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Abstract—Cybersecurity has become an emerging issue for the
secure operation of power systems. Besides hardening the power
system to improve its cybersecurity, cyber insurance is emerging
as a promising tool in cyber risk management. In this paper,
an actuarial framework is established to capture and reduce
the riskiness raised by interdependence among cyber risks, with
the aim to enhance cyber insurance market for power systems.
Absorbing semi-Markov process (SMP) is proposed to model
the cyberattacks on the power grid. Also a stochastic model is
developed to reflect the correlation of cyber risks across the power
system. A sequential Monte Carlo simulations (MCS) framework
is developed to evaluate the interruptions of the power system
considering both the physical failures of the components and
malicious cyberattacks. Then, the detailed insurance schemes are
designed to manage the risks of the power system considering the
financial consequences of cybersecurity threats. Case studies are
conducted on a test system based on the IEEE Reliability Test
System (RTS-79) to illustrate the application of the proposed
insurance pricing schemes.

Index Terms—Actuarial theory, cyber-insurance, cybersecu-
rity, interdependent risks, power system reliability, premium
principle.

I. INTRODUCTION

IN the past two decades, cybersecurity is emerging as one of
the most important issues for the secure operation of power

systems. Due to the extensive deployment of information
and communication technologies (ICT) across all levels of
power systems, the efficiency of the system operation has
been greatly improved. However, as a direct consequence,
vulnerabilities and risks of cyberattacks are introduced to the
power systems at the same time [1], [2]. The cybersecurity
threats to the power systems are increasing and becoming more
serious over time [3]. A recent example of cybersecurity risks
in power systems is the two consecutive malicious cyberattacks
against the Ukrainian power grid in 2015 and 2016 [4].
Significant damage was caused by the attacks. Merely in the
first attack in December 2015, over 130 MW of loads were lost
and more than 50 substations were affected [5]. Thus, how to
handle the risks of cybersecurity in power systems has become
a pressing topic for both the academia and power industry.

Besides improving the cybersecurity of power systems itself,
it is very important for the stakeholders to hedge the residual
risk of potential cyberattacks against the electric power grids.
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As a primary tool for risk management, insurance (namely
cyber insurance in this context) is among the most direct
and effective solutions to the challenge. Cyber insurance can
transfer the cyber risks and mitigate the impacts of successful
cyberattacks on organizations. The overall benefit of cyber
insurance pertains to the interactions among the power system
stakeholders and insurance providers. First, cyber insurance
smooths the financial impact of the cyber risks on the stake-
holders. Meanwhile, insurance premium is calculated to reflect
the self-protection strength of the stakeholders. This way, the
stakeholders would be incentivized to strengthen the cyberse-
curity of the power system to reduce the premium and thus
lower the total cost from both parties and reduce the impacts of
the cyber threats on the grid. Further, cyber insurance can also
benefit all the entities in the entire society in a few different
ways [6]. First, cyber insurance encourages the stakeholders to
increase the investments on cybersecurity so that the insurance
premium is reduced. As a result, the overall social welfare
is improved due to the enhancement of the cyber protection.
Secondly, the premium of cyber insurance can indicate the
quality of the cyber protection. Moreover, cyber insurance
will provoke the replacement of obsolete standards with more
timely and advanced standards for cybersecurity. Therefore,
cyber insurance is a promising and socially beneficial approach
to dealing with the emerging cyber risks.

Due to the aforementioned advantages, cyber insurance has
been considered for cyber risk management in some existing
research. Reference [7] describes a generic framework for
using insurance to manage the information security risks
which includes a four-step insurance decision plan for cyber
risks. The work in [8] concerns a framework incorporating
the operating principles of the insurance industry to provide
quantitative estimates of cyber risks. The proposed framework
uses optimization techniques to recommend the best levels of
investment in cybersecurity and insurance coverage. Reference
[9] proposes a synergistic insurance framework where organi-
zations collaboratively insure a common platform instead of
combating against the risks of cyberattacks alone. Meanwhile,
the impacts of interdependent cybersecurity risks on the orga-
nizations’ decisions to invest in security technologies and buy
insurance coverage are investigated in [10]. The result shows
that a more developed insurance market does not necessarily
increase the organizations’ insurance coverage but influenced
by the insurance price levels. In [11], the authors extend the
use of multi-state models which are commonly used to analyze
the personal life or health insurance to cyber insurance. In
order to classify the cyber insurance models in a unified way,
a comprehensive formal framework is proposed in [12] by
considering the interdependent security, correlated risk and
information asymmetries. The research in [13] analyzes the
insurability of the cyber risks. The results indicate that cyber
risks can be insured in general while more work is needed
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to make the market more mature. Reference [14] investigates
the self-insurance for cyber risks and analyzes how individual
service providers can coordinate the investment decisions to
improve the security and trustworthiness of the overall system.
Reference [15] considers the adverse selection problem of
cyber-insurance and proposes to separate the contracts for
agents with different profiles. The moral hazard issue of the
cyber-insurance scheme is studied in [16], which proposes to
solve the problem with deductibles and partial coverage by the
insurer.

The existing efforts mentioned above have kicked off the
exploration of insurance for cyber risk management. However,
the research on insurance for the risk management in power
systems is very limited at the current stage. In [17], an insur-
ance strategy is proposed to cover possible imbalance cost of
the system due to the uncertainty of wind power. The concept
of insurance for reliability is introduced in [18] to improve
the quality of service provision in electric power distribution
systems. To the best of our knowledge, the studies on the
insurance schemes for power systems against the emerging
cybersecurity threats have not been performed thus far. An
in-depth analysis on the insurance mechanisms to manage the
potential cyber risks in power systems is strongly urged.

In this paper, we proposed a new insurance model, which
takes risk interdependence and small number of participants
into considerations for the application of cyber insurance in
power systems. The proposed premium principles and the
temporal diversification-based design of the premiums are
analyzed and proved to be effective in handling these two
issues in the case study. Ten years ago, the North American
Electric Reliability Corporation (NERC) critical infrastructure
protection (CIP) compliance has been enforcing to ensure
the utility’s critical cyber asset of the power grid control
system must be constantly audited. This ongoing effort has
been critical because if a substation is under attack through
manipulation of the local supervisory control and data acquisi-
tion (SCADA) system, the attack consequence can propagate
to the rest of the grid. This actuarial framework focuses on
the interdependence between control areas in the region of
an interconnection as well as the correlation of cyber threats
on different targets across the power systems. Generally, it
is impossible to be 100% secure against the emerging cyber
risks, and one who has control to ensure a comprehensive
investment of security technologies does not guarantee attack
proof because a cascading of an interconnected grid can be
initiated by the cyber-related events. We have been cautious
about unmanned substation automation as a combination of
9 substations (reported by the Federal Energy Regulatory
Commission (FERC)) can lead to widespread catastrophe and
instability [19]. Different from the conventional contingencies
of power systems, the cyber risks on power systems may need
a different management approach. The conventional N-1 is ex-
haustively enumerated for operational planning that addresses
the events (e.g., storms and other weather-related events) that
may trip a single or two breakers and isolate a single device.
As this is an abnormal condition, the development of such
a methodology to ensure the planning of the transmission
grid can at least meet such conditions without further losing
more components due to protective relaying. The higher order
of contingencies is not exhaustively enumerated because it
is hard to predict the detailed process, e.g., the trajectory
of the storm. Most of such higher order contingencies are
heuristic and can be a research subject. There has been an
attempt to connect the storm trajectory of a hurricane to the

