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Abstract: Reconstructing images from multi-view projections is a crucial task both in the computer
vision community and in the medical imaging community, and dynamic positron emission
tomography (PET) is no exception. Unfortunately, image quality is inevitably degraded by the
limitations of photon emissions and the trade-off between temporal and spatial resolution. In this
paper, we develop a novel tensor based nonlocal low-rank framework for dynamic PET
reconstruction. Spatial structures are effectively enhanced not only by nonlocal and sparse features,
but momentarily by tensor-formed low-rank approximations in the temporal realm. Moreover, the
total variation is well regularized as a complementation for denoising. These regularizations are
efficiently combined into a Poisson PET model and jointly solved by distributed optimization. The
experiments demonstrated in this paper validate the excellent performance of the proposed method
in dynamic PET.

Keywords: dynamic positron emission tomography (PET), non-local; tensor decomposition; low-
rank approximation; compressed sensing; reconstruction; distributed optimization

1. Introduction

Positron emission tomography (PET) seeks to obtain radioactivity distributions by collecting
numerous photons emitted by the annihilations of positrons that come from the isotope-labeled tracer
injected in living tissue. Correspondently, considering the unique traits of physiological and
molecular imaging, PET is universally and irreplaceably required in clinic imaging, especially in
cancer diagnoses [1], lesion detection [2], and functional supervision in vivo. However, despite its
predominance for functional imaging, PET is dwarfed in resolution due to limitations either from
acquisition time or the injection dose when compared with other structural medical imaging systems
such as magnetic resonance imaging (MRI) and computed tomography (CT). Moreover, in dynamic
PET imaging, where the time-varying radioactivity concentration at each spatial location is obtained,
the structural information and denoising performance are more critical, along with increasing
demands for time activity curves (TAC) for different regions of interest (ROI). Under this framework,
reliable algorithms for dynamic PET reconstruction have been discussed and debated for decades.

Initial attempts at PET reconstruction included the famous analytic filtered back-projected (FBP)
[3] based algorithms, least squares (LS) [4], and the maximum likelihood-expectation maximization
(ML-EM) [5] method. Although milestones, problematic conditions [6] always accompany the
optimization of the mentioned algorithms (i.e., the solution might be sensitive to trivial fluctuation
and thus consequently increase noise along the iterations). Thus, much effort has been devoted to
this topic, among which the maximum a posteriori (MAP) [7] strategy, or penalized ML method [6],
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have become the key to the solution. The main idea for this strategy is to integrate regularization
terms, or image priors from a Bayesian perspective, into the reconstruction model. There are various
representative regularizations, including the weighted quadratic penalty [8], Gibbs prior [9], Gauss—
Markov prior [10], Huber prior [11], total variation [12], and so on. More recently, especially for
dynamic imaging, temporal priors are starting to be introduced in reconstruction (e.g., the tracer
kinetics model [13-15], kernel model [16], and dose estimation [17]).

Nevertheless, in spite of the significant progress achieved by researchers, traditional
reconstruction algorithms are still open to question. For one thing, traditional methods, to a large
extent, only focus on denoising behavior while ignoring the structural information within the images.
This has undoubtedly created a greater divide within the increasing clinical demand for resolution.
The other problem, which is of greater significance, is that the trade-off between the temporal and
the spatial resolution constantly degrades the quality of the dynamic reconstruction (i.e., a better
temporal resolution requires more frequent sampling within a given duration, which causes fewer
photon counts for each frame, thus undermining the spatial resolution, and vice versa).

In this paper, we explore a potential solution for the mentioned dilemma by providing a novel
tensor based nonlocal low-rank framework in dynamic PET reconstruction. Several efforts have been
devoted to related topics. Low rank decomposition [18] and non-negative matrix
factorization [19-21], on the one hand, have been found to be able to capture the inner temporal
correlation in a dynamic PET. On the other hand, the nonlocal feature, which refers to the abundant
self-similar structures within an image, are excellently adopted in image denoising (e.g., the nonlocal
means (NLM) [22], weighted nuclear norm minimization (WNNM) [23], block-matching 3D
denoising (BM3D) [24], nonlocal restoration [25], and nonlocal representation [26]). Moreover, in [27],
Dong et al. demonstrate the existence of nonlocal self-similarities and sparse features in MRI images.
As shown in Figure 1, nonlocal low-rank [28,29] features exist not only in ordinary natural images
but also in PET reconstructed images. Furthermore, as will be illustrated in Section 3, we promote the
use of matrix based nonlocal low-rank features in a novel tensor form and successfully apply it to
dynamic PET reconstruction. In this way, the structures are not only enhanced spatially by the image
itself but simultaneously completed by relevant frames across the temporal dimension.

The main contributions are listed as follows:

(1). Aninnovative form of a nonlocal low rank tensor constraint is adopted in the Poisson’s model,
which captures data correlation in multiple dimensions in dynamic PET, beyond just
spatiotemporal correlation. For one thing, without any additional information, Poisson’s model
exploits the temporal information among the frames themselves, effectively complementing
the structures in low-active frames and recovering severely corrupted data. For the other, it
exploits the spatial information from nonlocal self-similarities within each frame, thereby
enhancing the structured sparsity for each image.

