
 1 Copyright © 2020 by ASME

Proceedings of the ASME 2020
International Symposium on Flexible Automation

ISFA2020
 July 5-9, 2020, Chicago, IL, USA

ISFA2020-9659

HUMAN-ROBOT COLLABORATION: A PREDICTIVE COLLISION DETECTION APPROACH
FOR OPERATION WITHIN DYNAMIC ENVIRONMENTS

Gabriel Streitmatter, Gloria Wiens1
University of Florida, Gainesville, FL

ABSTRACT

Robots and humans closely working together within
dynamic environments must be able to continuously look ahead
and identify potential collisions within their ever-changing
environment. To enable the robot to act upon such situational
awareness, its controller requires an iterative collision detection
capability that will allow for computationally efficient Proactive
Adaptive Collaboration Intelligence (PACI) to ensure safe
interactions.

In this paper, an algorithm is developed to evaluate a robot’s
trajectory, evaluate the dynamic environment that the robot
operates in, and predict collisions between the robot and
dynamic obstacles in its environment. This algorithm takes as
input the joint motion data of predefined robot execution plans
and constructs a sweep of the robot’s instantaneous poses
throughout time. The sweep models the trajectory as a point
cloud containing all locations occupied by the robot and the time
at which they will be occupied. To reduce the computational
burden, Coons patches are leveraged to approximate the robot’s
instantaneous poses. In parallel, the algorithm creates a similar
sweep to model any human(s) and other obstacles being tracked
in the operating environment. Overlaying temporal mapping of
the sweeps reveals anticipated collisions that will occur if the
robot-human do not proactively modify their motion. The
algorithm is designed to feed into a segmentation and switching
logic framework and provide real-time proactive-n-reactive
behavior for different levels of human-robot interactions, while
maintaining safety and production efficiency. To evaluate the
predictive collision detection approach, multiple test cases are
presented to quantify the computational speed and accuracy in
predicting collisions.

Keywords: Collision Detection, Swept Volume Interference,

Multiple Interference Detection, Coons Patches, Human-Robot
Interaction

1Contact author: gwiens@ufl.edu

INTRODUCTION
The state of the art of manufacturing is ever evolving

towards increased intelligent automation. Robots in particular
are of supreme interest. As customer demands tend towards
increased complexity and customization of products, the
necessity of the speed and precision of robots coupled with the
creativity and problem-solving capabilities of humans is ever
prevalent. Teams of humans and robots are uniquely capable of
meeting stringent requirements by engaging in human-robot
collaboration (HRC) and combining their talents.

This paper is part of a collaborative effort to develop robust
methodologies for operation of HRC manufacturing cells. The
approach includes data sensing and analysis to provide a robot
cognizance of its surrounding dynamic environment and an
ability to predict how the environment will evolve in the
immediate future. The information provided by this analysis is
assumed to come in the form of generalized shapes of dynamic
obstacles, along with their positions and orientations throughout
time. This, in effect, gives the robot a situational awareness that
is essential to intelligent dynamic response [1]. A Proactive
Adaptive Collaborative Intelligence (PACI) module is currently
under development to allow the robot to use this situational
awareness to react to a dynamically evolving environment.

In previous works, robot trajectories were subdivided into a
series of segments. The segments were highly customizable to
specific demands on the robot during operation. With this
approach, the robot was able to respond to obstacles according
to localized features of the segment of the trajectory under
execution rather than the generalized trajectory as a whole [2].
The authors research goal is to extend the use of this
methodology by allowing the robot to look ahead in its trajectory
with the introduction of a predictive collision detection
technique to identify at risk segments of the trajectory. This
enables the robot to look ahead and make optimal decisions
about how to complete complex tasks.

 2 Copyright © 2020 by ASME

When it comes to human safety during HRC, a collision
detection method must be able to be applied iteratively and have
a near real-time ability to identify collisions. Furthermore, such
a method should be able to look far ahead in the robot’s trajectory
to identify future collisions with enough time for the robot to
plan the most optimal response to avoid identified collisions. For
this reason, the method proposed in this paper focuses on
identifying potential collisions throughout the entire trajectory of
the robot with a goal of minimizing computational time.