higher order of contingencies. Since this is less likely to
occur than N-1 as well as the stochastic nature of hurricane
trajectories, it is not often exhaustively enumerated. In case of
a cyberattack upon one substation can lead to N-10, it means
10 lines/generators are electrically connected to the substation
(pivotal node of the grid). Such substation outage has been
studied in [20]. As the physics of a power grid remains,
such initiating events can incur massive overloading tripping
in the neighborhood that can affect other control areas and
weaken operational limits [21]. From the planning perspective,
such rare events do not justify an investment of building new
transmission lines due to the risks of potential cyberattacks
upon multiple substations. Insurance would be a good hedging
tool with investment of technologies. It has been shown that
cyber risks are insurable and insurance can be a promising
and effective tool for the management of cyber risks [6],
[7], [11]. Thus, in this paper, the application of insurance for
the cyber risk management in power systems is investigated.
While it is important and necessary to deploy cybersecurity
enhancement measures during the planning stage like the
conventional contingency security enhancement practice of
the power systems, there will still be residual cyber risks
on the grid even if the best practice has been performed by
the system operator on the ICT controls due to the rapidly
evolving ICT and fast changing cybersecurity status. As it is
analyzed and discussed in the existing studies on cyber-based
contingency analysis, such residual cyber risks and the order
of the consequential contingencies in the grid can be high,
which can lead to significant damages [20]–[23]. Therefore,
in addition to the cybersecurity enhancement measures, the
proposed work in this paper provides the power system
stakeholders with a mechanism to manage the residual cyber
risks of the grid, which is missing in the existing researches.
Further, the proposed actuarial model in this paper prevents
free riding among the insureds and prompts them to enhance
their cybersecurity against cyberattacks. The insurance tool is
not proposed as an alternative option but effective addition
to the cybersecurity enhancement measures for the cyber risk
management of the power systems.

The aim of this paper is to develop appropriate insurance
schemes for the power systems to manage the risks of potential
malicious cyberattacks on the grid. The potential loss of the
power systems considering the cyberattacks is modeled and
appropriate insurance premium principles are designed. The
main contributions of this paper are summarized as follows:

• Absorbing semi-Markov process (SMP) is deployed to
model the cyberattacks against the grid, with which
the stochastic characteristics of the SCADA systems in
cybersecurity can be captured.

• A correlation model is developed for the cyber risks
across the power system, with which the common cyber
risks among the entities in the system can be modeled
quantitatively in the analysis. Accordingly, the correlation
between the losses of different entities in the power
system considering potential cybersecurity threats can be
evaluated.

• A sequential Monte Carlo simulations (MCS) framework
is built to evaluate the interruptions of the power system
considering both physical failures and malicious cyberat-
tacks on the grid. The potential monetary loss of power
outages based on the system interruption metrics consid-
ering the consequences of the cyberattacks is estimated
by the proposed sequential MCS framework.
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• Several insurance premium principles are proposed to
capture the riskiness raised by interdependence. Using
the proposed premium principles, the insurer’s insolvency
risk is substantially reduced. Furthermore, a temporal
diversification scheme is developed to lower individual
premiums. By reducing insurer’s risk and insured’s pre-
mium, the participation rate in cyber insurance is antici-
pated to be enhanced. Meanwhile, the proposed premium
principles encourage the self-protection of participants
by properly allocating the premium across the grid,
which prevents free-riding among the cyber insurance
participants.

The rest of the paper is organized as follows. The idea of
using cyber insurance to manage the cyber risks for critical
infrastructure protection is introduced in Section II. The loss
modeling of the power systems considering the cyberattacks
is introduced in Section III. In Section IV, a set of premium
principles is proposed to calculate premiums for cyber risks.
In Section V, the case study is implemented to illustrate
the application of the proposed premium principles and the
effect of temporal diversification in reducing premium. Finally,
Section VI concludes the paper.

II. CYBER-INSURANCE FOR CRITICAL INFRASTRUCTURE
PROTECTION

Critical infrastructures are of great importance to the secu-
rity and life quality of the entire society. Improving the cyber-
security of critical infrastructures is always an essential task
of the national security. The growing interest of using cyber
insurance to manage the potential cyber risks of the critical
infrastructure loss has been noticed by the U.S. Department
of Homeland Security (DHS) [24]. Workshops and discussions
have been organized by the DHS to develop insights into cyber
insurance for critical infrastructures. The ability of insurance
carriers to offer relevant cyber risk coverage at reasonable
prices in return for an insured’s adoption of cyber risk man-
agement controls and procedures that improve its cyber risk
posture is examined. Research has also been proposed to iden-
tify the relation between the cyber protection investment and
cyber insurance coverage for the critical infrastructure owners
and operators by building investment optimization models
and cyber insurance premium discount models [8]. Further,
cyber insurance has been suggested by recent studies as an
effective way to accelerate the process of critical infrastructure
protection [25]. However, in practice, the lack of actuarial data
and the unknowable nature of potential cybersecurity threats
limit the cyber insurance offers. Therefore, cyber incident
information sharing, data repository, and consequence analysis
would be beneficial to enabling the progress of cyber insurance
coverage for the critical infrastructure protection.

Particularly, in the energy sector, the potential of using the
insurance tool to manage the cyber-related risks is already
under the spotlight. The U.S. Department of Energy (DOE)
examines the key risks of the critical energy infrastructure
including cybersecurity and suggests how the insurance indus-
try can help manage these risks, including how it identifies,
assesses, and manages them and their potential impacts in [26].
However, developing insurance mechanisms for protecting
critical infrastructure from these emerging risks is a significant
challenge due to a number of factors, which include the
lack of historical data on the frequency and severity of the
cyberattacks, the rapidly changing nature of technologies that
is impacted by them, as well as the inherent uncertainties

posed by cyber risks. Thus, the investigation on the cyber
insurance mechanisms for the critical infrastructure protection
against the emerging cyber-related risks is still in the infant
stage at present.

The power system is one of the 16 critical infrastructures
identified by the U.S. government, while hundreds of millions
of consumers in North America depend on the bulk power
system for a reliable, secure and resilient supply of electricity.
The security of the electric grid has far reaching ramifications
for nearly every industry. As one of the most important sectors
in the modern society, power systems should be covered by
the consideration of the cyber insurance schemes in order to
better mitigate the potential cyber risks. In this paper, we aim
to develop viable cyber insurance schemes for power systems
to manage the emerging risks of cybersecurity.