(2). As an additional regularization, the total variation (TV) constraint is employed to extract local
structure and further complement the denoising function. On the other hand, the expectation—
maximization method is employed as a fidelity term to incorporate hidden data in the objective
function and thus increase efficiency in optimization.

(3). In the optimization procedure, we develop a distributed optimization framework inspired by
the alternative direction method of multipliers (ADMM) [30]. In this way, the mentioned terms
can be explicitly organized in a united objective function and effectively handled as three
subproblems during the iterations.
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Figure 1. The nonlocal low-rank validation on images. For each random-selected exemplar patch
(e.g., 5 x 5 sized), there can be found ample similar patches within the image itself. (a) By stretching
the exemplar patch and its similar patches into vectors, a corresponding feature matrix (e.g., 25 x 30
sized) can be formulated. (b) The rank distribution for the matrices which is formulated from given
images. Up: the monarch; Down: Positron emission tomography (PET) scan of an Alzheimer’s
patient’s brain.

2. Background

2.1. Dynamic PET Imaging Model

Typically, during the detection procedure, the PET scanner collects the emitted photons and then
pre-processes them into so-called sinogram data as the input of the reconstruction. For dynamic PET,
let the sinogram matrix Y = [y, ¥5,..., Y., ... ¥7] € RM*T denote the collection of sinogram data
vectors, where t=1,2,...,T denotes the index of the frames; and sinogram vector
Y:= g, q=1,,M}€RM denotes the sum of the photons collected in the t-th frame, where g
represents the index of the total M pairs of detectors. Correspondently, X = [x1,x;,...,X;,...X7] €
RV *T denotes the collection of the images that are supposed to be recovered, where vector
x; € RV represents the t-th frame. Since Poisson distribution uses inherited PET systems, the
reconstruction of each frame can be successfully modeled by the affine transformation:

y;: ~ Poisson{y,} s.t. ¥, = E(y;) = Gx; + 1.+ s, 1

where y, is the expectation of y,; G € RM*V is the system matrix; and r, and s, represent the
random coincidence and scatter coincidence, which inevitably contain heavy noise. In this way, we can
obtain the likelihood function of y; as

M

Pr(yelx) = | [e

q

5 Ve
Vg™

Veo! @)

Instead of maximizing Label (2), we estimate x, by minimizing the negative log-likelihood
version for the convenience of optimization:

M
rr’ltitnP(xt) = rriltn —log(Pr(y:|x;)) = n}itnzytq — Vtq108(Veq) s.t. ¥ =Gx+1+5,  (3)
q

where the constant term log(y,,!) is left out.
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Therefore, in the scale of dynamic reconstruction, Equation (3) can be transformed into
T M
mXinP(X) = mXinZ Z Viq — Veq108(Veq) St ¥e=Gx  + 71, + 5. (4)
t q
However, optimization merely by Equation (4) is ill-conditioning—i.e., the reconstruction is
vulnerable to accumulated iterative noise accompanying the iteration. The predominant solution to
this shortcoming is to include the regularization terms in Equation (4) as the image prior. Thus, the
object function of PET reconstruction can be written as

mXin‘P(X) = mXinP(X) + R(X), (5)

where P(X) denotes the fidelity term defined in Equation (4), and R(X) denotes the
regularization term.

2.2. Tensor Decomposition

Just like the matrix, the low-rank approximation of the tensor is also inevitably based on tensor
decomposition. At present, the strategies for tensor decomposition mainly fall into three groups: the
CANDECOMP/PARAFAC [31] (CP) decomposition methods, Tucker decomposition [32,33]
methods, and tensor-singular value decomposition [34-36] (t-SVD) methods. Because of the stability
and efficiency inherited in their optimization, t-SVD has aroused increasing interest among the
community.

As shown in Figure 2, for a three-way tensor A € R"*"2*"3, t-GVD shares the same form as the
matrix SVD:

A=U*8§+VT, (6)

where U € R"*"*Ms and P € R"2*"2*"s are orthogonal tensors [37]; VT represents the conjugate
transpose [34] of V; § € RM*"2*"3 ig a f-diagonal tensor in which each frontal slice §@ is a diagonal
matrix [35]; and * denotes the t-product [37,38].

n n
Figure 2. Illustration of tensor-singular value decomposition (t-SVD) upon an n; X n, X nztensor [35].
In this paper, we proposed a nonlocal tensor low-rank framework for dynamic PET

reconstruction, where the tensor low-rank approximation is efficiently and effectively conducted by
a t-5VD based method. The details of this method will be illustrated in Section 3.

3. Method

In this paper, we proposed a novel reconstruction framework that can jointly recover, denoise,
and (mostly) critically complete the structures in the dynamic PET imaging system. The overall
procedure is illustrated in Algorithm 1.
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Algorithm 1: Dynamic PET reconstruction via Nonlocal Low-rank Tensor Approximation and
Total Variation

Input: Sinogram Y and system matrix G, weighting parameters a, 5, 4,1, and the reference
frame index t,.
1: Initialization: k = 0,X° = FBP(Y).
2: Repeat:
3:  Compute the patch sets S,; ) Vi based on the t,-th frame x,® using (7).
& L — subproblem
4:  Construct the nonlocal featured tensor X;**V, vi by (8) and (9).
Approximate the low-rank tensor£; **¥, vi by adopting t-SVT method in (13) and (21).
6: Construct 2 by updating the differential vector w,**Y, vt via (22).
& w — subproblem
7:  Update the Lagrangian multiplier v,*Y,vt via (23).