1. RELATED WORK

One of the simplest and fastest ways of performing a
predictive collision detection is to employ “Multiple Interference
Detection”. This is done by selecting a representative set of
configurations (poses) throughout the robot’s trajectory at which
to check for interference. While this method is generally much
faster than most other methods, it runs the risk of missing a
collision due to an insufficient number of interference checks [3].
There are various techniques to help determine how often a
trajectory should be checked for collision. One technique is to
use the velocities of the obstacles and the distance between them
to predict the earliest possible time at which a collision could
happen. This prediction can be used to determine when to check
for interference next [4].

One of the most common methods is to investigate “Swept
Volume Interference”. In this method, a volume is generated by
sweeping an object along a trajectory and including in the
volume all points occupied by the object at any given time. This
can be done for multiple objects. If the volumes generated by any
objects intersect and the times at which the objects pass through
the intersection points in the volumes match, then a collision has
been identified [3]. While this solution is attractive in that it
doesn’t suffer from the higher probability of missing collisions
due to insufficient sampling that plagues “Multiple Interference
Detection”, it is computationally expensive and thus difficult to
implement in real time or even near real time. For complex
objects or sweeps that employ small step sizes, floating point
error can prove to be inhibitive for even dedicated processors, let
alone processors that are also controlling a robot [5]. For the
purposes of predictive collision detection in dynamic
environments in which the validity of a robot trajectory must be
re-evaluated every time the environment changes, faster
algorithms are required.

Attempts have been made to improve the computational
efficiency of Swept Volume Interference. One proposed approach
to reducing the computational cost of sweeping the volume is to
work strictly with objects modeled as complex polyhedra. Since
collision detection is much more efficient with convex
polyhedra, algorithms have been developed to decompose
concave meshes into a number of convex volumes. The convex
volumes can then be used to generate a swept volume to use in a
collision detection algorithm with a lower computational cost
than if the concave volume were used [6]. This approach is
utilized in [7] to represent a robot’s swept volume during a
trajectory so that collisions can be detected at a low
computational expense.

Another approach compares sets of points that are contained
within the respective swept volumes of multiple objects to
identify collisions. A common method of constructing this set is
to employ Point Membership Classification (PMC) which
identifies weather a point falls within an object’s boundary, on
its boundary, or exterior to its boundary [8]. The points selected
to represent each volume are minimized by only evaluating the
boundary of the object and by decreasing the density of the
points. This approach capitalizes on the tradeoff between
computational efficiency, which can be maximized by
minimizing the point density, and quality of the collision
detection, which increases with the point density [9].

2. METHODS

The goal of this paper is to develop an algorithm that could
look ahead at a robot’s trajectory and predict potential collisions
with dynamic objects. The proposed method seeks to combine
the computational efficiency of “Multiple Interference
Detection” with the guarantee of identifying all collisions
offered by “Swept Volume Interference” methods. In other
words, the algorithm provides continuous collision detection at
a low computational cost. Without loss of generality, a serial
manipulator with all revolute joints will be assumed whenever
reference to a robot is made. For this paper, collision with a
single, dynamic obstacle is used to evaluate and demonstrate the
approach. However, it is a simple extension to add more dynamic
and kinematically connected obstacles to the environment and
check for collision.

2.1 Overview of the Approach

The proposed method is to represent the trajectory of the
robot throughout time as an articulated swept surface. The
algorithm developed only requires a few samples of the robot’s
position throughout time. These samples are connected
sequentially with a series of Coons patches to form a continuous
swept surface. Finally, the surface is offset in the two normal
directions to approximate the robot’s volume. This drastically
reduces computation time with respect to a swept volume
approach. Furthermore, the swept surface remedies the issue of
missing collisions due to an insufficient frequency of sampling
iterations. It allows a discrete approach to reduce the number of
samples required to adequately check for collision by
interpolating between the collision checks with Coons patches.
This algorithm can be used to search the entire trajectory to
identify all potential collisions in the robot’s path, in online and
real-time implementations.

In the formulation of this approach, it is assumed that a
predefined joint trajectory, consisting of values for the robot’s
joint angles at a series of instances in time is given. The obstacle
is also specified with kinematic information about its position,
size, and orientation throughout time; determined from the
manufacturing cell’s sensor suite prediction algorithm [1].

