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ABSTRACT

In this work, we investigate the impact of uncertainties due to convective boundary mixing
(CBM), commonly called ‘overshoot’, namely the boundary location and the amount of
mixing at the convective boundary, on stellar structure and evolution. For this we calculated
two grids of stellar evolution models with the MESA code, each with the Ledoux and the
Schwarzschild boundary criterion, and vary the amount of CBM. We calculate each grid
with the initial masses of 15, 20, and 25 M. We present the stellar structure of the models
during the hydrogen and helium burning phases. In the latter, we examine the impact on the
nucleosynthesis. We find a broadening of the main sequence with more CBM, which is more
in agreement with observations. Furthermore, during the core hydrogen burning phase there
is a convergence of the convective boundary location due to CBM. The uncertainties of the
intermediate convective zone remove this convergence. The behaviour of this convective zone
strongly affects the surface evolution of the model, i.e. how fast it evolves redwards. The
amount of CBM impacts the size of the convective cores and the nucleosynthesis, e.g. the >C
to '°0 ratio and the weak s-process. Lastly, we determine the uncertainty that the range of
parameter values investigated introduces and we find differences of up to 70 per cent for the
core masses and the total mass of the star.
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1 INTRODUCTION

Convection is one of the key physical processes in stars and it has
been studied for almost a century (e.g. Prandtl 1925). Nevertheless,
it is still an issue to large uncertainties, among them the treatment
of convective boundaries, and the stellar community only starts to
understand these details of convection (e.g. Arnettetal. 2018, 2019).

Convection is the major contributor of turbulent energy transport,
it shapes the interior of stars and strongly influences their evolution
(e.g. Kippenhahn & Weigert 1994; Woosley, Heger & Weaver
2002; Maeder 2009). Furthermore, it mixes the composition. This
brings freshly synthesized material to the outer layers and ingests
additional fuel into active burning regions. Consequently, the core
of the star is more massive and the burning stage lasts longer.
Moreover, it may make possible new nuclear channels due to the
availability of different seed nuclei. At the convective boundaries,
new material from the convectively stable region is turbulently
entrained into the convective zone, which can also lead to a growth of

* E-mail: e.kaiser@keele.ac.uk

© 2020 The Author(s)

the convective region (e.g. Cristini et al. 2017). In low-mass stars,
convective boundary mixing during the asymptotic giant branch
phase is crucial for the creation of the '3C pocket, the s-process
site in low- and intermediate-mass stars (Herwig 2000). In massive
stars, several recent studies have shown the sensitivity of the pre-
supernova structure and their explosion likelihood to the details of
their complex convective history (Ugliano et al. 2012; Sukhbold &
Woosley 2014; Ertl et al. 2016; Miiller et al. 2016; Sukhbold
et al. 2016; Sukhbold, Woosley & Heger 2018; Chieffi & Limongi
2020). Yet, despite the importance of convection, these processes
are still not well understood and 1D stellar evolution codes use some
parametrized theory, often the mixing-length theory (MLT; Vitense
1953; Bohm-Vitense 1958). The well-known missing shortcomings
of the MLT at the convective boundary are patched together by some
parametrized physics, commonly referred to as ‘overshooting’ or
‘semiconvection’.

Convection clearly is a 3D process and with increasing computing
power, simulations in 3D became possible, allowing to properly
study convection (e.g. Herwig et al. 2006; Meakin & Arnett 2007;
Magic et al. 2013; Woodward, Herwig & Lin 2015; Cristini et al.
2017; Freytag, Liljegren & Hofner 2017; Jones et al. 2017, to name
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afew). However, it is currently not possible to simulate the evolution
of a star in 3D because the convective time-scale is several orders
of magnitudes shorter than the stellar lifetimes. Therefore, in order
to study stellar evolution, 1D stellar evolution codes are necessary.
Furthermore, 1D stellar evolution models are used as input for the
3D simulations. Therefore, a lower uncertainty in the input model
would decrease the variation in the 3D simulations.

One longstanding conundrum in all 1D stellar evolution codes is
the treatment of convective boundaries. In this work, we investigate
the relative importance of the modelling uncertainties linked with
convective boundary mixing (CBM) and their impact. In particular,
we focus on the location of the convective boundary (‘Schwarzschild
versus Ledoux criterion’) and the amount of CBM. We call the
mixing beyond the convective boundary CBM to keep open the
physical processes responsible for the mixing rather than calling
it ‘overshoot’, which is a specific physical process (vertical mo-
tion driven by buoyancy). Semiconvection, however, is mentioned
separately because this mixing process only occurs in the models
applying the Ledoux boundary criterion (see Sections 2 and 3.1).

This work focuses on the early stellar stages, starting at the
zero-age main sequence (ZAMS) up to core helium depletion.
The goal of this study is (i) to highlight, which aspects of the
convective boundary physics lead to the largest uncertainties in the
model prediction as well as (ii) which observational test and 3D
hydrodynamic simulation may help constrain convective modelling
in 1D stellar evolution models. We do not use any ‘new’ physics nor
do we claim to use ‘right’ physics. We simply use the choices that
are frequently found in the literature. This study therefore helps to
estimate the uncertainty of model predictions found in the literature.

The paper is structured as follows. In Section 2, we shortly
review the treatment of convection in 1D stellar evolution codes.
In Section 3, we outline the input physics and numerics used for
the simulations. Furthermore, we describe the uncertainties we
investigate. In Sections 4—7, we present the impact of the variations
on the stellar models and their evolution. Finally, in Section 8, we
discuss our results and compare some quantities to the literature and
in Section 9, we give our conclusions.

2 CONVECTION IN 1D STELLAR EVOLUTION

Standard 1D stellar evolution models are calculated in spherical
symmetry and the convective energy transport is approximated with
the MLT (Vitense 1953; Bohm-Vitense 1958) or a theory based
thereupon (e.g. Unno 1967; Arnett 1969; Spiegel 1971; Canuto &
Mazzitelli 1991; Canuto 2011). This, however, neglects several
important facts of turbulent convection, such as the convective
boundary (Renzini 1987).

The MLT is applied to the convectively unstable region to
determine the convective energy flux, convective velocity and
temperature gradient. However, the location of the convective
boundary, i.e. the location where the buoyancy changes sign, is
not part of the MLT and an additional criterion has to be used to
determine this location. The two criteria mostly used in the literature
are the Ledoux and Schwarzschild criteria.

The Ledoux criterion for stability (e.g. used by Heger, Langer &
Woosley 2000; Heger, Woosley & Spruit 2005; Brott et al. 2011;
Limongi & Chieffi 2018), which is based on linear perturba-
tion arguments (and large fluctuations), is formulated as V4 <
Va + §V, = Vi, with the two thermodynamic variables ¢ =
(0ln p/dln ) (at constant pressure and temperature) and § =
(dln p/dIn T) (at constant pressure and chemical composition). The
Vs are temperature gradients, where V,,q is the temperature gradient
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of the environment in case of pure radiative energy transport, V4
the temperature gradient of the MLT ‘bubble’ as it moves and
V,. = (0ln u/dIn P) is the chemical composition gradient of the
surrounding.

The Schwarzschild criterion for stability (e.g. used by Ekstrom
etal. 2012; Pignatari et al. 2016; Ritter et al. 2018) is formulated as
Viad < Vad.

The Ledoux and Schwarzschild criterion are the same and a
difference only arises in regions with a chemical composition
gradient, where the p-gradient is not equal zero. Regions that
are unstable according to the Schwarzschild criterion but stable
according to the Ledoux criterion undergo semiconvective mixing
(e.g. Kato 1966).

Some studies, e.g. Georgy, Saio & Meynet (2014), indicate that
the Ledoux criterion is preferred by 1D stellar models but their
solution is not unique. In a purely linear theory, as the two stability
criteria are, it is correct to use the Ledoux criterion in order to take
care of possible damping due to chemical composition gradients.

Convection, however, is a 3D process which drives intermittency
and fluctuations, which are non-linear. Therefore, the boundary is
not a stiff location but it bends and stretches (Cristini et al. 2017).
Consequently, the chemical composition gradient is erased and the
boundary becomes more similar to the Schwarzschild boundary
(Meakin & Arnett 2007; Arnett et al. 2019). This is an initial value
problem; the convective boundary location of the growing instability
starts as the Ledoux location and moves to the Schwarzschild
location on a finite time-scale. Thus, it is not sure which criterion
has to be used for convective regions that only exist on a short
time-scale. This behaviour needs some future 3D simulations to
verify and to test the transition speed, i.e. how long the convective
boundary stays at the Ledoux location.