III. LOSS MODELING OF POWER SYSTEMS CONSIDERING
CYBERSECURITY THREATS

When successful cyberattacks against the power system
occur, the most direct and damaging consequence is the system
interruptions which may lead to serious load curtailments
and even blackouts. In this study, the damage of successful
cyberattacks is evaluated from the power system reliability per-
spective. The loss of the system is modeled by the interruptions
of the grid considering malicious cyberattacks on the power
system. In this paper, the physical reliability and cybersecurity
of the power system are considered and simulated in different
ways. For the physical reliability of the grid, the outages of the
components in the grid are modeled by exponential random
variables conventionally. However, for the cybersecurity of
the grid, the cyberattacks are assumed to have intentional
targets. The SMP model is used to formulate the dynamics
between the attackers and the response of the system during
the attacks. Using stochastic models to formulate the processes
and impacts of cyberattacks on cyber-physical systems is a
well-accepted approach [27]–[33]. Following these works, a
SMP model is built to analyze the processes and influences of
the cyberattacks on the grid in this paper. When an attack
is successful, the intended targets of the attack instead of
random components in the grid will be compromised, the
corresponding consequences of the attack will be simulated
and the impacts on the grid will be analyzed accordingly.

A. Modeling of Cyberattacks against Power Systems
In order to estimate the potential loss of the power sys-

tem considering cybersecurity threats, cyberattacks against the
substation SCADA systems in the grids are considered in this
study. Due to the integration of ICT in power systems, the
SCADA systems in the grid become vulnerable, and malicious
attackers may attempt to intrude the SCADA systems of the
substations to interfere the normal operation of the grid. Thus,
in this paper, the cyberattack against the SCADA systems of
the substations in the power system is considered. The attack
aims to disturb the normal operation of the power system by
intruding into the substation SCADA system and disconnect-
ing the targeted substation from the grid, which will lead to
immediate and serious consequences on the grid. It is assumed
that all the circuit breakers in the targeted substation will be
tripped maliciously by the attacker if the attack successfully
compromises the SCADA system of the substation. In other
words, all the generation units, transmission branches and
loads connected to the targeted substation will be forced to
disconnect from the grid if the attack succeeds.
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During the attack, the attacker needs to intrude into the
SCADA system of the substation on the targeted node. The
process of the cyberattack against the substation SCADA
system can be formulated with the semi-Markov process
(SMP) models [33], [34]. In this study, we focus on the
cyberattack aiming to jeopardize the normal operation of
the power system. Successful attacks will lead to unwanted
tripping and contingencies in the grid, and may consequently
result in direct loss of the system. Considering the response
of the cyber systems and operational control systems of the
grid in the face of the attacks, an absorbing SMP model
{J(t) : t > 0} with a discrete state space is developed and
used to describe the process of the cyberattack. The absorbing
SMP model is illustrated in Fig. 1.
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Fig. 1. Absorbing SMP Model of Cyberattack Against SCADA Systems in
Power Systems.

The process of the cyberattack starts from the good state G ,
which represents a secure status of the SCADA system. The
second stage is the intrusion process to the SCADA system
which contains a series of intermediate states, each of which
represents one phase of the attack. By proceeding on the attack
actions step by step, the SMP transits along the intermediate
states, and a greater privilege of the SCADA system is
obtained by the attacker. When vulnerabilities exist in the
cyber system of the SCADA system, the SMP is shifted from
the good state G to the vulnerable state V . Then, the SMP is
brought to the host state H if the vulnerability is exploited
by the malicious attacker and used to gain one or several
hosts’ privilege in the SCADA network. After that, the SMP
transits to the connection state C when necessary connections
of the SCADA network are compromised by the attacker. Next,
the targeted state T is reached if the attacker obtains the
necessary privileges of the targeted servers. Subsequently, the
SMP comes to the active attack state A when the destination
devices are exploited and the attacker is able to launch the
attack. During the penetration process of the attack from state
G to A, the SMP will be brought back to the good state G if
the intrusion is detected and isolated by the system protection
mechanisms. However, when the active attack actions are
performed, there are three possible outcomes. In the most
optimistic case, the protection mechanisms manages to mask
the impacts of the attack. The SMP will reach the mask
compromised state M and be brought back to the good state
G eventually. Generally, the system will return to the secure
state immediately when the attack is masked. In contrast, the
worst possibility is when the system protection mechanisms
fail to recognize the attack. In this case, the SMP reaches
the failure state F , in which a complete failure of the system
occurs. Corresponding contingencies in the grid will arise until
the system is restored. If the protection mechanisms of the
SCADA system manage to recognize the attack actions while

the attack cannot be masked, the SMP comes to the triage
state R. The error recovery and fault treatment mechanisms
of the system will be triggered in order to hedge the damage
of the attack. The SMP will transit to the interrupted state I
if the defensive strategies of the system are able to track and
identify the route of the attack. Although the contingencies in
the grid still occur, the SCADA system can be restored in a
short time to eliminate the contingencies and the damage is
reduced. Otherwise, the SMP will reach the failure state F , in
which a longer time will be required to restore the control of
the compromised devices and greater damage will be caused.

In the SMP model of the cyberattack process, the good state
G and other intermediate states of the attack are transient
states while the rest states are absorbing states [35]. Thus,
the transient state space of the SMP model is defined as
ST = {G,V,H,C, T,A,R}, and the absorbing state space is
defined as SA = {M, I, F}. Accordingly, the Markov kernel
of the absorbing SMP model which is denoted by QT in this
study can be expressed as follows.

QT =



pG pV 0 0 0 0 0 0 0 0
pV G 0 pH 0 0 0 0 0 0 0
pHG 0 0 pC 0 0 0 0 0 0
pCG 0 0 0 pT 0 0 0 0 0
pTG 0 0 0 0 pA 0 0 0 0
0 0 0 0 0 0 pR pM 0 pAF

0 0 0 0 0 0 0 0 pI pRF


(1)

where pij (i ∈ ST , j ∈ ST ∪ SA) is the transition probability
between the states in the absorbing SMP model with the
following relation: ∑

j∈ST∪SA

pij = 1, ∀i ∈ ST (2)

Then, the average number of times that transient state j is
visited before any of the absorbing states is reached in the
SMP model is denoted by υj and calculated as follows:

υj = pj +
∑
i∈ST

υipij , ∀j ∈ ST (3)

where pij is the element of QT , and pj is the probability that
the SMP starts at state j. The attack process is assumed to
always start from the good state, hence

pj =

{
1, if j = G
0, otherwise

(4)

With (1)-(4), it can be derived that the number of times that
the transient states in ST are visited before the system fails
can be calculated as follows.

υG =
1

pV pHpCpTpA(1− pM)
, υV =

1

pHpCpTpA(1− pM)
,

υH =
1

pCpTpA(1− pM)
, υC =

1

pTpA(1− pM)
,

υT =
1

pA(1− pM)
, υA =

1

1− pM

, υR =
pR

1− pM

(5)
We denote the time for the system to reach state F or I by
T , which is the time for the system to be compromised. The
mean value of T is known as the mean time-to-compromise
(MTTC), which is a critical indicator and commonly used for
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assessing the cybersecurity of a system [33]. The MTTC of
successful cyberattacks can be calculated as follows.