To construct the swept surface of the robot, the approach is
as follows. The joint and link locations at poses of the robot
throughout its trajectory are determined with forward kinematics
and are used to define boundary curves of discrete Coons patches

 3 Copyright © 2020 by ASME

[10]. The discrete Coons patches describe the swept surface of
the robot in the form of a point cloud containing discrete
positions that are occupied by the robot and the time at which
they are occupied. This is explained in greater detail in next
section.

To construct the swept surface of the obstacle, the obstacle
is iterated along its trajectory at discrete time steps. To account
for uncertainty in the obstacle’s predicted trajectory, the obstacle
is superficially enlarged as time progresses. This creates a cone
like point cloud describing discrete positions that are occupied
and the time at which they are occupied. This concept is
explained in greater detail in Section: Generation of the Obstacle
Surface.

Once both surfaces, stored in the form of point clouds, have
been developed, only one interference check is necessary. If the
spatial and temporal data for both surfaces intersect, then a
collision has been identified. Thus, the overall approach involves
three general steps: generation of the robot’s swept surface,
generation of the obstacle’s point cloud, and a collision check
between the two. Discussion on how the final collision check is
performed is presented in Section: Collision Check Between the
Surfaces. In Section: Evaluation, a representative test cases that
demonstrate and validate the approach are presented.

2.2 Generation of the Robot’s Swept Surface
Two steps are required to generate the robot’s swept surface.

First, forward kinematics are used to determine the location of
each joint at a few selected sets of joint angles throughout the
entire robot’s trajectory. Second, these points are used to develop
boundary curves for the surface to be generated. The boundary
curves are used to define discrete Coons patches, which yield the
desired surface in the form of a point cloud.

To complete the forward kinematics, a coordinate system is
established at each joint with the joint as its origin and the Z axis
aligned with the axis of rotation. The origin of a fixed coordinate
system is selected to be located at the base of the first link of the
manipulator arm. The origin of the coordinate system attached to
a joint, 𝑃!, as seen from the coordinate system of the previous
joint can be fully described by the pre-multiplication of a
translation matrix and a rotation matrix to account for the
rotation about the previous joint’s axis of rotation. The
formulation of the matrices in this paper utilize the Denavit-
Hartenberg notation, specifically applied to the robot as done in
[11]. These matrices for each joint and link pair are used to
describe the location of the origin of each joint’s coordinate
system as seen from the previous joint’s coordinate system.

It is important to note that since the link geometries are
assumed to be constant, the translation matrices are constant. If
cylindric or prismatic joints were present in the robot, the
translation matrices would not be constant. Also, the links are
assumed to be straight and aligned. If this were not the case, a
simple extension would be to treat bends in the link as joints that
don’t rotate. While both of these assumptions can be addressed
with simple extensions, for the robot of interest in this paper, this
is not necessary. By multiplying together translation and rotation

matrices for the current joint and all preceding joints, each joint
location can be transformed from its position with respect to its
coordinate system to its position in the fixed coordinate system.

A general formula for the determination of the joint
locations with translation and rotation matrices is shown in Eq.
(1), where 	𝑇!!"# represents the location of coordinate system i+1
as seen from coordinate system i, 𝑅! represents the rotation about
the joint axis associated with the joint in coordinate system i, 𝑃$%
represents the position of the joint of interest associated with
coordinate system n as seen in the fixed coordinate system, and
𝑃% represents the location of the coordinate system of the origin
of the joint of interest n as seen in its own relative coordinate
system. In Eq. (1), the location of the nth joint as seen in the nth
coordinate system is transformed to the fixed coordinate system.

𝑃$% = 	𝑇$#	𝑅# &'	𝑇!!"#
%&#

!'#

𝑅!"#(𝑃% (1)

Each joint location as seen in a fixed coordinate system is

now described as a function of the rotation angles supplied to the
rotation matrices. Figure 1 depicts the identified joint locations
at six different sets of joint angles along with a visualization of
the actual robot in those configurations.

FIGURE 1: LOCATION OF THE JOINTS DETERMINED WITH
FORWARD KINEMATICS

Now, the joint locations can be used to define boundary
curves to serve as the edges of the swept surface. The total
surface is subdivided into a series of smaller surfaces which
represent the area through which each link of the robot travels
from one instance in time to the next. Four boundary curves
enclose each of the subdivided surfaces. The definition of these
curves can be seen for one of the surfaces (Figure 2).