Schematically, the 3D convective boundary consists of different
regions (e.g. Arnett et al. 2015):

(a) Tubulent convective region; here the superadiabatic excess is
positive and the material is unstable due to buoyant driving.

(b) Turning region; as a consequence of a pressure excess and
the buoyancy force changing sign, the turbulent flow turns around.
This region is well mixed.

(c) Shear region; the horizontal velocity dominates and the radial
velocity is going to zero. The horizontal flow may create Kelvin—
Helmholtz instabilities which entrain material from the stable region
into the convective region.

(d) Stable (’radiative’) region; gravity waves are generated (as a
result of the convective flow joining the stable region) but no mixing
otherwise.

These layers are not stiff but are subject to fluctuations and
therefore are dynamic (Cristini et al. 2017). Recent 3D simulations
of turbulent convection (e.g. Meakin & Arnett 2007; Woodward
et al. 2015; Cristini et al. 2017; Jones et al. 2017) show that there is
a turbulent convective, a turning and a shear region.

In a 1D prescription of convection using the MLT the velocity at
the boundary drops to zero from a finite value, as if rammed into
a solid wall. This problem arises because the MLT only considers
regions (a) and (d) (Renzini 1987). In order to account for CBM,
i.e. regions (b) and (c), an additional theory has to be used, patching
together the mixing after the convective boundary.

In 1D only the radial velocity is considered. Consequently,
convection is often thought of as a radial up-down movement. Since
the radial velocity in a 1D simulation using the MLT is not zero at
the convective boundary (due to the missing turning region), the
fluid overshoots the convective boundary, which is a dynamical
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consequence of the Newtonian laws (Canuto 1998). Hence, the idea
of ‘overshoot’ was born, an attempt to locally account for CBM
(e.g. Shaviv & Salpeter 1973; Maeder 1975).

Observations indicate that CBM exists (see e.g. discussion in
Zahn 1991). For example, CBM in stellar models is necessary in
order to reproduce observations, such as the main-sequence (MS)
width (e.g. Maeder 1975; Bertelli, Bressan & Chiosi 1984; Ekstrom
et al. 2012, the first and latter for low- and intermediate-mass stars)
and asteroseimic observations (e.g. Straka, Demarque & Guenther
2005; Meynet et al. 2009; Moravveji et al. 2015, 2016; Arnett &
Moravveji 2017)

Currently, there exist different implementations in 1D stellar
evolution codes to account for the mixing after the 1D convective
boundary. The most commonly used implementations are (i) the
convective penetration (e.g. Zahn 1991) or penetrative ‘overshoot’
(commonly referred to as ‘step-overshoot’) and (ii) the exponen-
tially decaying diffusive boundary mixing (Herwig et al. 1997). The
first prescription extends the fully mixed region after the convective
boundary by a fraction of the pressure scale height. The second
prescription is based on hydrodynamic simulations by Freytag,
Ludwig & Steffen (1996) and it applies a diffusive mixing with an
exponentially decreasing efficiency after the convective boundary,
which inspired by the exponentially decaying velocity field seen in
multidimensional simulations.

The two aforementioned CBM prescriptions may help in repro-
ducing some observations but they do not reproduce the average
shape of the complex convective boundary structure seen in 3D
simulations (e.g. Cristini et al. 2017; Jones et al. 2017). Further-
more, these local ‘add-ons’ to the MLT depend on some sort of
parametrization, which result in different amount of mixing.

CBM still is an open question. Several new prescriptions are
being developed. For example, Meakin & Arnett (2007) suggest
a turbulent entrainment law at the convective boundary, based
on 3D hydrodynamic simulations. Recently, Pratt et al. (2017)
proposed a diffusion coefficient, based on a Gumbel distribution
of the penetration probability in 2D hydrodynamic simulations.
Some authors also combine several consisting prescriptions in
order to mimic the convective boundary with the turning and the
shear regions seen in 3D simulations. Michielsen et al. (2019), for
example, combine the penetrative ‘overshoot’ and the exponentially
decreasing diffusive prescription. We do not use the latter because
it introduces even more free parameters.

3 PHYSICAL INGREDIENTS

In order to study the impact of convective boundary uncertainties
in massive star models, we computed a set of non-rotating stellar
models at solar metallicity with three initial masses (15, 20, 25 Mg).
Our simulations were computed using the MESA software instru-
ment for stellar evolution (Paxton et al. 2011, 2013, 2015, 2018),
revision 10108.

The radiative opacities were calculated using the tables of
Asplund et al. (2009) and if log T. < 3.8 K the opacity tables from
Ferguson et al. (2005) with photospheric metals from Asplund et al.
(2009) were used.

In order to account for the thermonuclear reactions we used
a network consisting of 206 isotopes from hydrogen up the iron
group. This network calls all possible reactions and their rates for
its isotopes, including the weak reactions. Therefore it is suitable
to calculate the energy generation for all the main burning stages
during stellar evolution. Furthermore, the 206 isotope networks
allows to calculate the stellar evolution up to core-collapse, it
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contains most of the reactions that affect the structure, such as
a-captures on '“N and 2’Ne during helium burning (see discussion
in Section 6), and is able to properly calculate the neutronization
of the matter in the core, given by the electron fraction Y,. Lastly,
Farmer et al. (2016) showed that key quantities of the stellar models
converge at the 10 per cent level when using an isotope network of
at least ~127 isotopes. The stellar models with no CBM (fcgm =
0.0, equation (1)) were calculated with a truncated network because
we only use them for comparison reasons. The truncated network
consists of all the elements up to aluminium in mesa_206 .net
and additionally silicon 27,28,29. It is therefore suitable to calculate
all the necessary reactions during the hydrogen and helium burning
phases. The truncated network introduces no difference during the
core hydrogen and helium burning stages. The reaction rates are
taken from the JINA REACLIB (Cyburt et al. 2010).

The initial metal elemental abundances were taken from Asplund
et al. (2009) with some elements (He, C, N, O, Ne, Mg, Al, Si, S,
Ar, Fe) updated based on Nieva & Przybilla (2012) and Przybilla
et al. (2013).

We accounted for mass-loss by stellar winds with MESA’s Dut ch
mass-loss scheme. This includes several prescriptions; for O-stars
the mass-loss rates from Vink, de Koter & Lamers (2000, 2001) are
used. If the star enters the Wolf-Rayet stage, i.e. when the surface
hydrogen mass fraction drops below 0.4, the mass-loss rate switches
to the scheme from Nugis & Lamers (2000). If Tz < 10* K, the
empirical mass-loss rate from de Jager, Nieuwenhuijzen & van der
Hucht (1988) was used. All the mass-loss rates were scaled with a
factor of 0.85. This reduction factor was introduced by Maeder &
Meynet (2001, see Section 2.2 for details) or empirical mass-loss
rates. While this reduction factor is not necessary for theoretical
mass-loss rates such as Vink et al. (2000, 2001), we used it for all
phases to have mass-loss rates similar to published GENEC models
(GENEC applies the factor 0.85 during the MS, e.g. Ekstrom et al.
2012) and MESA models (e.g. Farmer et al. 2016; Ritter et al. 2018,
apply a factor of 0.8).

Some of the models generate enough luminosity so that their
radiation pressure dominated envelope experiences gas pressure
and density inversion (e.g. Joss, Salpeter & Ostriker 1973). These
models become numerically unstable and the time-steps become
prohibitively short (of the order of hours). In order to keep the
numerics stable and the timsteps at areasonable limit we use MESA’s
MLT++ (Paxton et al. 2013, section 7.2) in all models that apply the
largest amount of CBM and in the 20 and 25 M models also with
the second largest amount (see below). The treatment of MLT++
allows the calculation of these models to the end of core helium
burning with reasonable time-steps. Tests of the MLT++ formalism
in 15Mg models do not show any significant differences in the
structure and evolution but see discussion in Section 8.

The MESA models assume hydrostatic equilibrium and apply
the MLT variation of Henyey, Vardya & Bodenheimer (1965). The
mixing length was set to £y = 1.6 Hp, where Hp is the pressure
scale height. This is the same value used by (Ekstrom et al. 2012).
Furthermore, for strongly stratified convection Arnett et al. (2018)
find an asymptotic limit for the dissipation length of a turbulent
flow, which they identify with €y ~ H, ~ 5/3 Hp, which is close
to 1.6 Hp. The mixing of the nuclear species in MESA is assumed
to be a diffusive process. The diffusion coefficient in the convective
region is calculated by D = %KMLT vmer, Where vvyr is the velocity
determined by the MLT.