MTTC = T =
∑
j∈ST

υjTj =
1

1− pM

[
TG

pV pHpCpTpA

+
TV

pHpCpTpA

+
TH

pCpTpA

+
TC

pTpA

+
TT

pA

+ TA + pRTR

] (6)

where Tj is the mean sojourn time of transient state j. It can
be easily seen from (6) that the MTTC of the system increases
with the increase of the sojourn time of the transient states,
transition probabilities pM and pR, as well as the decrease of
transition probabilities pV to pA. The stochastic characteristics
of the cyberattacks and the reliability of the system under
attacks are described and determined by the Markov kernel
and sojourn time of the transient states in the absorbing SMP
model. With the SMP model, the process of the cyberattacks
against the power systems can be simulated efficiently.

B. Correlation Modeling of Cybersecurity Threats

Generally, the potential losses of the power systems due
to cybersecurity threats are not independent. On the one
hand, for the physically connected power grids, it is evident
that the effect of the cyberattack on one power grid could
be propagated to the connected power grids. Usually the
neighboring connected power grids would sustain the largest
impacts. On the other hand, even for power grids which
are not physically connected with each other, they face the
common (or interdependent) cyber risks. For example, a
common vulnerability of the SCADA systems in the power
grids may be discovered and exploited simultaneously due
to the standardized software design, communication protocols
and even antivirus solutions. Therefore, the cyber risks of
the power systems are correlated. Investigating the correlation
of the potential cyber risks is critical which is a major
challenge in the actuarial study of cyber risk management.
The correlation due to the physical connection of the grids
can be investigated by the power system simulation. However,
the correlation due to the common cyber risks cannot be
captured merely by the power system analysis. To this end,
a stochastic model is proposed to analyze the correlation due
to the common cyber risks.

As a kind of widely deployed industrial control systems
(ICS) that are highly integrated with the information systems
and usually built to international standards [36], the SCADA
systems in the grids face not only independent cyber risks but
also common cyber risks [37] as mentioned above. Statisti-
cally, a SCADA system performs diversely in cybersecurity in
the face of different risks. It has been illustrated in the previous
subsection that the Markov kernel QT and the sojourn time
Tj in the absorbing SMP model reflect the characteristics of
the SCADA systems in cybersecurity under attacks. In order
to generate a proper stochastic model for the performance
of the SCADA systems considering both independent and
common cyber risks, the Markov kernel and mean sojourn
time in the absorbing SMP model are not set as constants but
modeled by stochastic variables in this study. Consider the
instance of the absorbing SMP model for the SCADA systems
of an individual entity N (e.g., a transmission company
(TRANSCO)) in the power system in a certain interval. The
transition probabilities in the Markov kernel and the mean

sojourn time of the transient states (denoted by pNij and TNi
respectively) are modeled as follows.

pNij = p̂Niju+ p̂ij (1− u) , ∀i ∈ ST ,∀j ∈ ST ∪ SA (7)

TNi = T̂Ni u+ T̂i (1− u) , ∀i ∈ ST (8)

where p̂Nij and p̂ij are stochastic variables which represent the
transition probabilities in the Markov kernel of the absorbing
SMP model under the independent and common cyber risks
respectively; and T̂Ni and T̂i are stochastic variables which
represent the mean sojourn time of transient state i in the
absorbing SMP model under the independent and common
cyber risks, respectively.

Considering the stochastic variables for the transition proba-
bilities in the Markov kernel of the SMP model, each instance
of them must fall in the interval [0, 1]. In this study, it
is assumed that p̂Nij and p̂ij follow the Beta distributions.
Meanwhile, T̂Ni and T̂i are assumed to follow the truncated
Gaussian distributions. Negative instances are filtered to avoid
unrealistic time span although such cases are rare. Further,
constraint (2) should apply for each instance of the stochastic
variables for the transition probabilities in the Markov kernel.
In order to guarantee the satisfaction of such constraint for
every instance of the proposed model, an exponential random
variable approach based sampling process is applied. The
sampling process is as follows. For simplicity, we denote the
instances of both p̂Nij and p̂ij by pij . Suppose the expected
value

E [pij ] =
kj
Ki
, ∀i ∈ ST ,∀j ∈ ST ∪ SA (9)

where kj are positive integers and

Ki =
∑

j∈ST∪SA

kj , ∀i ∈ ST (10)

In each sampling process of pij , Ki i.i.d. exponential dis-
tributed random variables with mean 1 are simulated. The i.i.d.
exponential random variables are denoted by y1, · · · , yKi

.
Then pij can be sampled as follows.

pij =

∑k1+···+kj−1+kj
κ=k1+···+kj−1+1 yκ∑Ki

κ=1 yκ
, ∀i ∈ ST ,∀j ∈ ST ∪ SA (11)

With the sampling process, stochastic variable pij follows
the Beta distribution with the defined mean value as (9),
while constraint (2) is satisfied. In (7) and (8), u is also a
stochastic variable which follows a Bernoulli distribution, i.e.,
u ∼ Bernoulli(ς), where ς is the mean value of the Bernoulli
distribution which indicates the degree of cyber correlation in
the model. If ς = 1, it represents the case when the entities
across the power system share no common cyber risks, and the
absorbing SMP models are only affected by the independent
cyber risks, which means a fully independent case of the cyber
risks across the entire system. In contrast, when ς = 0, it
represents the case when the common cyber risks always exist
across the grids, which means the strongest dependence of the
cyber risks in the power system. When ς ∈ (0, 1), it represents
an intermediate strength of dependence.

C. Loss Modeling of Power Systems with Cyberattacks
Based on the absorbing SMP and cyber correlation models

described in the previous subsections, a sequential Monte
Carlo simulation (MCS) framework is developed to study the
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load curtailments and interruption cost of the grids considering
the cybersecurity threats to the power system. The detailed
procedure of the MCS is presented by the following steps.

1) Modeling of physical failures of components in the grids:
The time-to-failure and time-to-repair of all the components
including generation units and transmission lines are generated
by sampling the probability distributions of the state residence
time [38]. In this study, both the residence time of the
components to stay in the fault and healthy states are assumed
to be exponentially distributed. Thus, the residence time of
any state j is simulated using a random variable τ with the
exponential probability density function as follows:

fτj (t) = λje
−λjt (12)

where 1/λj is the mean residence time of state j. Accordingly,
the random variable τ can be sampled as follows based on the
inverse transform method.

τj = −
1

λj
ln (1− U) (13)

where U is a uniformly distributed random variable in the
interval (0, 1). Accordingly, the states of all the components
in the grids considering the physical failures can be determined
along the time throughout the simulation horizon.

2) Modeling of cyberattacks to the grids: Considering the
correlation model of the cybersecurity threats in the power
system, the corresponding parameters in the absorbing SMP
model for the cyberattacks are simulated in this study. For
every certain period, stochastic variable u ∼ Bernoulli(ς)
is simulated to model the possibility that the power system
is under a common cyber risk and all the absorbing SMP
models are affected. When the parameters of the absorbing
SMP model for each node of the power system are determined,
the states of the system can be simulated with the absorbing
SMP model described in the previous subsection. We denote
the instance of the Markov kernel of the absorbing SMP model
for node n in the power system by QnT and the transition
probabilities in the kernel by pnij (i ∈ ST , j ∈ ST ∪ SA). If
the current state of the SCADA system is i, the probability
that the next state of the system is j can be determined as
follows:

p{Jnξ+1 = j | Jnξ = i} = pnij , ∀i ∈ ST , j ∈ ST ∪ SA (14)

where Jnξ and Jnξ+1 are the states of the absorbing SMP model
in the ξth and following steps, respectively. If the absorbing
SMP model of any node in the system reaches the interrupted
state I or the failure state F , corresponding contingencies will
occur in the grid. In this study, it is assumed that all the
breakers in the substation of the targeted node will be tripped
if the attack is successful. The duration of the contingencies
is then simulated according to the parameters of the time to
restore the SCADA system, and the states of the system will
be updated accordingly.