Let 𝑃!,) be the location of the joint attached to one end of a
link of the robot at time t, and 𝑃!,)"# be the location of the same
joint at a future time. Similarly, let 𝑃!"#,) be the location of the
joint attached to the other end of a the same link of the robot at
time t, and 𝑃!"#,)"# be the location of the same joint at a future
time. The first boundary curve follows a line traced from 𝑃!"#,)
to 𝑃!"#,)"#. The second boundary curve travels along the link at
the second instance in time from 𝑃!"#,)"# to 𝑃!,)"#. The third

 4 Copyright © 2020 by ASME

boundary curve follows a line traced from 𝑃!,)"# to 𝑃!,). The
fourth boundary curve travels along the link at the first instance
in time from 𝑃!,) to 𝑃!"#,).

FIGURE 2: DEFINITIONS OF THE BOUNDARY CURVES FOR
EACH SECTION OF THE ROBOT’S TRAJECTORY

A discrete Coons patch algorithm [10] is now implemented
to define locations of intermediate points within the boundary
curves. A patch is made for each dimension, X, Y, and Z. A time
dimension patch is also created in which curves two and four are
characterized by their known times, respectively, and curves one
and three are defined as linear interpolations between the time at
the first configuration and the time at the second. The four
boundary curves for each patch can be described in an m x n x 4
matrix, where the four m x n layers represent each dimension (X,
Y, Z) and time, respectively. In the matrix configuration for one
m x n layer shown below in Eq. (2), 𝒃*,* to 𝒃*,% defines curve
one, 𝒃*,% to 𝒃+,% defines curve two, 𝒃+,% to 𝒃+,* defines curve
three, and 𝒃+,* to 𝒃*,* defines curve four.

[𝒃] = %

𝒃0,0 ⋯ 𝒃0,𝑛
⋮ ⋱ ⋮

𝒃𝑚,0 ⋯ 𝒃𝑚,𝑛
) (2)

The points that lie at each set of indices i and j in 𝒃!,/, where

i and j range from 1 to m-1 and 1 to n-1 respectively, are
calculated in the discrete equation of a Coons patch Eq. (3). The
values for m and n can be selected to tune the resolution of the
Coons patch. They define what will be referred to in this paper
as the mesh. Influences of the mesh size on computational
efficiency are explored in more depth in the evaluation section
of this paper.

Applying Eq. (3) to every discretized point within the
boundary curves defines a tightly packed point cloud
representing X, Y, and Z positional data and time data for one
link as it moves from one orientation to the next (Figure 3 – Left).
Each link at each joint configuration can be stepped through.
Patches connecting each robot configuration (pose) can be
generated by Eq. (3), defining the spatial and temporal data of
the robot as it sweeps through the trajectory (Figure 3 – Right)
[10].

 𝒃𝒊,𝒋 = *1 − 𝑖 𝑚/ 0𝒃𝟎,𝒋 + 𝑖 𝑚/ 𝒃𝒎,𝒋

	+ 21 − 𝑗 𝑛/ 5𝒃𝒊,𝟎 +
𝑗
𝑛/ 𝒃𝒊,𝒏 		

− 61 − 𝑖 𝑚/ 𝑖 𝑚/ 7 8
𝒃𝟎,𝟎 𝒃𝟎,𝒏
𝒃𝒎,𝟎 𝒃𝒎,𝒏

9 &
1 − 𝑗 𝑛/
𝑗
𝑛/

(

(3)

FIGURE 3: APPLICATION OF COONS PATCH TO DEFINE
SURFACE SWEEP

This surface represents the area occupied by the centerline
of the robot as it moves. To account for the thickness of the robot
as it sweeps through its trajectory, the surface must be offset in
both normal directions to bound the swept volume of the robot
between two surfaces. The direction of the offset is determined
by the normal vector of each Coons patch used. In each plane,
three points are selected to define a unit normal vector: the center
point of the patch, 𝑏#, and two corner points on the patch, 𝑏5, and
𝑏6. With these three points, the unit normal vector, 𝑛;, is
calculated Eq. (4). This is done for each surface that makes up
the total swept surface.

