𝛼TNL(𝑿) + 𝛽DTV(𝑿)+P(𝑿), (19)

where P(𝑿) is the fidelity term in the reconstruction model Equation (16); TNL(𝑿) represents the 

tensor formed nonlocal low rank constraint in Section 3.1; DTV(𝑿) represents the dynamic PET 

adopted total variation term in Section 3.2; and 𝛼 and 𝛽 denote the weighting parameters. By taking 

the mentioned terms into account, the objective function can be formulated as: Ψ(𝑿, 𝓛, 𝝎) = 𝛼(∑ ଵଶ ‖𝓛௜ − 𝓧௜‖ிଶ + 𝜆‖𝓛௜‖∗௜ ) + 𝛽(∑ ‖𝝎௧‖௧் , (20)
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+ ఎଶ ||𝝎௧ − 𝑫𝒙௧||ଶଶ − 𝝂௧(𝝎௧ − 𝑫𝒙௧)) + ∑ ∑ 𝑦̄௧௤ − 𝑦௧௤ 𝑙𝑜𝑔( 𝑦̄௧௤)ெ௤௧் , 

 𝑠. 𝑡.   𝒚̄௧ = 𝑮𝒙௧ + 𝒓௧ + 𝒔௧ . 
Normally, recovering 𝑿 = [𝒙ଵ, 𝒙ଶ, . . . , 𝒙௧ , . . . 𝒙்] ∈ ℝே×் directly from Equation (20) is a complex 

process. For this process, we refer to the alternative direction method of multipliers (ADMM) [30] 

and divide the model into three subproblems of 𝓛, 𝝎 and 𝑿 in a distributed optimization way. 

(1) 𝓛 -subproblem. Let (⋅)(௞)  denote the updated variable after the k-th iteration; e.g., 𝑿(௞) 
represents the computed image sequence after the k-th iteration. In the (k + 1)-th iteration, 

nonlocal low-rank approximation is first implemented. After the formulation of nonlocal feature 

tensors 𝒳௜(௞ାଵ), ∀𝑖, as illustrated in Section 3.1, we can obtain the function related to each low 

rank tensor: 𝓛௜(௞ାଵ) = 𝓤௜(௞ାଵ) ∗ 𝒟ఒ(𝓢௜(௞ାଵ)) ∗ 𝓥௜(௞ାଵ)், (21)

with 𝓧௜(௞ାଵ) = 𝓤௜(௞ାଵ) ∗ 𝓢௜(௞ାଵ) ∗ 𝓥௜(௞ାଵ)்
  

(2) 𝝎-subproblem. Unlike updating 𝓛𝒊, the discrete gradient is updated frame by frame. As shown 

in Equation (15), we update 𝜴 = [𝝎ଵ, 𝝎ଶ, . . . , 𝝎்] ∈ ℝே×் by employing the shrinkage  

operator [44]: 𝝎௧(௞ାଵ) = 𝑚𝑎𝑥 ቊ||𝑫𝒙௧(௞) − 𝝂௧(௞)𝜂 ||ଶ − 1𝜂 , 0ቋ 𝑫𝒙௧(௞) − 𝝂௧(௞)/𝜂||𝑫𝒙௧(௞) − 𝝂௧(௞)/𝜂||ଶ . (22)

Correspondingly, the multiplier vector updates by: 𝒗௧(௞ାଵ) = 𝒗௧(௞) − 𝜂(𝑫𝒙௧(௞) − 𝝎௧(௞ାଵ)) . (23)

(3) 𝑿 -subproblem. After the update of 𝓛  and 𝝎 , the last critical process is to update  𝑿 = [𝒙ଵ, 𝒙ଶ, . . . , 𝒙௧ , . . . 𝒙்] ∈ ℝே×் . In addition to the fidelity term in Equation (18), the former 

mentioned regularizations must be considered. In this procedure, we adopt the EM algorithm 

and hence reform Equation (20) into a joint function relevant to 𝑿 (or 𝑥௧௝): 