3) Modeling of system operations with states of components
over time: With the simulated sequences of both the physical
failures and successful cyberattacks, the states of all the com-
ponents in the grids in every interval along the sampling time
sequences are determined and updated. If any contingencies
occur according to the updated states of the components, an
optimal power flow (OPF) analysis is performed to evaluate
the load curtailments during the contingencies by minimizing
the load curtailment with the network constraints. The major

steps of the proposed sequential MCS for the power system re-
liability evaluation considering the cyberattacks are illustrated
by the flow diagram in Fig. 2.
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Simulate the parameters in the SMP models of the 
cyberattacks with the cyber correlation model

Simulate the time to recover the system failure due to 
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Update the states of all related components in the grid
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curtailment in the event considering cyberattacks
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Record load curtailment ci and duration di of the event
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Record load curtailment cj and duration dj of the event

Assemble the states of all the components in the system

Any contingencies? N

Y

Fig. 2. Power Reliability Analysis Considering Cyberattacks and Cybersecu-
rity Threat Correlation.

D. Monetary Loss Evaluation
Based on the results of the sequential MCS presented in

the previous subsection, the load curtailment and duration of
the load loss events considering the cyberattacks on the power
system are obtained. Then, the monetary loss of the power
system due to the cyberattacks is estimated by the annual in-
terruption cost (AIC) in this study [38]. In order to estimate the
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loss of the grid due to the cyberattacks precisely, the AIC of
the grid only considering the interruptions due to the physical
failures is subtracted from the AIC of the grid considering
both the physical failures and potential cyberattacks. The loss
of the grid due to the cyberattacks is denoted by X , and can
be calculated as follows.

X =

N∑
i=1

ciW (di)−
M∑
j=1

cjW (dj) (15)

where X is a stochastic variable of the loss due to potential
cyberattacks on the power system; ci and di are the load
curtailment and duration of load loss event i considering
cyberattacks respectively; cj and dj are the load curtail-
ment and duration of load loss event j without considering
cyberattacks respectively; N and M are the total numbers
of load loss events in the grid throughout a year with and
without considering cyberattacks respectively. The stochastic
characteristics of X can be studied through the proposed
sequential MCS model to assess the risk of the power system
considering the cybersecurity threats.

In this paper, the proposed insurance scheme focuses on the
potential loss of the power system due to the cyberattacks on
the substation SCADA systems in the grids, which will be
presented in detail in the following section. Meanwhile, the
proposed insurance scheme succeeds in avoiding free riding
among the insureds and prompting them to enhance their self-
protection against the cyberattacks, which will be shown by
the results of the case study in Section V. The other impacts
of the cyberattacks on power systems are not considered and
discussed in this paper.

IV. INSURANCE PREMIUM PRINCIPLES

In traditional insurance practice, the expected value pre-
mium principle is commonly used. That is, the premium for a
risk X is calculated as π(X) = (1 + ρ)E[X], where ρ > 0 is
called safe loading coefficient. With appropriate choice of safe
loading coefficient, the total premium collected by the insurer
is guaranteed to be sufficient to cover the potential losses with
high probability when the insurance pool is large.

It is worth noting that the rationale of expected value
premium principle, as well as many other existing premium
principles, is built upon the underlying assumption of indepen-
dence between individual risks. This assumption, however, is
violated in the context of cyber insurance, as cyber risks tend
to be interdependent. Therefore, it is necessary to establish
a new premium principle that takes interdependence into
consideration.

Let X1, . . . , Xn denote the potential losses from different
TRANSCOs in an insurance portfolio. Denote the total loss
by TL =

∑n
i=1Xi. From the perspective of the insurer, the

total premium needs to be sufficient to cover the potential
claims with high probability. In order to meet this goal, the
total premium can be set to be

TP1 = V aRα(TL) = V aRα

(
n∑
i=1

Xi

)
(16)

where V aRα(Y ) = inf{y : P (Y > y) ≤ α} is called Value
at Risk (VaR) with α ∈ (0, 1). With such a premium, the prob-
ability that the total loss TL would exceed the total premium
TP is controlled at the level of α (which is usually set to be
a small value), or mathematically P (TL > TP1) = α.

A more conservative choice is to calculate the total premium
via Tail Value at Risk (TVaR), as defined below

TP2 = TV aRα(TL) =
1

α

∫ 1

1−α
V aRp(TL)dp (17)

This premium principle is more conservative in the sense that
it is greater than the premium calculated by (16) at the same
confidence level, and thus P (TL > TP2) < α.

Value at Risk and Tail Value at Risk are two risk measures
commonly used in insurance and finance. Readers are referred
to [39] for more detailed discussions on these risk measures.

After the total premium is determined, it is to be allocated
across individual risks according to the individual riskiness.
Below, two principles are proposed for the allocation of the
total premium calculated by (16) and (17) respectively.

π1(Xi) = E[Xi] +
V aRα(X

′
i)∑n

i=1 V aRα(X
′
i)
V aRα(TL

′) (18)

π2(Xi) = E[Xi] +
TV aRα(X

′
i)∑n

i=1 TV aRα(X
′
i)
TV aRα(TL

′) (19)

where X ′i = Xi−E[Xi] is the centralized version (with respect
to the expected value) of risk Xi for all i = 1, 2, . . . , n, and
TL′ =

∑n
i=1(Xi−E[Xi]) represents the centralized total loss.

The centralization of risks separates the impacts of location
and variability on the individual premium and thus makes these
two factors more tractable. It is easy to verify that

n∑
i=1

π1(Xi) = V aRα(TL) = TP1 (20)

n∑
i=1

π2(Xi) = TV aRα(TL) = TP2 (21)

This confirms that individual premium principles π1 and π2
are indeed allocations of the total premiums TP1 and TP2

respectively.
The key difference between the existing insurance programs

and the proposed scheme in this paper lies in the consideration
of interdependence among losses from different TRANSCOs.
Most existing insurance programs charge premiums based on
marginal characteristics of the individual TRANSCO but fail
to consider the interdependence among losses from different
TRANSCOs. This way, the insurance provider is exposed to
insolvency risks. For example, due to the correlated cyber
risks, the total premiums collected according to the traditional
models would not be sufficient to pay the total claims for
the interruptions in the grids. As a consequence, insurance
providers would pose major limitations on losses to be covered
or even quit this market. Either way, the well-being of the
cyber insurance market will be jeopardized. The insurance
model proposed in this paper factors independence into pre-
mium determination and thus reduces the insolvency risk for
insurance providers. Consequently, more insurance providers
would be willing to participate in this market, which further
promotes the development of the cyber insurance market.