 𝑛; = |(𝑏# − 𝑏5) 	×	(𝑏# − 𝑏6)| (4)

The normal vector is then scaled to create a vector with a
magnitude equal to half the width of the robot arm. The X, Y, and
Z components of the scaled 𝑛; vector are added to or subtracted
from the X, Y, and Z position of each point within the patch to
create each respective bounding surfaces. The two bounding
surfaces allow the collision detection to take place at the
approximated surface of the robot rather than at the centerline of
the robot (Figure 4).

2.3 Generation of the Obstacle Surface
Once the robot trajectory has been described as a discrete

surface in the form of a point cloud with temporal data, a similar
methodology for obstacles is utilized to model the obstacle
location over time in a computationally efficient way that can be
compared with the swept surface.
 The position, size, and orientation of the obstacle throughout
its trajectory are assumed to be defined by the shape dimensions,
the position of the centroid throughout time, and the angle by
which the object is rotated about the trajectory. From the
positional information, a velocity vector, v, can be approximated

 5 Copyright © 2020 by ASME

in the X, Y, and Z direction by dividing the change in distance by
the change in time between two positions. Similarly, an
acceleration vector, a, can be approximated between each
velocity vector. This kinematic information is used to derive an
intrinsic coordinate system composed of a tangential (Eq. (5)), a
normal (Eq. (6)) and a binormal unit vector (Eq. (7)) along the
obstacle trajectory.

FIGURE 4: GENERATION OF OFFSET SURFACES TO
ACCOUNT FOR ROBOT’S VOLUMETRIC SIZE

	𝑒)A =
[𝑣7				𝑣8				𝑣9]

E𝑣75 + 𝑣85 + 𝑣95

(5)

𝑒%F =

6𝑎7				𝑎8				𝑎97
E𝑎75 + 𝑎85 + 𝑎95

(6)

 𝑒:F = 𝑒)A × 𝑒%F (7)

In the intrinsic coordinate system, the obstacle, modeled as
an ellipse, with a specified width and height, is generated with
discrete points at the ellipse’s perimeter. By using an intrinsic
coordinate system, the pitch, 𝜃, and the yaw, Ψ, are specified by
the supplied predicted obstacle trajectory. The roll of angle f,
assumed to be supplied with the input data, is accounted for by
multiplying the ellipse in the intrinsic coordinate system by a
rotation matrix, R, to rotate it about the tangential axis, Eq. (8).

 𝑅 = J

cos	(f) −sin	(f) 0 	0
sin	(f) cos	(f) 0 	0
0 0 1 	0
0 0 0 1

Q (8)

To account for uncertainty in the prediction of the object’s

location, the dimensions of the ellipse are set to increase
proportionally with time. The rational is that the further out the
prediction is made, the greater the uncertainty in the prediction.
This results in a cone like shape for the swept ellipse. A scaling
factor relating the time to the dimensions of the ellipse can be
tuned to adjust the safety threshold of the robot.

Finally, after the ellipse has been generated in the intrinsic
coordinate system, it is transformed to a fixed coordinate system
via the intrinsic to fixed transformation matrix,	𝑇$;, formulated
by aligning the intrinsic coordinate system, 𝑒)A , 𝑒%F, and 𝑒:F with
the fixed coordinate system and translating the origin of the
intrinsic coordinate system to the specified location of the
obstacle as seen in the fixed coordinate system 𝑥!, 𝑦!, and 𝑧!.
This fixed transformation matrix takes the form of Eq. (9).

𝑇$; = J

𝑒%7F 𝑒:7F 𝑒)7F 	𝑥!
𝑒%8F 𝑒:8F 𝑒)8F 	𝑦!
𝑒%9F 𝑒:9F 𝑒)9F 	𝑧!
0 0 0 1

Q (9)

Figure 5 shows a side view and a front view of a sample of

an obstacle’s swept volume, in which temporal data is displayed
in the form of the plotted color.

FIGURE 5: SWEPT VOLUME ALONG THE OBSTACLE’S
TRAJECTORY WITH TIME DISPLAYED AS COLOR

2.4 Collision Check Between the Surfaces
Now that both the robot and the obstacle(s) have been

described in the form of separate point clouds, each containing
positional and temporal data, potential collisions can be detected.
In order to compare the point clouds, they must be resolved to a
standard 3D spatial grid. Similarly, a standard discretized time
array is adopted.