We use the same resolution, at which our models seem to
converge, in all calculations except the 15 Mg models with no CBM.
In these models, we needed to increase the resolution in order to
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properly resolve the boundary of the convective zones. The details
can be found in the inlists.!

3.1 Convective boundary mixing uncertainties

In this study, we investigate two uncertainties due to CBM, (i) the
determination of the convective boundary location and (ii) different
amounts of extra mixing after the convective boundary.

As discussed in Section 2, the determination of the convective
boundary is not included in the MLT and either the Ledoux or
the Schwarzschild criterion has to be used. We calculated every
model twice, once applying the Ledoux and once the Schwarzschild
criterion to address this uncertainty.

An investigation of the second point is a much more extensive
task because CBM is poorly understood, hence connected with
several uncertain aspects. The uncertainties arise from (a) the poor
knowledge of the convective boundary and the breakdown into
1D, thus, how to describe and implement the physics in 1D, (b)
the parametrization of the CBM prescriptions and (c) the different
implementations of the same theory in the various stellar evolution
codes (see e.g. discussions in Jones et al. 2015; Stancliffe et al.
2016). In this work, we limit ourselves to one CBM prescription
and investigate the impact of different choices of the free parameters
within this setting.

Moravveji et al. (2015) tested the penetrative ‘overshoot’ and ex-
ponentially decaying ‘overshoot’ against asteroseismic observation.
They found a better fit with the exponentially decaying ‘overshoot’
prescription. Furthermore, Arnett & Moravveji (2017) show that the
asteroseismic models from Moravveji et al. (2015, 2016) with the
exponentially decaying ‘overshoot’ prescription create a chemical
composition profile similar to the profile in 3D hydrodynamic
simulations. On the contrary, the penetrative ‘overshoot’ creates
a step in the chemical composition profile, which is only seen in 1D
stellar models. The different chemical composition profile results
in a different local structure and finally affects, for example, the
boundary criterion. Therefore, we chose to use the exponentially
decaying ‘overshoot’ formalism in this work. We note that the free
parameters in the two prescriptions can be mapped with a mapping
factor between 10 and 15 (Herwig et al. 1997; Noels et al. 2010;
Moravveji et al. 2016; Claret & Torres 2017).

The exponentially decaying CBM prescription is based on hydro-
dynamic simulations by Freytag et al. (1996). Since we simulated
the interior, where the instabilities at the convective boundary
behave different than in the surface convection simulations from
Freytag et al. (1996), we refer to the resulting mixing after
the convective boundary as CBM. This includes an ensemble of
different physical processes which might cause mixing across the
convective boundary and is not only limited to an ‘overshooting” of
the convective flow at the boundary. Even if the convective flow is
simulated as a radial up-down movement in 1D stellar evolution it
is still necessary to think of convection as a 3D process.

The diffusion coefficient of the exponentially decaying CBM is
calculated as (Herwig et al. 1997)

—2z
Dcym = Do(fo) - exp (m) . (D

The diffusion coefficient is a function of distance z = r — ry(f)
from a point close to the edge of the convective boundary. fcgym is a
free parameter which expresses the distance of the extra mixing as

IThe inlists can be found on http://doi.org/10.5281/zenodo.3871897
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a fraction of the pressure scale height at the convective boundary,
HE®. Dy(fy) is the diffusion coefficient from the MLT, taken at
the location ry(fy) = rcg — fo - Hp inside the convective zone,
where rcp is the location of the convective boundary determined
by the boundary criterion and f; is an additional free parameter.>
This is done because the diffusion coefficient from MLT drops
sharply towards zero at the convective boundary. The new diffusion
coefficient is then applied starting at 7(fy), thus inside the convective
zone.

In the CBM zone, the temperature gradient is set equal to the
radiative one. The chemical composition, on the other hand, is
mixed using the diffusion coefficient determined by equation (1).
The diffusive mixing after the convective boundary is cut-off at a
certain value, which we chose to be Dy, = 10? cm? s, in order to
avoid the long exponential tail. This treatment of CBM is applied
to all boundaries of all convective zones.

D, has to be taken ‘close’ to the edge of the convective boundary
(Herwig 2000), which is equivalent to a small f; parameter. It is
often not discussed how ‘close’ and only the fcpm parameter is
mentioned, despite the importance of fy. Changing the f, parameter
in equation (1) from 0.02 to 0.002, gives a different location (i)
where Dy is taken from and (ii) where to begin the exponential
decrease of the diffusion coefficient. The impact of the first point
is negligible since the MLT predicts an approximately constant
diffusion coefficient. The second point, however, is not negligible.
The fact that the diffusion coefficient begins to decrease deeper in
the convective region and is cut-off after it drops below a certain
value means that the mixing efficiency inside the convective zone
recedes and there is less and weaker mixing after the convective
boundary.

The CBM model prescription is used regardless of possible
chemical composition gradients at the convective boundary. Those
might affect the amount of CBM but will not prevent it entirely
(Canuto 1998).

Herwig (2000) find that fcgm = 0.016 is needed for convective
core hydrogen burning in intermediate-mass stars to reproduce the
MS width. Claret & Torres (2017), Claret & Torres (2018) do a
semi-empirical mass calibration of fcgm and find a dependence
of fepm on the stellar mass, with a strong increase of fegym up to
about 2 M, where it levels off at a value of fegym ~ 0.0164-0.018]1.
Denissenkov et al. (2019), on the other hand, scale the fcgy with
the driving luminosity, fegm o L'/3.

CBM is often constrained with observations using the penetrative
‘overshoot’ in the stellar evolution calculations, where the fully
mixed region is extended by a fraction of the pressure scale height,
Oy - Hp. In this case, o,y is the free parameter which is constrained.
Ekstrom et al. (2012) fit their amount of CBM to low-mass stars with
ooy =0.1. Brottet al. (2011) constrain CBM with the observed drop
of the rotation rates for stars with a surface gravity of log g < 3.2
and find oo, = 0.335 for a 16 M, star. Recently, Schootemeijer
et al. (2019) compare a grid of stellar models with varying amounts
of internal mixing to observations of massive stars in the Small
Magellanic Cloud and conclude that 0.22 < «oy < 0.33 is needed
to match observations of blue to red supergiants. Costa et al. (2019)
reanalyse the sample of Claret & Torres (2017,2018) and find a wide
distribution of 0.3-0.4 < a4y < 0.8 for masses M > 1.9 M, in non-
rotating models. When they include rotation, the models agree with
the observed data when «,, = 0.4. Higgins & Vink (2019), on the

2We note that the implementation of the penetrative ‘overshoot’ in the MESA
code depends on a similar second parameter.
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other hand, constrain massive star evolution with a Galactic binary
system. They need «,, = 0.5 (and rotation) in order to reproduce
the system. These parameters map to fecgy = (0.0335, 0.04, 0.05)
by using a mapping factor of ~10. Considering the uncertainty in
the 1D mixing process, this approximation is acceptable.

Castro et al. (2014) suggest, based on observational spectroscopic
Herzsprung-Russell diagram (HRD) of Galactic massive stars, that
the amount of CBM increases with initial mass in order to fit
their empirical terminal-age MS. Other studies (e.g. Vink et al.
2010; McEvoy et al. 2015), however, do not find a clear boundary
corresponding to the terminal-age MS. Nevertheless, McEvoy et al.
(2015) find hints for a broader MS width than adopted in the
literature. Grin et al. (in preparation) find that the best fit to the
empirical MS width in the initial mass range 8-22 Mg with an
increasing o,y from 0.2 to 0.5 for non-rotating models. For models
with initial masses of 15 and 20 M, they use o, ~ 0.5.

The values commonly used in theoretical ‘state-of-the-art’ evo-
Iution calculations of massive stars range from fcgm = 0.004 (e.g.
Farmer et al. 2016; Fields et al. 2018) up to fegm = 0.022 (e.g. Jones
etal. 2015) or fepm = 0.025 (e.g. Sukhbold & Woosley 2014), with
intermediate values around fecgm = 0.014-0.016 (e.g. Choi et al.
2016; Pignatari et al. 2016; Ritter et al. 2018). These values are lower
than the values for massive stars constrained by observations and
the difference will influence the structure and evolution of the star.

In order to cover the range of fcgy adopted in the literature and
the constraints from observations we used the values (0.004, 0.01,
0.022, 0.035, 0.05). Moreover, for comparison, we also calculated
all the models with an initial mass of 15Mg with no CBM.
Additionally, we test two values for fy, 0.002 and 0.02, in the 15 Mg
models with fegym < 0.022. We limit ourselves to the small values
of fcpm because the relative importance of fi becomes negligible in
models with large amounts of CBM (see e.g. Table 1). The 20 and
25 Mg models are only simulated with f = 0.002.