@

8: Repeat: & X — subproblem

9: E-step: Introduce the expectation variable ¢.,; and construct the X —relevant objective
function W(X) in (24).

10: M-step: Update xg'ﬂ),\?’t, j using (25) and (26).

(x(e+1) _x (),

-5
x(k+1) <10

11: Until: Inner Relative change
122k « k+1

(k+1) _yx(k)
13: Until: Relative change% <107¢

14: Output: Reconstructed image sequence X®.

3.1. Nonlocal Low Rank Tensor Approximation

The nonlocal tensor regularization consists of two parts: forming the nonlocal tensor within the
recovered frames and formulating the low-rank property in the formed tensors.

3.1.1. Tensor Formulation

During the optimizing procedure, a temporary estimated image sequence
X =[x, %5,...,%;,...x7] € RVT will be obtained after each iteration, where x, € RV represents the
t-th frame of image vector as mentioned in Section 2.1. Similar to Figure 1, numerous W x W sized
overlapping patches ¥;; € R" (n=W X W) can be extracted from each x;, where i denotes the index
of the image patch. According to the nonlocal self-similar properties, within the image, there are
plentiful patches that share the same structure with each ¥,;. Based on the Euclidean distance, we
choose the m nearest patches for each ¥;:

Sei = {SI11%ei — Zeisll2 < pei}, @)

where S;; is the index set of similar patches for the i-th positioned patch %,;; and p;; is the threshold
value defined by the distance between X;; and its m-th nearest patch. Thus, for each exemplar Xy,
we formulate a matrix:

Xti = [%ti' iti,ll Y] ftl’,s' Y] fti,m—l]t Xti € R™ ™, (8)

As shown in Figure 1, due to the nonlocal self-similarity, it is fairly assumed that each X;; is
low-rank.

From a dynamic recovery perspective, sets S;; for t = 1,2,...,T areidentical, since the structure
in dynamic PET is unchanged. Therefore, based on the patch position i, we can construct a 3D tensor
X; € R*"*™*T whose frontal slices are calculated as

xi(:,:,t)=th-,t=1,2,...,T. (9)

Figure 3 illustrates the overall procedure for forming a nonlocal tensor. Within each iteration,
numerous X;s for various i positions will be constructed and then approximated by a low-rank

property.
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Figure 3. [llustration of tensor construction. The first row represents the temporary recovered image
sequence. For the randomly chosen patch position , similar patches can be found within its own frame
and then grouped into matrices in the second row. By stacking the matrices along the frames, we
managed to construct a feature tensor X; € R™™*T for position i.

3.1.2. Low Rank Tensor Approximation

The next step is the low rank approximation for constructed tensors X, Vi. Traditionally, the
primal model of rank regularization searches for the tensor £;, where

L; = argminrank(L;) s.t. L; = X;. (10)
L

Nevertheless, this model is non-deterministic polynomial-time (NP) hard, and its direct
optimization is nonconvex. Taking this situation into account, we choose a surrogate form of
Equation (10) and turn it into a convex optimization issue:

1
L= argrrzlingllli = XillE + AL (11)

Here, ||-||. denotes the tensor nuclear norm [39] and ||-||z denotes the Frobenius norm. Under
this circumstance, it is feasible to get a closed-form solution by adopting tensor singular value
thresholding (t-SVT) [39]:

Ly =U*Dy(S) * Vi, 12)
with X; = U; * §; * V;"representing the mentioned t-SVD of X; and
Dy(8) = IFFT(3)((31' - D), (13)

where (X) , =max(X,0); IFFT3)(X) denotes the fast Inverse Fast Fourier Transform (IFFT) of X
across dimension 3; and 8;=FFT(3)(§;) denotes the Fast Fourier Transform (FFT) of §; across
dimension 3.

3.2. Total Variation Regularization in Dynamic PET

Apart from nonlocal low-rank tensor regularization, we also incorporate the total variation [40]
(TV) as a complementary constraint into the dynamic PET reconstruction framework. Unlike the
nonlocal tensor, the adopted TV regularization focuses on inherited local information within each
frame. Moreover, this pixel-based regularization compromises patch-based regularization and thus
improves the denoising performance of the proposed algorithm.

For each image frame x, € RY in the estimated sequence X = [x,X,,...,X;,...X7] € RV *T, we
adopt an I2 formed TV regularization, which is properly formulated in accordance with augmented
Lagrangian optimization [41,42]:
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mi_nz Nwgll, st Dyx, = w,; forall j, a4
Xt] ]

where w;; = D;jx; denotes the discrete gradient of x, at position j; and D; denotes the j-th element of
the corresponding differential operator D. Correspondingly, the augmented Lagrangian function can
be written as:

T
. n
mInDTV(@IX) = Y llall + 3 lloo; = Dx|I3 = ve(w, - Dx), (15)
t

where 2 = [@,, w,,...,wr] € RV *T represents the collection of discrete gradient vectors @, = Dx,
for each recovered frame; 1 represents the tunable weighting parameters of the quadratic term; and
v, represents the updatable multiplier vector. Consequently, this method guarantees the convexity
of TV regularization, and hence equips the proposed method with global convergence.

