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ABSTRACT 

Robots and humans closely working together within 
dynamic environments must be able to continuously look ahead 
and identify potential collisions within their ever-changing 
environment. To enable the robot to act upon such situational 
awareness, its controller requires an iterative collision detection 
capability that will allow for computationally efficient Proactive 
Adaptive Collaboration Intelligence (PACI) to ensure safe 
interactions. 

In this paper, an algorithm is developed to evaluate a robot’s 
trajectory, evaluate the dynamic environment that the robot 
operates in, and predict collisions between the robot and 
dynamic obstacles in its environment. This algorithm takes as 
input the joint motion data of predefined robot execution plans 
and constructs a sweep of the robot’s instantaneous poses 
throughout time. The sweep models the trajectory as a point 
cloud containing all locations occupied by the robot and the time 
at which they will be occupied. To reduce the computational 
burden, Coons patches are leveraged to approximate the robot’s 
instantaneous poses. In parallel, the algorithm creates a similar 
sweep to model any human(s) and other obstacles being tracked 
in the operating environment. Overlaying temporal mapping of 
the sweeps reveals anticipated collisions that will occur if the 
robot-human do not proactively modify their motion. The 
algorithm is designed to feed into a segmentation and switching 
logic framework and provide real-time proactive-n-reactive 
behavior for different levels of human-robot interactions, while 
maintaining safety and production efficiency.  To evaluate the 
predictive collision detection approach, multiple test cases are 
presented to quantify the computational speed and accuracy in 
predicting collisions.  
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INTRODUCTION 
The state of the art of manufacturing is ever evolving 

towards increased intelligent automation. Robots in particular 
are of supreme interest. As customer demands tend towards 
increased complexity and customization of products, the 
necessity of the speed and precision of robots coupled with the 
creativity and problem-solving capabilities of humans is ever 
prevalent. Teams of humans and robots are uniquely capable of 
meeting stringent requirements by engaging in human-robot 
collaboration (HRC) and combining their talents.  

This paper is part of a collaborative effort to develop robust 
methodologies for operation of HRC manufacturing cells. The 
approach includes data sensing and analysis to provide a robot 
cognizance of its surrounding dynamic environment and an 
ability to predict how the environment will evolve in the 
immediate future. The information provided by this analysis is 
assumed to come in the form of generalized shapes of dynamic 
obstacles, along with their positions and orientations throughout 
time. This, in effect, gives the robot a situational awareness that 
is essential to intelligent dynamic response [1]. A Proactive 
Adaptive Collaborative Intelligence (PACI) module is currently 
under development to allow the robot to use this situational 
awareness to react to a dynamically evolving environment.  

In previous works, robot trajectories were subdivided into a 
series of segments. The segments were highly customizable to 
specific demands on the robot during operation. With this 
approach, the robot was able to respond to obstacles according 
to localized features of the segment of the trajectory under 
execution rather than the generalized trajectory as a whole [2]. 
The authors research goal is to extend the use of this 
methodology by allowing the robot to look ahead in its trajectory 
with the introduction of a predictive collision detection 
technique to identify at risk segments of the trajectory. This 
enables the robot to look ahead and make optimal decisions 
about how to complete complex tasks.  
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When it comes to human safety during HRC, a collision 
detection method must be able to be applied iteratively and have 
a near real-time ability to identify collisions. Furthermore, such 
a method should be able to look far ahead in the robot’s trajectory 
to identify future collisions with enough time for the robot to 
plan the most optimal response to avoid identified collisions. For 
this reason, the method proposed in this paper focuses on 
identifying potential collisions throughout the entire trajectory of 
the robot with a goal of minimizing computational time. 
 
1. RELATED WORK 

One of the simplest and fastest ways of performing a 
predictive collision detection is to employ “Multiple Interference 
Detection”. This is done by selecting a representative set of 
configurations (poses) throughout the robot’s trajectory at which 
to check for interference. While this method is generally much 
faster than most other methods, it runs the risk of missing a 
collision due to an insufficient number of interference checks [3]. 
There are various techniques to help determine how often a 
trajectory should be checked for collision. One technique is to 
use the velocities of the obstacles and the distance between them 
to predict the earliest possible time at which a collision could 
happen. This prediction can be used to determine when to check 
for interference next [4].  

One of the most common methods is to investigate “Swept 
Volume Interference”. In this method, a volume is generated by 
sweeping an object along a trajectory and including in the 
volume all points occupied by the object at any given time. This 
can be done for multiple objects. If the volumes generated by any 
objects intersect and the times at which the objects pass through 
the intersection points in the volumes match, then a collision has 
been identified [3]. While this solution is attractive in that it 
doesn’t suffer from the higher probability of missing collisions 
due to insufficient sampling that plagues “Multiple Interference 
Detection”, it is computationally expensive and thus difficult to 
implement in real time or even near real time. For complex 
objects or sweeps that employ small step sizes, floating point 
error can prove to be inhibitive for even dedicated processors, let 
alone processors that are also controlling a robot [5]. For the 
purposes of predictive collision detection in dynamic 
environments in which the validity of a robot trajectory must be 
re-evaluated every time the environment changes, faster 
algorithms are required.  