Regions which are unstable according to the Schwarzschild
criterion but stable according to the Ledoux criterion undergo slow
semiconvective mixing. We used the semiconvective prescription
from Langer, Fricke & Sugimoto (1983) who formulate the semi-
convective mixing as a diffusive process. The diffusion coefficient
is calculated as

K V—-Vgq4

S 2)
6CP,0 VL -V

Dy = e

K is the radiative conductivity and Cp the heat capacity at constant
pressure. The semiconvective diffusion coefficient is further scaled
by the semiconvective efficiency parameter o..

The amount of semiconvective mixing, if it occurs, is still an
unsolved problem (e.g. Langer 2012, and references therein), hence
oy 1s uncertain. Langer, El Eid & Fricke (1985) estimate the
semiconvective efficiency to be of the order of 0.1. The values used
in the literature vary greatly, ranging from small values of oy =
0.01-0.02 (e.g. Farmer et al. 2016; Limongi & Chieffi 2018) up to
1.0 (e.g. Brott et al. 2011), with intermediate values of ~0.1 (e.g.
Sukhbold & Woosley 2014; Choi et al. 2016). Schootemeijer et al.
(2019) explore in their calculations a large range of ogc = 0.01-300
and conclude that s > 1.0 is needed to reproduce the BSG to RSG
ratio in the Small Magellanic cloud.

We used two values for «, 0.4 (fast semiconvection) and 0.004
(slow semiconvection) in our 15 Mg models. The 20 and 25 Mg
models where only calculated with «y. = 0.4 because the relative
importance of semiconvection decreases with increasing amount of
mixing at the convective boundary (see Sections 4-6). Therefore,
the two values of oy would predict a similar outcome. Similarly,
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Figure 1. The location of the convective hydrogen core boundary, deter-
mined by either the Ledoux or Schwarzschild criterion, as a function of the
central hydrogen mass fraction. All tracks are 15Mg models with fy =
0.002. The solid lines indicate Schwarzschild models and the other lines are
Ledoux models with either agc = 0.4 (dotted line) or agc = 0.004 (dash—
dotted line). The colour scheme shows the different choices of fcgm. The
inset window presents the evolution of the convective boundary location
right before it reaches the ZAMS.

Schootemeijer et al. (2019) find that in their massive star models
of the Small Magellanic Cloud semiconvection rarely develops
for large amount of CBM and only plays a role after the MS.
Moreover, Langer et al. (1985) show that while semiconvection
can occur prominently during the MS evolution in their massive
star models the evolution during this phase is nearly independent
of the choice of a.

4 CORE HYDROGEN BURNING

In the core hydrogen burning phase, hydrogen is fused into helium.
This increases the mean molecular weight © and decreases the
opacity k. The first leads to an increase in luminosity, because
L o pu* (e.g. Kippenhahn & Weigert 1994), hence, a reduction of
the pressure on to the core. The decrease of the opacity and pressure
dominate over the increase of the core luminosity in a massive star.
Therefore, since Vg o kg P (e.g. Kippenhahn & Weigert 1994),
the radiative temperature gradient decreases. On the other hand,
the adiabatic temperature gradient, V,4 remains roughly constant in
the interior of the star. This constantly stabilizes the material at the
convective boundary against convection according to the stability
criterion, and the mass of the convective hydrogen in a massive star
decreases during the MS lifetime. A consequence of the decreasing
convective core is a decreasing mean molecular weight above the
convective core. The resulting p-gradient creates the difference
between the two boundary criteria.

Fig. 1 shows the location of the convective boundary in stellar
evolution models with an initial mass of 15 Mg, either given by
the Ledoux or the Schwarzschild boundary criterion, for various
amounts of extra mixing and f, = 0.002. The location presented
in Fig. 1 is the pure Ledoux or Schwarzschild boundary excluding
the CBM region. It is apparent that the location of the convective
boundary is further out in mass coordinates with more CBM.
This is a consequence of the larger mixed region after the con-
vective boundary. The inset window in Fig. 1 presents a zoom
on the final growth of the convective hydrogen core before the
ZAMS. It shows that all the 15 Mg models, except the Ledoux
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Table 1. Properties of the stellar models at core helium depletion.

Model foam & age M My ¢ M, Mco TH THe wmsc/te . logio TJ}’}?min ¢
Mp)  (Mp)  (Mg)  (Mg)  (Myr)  (Myr) (K)
15Mp, fesm = 0.0, 14.35 2.55 4.07 2.08 11.08 1.47 0.78 4.40
Schwarzschild, Jfeem = 0.004 13.83 2.73 4.08 2.14 11.40 1.48 0.54 4.39
fo =0.002 fesm = 0.01 13.43 3.03 4.28 2.34 11.93 1.34 0.36 4.38
foeem = 0.022 12.34 3.60 4.68 2.75 12.86 1.19 0.02 4.36
fesm = 0.035 11.23 4.23 5.39 3.45 13.74 1.03 0.02 4.32
feem = 0.05 11.13 4.95 6.22 4.33 14.60 0.84 0.01 4.28
15Mp, fesm = 0.004 14.28 2.65 4.05 2.10 11.28 1.52 0.77 4.40
Schwarzschild, Jesm = 0.01 13.61 2.96 4.24 2.29 11.83 1.39 0.46 4.38
fo=0.02 fesm = 0.022 12.47 3.59 4.65 2.72 12.81 1.20 0.02 4.36
15Mgp, fesm = 0.0, age = 0.004 14.30 2.21 3.51 0.56 10.47 0.93 0.02 4.41
Ledoux fesm = 0.0, e = 0.4 14.09 2.54 3.73 2.13 11.07 1.26 0.01 4.40
fo =0.002 feem = 0.004, age = 0.004 13.85 2.72 4.07 2.13 11.40 1.44 0.49 4.39
Jeem = 0.004, oy = 0.4 13.85 2.72 4.07 2.13 11.40 1.44 0.49 4.39
feem = 0.01, e = 0.004 13.18 3.02 4.24 2.31 11.93 1.34 0.15 4.38
Jeem = 0.01, age = 0.4 13.18 3.02 4.24 2.31 11.93 1.33 0.15 4.38
fesm = 0.022, age = 0.004 11.88 3.60 4.92 2.94 12.86 1.16 0.01 4.36
Joem = 0.022, oy = 0.4 11.92 3.60 4.96 2.98 12.86 1.14 0.01 4.36
fesm = 0.035, age = 0.004 12.46 4.23 5.30 3.40 13.74 0.95 0.02 4.32
Jeem = 0.035, age = 0.4 12.41 4.23 5.34 3.44 13.74 0.94 0.02 4.32
feem = 0.05, e = 0.004 10.39 4.96 6.41 4.50 14.60 0.84 0.01 4.28
Jeem = 0.05, age = 0.4 10.90 4.95 6.28 4.39 14.60 0.83 0.01 4.28
15Mp, feem = 0.004, agc = 0.004 13.63 2.64 4.06 2.14 11.25 1.27 0.01 4.40
Ledoux, Jeem = 0.01, age = 0.004 13.40 2.96 4.20 2.27 11.82 1.35 0.27 4.38
fo=0.02 fesm = 0.022, age = 0.004 11.90 3.59 491 2.94 12.82 1.16 0.01 4.36
20Mp, Jeem = 0.004 17.37 4.39 5.94 3.63 8.12 0.99 0.64 4.43
Schwarzschild, Jeem = 0.01 17.49 4.89 6.24 3.95 8.40 0.89 0.64 4.42
Jfo =10.002 Jeem = 0.022 14.48 5.70 6.71 4.45 8.95 0.82 0.17 4.38
Jeem = 0.035 11.93 6.54 7.35 5.13 9.46 0.78 0.02 4.34
Jfcem = 0.05 10.95 7.49 8.74 6.52 9.97 0.66 0.01 4.27
20 Mg, fesm = 0.004, age = 0.4 18.90 4.49 5.89 3.58 8.09 0.96 0.92 443
Ledoux, Jeem = 0.01, age = 0.4 18.66 4.90 6.13 3.86 8.40 0.92 0.87 4.42
fo =0.002 fom = 0.022, age = 0.4 13.02 5.70 6.90 4.61 8.95 0.79 0.02 4.38
Joem = 0.035, age = 0.4 10.84 6.54 8.01 5.71 9.46 0.72 0.02 4.34
fem = 0.05, age = 0.4 11.02 7.50 8.83 6.64 9.97 0.63 0.01 4.28
25Mg, Jeem = 0.004 17.10 6.54 7.84 5.24 6.63 0.75 0.36 4.44
Schwarzschild, Jeem = 0.01 15.69 6.85 7.86 5.31 6.70 0.77 0.26 4.44
Jfo =10.002 Jfeem = 0.022 12.57 7.95 8.54 6.05 7.08 0.69 0.02 4.38
Jeem = 0.035 14.03 9.00 9.73 7.24 7.43 0.64 0.02 4.34
feem = 0.05 12.69 10.16 11.27 8.86 7.78 0.55 0.01 4.24
25Mop, fesm = 0.004, agc = 0.4 21.35 6.43 7.77 5.18 6.53 0.71 0.72 4.45
Ledoux, Jeem = 0.01, age = 0.4 21.59 6.91 7.72 5.15 6.70 0.70 0.78 4.43
fo =0.002 fem = 0.022, age = 0.4 14.87 7.94 8.59 6.11 7.08 0.66 0.12 4.38
Jeem = 0.035, age = 0.4 13.70 9.00 9.88 7.39 7.43 0.61 0.02 4.33
fem = 0.05, age = 0.4 12.76 10.16 11.68 9.25 7.78 0.52 0.04 4.24