3.3. Expectation Maximization for Fidelity Term

Indisputably, solving the fidelity term Equation (4), to a large extent, is an essential mission in
estimating the reconstruction images X. Regardless of regularization, Equation (4) can be further
written as:

T N M
mXinP(X) = mXinZ Z Z(gq]-x“- — Ceqjl0g(gqjxej)) sty = Z Ceqj» (16)
t=1 j ¢q q
where x;; denotes the j-th pixel in image x;; g,; is the gj-th entry in system matrix G, representing
the contribution of the j-th pixel given to the g-th detector; and the hidden variable c,; represents
the photon count from the j-th pixel to the g-th detector pair in the t-th frame.
The main challenge lies in the solving procedure, especially handling the hidden variable c,;. In this
work, we adopt the well-known expectation maximization (EM) [5,43], which introduces ‘complete
data’ into the model and thus facilitates optimization. In order to solve Equation (18), there are two
essential steps:
e E-step: This step employs the expectation ¢.,; = E(cyq j|xt, Yiq) as the substitute for the hidden
variable c.,; in Equation (18):

YqjXtj
N
2 9qjXej + Teq + Stq

Crqj = Viq. (17)

e  M-step: This step maximizes the likelihood by zeroing the derivative of Equation (19):

JIP(X
®_,
6xtj

(18)

The EM algorithm, which will be illustrated in greater detail in the next section, makes our
proposed framework readily and efficiently solvable.
3.4. The Overall Optimization Framework
Based on Equation (5), the overall reconstruction model can be represented as
mXin‘P(X) = mXinaTNL(X) + SDTV(X)+P(X), (19)
where P(X) is the fidelity term in the reconstruction model Equation (16); TNL(X) represents the
tensor formed nonlocal low rank constraint in Section 3.1, DTV(X) represents the dynamic PET

adopted total variation term in Section 3.2;and a and f denote the weighting parameters. By taking
the mentioned terms into account, the objective function can be formulated as:

YX L w) = a(Zlé I£; = XllE + AL + B oI, (20)
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+ 7|l = Dx¢| 13 = vi(@, — Dx)) + T Y Jtq = Yiq 0g (F1q),
s.t. yt = Gxt + Tt + St'

Normally, recovering X = [x1,X,,...,X;,...X7] € RNXT directly from Equation (20) is a complex
process. For this process, we refer to the alternative direction method of multipliers (ADMM) [30]
and divide the model into three subproblems of £, w and X in a distributed optimization way.

(1) L£-subproblem. Let (-)® denote the updated variable after the k-th iteration; e.g., X®
represents the computed image sequence after the k-th iteration. In the (k + 1)-th iteration,
nonlocal low-rank approximation is first implemented. After the formulation of nonlocal feature
tensors Xl-(’”l), Vi, as illustrated in Section 3.1, we can obtain the function related to each low
rank tensor:

T
Li(k+1) — ui(k+1) " DA(Si(kH)) % vl(k+1) , (21)

with X, 04D = 44, (4D 5 5,040 )
L
(2) w-subproblem. Unlike updating £;, the discrete gradient is updated frame by frame. As shown
in Equation (15), we update 2 = [w,®,,...,wr] € RVT by employing the shrinkage
operator [44]:

1 Dx, %) — v, () /p
(k+1) — () —
o029 =max {105 =221k - o) P = )
Correspondingly, the multiplier vector updates by:
vt(k+1) = vt(k) —_ n(Dxt(k) — wt(k+1)) i (23)

(3) X -subproblem. After the update of £ and w, the last critical process is to update
X =[xy,%3,...,%,...x7] € R¥T. In addition to the fidelity term in Equation (18), the former
mentioned regularizations must be considered. In this procedure, we adopt the EM algorithm
and hence reform Equation (20) into a joint function relevant to X (or x;;):

T
2
900375 S~ ontaur+ 35 et -
t

T N
n
+,B Z ZE(DIXU — a)tj(k+1))2 + th(k+1) ((,L)tj(k+1) — D]'xtj) (24)
t j

_ 9qj%e] "
27 9qixe; ¥+ Teg + 5¢q

Yiq -

Here, L;y) (or L;(:,:,t)) denotes the t-th frontal slice of tensor £;; I;; denotes the
contribution weight for pixel x;; to tensor X;; w;; denotes the j-th element of w,, and D; denotes
the j-th column of the differential operator D; and v,; is the j-th element of multiplier v,.

According to the M-step in Equation (18), we can harvest a unitary quadratic equation:
At]-(x]-)z + Bt]x;}+ Ct] =0

T T M
st Ay=a ) Y Fhu+B1) DID;,  Cy=— > &y
it t t q
T M T T
I D T A
t q Tt ¢

Therefore, x; j(k“)can be readily solved as the positive root of (25):

—B,; /B 2 44,.C,;
x(k+1) ( tj + tj t]Ct]) (26)

tj 24,

(25)

In this X sub-problem, given that we do not have a close-formed solution for the PET
reconstruction model [5], the X-subproblem is not fully solved by the employment of EM. However,
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due to the implementation of ADMM based optimization, the overall framework will converge, even
if its sub-problems are not carried out exactly [30].