In practice, it is impossible for the insurer to examine all the
possible cyberattack methods, and there are always particular
cyberattack scenarios that are unknown to the insurer. In the
real-world practice, the contracts between the insurer and
insured may specify the characteristics of the cyberattack
scenarios to determine the insurance coverage and claim sce-
narios, which is a common practice in the insurance industry.
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Generally, the insurer is more interested in the cyber-attacks
that induce losses/claims rather than all possible cyberattacks.
The insureds are highly motivated to report such attacks to
indemnify their losses. In this sense, the collection of data on
the loss-inducing cyber-attacks is generally consistent with the
purpose of insurance pricing. Even if there are undetected or
unreported loss-inducing cyberattacks, the insurance algorithm
allows self-correction over the long term. Further, the proposed
actuarial design in this paper provides a robust solution against
the insurer’s insolvency risk. The proposed VaR and TVaR
based design limits the risks of underestimation on the losses
due to cyberattacks with the actuarial model. Meanwhile, in
order to further reduce the risk due to unknown cyberattack
scenarios, a safety margin can be applied on the parameters
in the proposed model to guarantee that the losses due to
successful cyberattacks can be covered even if there is a more
serious cybersecurity condition in reality.

V. CASE STUDY AND DISCUSSION

A. Test System Model and Power System Simulation
In order to illustrate the proposed insurance framework for

the power systems to handle the risk of cyberattacks, a case
study is performed based on a test system which consists of
two independent IEEE Reliability Test Systems (RTS-79) [40].
The single line diagram of the test system in the case study
is shown in Fig. 3.
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Fig. 3. Test System with Two Independent IEEE (RTS-79) Reliability Test
Systems.

In the case study, five individual TRANSCOs are assumed
in the grids. TRANSCOs 1-3 are located in the first IEEE
RTS-79 system, and TRANSCOs 4 and 5 are located in
the second IEEE RTS-79 system. The two systems are not
physically interconnected. The load points at the nodes of the
five TRANSCOs are listed in Table I.

TABLE I
LOAD BUSES OF TRANSCOS

TRANSCO No. Load Bus No.

RTS-79 System 1:
TRANSCO 1 101,102,103,104,105
TRANSCO 2 106,107,108,109,110
TRANSCO 3 113,114,115,116,118,119,120

RTS-79 System 2: TRANSCO 4 201-210, 213
TRANSCO 5 214,215,216,218,219,220

In the case study, a typical ICT configuration of the sub-
station SCADA systems is considered as demonstrated in Fig.

4. The local area network (LAN) in the substation SCADA
system is built based on the Ethernet protocol. The substation
SCADA system connects to the external network through the
firewall and router. In the site of the substation, the intelli-
gent electronic devices (IEDs) including the protection relays,
control and measurement units are connected to the devices
in the physical layer including the circuit breakers, switches,
current transformers (CTs) and potential transformers (PTs)
in each bay/feeder of the substation to enable the control
and monitoring. All the circuit breakers in the substation
are connected to and controlled by the control units through
independent auxiliary relays with adequate contact capacity.
The control units communicate with and receive commands
from the workstations and application servers on the station
level through the Ethernet in the substation. This study focuses
on the malicious attacks on the substation operation with false
tripping commands of the circuit breakers by the attacker, and
it is assumed that the circuit breakers in the substation will be
tripped if the attackers successfully compromise the control
units. The attacks are not dependent on the measurements in
the substation, and thus the configuration of the CTs, PTs and
corresponding A/D converters to the IEDs is not specified in
this study.
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Control Unit
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Fig. 4. ICT Configuration of Substation SCADA System.

Based on the proposed absorbing SMP based cyberattack
model, the sequential MCS is performed to estimate the
interruptions considering the consequences of the cyberattacks.
In the case study, the customer damage function W (di) is
assumed to be fractional to the duration di. Hence, the losses
due to the cyberattacks are calculated as follows.

X =

N∑
i=1

ciW (di)−
M∑
j=1

cjW (dj) =

N∑
i=1

ciηdi −
M∑
j=1

cjηdj

(22)
where η is the fractional coefficient and assumed to be
2.5k$/MWh in this case study. For the sequential MCS,
an hourly time sequence of 2,000 years is sampled, and
the system reliability evaluation considering the cyberattacks
is performed. The mean values of the parameters in the
absorbing SMP model are listed in Table II. Three cases with
ς = 0, ς = 0.5 and ς = 1 are studied, representing different
strengths of dependence, with ς = 0.5 being the base case.

The expected values, standard deviations and coefficients
of variation (CoV) of the annual loss of the TRANSCOs in
different cases are listed in Table III. Table III shows that the
marginal loss for each TRANSCO under the three different
dependence scenarios are similar, as confirmed by Fig. 5. This
is expected from the design of the model, because what varies
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TABLE II
PARAMETERS OF ABSORBING SMP MODEL

Par. Val. Par. Val. Par. Val. Par. Val.
pV 1 pA 0.5 pAF 0.2 TH 1 day
pH 0.5 pR 0.5 pRF 0.6 TC 1 day
pC 0.5 pM 0.3 TG 20 days TT , TA 1 day
pT 0.5 pI 0.4 TV 1 day TR 1 hour

across the three cases is the dependence strength, while there
is little change to marginal characteristics. The intent of the
model is to demonstrate that dependence structure can impose
significant impact on insurance premiums without changing
marginal settings. The coefficients of variation measure the
relative variability and the riskiness of marginal losses from
the five TRANSCOs. These coefficients all fall into the interval
(1, 1.5), which are typical values in traditional insurance
practice.

TABLE III
EXPECTED VALUES, STANDARD DEVIATION AND COEFFICIENT OF

VARIATION OF LOSS OF TRANSCOS

ς = 0 TC1 TC2 TC3 TC4 TC5
Expected Value (k$) 3307 5037 9443 9914 7815

Standard Deviation (k$) 4137 6320 11494 11303 9590
Coefficient of Variation 1.25 1.25 1.22 1.14 1.23

ς = 0.5 TC1 TC2 TC3 TC4 TC5
Expected Value (k$) 3430 5150 9352 10404 7786

Standard Deviation (k$) 4714 6711 11138 12644 10245
Coefficient of Variation 1.37 1.30 1.19 1.22 1.32

ς = 1 TC1 TC2 TC3 TC4 TC5
Expected Value (k$) 3249 4947 9378 10089 7654

Standard Deviation (k$) 3874 6208 11223 14467 9384
Coefficient of Variation 1.19 1.26 1.20 1.43 1.23
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Fig. 5. Marginal Distributions of Losses of TRANSCOs.

The correlation matrices for the losses of the TRANSCOs
when ς = 0, 0.5 and 1 are summarized in Table IV re-
spectively. Table IV clearly demonstrates that ς is an index
of strength of dependence. Specifically, ς = 0 represents
the strongest dependence, and ς = 1 represents the weakest
dependence. The case when ς = 1 corresponds to the inde-
pendent case of cyber threats across the system. In this case,

the correlation between all the TRANSCOs is low as expected.
Generally, the results show that the proposed cyber correlation
model properly reflects the dependency of the potential cyber
risks across the power systems.