Notes. Shown are the total star mass, Mq; the helium core mass, M, ; the carbon—oxygen core mass, Mco; the MS lifetime, ty; the core helium
burning lifetime, tye; and the BSG to core helium burning lifetime, tpsg/THe. The core mass is defined as the location where the abundance of
the main fuel in the burning process, which creates the main end product of the burning phase, is below 0.1 and the abundance of the end product

is above 0.01.

¢ Hydrogen-free core at hydrogen depletion.
b

TBsG, the BSG lifetime is defined as the time when the star (i) has left the MS stage of core hydrogen burning, (ii) the surface temperature is in

the range 4.4 > log;q Tetr > 3.9, and (iii) it is not an extremely helium-enriched Wolf-Rayet-like star, i.e. Xeurf("He) > 0.3.
¢ The logarithm of the minimum effective temperature during the MS evolution. The terminal-age main sequence is defined as the time when the

central hydrogen mass fraction drops below 107,

model with no CBM and slow semiconvection, have a nearly
equal convective hydrogen core size at the ZAMS. Therefore, the
differences arising during the MS evolution are due to the larger
fcem values. More CBM increases the overall size of the convective
zone, ingesting more fuel into the burning zone in the centre.
This creates a higher hydrogen burning luminosity. Consequently
the decrease in the radiative temperature gradient is relatively
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slower, which results in a larger convective hydrogen core (see also
Table 1).

The models with no CBM (black lines in Fig. 1) predict different
locations of the convective boundary by either using the Ledoux
or the Schwarzschild criterion. In the Schwarzschild model the
chemical composition gradient is ignored. Therefore, the convective
core can grow freely during the pre-MS evolution. The Ledoux
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Figure 2. Profiles of the temperature gradients at the boundary of the convective core as a function of Lagrangian mass coordinates. Shown are the 15 Mg
Schwarzschild (left column) and the Ledoux models with agc = 0.004 (middle column) and «g. = 0.4 (right column), all with no CBM. The top row is at the
ZAMS (X.("H) = 0.717), the middle row at X.("H) = 0.5 and the bottom row at X.('H) = 0.2. Convective regions are indicated by blue shading, whereas
yellow shows semiconvective regions. Additionally, the opacity is plotted as a function of mass coordinate (black dashed line). The Vy, in the Schwarzschild

model is only included for comparison and not used in the calculation.

models estimate a different boundary location depending on the
semiconvective efficiency. The Ledoux model with inefficient
semiconvection (ag,. = 0.004) shows a convective core which is
smaller. This is because during the pre-MS, where the convective
core grows, a strong chemical composition gradient limits its size
(see inset window in Fig. 1). A semiconvective layer develops above
the convective core but semiconvection is not efficient enough
to completely remove the chemical composition gradient. As a
result, this model has a smaller convective core during the whole
MS evolution. If semiconvection is efficient (o, = 0.4), the u-
gradient in the layer above the core is erased and the convective
core can grow more. Therefore, the Ledoux model with efficient
semiconvection has a convective hydrogen core size more similar
to the Schwarzschild model at the ZAMS. Afterwards, during the
MS evolution, the Schwarzschild model and the Ledoux model
with o = 0.4 evolve their decreasing convective core similarly.
This also is presented in Fig. 2 where the radial profile of the
temperature gradients, the chemical composition gradient and the
opacity are shown. The two models (left and right columns) behave
similarly because in the latter there is a thin semiconvective zone
(yellow) right at the convective core boundary, which constantly
mixes the region above the core. The Ledoux model with agc =0.004
evolves through the MS with a smaller convective core and a large
p-gradient above it (middle column in Fig. 2). These differences
affect the helium core mass at core hydrogen depletion (Table 1)
and the luminosity during the MS (Fig. 11), which in turn impact
the further evolution.

Fig. 2 might suggest that the Ledoux model with inefficient
semiconvection (middle column) develops a chemical composition
gradient within the convective zone which then is split up during

the MS evolution. Careful investigation reveals that the inner (left)
location is the upper limit of the convective core, whose growth
is limited due to the strong, narrow peak of the p-gradient at the
edge of the convective core. The convective region above the core
develops during the pre-MS, which results in the convective layer
after the p-gradient peak (middle column, top panel).

CBM extends the region above the core that is well mixed.
Consequently, changes in the chemical composition and the increase
of opacity are pushed further away from the boundary location
obtained from the stability criteria. Consequently, V.4 decreases
further after the convective boundary. Fig. 3, which shows the
same stellar models as Fig. 2 but with fcgy = 0.004 instead of
0.0, illustrates this behaviour. Moreover, the chemical composition
gradient at the convective boundary vanishes, V,, ~ 0, and its
increase is not a step-function anymore but is more sigmoid-shaped.
As aresult, the convective hydrogen core boundary predicted by the
Ledoux and Schwarzschild criterion in Fig. 1 converge. Obviously,
the convergence between the two stability criteria is consistent when
more CBM is applied as shown in Fig. 1. The convergence of the
two boundary criteria is also apparent in the HRD (Fig. 11), where
the evolutionary tracks with CBM perfectly overlap during the MS.
Furthermore, they predict the same helium core mass at the end of
hydrogen burning (Table 1).

Semiconvection only influences the convective hydrogen core
size when there is no CBM in our 15 M models. There, a chemical
composition gradient on the radiative side of the boundary limits
the growth of the convective hydrogen core depending on the
semiconvective efficiency (see Figs 1 and 2 with og. = 0.004 and
0.4). However, as discussed before, CBM removes the gradient
in chemical composition on the radiative side of the convective
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Figure 3. The same as Fig. 2 but with fcgm = 0.004. The CBM region is indicated by turquoise.

boundary. Additionally, the radiative temperature gradient further
decreases in the convective boundary region, which creates the
condition V4 — Vg > 0 after the CBM region (Fig. 3). For that
reason there is no semiconvective region right after the convective
core region when CBM is applied and the convective hydrogen core
is independent of semiconvection or its efficiency.

The differences of the convective boundary region discussed
above have an effect on the MS evolution. The larger convective
cores enable more hydrogen fuel to be ingested into the central
burning region. Subsequently, the helium core mass at the end
of core hydrogen burning increases with more CBM (Table 1).
Furthermore, the luminosity generated by core hydrogen burning is
higher and the increased radiation pressure leads to slightly larger
radius of the star. The consequence is that the track in the HRD in
Fig. 11 is steeper and reaches lower effective temperatures at the end
of the MS (Table 1), hence, the MS width broadens, especially for
the models with large amount of CBM. Also, the increased amount
of hydrogen available in the core burning region enhances the MS
lifetime (Table 1).

The behaviour of the convective hydrogen core and its response
to CBM uncertainties found for the 15 Mg models is similar for
stellar model with initial masses of 20 and 25Mg. There is,
however, a small difference in the Schwarzschild and the Ledoux
model. The thin convective layers found above the convective
hydrogen core (convective fingers, see discussion further down)
penetrate slightly deeper in the models with larger initial masses
and sometimes touch the convective core. This transports fuel into
the convective core which leads to an increase of the convective
core. The timing and intensity of the ‘touching’ is different for
the Ledoux and Schwarzschild models and depends on the initial
mass. Therefore, the initially converged boundary locations diverge
once more and the models end up with slightly different helium
core masses at the end of core hydrogen burning (Table 1). A
similar scenario is observed by e.g. Farmer et al. (2016; their fig. 3)
for a star with an initial mass of 30 Mg and Clarkson & Herwig
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(2020). There, however, the process is much more intense and the
increase of the convective hydrogen core is larger compared to our
cases. Whether such a merging scenario is realistic needs to be
determined, though, with more realistic boundary physics (e.g. the
Richarson number instead of the Ledoux or Schwarzschild criterion;
Turner 1973) instead of simply adding the diffusion coefficients
together.