Algorithm 1 demonstrates the overall procedure of our proposed algorithm. It is noteworthy
that, in the initialization step, we employed the filtered backward projection (FBP) [3] method to
produce a ‘warm start’. By doing so, as we will show in the next section, iterative performance is
notably improved.

4. Experiments and Results

In this section, we perform various experiments, in order to validate the qualitative and
quantitative measures of the proposed method. Data on diversified photon counts, sizes, tracers, and
structures are recovered by our proposed method and compared with the results of representative
and state-of-the-art algorithms.

4.1. Implementations

4.1.1. Evaluation Criteria

For the qualitative evaluation, randomly selected reconstructions are shown in this part, where
the structural detail, noise level, and so on will be intuitively illustrated. For the quantitative
evaluation, other than the peak signal-to-noise ratio (PSNR)), we also employ the relative bias and
variance [45] as the indicators of the resolution and smoothness, respectively:

1y -3
. x]-—xj
_ L 27

Bias (Nt)z P (27)

J
N¢ _

Variance=(— )Z('x" _x|)2, (28)

(Nt—l) i Xj

where X; denotes the ground truth in the j-th pixel; X denotes the mean value of the ROI; and
N; denotes the total number of pixels in the given ROL Unlike the PSNR, the smaller the relative bias and
variance are, the better the reconstruction is.

We also conduct the multiple simulations experiment. In this study, we employ the contrast
recovery coefficient (CRC) and the standard deviation (STD) [16,46]:

1018, — B, |
CRC = —Z_—, 29
s (29)
r=1
Np \/LzR_ (B, — B)
stp = —y VRIZE (30)
Nj 4 B,
j=1

Here, R = 50 represents the number of realizations in the simulation. In Equation (29), S,
represents the mean value of the ROI in r-th realization and B, represents the mean value of the
background region in r-th realization. In Equation (30), Nz denotes the total number of pixels in the
background region; B; = (1/R) XX_, B,; denotes the mean value of j-th pixel in background region
across R realizations.

For the real data, we adopt the contrast to noise ratio (CNR) [47]:

CNR = (mROI - mbackground)/SDbackground/ (31)

where the mgo; and Mygergrouna Tepresent the intensity of the ROI and background region
respectively, and SDpqckgrouna is the standard deviation of the background region.
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4.1.2. Dataset

As shown in Figure 4, we mainly adopt a 64 X 64 sized Zubal brain phantom as the template
and employ the 11C-dihydrotetrabenazine (denoted as DTBZ) as the tracer. The scanning procedure
in simulated into 18 frames for a duration of 20 min with the corresponding TAC presented in Figure
1. Moreover, to validate the performance of the algorithms under a diversified tracer dose, the data
are generated in 3 x 106, 107 and 3 X 107 total photon counts over 18 frames. Furthermore, in the
multiple realizations experiment, we generate total 100 realizations for 3 X 10¢ and 3 x 107 counted
data (R =50 for each simulation). In addition, all the simulated settings correspond to real cases.

Time Activity Curve (TAC)

I background ||
[ JROIM

Figure 4. The ground truth of brain phantom. Left: the region of interest (ROI) map. Right: the time
activity curves (TAC) of this image sequence, with the 5th, 11th, and 17th frames are labeled in the
figure.

Furthermore, 111 X 111 sized Zubal head phantoms [16] are recovered to validate the
effectiveness of the proposed method on different tracers (18F-FDG) and image sizes. Moreover, real
cardiac data are tested in this section. The data are scanned over 60 min by a Hamamatsu SHR-22000
(Hamamatsu Photonics K.K., Hamamatsu City, Japan). There are, overall, 19 frames, and each are
scanned by 130 detector pairs from 192 angles.

4.1.3. Comparative Algorithms

To evaluate the performance of the proposed algorithm, we introduce five representative
algorithms in comparison (the maximum likelihood-expectation maximization (ML-EM)
algorithm [5], the penalized weighted least square (PWLS) method [8], the total variation optimized
by augmented Lagrangian (TV-AL) method [48], the penalized likelihood incremental optimization
method regularized by hyperbolic potential function [45,49] (denoted as PLH-IO), and the spatial-
temporal total variation (ST-TV) method [50]) proposed for dynamic PET reconstruction.

4.1.4. Parameters Setting

After deliberate examination, we set the weighting parameters as follows: the nonlocal tensor
weight parameter a = 1.7; TV weight parameter f = 0.9; tensor thresholding parameter 1 = 2.5;
and and parameter = 50. Another critical issue is the tensors’ sizes. As shown in Figure 5, the
optimal patch sizeis 3 x 3. Thus, if the number of feature patches is set to 10 in the 18-frame sequence,
each selected tensor’s size is 9 X 10 x 18. We set the maximum iteration to 500 for all methods in
comparison.
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Figure 5. Normalized peak signal-to-noise ratio (PSNR) of reconstructions under different patch size
W. (a) for images in different size, (b) for data under different photon count.