Ψ(𝑿) = ෍ ෍ ෍(𝑔௤௝𝑥௧௝ − 𝑐̂௧௤௝ 𝑙𝑜𝑔( 𝑔௤௝𝑥௧௝))ெ
௤

ே
௝

்
௧ + 𝛼 ෍ ෍ ෍ 12 ቛ𝓛௜(௧)(௞ାଵ) − 𝜞௜௧௝𝑥௧௝ቛிଶ

ே
௝

்
௧௜  

               +𝛽 ෍ ෍ 𝜂2 (𝑫௝𝑥௧௝ − 𝜔௧௝(௞ାଵ))ଶ + 𝜈௧௝(௞ାଵ)ே
௝ ൫𝜔௧௝(௞ାଵ) − 𝑫௝𝑥௧௝൯்

௧  
𝑠. 𝑡.   𝑐̂௧௤௝ = 𝑔௤௝𝑥௧௝(௞)∑ 𝑔௤௝𝑥௧௝(௞) + 𝑟௧௤ + 𝑠௧௤ே௝ 𝑦௧௤ . 

(24)

Here, 𝓛௜(௧)  (or 𝓛௜(: , : , 𝑡) ) denotes the t-th frontal slice of tensor 𝓛௜ ; 𝜞௜௧௝  denotes the 

contribution weight for pixel 𝒙௧௝ to tensor 𝓧௜; 𝜔௧௝ denotes the j-th element of 𝝎௧, and 𝐷௝ denotes 

the j-th column of the differential operator 𝑫; and 𝜈௧௝ is the j-th element of multiplier 𝒗௧. 

According to the M-step in Equation (18), we can harvest a unitary quadratic equation:  𝐴௧௝(𝑥௝)ଶ + 𝐵௧௝𝑥௝ + 𝐶௧௝ = 0 𝑠. 𝑡.  A௧௝ = 𝛼 ෍ ෍ 𝜞௜௧௝் 𝜞௜௧௝்
௧௜ + 𝛽𝜂 ෍ 𝑫௝் 𝑫௝்

௧  ,           𝐶௧௝ = − ෍ ෍ 𝑐̂௧௤௝ெ
௤

்
௧  

 B௧௝ = ෍ ෍ 𝑔௤௝ெ
௤

்
௧ − 𝛼 ෍ ෍ 𝜞௜௧௝் 𝓛௜(௧)(௞ାଵ)்

௧௜  − ෍ 𝛽𝜂𝑫௝் 𝜔௧௝(௞ାଵ) − 𝑫௝் 𝜈௧௝(௞ାଵ)்
௧  . (25)

Therefore, 𝑥௧௝(௞ାଵ)can be readily solved as the positive root of (25): 

𝑥௧௝(௞ାଵ) = (−𝐵௧௝ + ට𝐵௧௝ଶ − 4𝐴௧௝𝐶௧௝  )2𝐴௧௝ . (26)

In this X sub-problem, given that we do not have a close-formed solution for the PET 

reconstruction model [5], the X-subproblem is not fully solved by the employment of EM. However, 
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due to the implementation of ADMM based optimization, the overall framework will converge, even 

if its sub-problems are not carried out exactly [30].  

Algorithm 1 demonstrates the overall procedure of our proposed algorithm. It is noteworthy 

that, in the initialization step, we employed the filtered backward projection (FBP) [3] method to 

produce a ‘warm start’. By doing so, as we will show in the next section, iterative performance is 

notably improved. 

4. Experiments and Results 

In this section, we perform various experiments, in order to validate the qualitative and 

quantitative measures of the proposed method. Data on diversified photon counts, sizes, tracers, and 

structures are recovered by our proposed method and compared with the results of representative 

and state-of-the-art algorithms. 

4.1. Implementations 

4.1.1. Evaluation Criteria 

For the qualitative evaluation, randomly selected reconstructions are shown in this part, where 

the structural detail, noise level, and so on will be intuitively illustrated. For the quantitative 

evaluation, other than the peak signal-to-noise ratio (PSNR)), we also employ the relative bias and 

variance [45] as the indicators of the resolution and smoothness, respectively: 

Bias = ( 1𝑁௧) ෍ ห𝑥௝ − 𝑥ො௝ห𝑥ො௝
ே೟
௝ , (27)

Variance=( 1(𝑁௧ − 1)) ෍(ห𝑥௝ − 𝑥̄ห𝑥௝ )ଶே೟
௝ , (28)

where 𝑥ො௝  denotes the ground truth in the j-th pixel; 𝑥̄  denotes the mean value of the ROI; and  𝑁௧ denotes the total number of pixels in the given ROI. Unlike the PSNR, the smaller the relative bias and 

variance are, the better the reconstruction is.  