TABLE IV
CORRELATION MATRICES OF LOSSES OF TRANSCOS

TC1 TC2 TC3 TC4 TC5

ς = 0

TC 1.00 0.79 0.83 0.84 0.81
TC2 0.79 1.00 0.85 0.85 0.82
TC3 0.83 0.85 1.00 0.88 0.86
TC4 0.84 0.85 0.88 1.00 0.85
TC5 0.81 0.82 0.86 0.85 1.00

ς = 0.5

TC1 1.00 0.40 0.47 0.49 0.42
TC2 0.40 1.00 0.45 0.44 0.46
TC3 0.47 0.45 1.00 0.50 0.52
TC4 0.49 0.44 0.50 1.00 0.49
TC5 0.42 0.46 0.52 0.49 1.00

ς = 1

TC1 1.00 0.00 -0.02 -0.01 0.01
TC2 0.00 1.00 0.03 -0.04 -0.01
TC3 -0.02 0.03 1.00 0.00 -0.01
TC4 -0.01 -0.04 0.00 1.00 -0.02
TC5 0.01 -0.01 -0.01 -0.02 1.00

B. Premium Calculation and Analysis
The individual premiums for the five TRANSCOs calculated

based on the VaR and TVaR principles, i.e. under formulas
(18) and (19), are summarized in Table V. Throughout this
section, the confidence level is set to be α = 0.1. That means,
there is only 10% chance that the total loss would exceed the
total premium calculated under (16), and the chance becomes
smaller than 10% if the total premium is calculated by (17). In
this sense, the insurer’s riskiness is controlled at a relatively
low level. The individual premiums based on VaR (π1) and
TVaR (π2) for different TRANSCOs roughly exhibit similar
behaviors but the TVaR premiums are higher, simply because
the TVaR premium principle is more conservative.

The risk loading coefficients are calculated by

ρi = π(Xi)/E[Xi]− 1 for all i = 1, 2, . . . , n. (23)

Intuitively, the risk loading coefficient measures by how much
the individual premium exceeds the expected value of the
corresponding risk. They play the same role as the safe loading
coefficient in the expected value premium principle, but appear
to be significantly larger than those in traditional insurance
practice (which are below 50%). The large values of risk
loading coefficients in the cases ς = 0 and ς = 0.5 are
mainly caused by the high degree of interdependence among
the losses from different TRANSCOs, as evidenced in Table
IV. It is worth noting that, under the independence scenario
(ς = 1), the safe loading coefficients are the lowest among
three dependence scenarios but still significantly higher than
the desirable level. This is because the size of the pool (five)
is too small for the law of large number to take effect. As
the size of the pool increases, it is anticipated that the safe
loading coefficients would reach the desirable level. TVaR
premiums exhibit a similar behavior to VaR premiums and is
only more conservative. In the following only VaR premiums
will be calculated.

As presented in Table V, premiums and thus risk load-
ing coefficients are significantly high, which may discourage
TRANSCOs to participate in insurance. This is essentially due
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TABLE V
INDIVIDUAL PREMIUMS BASED ON VAR AND TVAR PRINCIPLES

ς = 0 TC1 TC2 TC3 TC4 TC5
VaR-premium (π1) 7357 10524 19308 20806 16795

Risk loading 1.22 1.09 1.04 1.10 1.15
TVaR-premium (π2) 11902 17683 32463 32961 27297

Risk loading 2.60 2.51 2.44 2.32 2.49

ς = 0.5 TC1 TC2 TC3 TC4 TC5
VaR-premium (π1) 6442 9388 17153 19025 14808

Risk loading 0.88 0.82 0.83 0.83 0.90
TVaR-premium (π2) 10799 15703 26544 30160 23508

Risk loading 2.15 2.05 1.84 1.90 2.02

ς = 1 TC1 TC2 TC3 TC4 TC5
VaR-premium (π1) 5359 8336 15647 15765 12290

Risk loading 0.65 0.69 0.67 0.56 0.61
TVaR-premium (π2) 7366 11363 21636 23876 17362

Risk loading 1.27 1.30 1.31 1.37 1.27

to interdependence of risks among different TRANSCOs. Such
a spatial dependence is difficult to dilute because of the physi-
cal structures and cyber characteristics of the power grids. On
the other hand, the losses within different time intervals are
considered independent. Such temporal independence provides
a solution to diversify the riskiness in the power grids across
time.

In order to illustrate this temporal diversification effect,
a five year period is considered and loss data for the five
TRANSCOs in the case ς = 0.5 are resampled using bootstrap
method to deliver a joint distribution for the five-year losses
of different TRANSCOs. Annual premiums are calculated for
each TRANSCO based on the five-year data set. The results
are summarized in Table VI. A comparison between Table
VI and Table V demonstrates that the premiums and risk
loading coefficients are reduced by considerable amounts, due
to the temporal diversification effect. As a matter of fact,
this diversification effect can be further amplified if a longer
(than 5 years) period is considered. However, that would bring
challenges in practice, as it is not common for either insurer
or insured to enter into an insurance contract lasting for years.
More studies need to be conducted to address this issue in the
future research.

TABLE VI
ANNUAL INDIVIDUAL PREMIUMS BASED ON 5-YEAR DATA: ς = 0.5

TC1 TC2 TC3 TC4 TC5
VaR-premium (π1) 4770 7782 13703 14868 12679

Risk loading 0.48 0.50 0.47 0.47 0.51

C. Impacts of System Cybersecurity Level
In order to study the impact of the system cybersecurity

level on the insurance premiums, three comparative scenarios
with respective to the base case ς = 0.5 are designed and
compared. The cybersecurity level of the systems under attacks
are reflected by the parameters in the SMP model. In Scenario
1, it is assumed that the cybersecurity of TRANSCO 1 is
weakened. In this scenario, for TRANSCO 1, TG in the
absorbing SMP model is reduced from 20 days in the base
case to 15 days, and pH , pC , pT and pA are increased from
0.5 to 0.6, which means it takes shorter time for the SCADA
systems of TRANSCO 1 to become vulnerable and has higher

possibilities to be compromised by the attempts of malicious
attacks. In Scenario 2, it is assumed that the cybersecurity of
TRANSCO 1 is enhanced. In this scenario, for TRANSCO
1, TG is increased to 25 days, and pH , pC , pT and pA are
reduced to 0.4, which means it takes longer time for the
SCADA systems in TRANSCO 1 to become vulnerable and
has lower possibilities to be compromised by the attempts of
malicious attacks. In Scenario 3, it is assumed that there is
a global increase of cyber threats and the cybersecurity of all
the TRANSCOs are weakened. In this scenario, TG is reduced
to 15 days, and pH , pC , pT and pA are increased to 0.6 for all
the TRANSCOs.

Table VII summarizes the expected values of losses and
premiums to be charged under three comparative scenarios, as
well as the base case for the convenience of comparison. When
the reliability of TRANSCO 1 in cybersecurity is weakened,
the premium for TRANSCO 1 increases from 6,442 to 10,962,
with an increment of 4,520. This amount is even larger than
3,426, the amount of increase in the total premium for all
five TRANSCOs. This means that the premiums for the other
four TRANSCOs are actually reduced due to the reliability
degradation of TRANSCO 1. In this sense, TRANSCO 1 is
penalized for its degradation not only by a marginal increase
in premium but also by attracting premium burdens from
other TRANSCOs who maintain their self cybersecurity levels.
Such a double penalty algorithm introduced by the proposed
premium principle provides a strong incentive for individual
TRANSCOs to invest on self-protection in cybersecurity.