Once a desired grid spacing and time step is selected, the
value of each point in the point clouds is set to equal the nearest
spatial grid coordinate (X, Y, Z) and standard time value. The
robot’s point cloud is then compared with the obstacle(s) point
cloud(s), determining all common points where the positional
(X, Y, Z) and time data are equal; each representing a collision.
In Figure 6, the point clouds are plotted against each other. The
color signifies the time at which these points are occupied.

FIGURE 6: OVERLAID POINT CLOUDS: TIME AT WHICH A
LOCATION IS OCCUPIED IS DISPLAYED AS COLOR (CASE A)

 6 Copyright © 2020 by ASME

After comparing the standardized data, the collisions
between the point clouds are identified and plotted against the
swept surface (Figure 7). The red indicates a predicted collision
location between the robot and the obstacle(s).

FIGURE 7: TEST CASE A: DETECTED COLLISION OF THE
ROBOT AND THE OBSTACLE (DENOTED IN RED)

3. EVALUATION
Multiple test cases were developed to evaluate the speed and

effectiveness of the algorithm. These test cases were
implemented on an Intel® Core™ i7-7500 CPU processor.

Test Case A is shown in Figures 6 and 7. In this case, a
collision was identified (shown in Figure 7 as red points). For the
test shown, six poses of the robot throughout its trajectory were
used to construct the sweep. In further evaluation, the term
“resolution” is used to refer to the number of poses used to
construct the sweep. Test Cases B and C are shown in Figure 8
and Figure 9, respectively. Test Case B demonstrates the
situation in which the plot of the two swept volumes intersect;
but the times at which each body is at the intersection are not the
same. Therefore, there is no collision between the robot and
obstacle. In Test Case C, a collision is identified, in that, both
point clouds share the same temporal data value at their spatial
intersection location.

3.1 Run time data for the Collision Detection Algorithm
The computational efficiency of the algorithm was

evaluated at various resolutions of the sweep. At each resolution
(number of robot poses used to generate the sweep), the
algorithm was run ten times. The tests were timed, and their
average times reported in Table I. The effectiveness of the
algorithm in accurately predicting whether or not a collision will
occur was determined by tracking the reported collisions at each
resolution. It is assumed that higher resolution tests yield better
predictions than lower resolution tests. Thus, as the resolution
increases, it is expected that the algorithm will converge on a
prediction. Table I reports for each test case at various resolutions
whether or not a collision is identified with either a “yes” or a
“no”. Since all tests converged on a solution, the effectiveness

of the algorithm is characterized by the lowest resolution at
which the prediction converges (highlighted in Table I).

Plotting the run time versus the resolution for each test case
reveals that the relation between the resolution and the run time
is exponential (Figure 10). Starting at a resolution of around 40,
the computational time begins to rapidly grow. Thus, for this
implementation of the algorithm, the resolution must be carefully
selected. As seen in Table I, the algorithm was able to
successfully predict collisions at resolutions far below the
resolution range at which the computational efficiency is
dramatically affected.

FIGURE 8: TEST CASE B: SPATIAL INTERSECTION OF
SWEPT VOLUMES; BUT NOT IN TIME – NO COLLISION

FIGURE 9: TEST CASE C: SPATIAL INTERSECTION OF
BOTH SWEPT VOLUMES OCCUR AT SAME TIME –
COLLISION

Greater computational efficiency can also be achieved by
optimizing the mesh size of the Coons patches. The tests carried
out previously were redone with a coarser mesh for the Coons
patches. Rather than a (16x16) mesh, an (8x8) mesh was used in
each patch. The modeled surfaces for the sweep with the (16x16)
mesh and the (8x8) mesh are shown in Figure 11. An important

 7 Copyright © 2020 by ASME

result was obtained with this mesh. With a coarser Coons patch
mesh, the algorithm identified the collisions with the same
accuracy as the finer mesh results in Table I, but at a much lower
computational cost. This indicates that the mesh size should be
selected in order to accurately model contours and finer detail,
not simply to increase point density. Results from these tests can
be seen in Table II and in Figure 10. The “Collision Detected”
field was omitted as the data for Table II in this field exactly
matched that of Table I. Since the algorithm was still able to
demonstrate the same collision detection capabilities with a
reduced Coons patch mesh, results in Table II are an indication
of the computational efficiency at which this algorithm can
detect collisions.