We also conduct the multiple simulations experiment. In this study, we employ the contrast 

recovery coefficient (CRC) and the standard deviation (STD) [16,46]: 

CRC = 1𝑅 ෍ |𝑆௥̅ − 𝐵ത௥|𝐵ത௥
ோ

௥ୀଵ , (29)

STD = 1𝑁஻ ෍ ට 1𝑅 − 1 ∑ (𝐵௥,௝ − 𝐵ത௝)ோ௥ୀଵ𝐵ത௝
ேಳ
௝ୀଵ . (30)

Here, 𝑅 = 50  represents the number of realizations in the simulation. In Equation (29), 𝑆௥̅ 

represents the mean value of the ROI in r-th realization and 𝐵ത௥ represents the mean value of the 

background region in r-th realization. In Equation (30), 𝑁஻ denotes the total number of pixels in the 

background region; 𝐵ത௝ = (1 𝑅⁄ ) ∑ 𝐵௥,௝ோ௥ୀଵ  denotes the mean value of j-th pixel in background region 

across R realizations. 

For the real data, we adopt the contrast to noise ratio (CNR) [47]:  𝐶𝑁𝑅 = (𝑚ோைூ − 𝑚௕௔௖௞௚௥௢௨௡ௗ)/𝑆𝐷௕௔௖௞௚௥௢௨௡ௗ, (31)

where the 𝑚ோைூ  and 𝑚௕௔௖௞௚௥௢௨௡ௗ  represent the intensity of the ROI and background region 

respectively, and 𝑆𝐷௕௔௖௞௚௥௢௨௡ௗ is the standard deviation of the background region. 
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4.1.2. Dataset 

As shown in Figure 4, we mainly adopt a 64 × 64 sized Zubal brain phantom as the template 

and employ the 11C-dihydrotetrabenazine (denoted as DTBZ) as the tracer. The scanning procedure 

in simulated into 18 frames for a duration of 20 min with the corresponding TAC presented in Figure 

1. Moreover, to validate the performance of the algorithms under a diversified tracer dose, the data 

are generated in 3 × 106, 107 and 3 × 107 total photon counts over 18 frames. Furthermore, in the 

multiple realizations experiment, we generate total 100 realizations for 3 × 106 and 3 × 107 counted 

data (R = 50 for each simulation). In addition, all the simulated settings correspond to real cases. 

 

Figure 4. The ground truth of brain phantom. Left: the region of interest (ROI) map. Right: the time 

activity curves (TAC) of this image sequence, with the 5th, 11th, and 17th frames are labeled in the 

figure. 

Furthermore, 111 × 111 sized Zubal head phantoms [16] are recovered to validate the 

effectiveness of the proposed method on different tracers (18F-FDG) and image sizes. Moreover, real 

cardiac data are tested in this section. The data are scanned over 60 min by a Hamamatsu SHR-22000 

(Hamamatsu Photonics K.K., Hamamatsu City, Japan). There are, overall, 19 frames, and each are 

scanned by 130 detector pairs from 192 angles. 

4.1.3. Comparative Algorithms 

To evaluate the performance of the proposed algorithm, we introduce five representative 

algorithms in comparison (the maximum likelihood-expectation maximization (ML–EM)  

algorithm [5], the penalized weighted least square (PWLS) method [8], the total variation optimized 

by augmented Lagrangian (TV-AL) method [48], the penalized likelihood incremental optimization 

method regularized by hyperbolic potential function [45,49] (denoted as PLH-IO), and the spatial-

temporal total variation (ST-TV) method [50]) proposed for dynamic PET reconstruction.  

4.1.4. Parameters Setting 

After deliberate examination, we set the weighting parameters as follows: the nonlocal tensor 

weight parameter 𝛼 = 1.7; TV weight parameter 𝛽 = 0.9; tensor thresholding parameter 𝜆 = 2.5; 

and and parameter 𝜂 = 50. Another critical issue is the tensors’ sizes. As shown in Figure 5, the 

optimal patch size is 3 × 3. Thus, if the number of feature patches is set to 10 in the 18-frame sequence, 

each selected tensor’s size is 9 × 10 × 18. We set the maximum iteration to 500 for all methods in 

comparison. 
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(a) (b) 

Figure 5. Normalized peak signal-to-noise ratio (PSNR) of reconstructions under different patch size 

W. (a) for images in different size, (b) for data under different photon count. 

4.1.5. Experiment Description 

We evaluate our method both qualitatively and quantitatively on simulation and real PET data. 