The 20 and 25 M models show a larger dispersion of minimum
effective temperatures reached at the end of the MS evolution
(Table 1). This indicates that, if the fcgm value is indeed as
large as recent observational calibrations, the widening of the MS
width is more extreme for higher initial masses. Furthermore, the
line with the terminal-age MS is slightly bent towards cooler
temperatures rather than to hotter temperatures with increasing
initial mass as suggested by recent observations (Castro et al. 2014;
McEvoy et al. 2015). Comparing the different logjo 7} vy, values
in Table 1 reveals that the MS width is nearly independent of the
convective boundary criterion and the semiconvective efficiency.
This is because during the MS evolution (i) there is a convergence
between the two boundary criteria and (ii) the relative importance
of semiconvection is massively reduced with increasing CBM (see
discussion above).

In Section 3.1 we mentioned the importance of another free
parameter, fj, in the exponentially decreasing diffusive CBM model.
Changing this parameter from our default value of 0.002 to 0.02
decreases the amount of mixing beyond the convective core.
Consequently, slightly less fuel is brought down into the burning
region, resulting in a lower V.4, hence, the convective boundary
location decreases faster during the MS evolution for the same fcppm.
This flattens the MS evolution track in the HRD and reduces the MS
width. Moreover, the helium core mass at core hydrogen depletion is
smaller (Table 1). However, the differences due to the two f; values
decrease with increasing fcgy, because the f; is smaller relative to
the fcpm parameter. Therefore, the impact of the earlier decrease of
the diffusion coefficient is reduced.
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4.1 Convective fingers

In the region above the convective hydrogen core, the radiative
temperature gradient has a profile close to adiabatic one (V4 ~
V.d), see e.g. in Figs 2 and 3. Such a convective neutral region
above the convective hydrogen core in massive stars was first
predicted by Schwarzschild & Harm (1958). This is a consequence
of the increasing opacity in the region of the decreasing convective
hydrogen core due to the transition to a more hydrogen-rich mixture.
Accordingly, the radiative temperature gradient, V.4 o &, has
a flatter profile, or even slightly increases, in the region above
the receding convective hydrogen core. Schwarzschild & Hirm
(1958) propose that this zone above the convective core is slowly
mixed to maintain convective neutrality. Our simulations with
no CBM (Fig. 2) show a similar behaviour: At the ZAMS (top
row) the temperature gradient above the convective core decreases
outwards (increasing mass coordinate). During the MS evolution
the convective core slowly retreats, leaving behind a composition
gradient which increases the opacity. Consequently, the radiative
temperature gradient above the receding convective hydrogen core
is close to adiabatic. Hence, small discontinuities in the opacity
profile, which create small local peaks in the radiative temperature
gradient, violate the Schwarzschild stability criterion. This results
in a thin layer with mixing, that reduces the radiative temperature
gradient back to the adiabatic one. At the boundary of these mixed
layers, a new discontinuity in opacity is created and the process
repeats itself there. This creates a finger-like structure in the region
above the core (e.g. Langer et al. 1985). The difference between
the Ledoux and Schwarzschild criterion is the type of mixing in
the thin layers. In the Schwarzschild models the convective fingers
are always convectively mixed. In the Ledoux models, however,
the layer appears as semiconvective layer because of the strong
chemical composition gradient above the receding hydrogen core.
If semiconvection is not efficient a large semiconvective region de-
velops above the convective core because the mixing is not efficient
enough to completely remove the chemical composition gradient
and, at the same time, the Schwarzschild-unstable layer grows
due to the receding convective hydrogen core.? If semiconvection
is more efficient, it is able to remove the chemical composition
gradient. It should be noted that semiconvection, as we use it, only
mixes the chemical composition but ignores the thermodynamics
(e.g. the temperature, Langer et al. 1983). Therefore, the layer
becomes convectively unstable because still Vg > V,q. Thus, a
similar finger-like convective-semiconvective structure as in the
Schwarzschild models develops (Fig. 2).

CBM (i) pushes the transition from the helium-rich mixture in the
convective core to the hydrogen-rich mixture in the envelope further
away from the convective boundary and (ii) creates a smoother
transition due to the exponential nature of the CBM. The latter
creates a more continuous opacity profile, therefore a smoother
V14 profile. The first point, on the other hand, causes the opacity to
increase further away from the boundary. This allows the radiative
temperature gradient to further decrease in the CBM region before
it raises once more due to the increase of opacity. Hence, the
appearance of convective fingers is either further out (e.g. Fig. 3,
middle row) or they never occur because V.4 drops enough for
the region above the core to stay convectively stable. Thus, the
spatial area where convective fingers occur, if any, is reduced with

3The convective layer in this semiconvective region seen in Fig. 2, middle
column, is a relic from the pre-MS evolution, see previous discussion, and
exists during the whole MS.
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increasing amount of mixing at the convective boundary. For fcgym
2 0.01 there are no convective fingers in our 15 Mg models.

The 20 and the 25Mg models exhibit a similar behaviour
regarding the mixing in the zone beyond the convective core as
the 15 Mg models but there are some important differences. Stars
with a higher initial mass generate a higher luminous output.
Hence, V.4 & £,q is much closer to convective neutrality in the
radiative zone beyond the convective core. Therefore, in higher
mass star models, smaller changes in the entropy immediately
create a situation where the stability criteria predict convection
(or semiconvection). Consequently, the convective fingers are much
more present in the simulations with the same fcgym but higher initial
masses. As a result, the limit of CBM above no convective fingers
or semiconvective layers appear increases with initial mass. In the
20 Mg models we do not find convective fingers for fegm 2 0.022
and in the 25 Mg, models for fcgy = 0.035.

5 THE INTERMEDIATE CONVECTIVE ZONE

After hydrogen is depleted in the core of the star, the convective
core completely recedes and the star enters a short but crucial phase,
which influences its fate. Since there is no nuclear energy generation
left in the core, the star contracts, releasing gravitational energy. As
a consequence of the virial theorem, energy conservation and a con-
traction on a short time-scale the outer layer expands and cools down
(mirror principle — e.g. Kippenhahn & Weigert 1994). The layers
above the previous hydrogen core, where there is still hydrogen left,
heat up due to the contraction and set the condition for hydrogen
burning. This hydrogen burning shell is accompanied by a convec-
tive layer, the intermediate convective zone (ICZ; Figs 4, 5, and 7).

It is during this phase that the star leaves the MS and, in the mass
range studied here, crosses the HRD to the red supergiant (RSG)
branch (Fig. 11). The details of this phase depend strongly on the
duration, location and size of the ICZ with respect to the hydrogen
burning shell. The properties of the ICZ, in turn, depend strongly
on the choices of the convective boundary criterion and the amount
of extra mixing at the boundary. If the ICZ only exists above the
hydrogen burning shell, the latter can only consume the hydrogen
at its location via nuclear burning and is consequently relatively
weak. However, an overlap of the two creates a situation where the
convective zone ingests fuel into the burning shell. This results in a
much stronger burning shell which provides more support to the core
against the gravitational pressure from the outer layers. Figs 4 and
5 present structure evolution diagrams focused on the ICZ. They
show the amount of overlap between the ICZ and the hydrogen
burning shell. Furthermore they visualize the size and give a hint
of the duration of the ICZ. Fig. 6 presents the different post-MS
luminosities of the simulations. Shown are the total luminosity and
the luminosities generated by hydrogen and helium burning. The
difference between the luminosities from the two burning types and
the total luminosity is due to changes of the gravitational potential.
The sudden drop in luminosity powered by hydrogen burning, if
any, indicates the end of the boost of the ICZ, thus, its duration.