TABLE I 
RUN TIME AND COLLISION DETECTION TEST RESULTS (MESH (16X16))

 Test Case A Test Case B Test Case C

Resolution Run Time (seconds)
Collision
Detected

Run Time
(seconds)

Collision
Detected

Run Time
(seconds)

Collision
Detected

5 0.1297 yes 0.1266 yes* 0.1328 no**
10 0.1750 yes 0.1969 yes* 0.1813 yes
15 0.2313 yes 0.2297 no 0.2922 yes
20 0.3250 yes 0.3203 no 0.3234 yes
25 0.3719 yes 0.3344 no 0.3438 yes
30 0.4906 yes 0.4938 no 0.4625 yes
35 0.6234 yes 0.5734 no 0.5938 yes
40 0.7500 yes 0.7031 no 0.6328 yes
45 0.7891 yes 0.8078 no 0.7984 yes
50 0.9734 yes 1.0047 no 0.9766 yes
60 1.4063 yes 1.4500 no 1.4984 yes
70 1.9219 yes 2.0938 no 1.9703 yes
80 2.8344 yes 2.6953 no 2.7203 yes
90 3.7781 yes 3.8141 no 3.7781 yes
100 6.5359 yes 6.0875 no 6.0750 yes

* False positive, algorithm falsely identifies a collision
** Missed collision, algorithm fails to identify a collision

Since the coarser mesh had the same collision detection
ability as the finer mesh, and since the results in Table I suggest
that a resolution as low as 15 was able to accurately predict
collision, much longer trajectories than those tested in this paper
can be expected to be evaluated with only a proportional increase
in computational time. This provides the robot with a greater
ability to look ahead and respond to collisions that may occur.

The algorithm is designed to be run each time the robot
creates a new plan. Once the algorithm has run once, the sweep
of the robot along this trajectory can be used to re-evaluate
collision with dynamic obstacles each time the environment is
updated. This algorithm can serve as an auxiliary function to the
main robot controller acting as a “watchdog” to predict
collisions.

From the data collected on whether or not a collision was
detected, the consequences of too coarse of a resolution are
manifested. At low resolutions, Test Cases B and C both made
an incorrect prediction as to whether or not there was a collision.
Test Case A did not seem to have this problem. One explanation
is that since the discrete Coons patches are essentially linear
interpolations between the selected robot poses, greater

resolution is required to avoid cutting off large sections of the
curvature when the surface displays a high degree of curvature.
To emphasize this point, note the geometric difference between
Test Case C at a resolution of thirty (Figure 12 – Left), and ten
(Figure 12 – Right). While both tests were able to predict
collision, it is obvious that the curved nature of the surface
caused the approximation to miss vital sections of the trajectory.

FIGURE 10: RUN TIME IN SECONDS VERSUS THE NUMBER
OF ROBOT CONFIGURATIONS USED TO DEVELOP THE
SWEEP FOR COONS PATCH MESH SIZES (8X8) AND (16X16)

FIGURE 11: SURFACE CONSTRUCTED WITH TWO MESH
SIZES

TABLE II 
TEST RESULTS FOR COARSE COONS PATCH MESH (8X8)
Step Size Test Case A

(seconds)
Test Case B
(seconds)

Test Case C
(seconds)

5 0.0922 0.0938 0.1094
10 0.0969 0.1000 0.1016
15 0.1469 0.1203 0.1422
20 0.1672 0.1891 0.1437
25 0.1344 0.1328 0.1359
30 0.1484 0.1547 0.1516
35 0.1891 0.1688 0.1594
40 0.1797 0.1781 0.2203
45 0.1922 0.1969 0.2031
50 0.2641 0.2594 0.2844
60 0.2687 0.2734 0.2656
70 0.3281 0.3141 0.3344
80 0.3656 0.4078 0.3969
90 0.4922 0.4234 0.4250
100 0.4750 0.4750 0.4797

 8 Copyright © 2020 by ASME

A topic for further study will be to develop an evaluation of
the curvature of a trajectory to optimally set the required
resolution for accurate modeling. To further optimize the
algorithm settings, the Coons patch mesh can be selected to be
as course as possible without leaving spacing between points
large enough for the smallest dimension of the obstacles in the
environment to pass through. In other words, the minimum
obstacle dimension in the environment can be used as the
maximum coarseness of the Coons patch mesh. Both of these
evaluations can serve as prechecks completed before execution
of the algorithm to optimally set parameters by which the
algorithm should execute.