We firstly compare the reconstructions for 64 × 64 sized Zubal brain data under 3 × 107 total photon 

counts, and demonstrate 5th, 11th, and 17th frame in Figure 6. In Figure 7, we further compare the 

11th reconstructed frames under lower-counted sequences: 3 × 106 and 1 × 107 photon counts. In 

addition, we recover the 111 × 111 sized Zubal head phantom to validate the performance under 

different sizes and TACs, as shown in Figure 8. For the real patient study, we demonstrate the first 

frame of dynamic cardiac PET reconstructions in Figure 9, and compute the CNR for each method. 

       

       

       
(a) (b) (c) (d) (e) (f) (g) 

Figure 6. Dynamic brain phantom reconstructed by different algorithms. The total photon counts are 3 × 10଻ over 18 image frames. From the first to the last row: the 5th, 11th and 17th frame. (a) ground 

truth, (b) ML-EM (16.01 dB, 16.41 dB, 15.92 dB), (c) PWLS (17.71dB, 16.88dB, 16.23dB), (d) TV-AL 

(18.49 dB, 18.76 dB, 18.52 dB), (e) PLH-IO (21.26 dB, 19.56 dB, 18.39 dB), (f) ST-TV (21.27 dB, 20.59 dB, 

19.02 dB), (g) Ours (21.79 dB, 21.71 dB, 20.63 dB). 
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(a) (b) (c) (d) (e) (f) 

Figure 7. The simulated low-dosed images reconstructed by different algorithms. First row: the 11th 

frame under 186,337 photon counts. Second row: the 11th frame under 619,848 photon counts. (a) ML-

EM (12.51 dB, 15.06 dB), (b) PWLS (15.89 dB, 16.67 dB), (c) TV-AL (16.09 dB, 16.45 dB), (d) PLH-IO 

(16.83 dB, 18.84 dB), (e) ST-TV (17.43 dB, 19.21 dB), (f) Ours (17.78 dB, 19.98 dB). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 8. The 15th frame of 111×111 sized Zubal head phantom reconstructed by different algorithms. 

(a) ground truth, (b) ML-EM (18.19 dB), (c) PWLS (18.35 dB), (d)TV-AL (19.22 dB),  

(e) PLH-IO (19.17 dB), (f) ST-TV (19.45 dB), (g) Ours (19.73 dB). 
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(a) 

 

(b) 

 
(g) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 9. The 2nd frame of the dynamic cardiac real data, under 221,858 photon counts. The ROI is 

marked by a red circle. (a) ML-EM (CNR = 10.97), (b) PWLS (CNR = 13.72), (c) TV-AL(CNR = 18.46), 

(d) PLH-IO (CNR = 19.59), (e) ST-TV (CNR = 22.06), (f) Ours (CNR = 22.70), (g) the intensity profile 

across the ROI (the yellow line in the first graph). Our proposed method presents a superior contrast 

between the ROI and background region. 

In the quantitative evaluations, we firstly present the PSNR, relative bias and variance for data 

under 3 × 107, 3 × 106 and 1 × 107 photon counts in Table 1; furthermore, we compute the relative 

bias and variance in each ROI for 3 × 106 counted data and demonstrate them in Table 2. In Figure 

10a–c, we compute the PSNR, relative bias, and variance for each frame in 1 × 107 counted data. In 

Figure 10d, we demonstrate the performance of the trade-off between resolution and smoothness, by 

altering the parameters in each algorithm and plotting the bias and variance in each reconstruction.  

Table 1. Average value of statistical evaluation terms for reconstructed Brain Phantom sequences 

under different photon counts. 