On the contrary, if TRANSCO 1 enhances its reliability,
its premium drops significantly, as expected. On the other
hand, the premiums for the other four TRANSCOs all ex-
perience slight increases. This implies that the enhancement
of TRANSCO 1 benefits only itself. There is no free rid-
ing. Therefore, under the proposed premium principle, ev-
ery TRANSCO is motivated to invest on their own self-
protections.

An additional comparative case is analyzed here to further
illustrate the impact of self-protections with the proposed
insurance scheme. Suppose TRANSCO 1 invests and installs
a new intrusion detection system (IDS) in the IEDs of the
substations to increase the probability to detect and filter
the intrusions and false commands at the IEDs from 0.5 in
the base case to 0.6, which is represented by the transition
probability pTG = 1 − pA in the SMP model. A case study
is performed with the new transition probability. In this case,
the VaR premium π1 and TVaR premium π2 for TRANSCO 1
with the updated transition probability drop by 12% and 16%
respectively compared to the base case. Both the proposed
VaR and TVaR premiums manage to reflect the change of
the cybersecurity level and can serve as an incentive for the
TRANSCOs to enhance their self-protections.

Finally, if the reliability of all TRANSCOs considering
cybersecurity is weakened, every TRANSCO experiences an
increase in both the expected value of the loss and the
premium. More importantly, premiums increase faster than the
expected values, as seen from the increases of the loading
coefficients. This implies that the increase of riskiness due
to the weakening of reliability is nonlinear. The increase will
accelerate if the weakening of system reliability considering
cybersecurity continues. In this sense, the proposed premium
principle confirms that the reliability of the power systems
considering cybersecurity should be planned and managed at
not only the individual TRANSCO level but also the global
network level.
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TABLE VII
IMPACT OF SELF PROTECTION

Base Case TC1 TC2 TC3 TC4 TC5
Expected value 3430 5150 9352 10404 7786

VaR-premium (π1) 6642 9388 17153 19025 14808
Risk loading 0.88 0.82 0.83 0.83 0.90

TC1 Weakened TC1 TC2 TC3 TC4 TC5
Expected value 6075 5145 9489 10492 8052

VaR-premium (π1) 10962 9509 16742 18559 14469

TC1 Enhanced TC1 TC2 TC3 TC4 TC5
Expected value 2307 5144 9693 10315 7893

VaR-premium (π1) 4839 9941 17893 18733 15236

All Weakened TC1 TC2 TC3 TC4 TC5
Expected value 5948 8966 16980 17693 13921

VaR-premium (π1) 11786 18471 34039 35021 28191
Risk loading 0.98 1.06 1.00 0.98 1.03

D. Sensitivity Analysis
In general, the input parameters of the proposed model need

to be estimated based on the statistics of the considered cyber-
attacks. However, available data from the real-world operation
of the power grids is limited at present. As an alternative, such
statistical data can be collected from the intrusion experiments
or honeypots data. The transition probability in the SMP model
represents the conditional probability of the occurrence of
the system vulnerabilities or a successful step in a malicious
attempt of cyberattacks under different conditions of the cyber
system. Such conditional probability can be estimated and
quantified through the intrusion experiments [41]. Meanwhile,
these stochastic characteristics of the cyberattack processes can
be mapped using the honeypot captured data statistically [42].
If empirical data is available with adequate records in the fu-
ture smart grid, the stochastic characteristics of the cyberattack
processes can also be evaluated based on the empirical data
similarly. Further, considering the generality of the cyberattack
mechanisms on the cyber systems, such statistical data can
also be obtained from the general cybersecurity data sets to
further broaden the data sources. Long-term databases have
been built and maintained to keep track of and analyze various
types of cyberattacks and cyber system vulnerabilities, e.g.,
the National Vulnerability Database (NVD) by the National
Institute of Standards and Technology (NIST) [43], the PRC
database by the Privacy Rights Clearinghouse [44], and the
Zero Day Initiative (ZDI) program by the TippingPoint [45].

In order to study the impacts of the parameters on the results
of the proposed model, a sensitivity analysis is performed.
The sensitivity of the proposed insurance premiums to the
transition probabilities in the SMP model is evaluated with the
sensitivity coefficients. The normalized sensitivity coefficients
are calculated by (24) and (25) as follows.

s1(pij) =
∂π1(pij)/∂pij

π1
, ∀i ∈ ST ,∀j ∈ ST ∪ SA (24)

s2(pij) =
∂π2(pij)/∂pij

π2
, ∀i ∈ ST ,∀j ∈ ST ∪ SA (25)

where s1 and s2 are the normalized sensitivity coefficients of
the VaR- and TVaR-based premiums π1 and π2 to the tran-
sition probability in the absorbing SMP model, respectively.
The premiums of TRANSCO 1 in the result of the sensitivity
analysis are shown and discussed as an example. Fig. 6 shows
the absolute values of s1 and s2 in the sensitivity analysis. As

shown in the figure, the sensitivity coefficients of all the transi-
tion probabilities are at a moderate level without any extremely
sensitive parameters. Specifically, transition probability pT has
relatively higher impact on the VaR-based premium, while pV ,
pT and pR have greater impact on the TVaR-based premium
in the absorbing SMP model. The highest values of both
normalized sensitivity coefficients s1 and s2 are about 2, which
means the VaR- and TVaR-based premiums π1 and π2 will
change by about 2% if the value of the probability changes
by 0.01. In practice, the insurance providers can set a safety
margin for the relatively sensitive transition probabilities (e.g.,
pT ) in the SMP model to further guarantee their financial
security.
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Fig. 6. Normalized Sensitivity Coefficients of Transition Probability in SMP
Model.

VI. CONCLUSION

In this paper, an absorbing SMP and correlation model for
cyber risks is proposed to model the cyberattacks against the
power systems. Based on the cybersecurity threat model, a
sequential MCS framework is developed to evaluate the loss
for the system interruptions considering malicious cyberat-
tacks on the power grids. An actuarial framework has been
developed to price and manage the cyber-related risks for the
power systems. Several new premium principles are introduced
to take interdependence among risks into consideration and
substantially control the insolvency risk from the perspective
of insurance providers. Using these premium principles, indi-
vidual premiums are calculated in a case study. The individual
premiums turn out to be significantly high compared to the
traditional insurance framework; which, on the one hand,
demonstrates the riskiness raised by interdependence, and on
the other hand, makes the insurance product unacceptable
to the insured parties. The temporal diversification technique
is further introduced to dilute the risk concentration caused
by interdependence and therefore lower individual premiums.
Under the proposed premium principle, the impact of self pro-
tection in cybersecurity proves to be significant, which is ex-
pected to incentivize investment in cybersecurity technologies.
The presented actuarial framework is anticipated to enhance
the participation rate from the perspectives of both insurers
and insured parties and thus promote a healthy, sustainable
cyber-insurance market for the electric power sector.
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