FIGURE 12: SENSITIVITY OF TEST CASE C TO INCREASED
COARSENESS

CONCLUSION
This paper presents an algorithm that is able to detect

collisions along lengthy robot trajectories in fractions of a
second. The fundamental idea to this approach was to combine
the strengths of “Multiple Interference Detection” and “Swept
Volume Interference” by creating a continuous sweep of the
robot motion from a limited number of sample configurations
(poses) of the robot throughout the trajectory. The continuous
surface is approximated by connecting each sample
configuration with Coons patches. Thus, the algorithm is able to
approach the collision detection robustness of a swept volume
with the computational cost of taking just a few samples.

It is important to note the limitations of the work. It is
assumed that the joints of the robot are precisely known. Error in
the actual joint position of the robot is unaccounted for directly.
It should also be noted that the compounding error of each joint
will result in the maximum positional error at the end effector.
One way to account for this error is to quantify the worst-case
scenario positional error based on all the joints and add this error
to the offsets of the surface to ensure the surface bounds the
uncertain region of the robot’s sweep.

In conclusion, the techniques implemented in this paper
yield a fast, predictive collision detection algorithm that can be
used to give the robot the power to look ahead and preemptively
respond to dynamically changing environments. This work
serves as a contribution to a work-in-progress to develop an
effective integration of perception, cognition, and prediction data
to provide real-time intelligent human-robot collaborative
control in smart factories.

ACKNOWLEDGEMENTS
Funding was provided by University of Florida’s Scholars

Program and by the NSF/NRI: INT: COLLAB: Manufacturing
USA: Intelligent Human-Robot Collaboration for Smart Factory
(Award I.D. #:1830383). Any opinions, findings and conclusions
or recommendations expressed are those of the researchers and
do not necessarily reflect the views of the National Science
Foundation.

REFERENCES
[1] Xiong, Q., Zhang, J., Wang, P., X. Gao, R., 2020,

“Transferable Two-stream Convolutional Neural Network
in Human-robot Collaboration”, 48th SME North American
Manufacturing Research Conference, NAMRC 48.

[2] Nicora, M.L., Ambrosetti, R., Wiens, G.J., and Fassi, I.,
2020, “Human-Robot Collaboration in Smart
Manufacturing: Robot Reactive Behavior Intelligence”,
ASME Manufacturing Science and Engineering
Conference, MSEC2020-8402.

[3] Jiménez, P., Thomas, F., and Torras, C., 2001, “3D
Collision Detection: A Survey”, Computers & Graphics,
25(2), pp. 1-7.

[4] Culley, R. K., and Kempf, K. G., 1986, “A Collision
Detection Algorithm based on Velocity and Distance
bounds”, IEEE Int. Conf. on Robotics and Automation, San
Francisco, CA, Vol. 2, pp. 1064-1066.

[5] Abrams, S. and Allen, P. K., 2000, “Computing Swept
Volumes”, Journal of Visualization and Computer
Animation, 11(2), pp. 69-82.

[6] Mamou, K. and Ghorbel, F., 2009, “A Simple and Efficient
Approach for 3D Mesh Approximate Convex
Decomposition”, IEEE International Conference on Image
Processing, ICIP V9, pp. 3501–3504.

[7] Gaschler, A., Petrick, R. P. A., Kroger, T., Knoll, A., and
Khatib, O., 2013, “Robot Task and Motion Planning With
Sets of Convex Polyhedra”, RSS Workshop on Combined
Robot Motion Planning and AI Planning for Practical
Applications, pp. 1-5.

[8] Erdim, H. Ilieş, and H. T., 2008 “Classifying Points for
Sweeping Solids”, Computer-Aided Design, 40(9), pp.
987–998.

[9] Ilies, H. T., 2009, “Continuous Collision and Interference
Detection For 3D Geometric Models”, J. Comput. Inf. Sci.
Eng., 9(2) pp. 1-7.

[10] Farin, G. and Hansford, D., 1999, “Discrete Coons
Patches”, Comput. Aided. Gerom. Design, 16, pp. 691-700.

[11] Crane, C. III, Duffy, J., 1998, Kinematic Analysis of Robot
Manipulators, Cambridge University Press, New York, NY,
Chapter 4, pp. 39-43.