Algorithm 
PSNR (dB)  Relative Bias  Relative Variance 

3 × 106 1 × 107 3 × 107  3 × 106 1 × 107 3 × 107  3 × 106 1 × 107 3 × 107 

ML-EM 13.00 14.39 15.75  0.2374 0.2024 0.1742  0.0252 0.0147 0.0138 

PWLS 15.20 16.25 16.81  0.2054 0.1747 0.1627  0.0217 0.0162 0.0154 

TV-AL 15.91 17.13 18.76  0.1804 0.1548 0.1286  0.0303 0.0161 0.0152 

PLH-IO 16.48 17.92 19.87  0.1883 0.1539 0.1225  0.0205 0.0131 0.0115 

ST-TV 16.85 19.07 20.21  0.1725 0.1359 0.1139  0.0161 0.0125 0.0097 

Ours 17.29 19.54 21.03  0.1609 0.1172 0.0983  0.0148 0.0111 0.0083 

Table 2. Average value of relative bias and variance in each region of interest (ROI). 3x106 photon 

counted data are tested and shown. 

Algorithm 
Relative Bias  Relative Variance 

Whole ROI1 ROI2 ROI3 ROI4  Whole ROI1 ROI2 ROI3 ROI4 

ML-EM 0.2374 0.2353 0.3909 0.4407 0.2654  0.0252 0.0260 0.0105 0.0292 0.0410 

PWLS 0.2054 0.1955 0.1853 0.2381 0.1801  0.0217 0.0377 0.0054 0.0176 0.0217 

TV-AL 0.1804 0.1905 0.1758 0.2114 0.1522  0.0303 0.0464 0.0056 0.0215 0.0303 

PLH-IO 0.1883 0.2601 0.1560 0.1680 0.2077  0.0205 0.0285 0.0035 0.0205 0.0205 

ST-TV 0.1725 0.2001 0.1388 0.1700 0.1791  0.0161 0.0210 0.0042 0.0151 0.0190 

Ours 0.1609 0.1864 0.1235 0.1591 0.1671  0.0148 0.0203 0.0035 0.0118 0.0186 

Moreover, we conduct the experiment on multiple simulations. In our experiment, we run  

100 realizations for 3 × 107 and 3 × 106 counted data, and draw the CRC-STD curves, as shown in  



Sensors 2019, 19, 5299 14 of 21 

 

Figure 11a–b. Accordingly, the CRC is computed from ROI 2, and the background STD is computed 

from ROI 4, which represents the white matter. In addition, we run the Wilcoxon rank sum test on 

the multiple realization test, as demonstrated in Figure 11c–d. In addition, we further examine the 

universality of the proposed method by reconstructing data under wider range of photon counts, as 

demonstrated in Figure 11a, from 1 × 106 to 1 × 108. Further discussions on convergence are 

illustrated in Figure 11b and the discussion section.  

4.2. Results 

4.2.1. Qualitative Evaluation 

The initial experiment focuses on the resolution and the denoising performance throughout the 

temporal dimension. According to the TAC in Figure 4, the distinction of activity between different 

ROIs is inconspicuous in the early imaging stage, which consequently hampers the recovery of the 

structural information in the corresponding image frames. As demonstrated in Figure 6, the 

reconstructions of ML-EM and PWLS suffer from severe iterative noise and fail to recover a clear 

boundary between regions. On the other hand, the TV-AL and PLH-IO show more acceptable results 

for the 17th frame. However, when it comes to former frames, neither of these two methods are able 

to recover clear structures. Moreover, the TV-AL suffers from the staircase effect and artifacts, and 

PLH-IO tends to over-smooth the image. Although ST-TV improves the resolution by incorporating 

temporal information, it is still limited by recovering more detailed structures. In contrast, our 

proposed method manages to recover more detailed structures and less noise in reconstructing the 

brain phantom sequence under 3 × 10଻ photon counts. This contrast is more distinctive in simulated 

low-dose images. As we can see in Figure 7, when recovering early frames in the low-count data, our 

proposed method is able to recover substantially clearer structures than those of other methods under 

similar noise levels.  

Meanwhile, our method also shows its universality in recovering sequences under different sizes 

and TACs. In this experiment, 111 × 111 sized Zubal head phantom data were tested in an 18F-FDG 

environment. In Figure 8, the 15th frame is randomly selected out of 24 frames. In addition, real 

patient data are tested. In Figure 9, the second sequence is shown, and the photon counts are around 

2.2 × 105. Obviously, our proposed method yields clearer boundaries and more conspicuous contrast 

between ROIs and the background.  