In the 15 Mg models with no CBM there is a clear difference
between the Schwarzschild and the Ledoux models. The ICZ in
the Schwarzschild model has an overlap with the hydrogen burning
shell, whereas the Ledoux models develop an ICZ outside of the
hydrogen burning shell. This difference arises because of the chem-
ical composition gradient which prevents convection in the Ledoux
models. These findings are similar to Langer et al. (1985), Georgy
etal. (2014), and Davies & Dessart (2019) who found that the depth
at which the ICZ forms is sensitive to the stability criterion used.
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Figure 4. Structure evolution diagrams (Kippenhahn diagrams) of the
15 M models showing the ICZ. The left column presents the Schwarzschild
model and the right column the Ledoux models with «g. = 0.4. The fcpm
increases top to bottom with (0.0, 0.004, 0.01, 0.022). The blue region
indicates convective regions, whereas the convective boundary region is
shown in turquoise and semiconvection in the Ledoux models is shown
in yellow. The red shading indicates the energy generation. The time on
the x-axis is with respect to the time of core hydrogen depletion, THgep-
The structure evolution diagrams are limited to the evolution between the
locations where X.('H) < 0.01 and X.(*He) > 0.95.

The comparison between the Ledoux model with oy, = 0.4 and
ag = 0.004, both with no CBM, reveals that the ICZ appears at the
same location. The small difference between the two is introduced
by the mixing above the hydrogen core. Slow semiconvection is not
able to remove the chemical composition gradient. Therefore, the
intermediate convective region consists mainly a semiconvective
region in the Ledoux model with slow semiconvection. In the
case with efficient semiconvection, the convective fingers partly
removed the chemical composition gradient. Hence, the ICZ is
mostly convective. This affects the time when the surface is enriched
with hydrogen burning products, since the large surface convective
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Figure5. Same as Fig. 4 but for fcgm equal to 0.035 (top) and 0.05 (bottom).

zone penetrates into these layers shortly after the disappearance
of the ICZ (Fig. 4, right upper corner). Furthermore, the energy
transport in this region is more efficient when semiconvective
layers, which only mix the chemical composition, are turned into
convective layers. This slightly increases the luminosity as can be
seen in Fig. 6, which in turn influences the mass-loss rates. However,
the impact is relatively small.

CBM changes this picture. The extra mixing at the boundary (i)
removes possible chemical composition gradients at the boundary.
Furthermore it increases the region with efficient mixing, hence,
(ii) the energy excess is regulated faster and (iii) more fuel is
provided for the burning shell. The latter simply increases the
amount of boosting of the hydrogen shell. This is indicated by
the hydrogen burning luminosity in Fig. 6, where the simulations
with an overlap between the ICZ and the hydrogen shell have a
higher Ly for the duration of the ICZ before the hydrogen powered
luminosity drops. The second point decreases the lifetime of the
intermediate convective core by increasing the region with efficient
energy transport, thus, V.4 drops faster. This is illustrated in Figs 4
and 5, where the models with larger values of fcgm have a shorter
duration of the ICZ. Furthermore, in Fig. 6 the luminosity powered
by the hydrogen burning shell experiences the drop earlier with
higher fcpy. In the most extreme cases with fegy = 0.05 and the
Ledoux models with fcpm = 0.035 the envelope to core ratio is too
small to produce a proper ICZ that never overlaps with the hydrogen
shell (Fig. 5). In these models, Ly in Fig. 6 constantly drops, very
similar to the Ledoux models with no CBM. The first point crucially
impacts the Ledoux models, because it efficiently removes the -
gradient at the convective boundary, which prevents the ICZ from
moving inward. Consequently, the ICZ moves downwards in mass
coordinates and eventually* overlaps with the hydrogen burning

4The downward movement is not instantaneous because only the y-gradient
in the convective boundary layer is erased. Hence, the overlap of the ICZ
and the hydrogen shell in the Ledoux models, if any, always is delayed
compared to the Schwarzschild models (compare left and right column in
Fig. 4).
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Figure 6. The total luminosity, L (red), and the luminosity generated by
hydrogen and helium burning, Ly (purple) and Ly, (blue) respectively, as
a function of the central helium mass fraction. All the figures show 15 Mg
models with varying fcgm = 0.0, 0.01, 0.022, and 0.05 (from top to bottom).
Within one panel, all boundary criteria are shown, the Schwarzschild (solid)
and the Ledoux one, the latter with agc = 0.004 (dashdotted) and o = 0.4
(dotted).

shell (Fig. 4, right column). In the Ledoux models there always is a
short semiconvective region before the ICZ penetrates downward.
However, semiconvection is not efficient enough for the oy, values
tested in this work to erase the chemical composition gradient by
themselves because of the short time-scale of this evolutionary
phase. Moreover, when moving downwards the ICZ leaves behind
a chemical composition gradient. Therefore, the ICZ has, when it
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Figure 7. Structure evolution diagram of the 20 M, simulations showing
the ICZ as in Fig. 4. The left column presents the Schwarzschild model
and the right column the Ledoux models with agc = 0.4. The top row uses
fem = 0.004, the middle fegm = 0.022, and the bottom fegm = 0.035.

starts boosting the burning shell, a semiconvective zone at its upper
boundary (Fig. 4). These semiconvective regions, however, become
smaller as fcpm is increased and disappear for the two largest values
used. Contrary, the ICZ in the Schwarzschild models include this
region, hence, they span a wider region and are able to boost the
hydrogen shell for a longer time. This creates the difference in the
luminosity powered by hydrogen burning between the Ledoux and
Schwarzschild criterion in Fig. 6.

It should be noted, that the impact of the above-mentioned points
(ii) and (iii) affect the ICZ differently; (ii) reduces the duration
of the convective shell, whereas (iii) boosts the hydrogen burning
region more, which in turn leads to a longer duration of the ICZ.
In the Schwarzschild model (ii) leads to a decrease of the duration
of the ICZ (Figs 4-6). In the Ledoux models, on the other hand,
at low fepm (1) dominates. This leads to a boost of the ICZ due to
the ingestion of fuel into the burning shell. When increasing the
amount of CBM, the point (ii) starts to reduce the duration of the
1CZ, similar to the Schwarzschild models.

CBM does not change the initial location of the ICZ. The Ledoux
criterion always predicts the initial location above the hydrogen
shell, whereas the Schwarzschild criterion always predicts an
overlap (Fig. 4, except when the envelope to core ratio is too small to
produce a ICZ as in the models with fcgy = 0.05). This difference,
and point (ii) above, also lead to the two behaviours, overlap and no
overlap, in the 15 Mg models with fcgm = 0.035 in Fig. 5, where the
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ICZ in the Ledoux model does not overlap but in the Schwarzschild
model it does.

Davies & Dessart (2019) predict the first overlap of the ICZ and
the hydrogen burning shell in their Ledoux models around 16 M.
We show here that the lowest initial mass that shows an overlap
is dependent on the amount of mixing at the convective boundary.
Furthermore, an overall result is that the differences of the ICZ in the
15 Mg models due to the choice of the stability criterion decrease
with increasing amount of CBM, and for fcgy = 0.05 Figs 5 and 6
show very similar results.

The ICZ exhibits the same dependence on CBM in the 20 and
25 Mg models as in the 15 Mg models. There are, however, some
important differences. As discussed in Section 4, in stars with higher
initial masses (a) the luminosity is higher and (b) the convective
fingers above the convective core are more present. (a) leads to
an increased radiative temperature gradient in the region above
the hydrogen burning shell. Consequently, the ICZ spans a larger
radial distance in the models with higher initial masses (e.g. Fig. 7).
Therefore, more fuel is provided for the hydrogen burning shell
and it is boosted longer. This in turn prolongs the lifetime of the
ICZ, leading to an ICZ that can be present during nearly all of the
core helium burning lifetime (see Table 1). In general, the relative
duration of the ICZ with respect to the core helium burning duration
increases with initial mass and, in accordance to the previous
discussion, decreases with fcgm. (b) may lead to convective fingers
that exist until the appearance of the ICZ (e.g. Fig. 7, top row).
These convective layers partly remove the chemical composition
profile left behind by the receding convective hydrogen core. This
mainly influences the Ledoux models, where the ICZ overlaps much
faster (nearly at the same time as in the Schwarzschild model,
Fig. 7). Moreover, the ICZ in the Ledoux model is slightly bigger
compared to the Schwarzschild model because of the slightly higher
temperature at the location of the hydrogen shell. Therefore it can
replenish the hydrogen shell with fuel for longer and is active for
longer compared to the Schwarzschild models of the same initial
mass. Therefore the ICZ last longer in the Ledoux models than in
the Schwarzschild models with higher initial masses.

In the 20 M, with fepy = 0.022 there are no convective fingers
at the same mass coordination where the ICZ eventually appears.
Therefore, the Ledoux model behaves very similar to the 15 Mg
model. As a result, the drop in luminosities of the Ledoux model
are much earlier compared to the models with less CBM.