4.1.5. Experiment Description

We evaluate our method both qualitatively and quantitatively on simulation and real PET data.
We firstly compare the reconstructions for 64 X 64 sized Zubal brain data under 3 X 107 total photon
counts, and demonstrate 5th, 11th, and 17th frame in Figure 6. In Figure 7, we further compare the
11th reconstructed frames under lower-counted sequences: 3 X 10° and 1 x 107 photon counts. In
addition, we recover the 111 x 111 sized Zubal head phantom to validate the performance under
different sizes and TACs, as shown in Figure 8. For the real patient study, we demonstrate the first
frame of dynamic cardiac PET reconstructions in Figure 9, and compute the CNR for each method.

(XXXXXX)

(@) (b) (©) (d) (e) () (®

Figure 6. Dynamic brain phantom reconstructed by different algorithms. The total photon counts are
3 x 107 over 18 image frames. From the first to the last row: the 5th, 11th and 17th frame. (a) ground
truth, (b) ML-EM (16.01 dB, 16.41 dB, 15.92 dB), (c¢) PWLS (17.71dB, 16.88dB, 16.23dB), (d) TV-AL
(18.49 dB, 18.76 dB, 18.52 dB), (e) PLH-IO (21.26 dB, 19.56 dB, 18.39 dB), (f) ST-TV (21.27 dB, 20.59 dB,
19.02 dB), (g) Ours (21.79 dB, 21.71 dB, 20.63 dB).
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(a) (b) © ) © ®

Figure 7. The simulated low-dosed images reconstructed by different algorithms. First row: the 11th
frame under 186,337 photon counts. Second row: the 11th frame under 619,848 photon counts. (a) ML-
EM (12.51 dB, 15.06 dB), (b) PWLS (15.89 dB, 16.67 dB), (c) TV-AL (16.09 dB, 16.45 dB), (d) PLH-IO
(16.83 dB, 18.84 dB), (e) ST-TV (17.43 dB, 19.21 dB), (f) Ours (17.78 dB, 19.98 dB).

(e) () (8)

Figure 8. The 15th frame of 111x111 sized Zubal head phantom reconstructed by different algorithms.
(a) ground truth, (b) ML-EM (1819 dB), (¢) PWLS (1835 dB), (d)TV-AL (19.22 dB),
(e) PLH-IO (19.17 dB), (f) ST-TV (19.45 dB), (g) Ours (19.73 dB).
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Poéition
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Figure 9. The 2nd frame of the dynamic cardiac real data, under 221,858 photon counts. The ROI is
marked by a red circle. (a) ML-EM (CNR = 10.97), (b) PWLS (CNR = 13.72), (c) TV-AL(CNR = 18.46),
(d) PLH-IO (CNR = 19.59), (e) ST-TV (CNR = 22.06), (f) Ours (CNR = 22.70), (g) the intensity profile
across the ROI (the yellow line in the first graph). Our proposed method presents a superior contrast
between the ROI and background region.

In the quantitative evaluations, we firstly present the PSNR, relative bias and variance for data
under 3 x 107, 3 x 10¢ and 1 X 107 photon counts in Table 1; furthermore, we compute the relative
bias and variance in each ROI for 3 X 10¢ counted data and demonstrate them in Table 2. In Figure
10a—c, we compute the PSNR, relative bias, and variance for each frame in 1 X 107 counted data. In
Figure 10d, we demonstrate the performance of the trade-off between resolution and smoothness, by
altering the parameters in each algorithm and plotting the bias and variance in each reconstruction.

Table 1. Average value of statistical evaluation terms for reconstructed Brain Phantom sequences
under different photon counts.

PSNR (dB) Relative Bias Relative Variance
3x106 1x107 3x107 3x106 1x107 3x107 3 x105 1x107 3 x 107
ML-EM  13.00 14.39 1575 0.2374 0.2024 0.1742 0.0252 0.0147 0.0138
PWLS 1520 1625 16.81 0.2054 0.1747 0.1627 0.0217 0.0162 0.0154
TV-AL 1591 17.13 18.76  0.1804 0.1548 0.1286 0.0303 0.0161 0.0152
PLH-IO 1648 1792 19.87 0.1883 0.1539 0.1225 0.0205 0.0131 0.0115
ST-TV 16.85 19.07 2021 0.1725 0.1359 0.1139 0.0161 0.0125 0.0097
Ours 17.29 1954 21.03 0.1609 0.1172 0.0983 0.0148 0.0111 0.0083

Algorithm

Table 2. Average value of relative bias and variance in each region of interest (ROI). 3x10° photon
counted data are tested and shown.

Relative Bias Relative Variance
Whole ROI1 ROI2 ROI3 ROI4 Whole ROI1 ROI2 ROI3 ROI4
ML-EM  0.2374 0.2353 0.3909 0.4407 0.2654 0.0252 0.0260 0.0105 0.0292 0.0410
PWLS 0.2054 0.1955 0.1853 0.2381 0.1801 0.0217 0.0377 0.0054 0.0176 0.0217
TV-AL  0.1804 0.1905 0.1758 0.2114 0.1522 0.0303 0.0464 0.0056 0.0215 0.0303
PLH-IO 0.1883 0.2601 0.1560 0.1680 0.2077  0.0205 0.0285 0.0035 0.0205 0.0205
ST-TV ~ 0.1725 0.2001 0.1388 0.1700 0.1791 0.0161 0.0210 0.0042 0.0151 0.0190
Ours 0.1609 0.1864 0.1235 0.1591 0.1671 0.0148 0.0203 0.0035 0.0118 0.0186