4.2.2. Quantitative Evaluation 

The quantitative measurements are also meticulously implemented. Table 1 demonstrates the 

average statistical values for the dynamic image sequences under diversified photon counts. 

According to the table, the proposed method enjoys a higher PSNR and lower relative bias and 

variance, revealing solid and substantial merits in structural enhancement, resolution improvement, 

and image denoising. Table 2 provides more detailed measurements for each ROI reconstruction. As 

shown in the table, the proposed method reconstructs images at a lower bias and variance in each 

ROI to vary the count level, which demonstrates better resolution and smoothness than those of 

comparable methods. 

Other than spatial information, temporal trends are also considered in Figure 10, where  

Figure 10a–c presents the PSNR, bias, and variance for each frame. It can be easily observed that the 

proposed method, overall, has better results for each frame, which will facilitate the exploitation of 

temporal information. In addition, given the fact that regular reconstruction methods are largely 

based on the trade-off between the resolution and the noise level, we also implemented an experiment 

of this trade-off, correspondingly represented by the relative bias and the relative variance in  

Figure 10d. As we can see, apart from the relatively poorer performances of ML-EM and PWLS, both 

TV-AL and PLH-IO show a negative correlation between these two indexes. In contrast, the marks of 

our proposed method are densely concentrated in the bottom-left of this graph, which shows a better 

image quality and better compromise for the mentioned trade-off. 
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(a) (b) 

(c) (d) 

Figure 10. The quantitative evaluation for each image frame. (a) PSNR, (b) relative bias, (c) relative 

variance, (d) the experiment on the trade-off between image resolution and denoising performance. 

To better validate the proposed method, we further implement the experiments on multiple 

realizations. As demonstrated in Figure 11a–b, we run the experiments under high-count and  

low-count scenarios (3 × 107 and 3 × 106 counted data) and draw the correspondent CRC-STD 

curves, which illustrate the performance of compared methods. In these curves, each point 

corresponds to a certain setting for parameters in the relative method. According to the figures, the 

proposed method manages to recover higher CRC while keeping the background STD in a low level, 

which validates the stability of our method in reducing the noise while keeping the contrast 

distinctive. Moreover, we analyze the statistical performance of the Wilcoxon rank sum test on the 

multiple realizations data. As shown in Figure 11c–d, we compute the p-value between the proposed 

method and compared methods, in terms of PSNR on multi-simulation. In this study, the proposed 

method significantly outperforms the ST-TV in 3 × 106 dataset, at p-value < 0.01; more distinctively, 

the proposed method outperforms other methods in 3 × 106 dataset and all methods in 3 × 107 

dataset, at a p-value < 0.001. 
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(a) (b) 

 
(c) (d) 

Figure 11. The statistical test on multiple realizations. First row: the CRC-STD curves for high-count 

and low-count simulations, with realization number R=50 in each dataset. Second row: the PSNR bar 

plot and Wilcoxon rank sum test on multiple realizations datasets. Here ** and *** represent p-value 

< 0.01 and p-value < 0.001 respectively. (a) CRC-STD curves on 3 × 107 dataset, (b) CRC-STD curves 

on the 3 × 106 dataset, (c) Wilcoxon rank sum test on 3 × 107 dataset, and (d) Wilcoxon rank sum test 

on the 3 × 106 dataset. 

4.2.3. Robustness and Convergence Analysis 

The robustness and convergence experiments are demonstrated in this section. As we can see 

from Figure 12a, the proposed method presents better performance and robustness than other 

methods under a broad range of photon counts.  

For the convergence, Figure 12b demonstrates the PSNR for iterations of all tested methods. 

Specifically, we individually test our methods with and without a warmstart, which is mentioned in 

Section 3. Our warmstart-equipped method surpasses other methods in its convergence performance. 
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(a) (b) 

Figure 12. The robustness and convergence experiments. (a) the PSNR of reconstructed sequences 

under diversified photon counts; (b) the PSNR convergent trends along iterations. 

5. Discussion 

Other than merely denoising, the proposed method simultaneously provides enhancement and 

completion of structural sparsity by introducing a 3D tensor based nonlocal low-rank constraint. 