The 25 M Ledoux model with f= 0.01 breaks out of the general
trend by creating an ICZ which lasts longer than the core helium
burning (similar to Ritter et al. 2018, their fig. 11).

The different behaviour in depth and duration of the ICZ has an
important impact on the further evolution of the star. In summary,
the ICZ influences the strength of the hydrogen burning shell. This
shell is crucial in determining the further evolution since it supports
the contracting core underneath against the gravitational pressure
from the outer layers, which affect the way the star evolves through
this short phase and hence sets the structure for its further evolution,
e.g. the convective helium core (Section 6) or the surface evolution
(Section 7).

6 CORE HELIUM BURNING

6.1 Convective helium core

During the helium burning stage, the convective helium core
constantly grows in mass. This is because (i) the increase of the
core luminosity due to the active hydrogen burning shell which
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Figure 8. The location of the convective helium core boundary, determined
either by the Ledoux or the Schwarzschild criterion, as a function of the
central helium mass fraction. Shown are the 15 (top) and 25 Mg (bottom)
models. The boundary criterion is shown by the linestyle, where a solid line
indicates the Schwarzschild criterion and the Ledoux criterion shown with
a dash—dotted (ag. = 0.004) or a dotted line (age = 0.4). The colour scheme
is the same as in Fig. 1.

continuously synthesizes hydrogen into helium, thus, increasing the
helium core mass, (ii) the increase of opacity and mean molecular
weight due to the conversion of helium into carbon and oxygen and
(iii) the density dependence of the 3« (second order) and >C(,
¥)'190 (first order) reaction rate.

Fig. 8 presents the location of the convective helium core bound-
ary as a function of the central helium mass fraction. The boundary
shown is the convective core determined by the stability criterion
without the boundary mixing region. The size and growth of the
convective helium core depends on (i) the amount of mixing at the
convective boundary, (ii) the strength and location of the hydrogen
shell (Section 5), and (iii) on the choice of the stability criterion.
Fig. 8 clearly illustrates that the convective core is larger in the
models with more CBM for a given convective boundary criterion.
It furthermore shows that the different sizes of the convective cores
arise mainly during their initial growth. During the rest of the core
helium burning phase the cores grow at a similar rate. Interestingly,
the models applying the Ledoux criterion predict a faster initial
growth of the convective core than the corresponding Schwarzschild
models, with the exception of the models with no CBM and the
models with fcgm = 0.05. In the latter the Schwarzschild model
initially predicts a convective helium core which is very slightly
larger before the helium core in the Ledoux models overtake it
(Fig. 8). The initial size of the convective core depends strongly on
the activity of the hydrogen shell, which itself is strongly affected by
the ICZ (see Section 5). A stronger hydrogen shell supports the core
against the gravitational pull from the outer layers. Consequently,
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the helium core contracts less and the burning is slightly less
energetic, hence, because of V4 o ¢, the convective helium core
is smaller.

A larger amount of CBM increases the mixed zone above the
convective core and smooths the chemical composition gradient at
the boundary. The first point provides the central burning region
with fuel, increasing the energy generation. This results in a higher
luminosity (Lye in Fig. 6), thus a larger convective core. The second
point removes the limiting chemical composition gradient in the
Ledoux models. Consequently, the growth of the convective core
in these models is less limited than in the models with no CBM.
Additionally, the semiconvective regions above the convective core
disappear in the models with CBM because p-gradient is only non-
zero in the radiative layers. Therefore, the relative importance of
semiconvection on the evolution of the convective helium core in the
simulation with CBM is reduced. The small differences between the
Ledoux model with CBM and different semiconvective efficiency
arise from the different strength of the hydrogen burning shell
(Section 5).

After its initial growth the convective core mass continues to
increase because of the growth of the helium core mass due to
the active hydrogen shell and the increase in opacity. This nearly
constant increase is occasionally disrupted by kinks (e.g. in the
Schwarzschild model with fopy = 0.022 at X.(*He) ~ 0.87 in
Fig. 8), which are a consequence of the convective core regulating
itself to the changes of the energy generation in the hydrogen shell
or the opacity in the core.

The kinks around X.(*He) ~ 0.7 and 0.5 for the models with f =
0.01, around X (*He) ~ 0.35 for the models with f = 0.004 occur
due to vibrational up-down movements of the convective boundary.
This ingests a higher amount of fuel into the convective zone and
finally increases the zone as a consequence of the higher energy
generation. We omit the discussion here, whether these are core
breathing pulses (Castellani et al. 1985) or numerical artefacts (e.g.
Constantino et al. 2016; Farmer et al. 2016) and call these events
core breathing pulses out of convenience. The presence of the core
breathing pulses is discussed in Section 8. However, we want to
outline that the intensity of these core breathing pulses decreases,
or they even vanish, with increasing amount of CBM, e.g. fcgm >
0.022 for the 15 Mg models. The messy behaviour of the 15 Mg
Schwarzschild model with no CBM is due to a fast, nearly step-like,
increase of the convective core.

The differences in the convective core size of the 15 Mg models
with the same amount of CBM but different boundary criteria,
which are more dominant for fcgy = 0.022, arise because of the
different (i) amounts of energy generation and (ii) radial location
of the hydrogen burning shell. (i) supports the core more or less
against the gravitational pressure of the outer layers, where a higher
energy output by the burning shell leads to a smaller convective
core. (ii), on the other hand, changes the helium core mass. If the
burning shell is further out or moves outwards faster (due to a
smaller amount of fuel available), the core mass is bigger, hence a
higher helium burning luminosity (Fig. 6) and a larger convective
core. This dependency is apparent when comparing Figs 4-6 and
8. The behaviour is not linear because the interaction between the
ICZ and the hydrogen burning region is not linear (see Section 5).
Therefore, contrary to the trend of finding convergence between
the two convective stability criteria with an increasing amount
of CBM during core hydrogen burning, the different sizes of the
convective helium core between the Schwarzschild and the Ledoux
models varies more for fepy 2 0.022 (apart from the case with
no CBM).

Importance of convective uncertainties 1979

These uncertainties of the convective helium core affects the
helium and carbon-oxygen core masses, see also Table 1. This will
influence the further central evolution and affect the pre-supernovae
structure, which depends on these core masses.

In the Ledoux models with no CBM the convective core grows
to a size of about 1 My (Fig. 8, black dashed and dash—dotted
lines) before a chemical composition gradient is built up above
the convective core. The radiative temperature gradient continues
to increase and a semiconvective region develops above the core.
The semiconvection in this model is not efficient enough to fully
remove the restricting p-gradient built up by the convective core
and the convective helium core stops growing for the rest of this
burning phase. Above this core, however, several sandwiched layers
of semiconvection and convection occur, which increase in number
with time, because the semiconvective process slowly erases the
u-gradient.> In the model with fast semiconvection, the chemical
composition gradient is steadily removed by a thin semiconvective
layer just above the convective core. This, however, leads to a
wiggly convective core boundary but the core can initially grow
very similarly to the convective core in the Schwarzschild model.
The Schwarzschild model with no CBM ignores the p-gradient
and initially grows similarly to the other Schwarzschild models
with CBM. At around X.(*He) ~ 0.9 the convective core growth
plateaus before it continues to grow further at X.(*He) ~ 0.8.
This is a result of the hydrogen shell, which is boosted there in
the Schwarzschild model as a result of the interaction with the
ICZ. Consequently, the Ledoux model with fast semiconvection
predicts a bigger convective helium core at the beginning of core
helium burning. As the evolution proceeds, however, a chemical
composition gradient builds up above the core, which becomes too
strong for semiconvection to erase. This reduces the increase of the
convective core. The convective core in the Schwarzschild model on
the other hand grows further, predicting an overall larger convective
helium core than in the Ledoux models (Table 1).

The chaotic behaviour of the core boundary around X.(*He) ~ 0.1
in the Schwarzschild model with no CBM (solid red line in Fig. 8)
is due to a convective pillar that rises on top of the convective core,
much stronger than the core breathing pulses previously mentioned.
We tested this behaviour against an increased resolution but the
feature remained.

The lower panel in Fig. 8 shows the convective helium core
boundary of the various 25 Mg models. The convective helium
core grows with time as in the 15 Mg models but there are some
important differences, which are more prominent in the models
with larger fcgm. These differences, apart from the generally larger
convective helium core with increasing initial mass, are due to the
different behaviour of the ICZ.

In the 25 Mg, case, the initial growth of the convective helium
core is larger in all Ledoux models than in the Schwarzschild models
with the same amount of CBM. This is because t