Algorithm

Moreover, we conduct the experiment on multiple simulations. In our experiment, we run
100 realizations for 3 X 107 and 3 X 106 counted data, and draw the CRC-STD curves, as shown in
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Figure 11a-b. Accordingly, the CRC is computed from ROI 2, and the background STD is computed
from ROI 4, which represents the white matter. In addition, we run the Wilcoxon rank sum test on
the multiple realization test, as demonstrated in Figure 11c—d. In addition, we further examine the
universality of the proposed method by reconstructing data under wider range of photon counts, as
demonstrated in Figure 11a, from 1 X 10° to 1 X 108. Further discussions on convergence are
illustrated in Figure 11b and the discussion section.

4.2. Results

4.2.1. Qualitative Evaluation

The initial experiment focuses on the resolution and the denoising performance throughout the
temporal dimension. According to the TAC in Figure 4, the distinction of activity between different
ROIs is inconspicuous in the early imaging stage, which consequently hampers the recovery of the
structural information in the corresponding image frames. As demonstrated in Figure 6, the
reconstructions of ML-EM and PWLS suffer from severe iterative noise and fail to recover a clear
boundary between regions. On the other hand, the TV-AL and PLH-IO show more acceptable results
for the 17th frame. However, when it comes to former frames, neither of these two methods are able
to recover clear structures. Moreover, the TV-AL suffers from the staircase effect and artifacts, and
PLH-IO tends to over-smooth the image. Although ST-TV improves the resolution by incorporating
temporal information, it is still limited by recovering more detailed structures. In contrast, our
proposed method manages to recover more detailed structures and less noise in reconstructing the
brain phantom sequence under 3 X 10”7 photon counts. This contrast is more distinctive in simulated
low-dose images. As we can see in Figure 7, when recovering early frames in the low-count data, our
proposed method is able to recover substantially clearer structures than those of other methods under
similar noise levels.

Meanwhile, our method also shows its universality in recovering sequences under different sizes
and TACs. In this experiment, 111 X 111 sized Zubal head phantom data were tested in an 18F-FDG
environment. In Figure 8, the 15th frame is randomly selected out of 24 frames. In addition, real
patient data are tested. In Figure 9, the second sequence is shown, and the photon counts are around
2.2 x 105. Obviously, our proposed method yields clearer boundaries and more conspicuous contrast
between ROIs and the background.

4.2.2. Quantitative Evaluation

The quantitative measurements are also meticulously implemented. Table 1 demonstrates the
average statistical values for the dynamic image sequences under diversified photon counts.
According to the table, the proposed method enjoys a higher PSNR and lower relative bias and
variance, revealing solid and substantial merits in structural enhancement, resolution improvement,
and image denoising. Table 2 provides more detailed measurements for each ROI reconstruction. As
shown in the table, the proposed method reconstructs images at a lower bias and variance in each
ROI to vary the count level, which demonstrates better resolution and smoothness than those of
comparable methods.

Other than spatial information, temporal trends are also considered in Figure 10, where
Figure 10a—c presents the PSNR, bias, and variance for each frame. It can be easily observed that the
proposed method, overall, has better results for each frame, which will facilitate the exploitation of
temporal information. In addition, given the fact that regular reconstruction methods are largely
based on the trade-off between the resolution and the noise level, we also implemented an experiment
of this trade-off, correspondingly represented by the relative bias and the relative variance in
Figure 10d. As we can see, apart from the relatively poorer performances of ML-EM and PWLS, both
TV-AL and PLH-IO show a negative correlation between these two indexes. In contrast, the marks of
our proposed method are densely concentrated in the bottom-left of this graph, which shows a better
image quality and better compromise for the mentioned trade-off.
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Figure 10. The quantitative evaluation for each image frame. (a) PSNR, (b) relative bias, (c) relative

variance, (d) the experiment on the trade-off between image resolution and denoising performance.

To better validate the proposed method, we further implement the experiments on multiple
realizations. As demonstrated in Figure 1la-b, we run the experiments under high-count and
low-count scenarios (3 X 107 and 3 X 10¢ counted data) and draw the correspondent CRC-STD
curves, which illustrate the performance of compared methods. In these curves, each point
corresponds to a certain setting for parameters in the relative method. According to the figures, the
proposed method manages to recover higher CRC while keeping the background STD in a low level,
which validates the stability of our method in reducing the noise while keeping the contrast
distinctive. Moreover, we analyze the statistical performance of the Wilcoxon rank sum test on the
multiple realizations data. As shown in Figure 11c-d, we compute the p-value between the proposed
method and compared methods, in terms of PSNR on multi-simulation. In this study, the proposed
method significantly outperforms the ST-TV in 3 x 10¢dataset, at p-value < 0.01; more distinctively,
the proposed method outperforms other methods in 3 x 10¢ dataset and all methods in 3 x 107
dataset, at a p-value < 0.001.
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Figure 11. The statistical test on multiple realizations. First row: the CRC-STD curves for high-count
and low-count simulations, with realization number R=50 in each dataset. Second row: the PSNR bar
plot and Wilcoxon rank sum test on multiple realizations datasets. Here ** and *** represent p-value
< 0.01 and p-value < 0.001 respectively. (a) CRC-STD curves on 3 x 107 dataset, (b) CRC-STD curves
on the 3 x 10 dataset, (c¢) Wilcoxon rank sum test on 3 x 107 dataset, and (d) Wilcoxon rank sum test
on the 3 x 10 dataset.