Unlike the tracer kinetics based dynamic reconstruction method, the proposed method 

spontaneously exploits the inner temporal correlation within the sequence without the need for tracer 

information and model fitting. In fact, our proposed method not only managed to suppress noise 

while recovering at a high resolution, it also enhanced, and even completed, the structural 

information in the reconstruction sequence.  

This result is attributed to the tensor based low rank approximation. As presented in Figure 3, 

the third dimension of the 𝓧௜ ∈ ℝ௡×௠×்  exists alongside the temporal information. By 

implementing the tensor based low rank constraint on each 𝓧௜ , the spatial information is 

spontaneously infiltrated from high-counted frames to low-counted frames, while keeping the 

voxels’ relative intensities and edge arrangements fixed. Considering this feature, a dynamic PET 

sequence is considered ideal for this framework, given the unchanged boundary and structures along 

the dynamic sequences. On the other hand, since noise is randomly and sparsely arranged in the PET 

sequence, it is ruled out as the sparse component in the low rank approximation.  

Furthermore, we demonstrate the contribution of different regularization components in  

Figure 13 by setting various hyper-parameters. According to the figure, tensor constraints can 

successfully recover detailed structures but are slightly limited in smoothing an image under low 

counts. Fortunately, the employment of a TV constraint compensates for this issue, as demonstrated 

in Figure 13c. 

Nevertheless, there are still several concerns in this study. Firstly, for the data in unwilling but 

conspicuous motion, the proposed method is limited in harvesting temporal correlation, though 

other dynamic PET algorithms also suffer from this issue, to the best of our knowledge. Currently, 

the optimal solution is to conduct motion correction before reconstruction. Secondly, since 3D 

structural nonlocal features are not well proven in the computer vision community, this method is 

not guaranteed to function well in 3D PET reconstruction. However, we still provide two solutions 

for applying the proposed method in 3D data at the current stage: (1) Conduct the method slice by 

slice; and (2) rebin the data into a 2D form before reconstruction.  
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(a) 

 

(b) 

 

(c) 

Figure 13. The comparison of reconstructed images under different settings of hyper-parameters. (a) 

reconstruction constrained by TV regularization (by setting α=0), (b) reconstruction constrained by 

nonlocal low rank tensor (by setting β=0), (c) image reconstructed by proposed methods (α=2.5, β=1.4). 

The last issue focuses on the computational cost. For simulated data in Figure 4, the 

computational time for each method is demonstrated in Table 3. Here, the computational experiments 

are implemented under Matlab R2014a (Mathworks, Natick, MA., USA), on the same desktop with 

an Intel Core i7-4720HQ CPU (Santa Clara, CA, USA) @2.60 GHz and 8 GB RAM. We have to concede 

that, compared with the traditional pixel-based algorithms, the computational cost is inevitable in the 

proposed method, due to the multiple decompositions for feature tensors generated by feature cubes 

(or patches in 2D situation [23,24]). To address this issue, we will continue optimizing the proposed 

algorithm and employing other algorithms, such as TCTF [51]. 

In addition, the choice for the tensor decomposition model is still open in our future work. The 

T-SVD based method is proved effective in our work and [34–36], yet, strictly speaking, its tubal 

based rank is the analogous rank extended from SVD. In our future work, we will further analyze the 

data-structures, explore the feasibilities of other potential models, i.e., CP and Tucker rank [31], and 

testify the applicabilities of the latest proposed CP rank based methods [52,53] as well as Tucker rank 

based methods [54,55]). 

Table 3. Computational time for each method. 

Method ML-EM PWLS TV-AL PLH-IO ST-TV Ours 

Computational time (s/iteration) 0.04375 0.3163 0.07935 0.3507 0.1639 4.379 

6. Conclusions 

In this paper, we provide a novel tensor based nonlocal low-rank framework for dynamic PET 

reconstruction. By introducing a nonlocal featured tensor and applying the t-SVT in low-rank tensor 

approximation, the image structures are efficiently enhanced while effectively depressing the noise. 

More significantly, structural information is further completed by other frames in an interactive way, 

thereby compromising the conflict between spatial and temporal resolution. On the other hand, 

accompanied by the TV term denoising (from a local and pixel-based perspective), the regularizations 

are firstly integrated in the Poisson reconstruction model and efficaciously optimized in a distributed 

framework. 
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