4.2.3. Robustness and Convergence Analysis

The robustness and convergence experiments are demonstrated in this section. As we can see
from Figure 12a, the proposed method presents better performance and robustness than other
methods under a broad range of photon counts.

For the convergence, Figure 12b demonstrates the PSNR for iterations of all tested methods.
Specifically, we individually test our methods with and without a warmstart, which is mentioned in
Section 3. Our warmstart-equipped method surpasses other methods in its convergence performance.
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Figure 12. The robustness and convergence experiments. (a) the PSNR of reconstructed sequences
under diversified photon counts; (b) the PSNR convergent trends along iterations.

5. Discussion

Other than merely denoising, the proposed method simultaneously provides enhancement and
completion of structural sparsity by introducing a 3D tensor based nonlocal low-rank constraint.
Unlike the tracer kinetics based dynamic reconstruction method, the proposed method
spontaneously exploits the inner temporal correlation within the sequence without the need for tracer
information and model fitting. In fact, our proposed method not only managed to suppress noise
while recovering at a high resolution, it also enhanced, and even completed, the structural
information in the reconstruction sequence.

This result is attributed to the tensor based low rank approximation. As presented in Figure 3,
the third dimension of the X; € R™™*T exists alongside the temporal information. By
implementing the tensor based low rank constraint on each X;, the spatial information is
spontaneously infiltrated from high-counted frames to low-counted frames, while keeping the
voxels’ relative intensities and edge arrangements fixed. Considering this feature, a dynamic PET
sequence is considered ideal for this framework, given the unchanged boundary and structures along
the dynamic sequences. On the other hand, since noise is randomly and sparsely arranged in the PET
sequence, it is ruled out as the sparse component in the low rank approximation.

Furthermore, we demonstrate the contribution of different regularization components in
Figure 13 by setting various hyper-parameters. According to the figure, tensor constraints can
successfully recover detailed structures but are slightly limited in smoothing an image under low
counts. Fortunately, the employment of a TV constraint compensates for this issue, as demonstrated
in Figure 13c.

Nevertheless, there are still several concerns in this study. Firstly, for the data in unwilling but
conspicuous motion, the proposed method is limited in harvesting temporal correlation, though
other dynamic PET algorithms also suffer from this issue, to the best of our knowledge. Currently,
the optimal solution is to conduct motion correction before reconstruction. Secondly, since 3D
structural nonlocal features are not well proven in the computer vision community, this method is
not guaranteed to function well in 3D PET reconstruction. However, we still provide two solutions
for applying the proposed method in 3D data at the current stage: (1) Conduct the method slice by
slice; and (2) rebin the data into a 2D form before reconstruction.
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(@) (b) (©)

Figure 13. The comparison of reconstructed images under different settings of hyper-parameters. (a)
reconstruction constrained by TV regularization (by setting a=0), (b) reconstruction constrained by
nonlocal low rank tensor (by setting 3=0), (c) image reconstructed by proposed methods (a=2.5, f=1.4).

The last issue focuses on the computational cost. For simulated data in Figure 4, the
computational time for each method is demonstrated in Table 3. Here, the computational experiments
are implemented under Matlab R2014a (Mathworks, Natick, MA., USA), on the same desktop with
an Intel Core i7-4720HQ CPU (Santa Clara, CA, USA) @2.60 GHz and 8 GB RAM. We have to concede
that, compared with the traditional pixel-based algorithms, the computational cost is inevitable in the
proposed method, due to the multiple decompositions for feature tensors generated by feature cubes
(or patches in 2D situation [23,24]). To address this issue, we will continue optimizing the proposed
algorithm and employing other algorithms, such as TCTF [51].

In addition, the choice for the tensor decomposition model is still open in our future work. The
T-SVD based method is proved effective in our work and [34-36], yet, strictly speaking, its tubal
based rank is the analogous rank extended from SVD. In our future work, we will further analyze the
data-structures, explore the feasibilities of other potential models, i.e., CP and Tucker rank [31], and
testify the applicabilities of the latest proposed CP rank based methods [52,53] as well as Tucker rank
based methods [54,55]).

Table 3. Computational time for each method.

Method ML-EM PWLS TV-AL PLH-IO ST-TV Ours
Computational time (s/iteration) 0.04375 0.3163 0.07935 0.3507 0.1639 4.379

6. Conclusions

In this paper, we provide a novel tensor based nonlocal low-rank framework for dynamic PET
reconstruction. By introducing a nonlocal featured tensor and applying the t-SVT in low-rank tensor
approximation, the image structures are efficiently enhanced while effectively depressing the noise.
More significantly, structural information is further completed by other frames in an interactive way,
thereby compromising the conflict between spatial and temporal resolution. On the other hand,
accompanied by the TV term denoising (from a local and pixel-based perspective), the regularizations
are firstly integrated in the Poisson reconstruction model and efficaciously optimized in a distributed
framework.
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