Attempts have been made to improve the computational 
efficiency of Swept Volume Interference. One proposed approach 
to reducing the computational cost of sweeping the volume is to 
work strictly with objects modeled as complex polyhedra. Since 
collision detection is much more efficient with convex 
polyhedra, algorithms have been developed to decompose 
concave meshes into a number of convex volumes. The convex 
volumes can then be used to generate a swept volume to use in a 
collision detection algorithm with a lower computational cost 
than if the concave volume were used [6]. This approach is 
utilized in [7] to represent a robot’s swept volume during a 
trajectory so that collisions can be detected at a low 
computational expense. 

Another approach compares sets of points that are contained 
within the respective swept volumes of multiple objects to 
identify collisions. A common method of constructing this set is 
to employ Point Membership Classification (PMC) which 
identifies weather a point falls within an object’s boundary, on 
its boundary, or exterior to its boundary [8]. The points selected 
to represent each volume are minimized by only evaluating the 
boundary of the object and by decreasing the density of the 
points. This approach capitalizes on the tradeoff between 
computational efficiency, which can be maximized by 
minimizing the point density, and quality of the collision 
detection, which increases with the point density [9]. 

 
2. METHODS 

The goal of this paper is to develop an algorithm that could 
look ahead at a robot’s trajectory and predict potential collisions 
with dynamic objects. The proposed method seeks to combine 
the computational efficiency of “Multiple Interference 
Detection” with the guarantee of identifying all collisions 
offered by “Swept Volume Interference” methods. In other 
words, the algorithm provides continuous collision detection at 
a low computational cost. Without loss of generality, a serial 
manipulator with all revolute joints will be assumed whenever 
reference to a robot is made. For this paper, collision with a 
single, dynamic obstacle is used to evaluate and demonstrate the 
approach. However, it is a simple extension to add more dynamic 
and kinematically connected obstacles to the environment and 
check for collision. 
 
2.1 Overview of the Approach 

The proposed method is to represent the trajectory of the 
robot throughout time as an articulated swept surface. The 
algorithm developed only requires a few samples of the robot’s 
position throughout time. These samples are connected 
sequentially with a series of Coons patches to form a continuous 
swept surface. Finally, the surface is offset in the two normal 
directions to approximate the robot’s volume. This drastically 
reduces computation time with respect to a swept volume 
approach. Furthermore, the swept surface remedies the issue of 
missing collisions due to an insufficient frequency of sampling 
iterations. It allows a discrete approach to reduce the number of 
samples required to adequately check for collision by 
interpolating between the collision checks with Coons patches. 
This algorithm can be used to search the entire trajectory to 
identify all potential collisions in the robot’s path, in online and 
real-time implementations. 

In the formulation of this approach, it is assumed that a 
predefined joint trajectory, consisting of values for the robot’s 
joint angles at a series of instances in time is given. The obstacle 
is also specified with kinematic information about its position, 
size, and orientation throughout time; determined from the 
manufacturing cell’s sensor suite prediction algorithm [1]. 

To construct the swept surface of the robot, the approach is 
as follows. The joint and link locations at poses of the robot 
throughout its trajectory are determined with forward kinematics 
and are used to define boundary curves of discrete Coons patches 
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[10]. The discrete Coons patches describe the swept surface of 
the robot in the form of a point cloud containing discrete 
positions that are occupied by the robot and the time at which 
they are occupied. This is explained in greater detail in next 
section. 

To construct the swept surface of the obstacle, the obstacle 
is iterated along its trajectory at discrete time steps. To account 
for uncertainty in the obstacle’s predicted trajectory, the obstacle 
is superficially enlarged as time progresses. This creates a cone 
like point cloud describing discrete positions that are occupied 
and the time at which they are occupied. This concept is 
explained in greater detail in Section: Generation of the Obstacle 
Surface.  

Once both surfaces, stored in the form of point clouds, have 
been developed, only one interference check is necessary. If the 
spatial and temporal data for both surfaces intersect, then a 
collision has been identified. Thus, the overall approach involves 
three general steps: generation of the robot’s swept surface, 
generation of the obstacle’s point cloud, and a collision check 
between the two. Discussion on how the final collision check is 
performed is presented in Section: Collision Check Between the 
Surfaces. In Section: Evaluation, a representative test cases that 
demonstrate and validate the approach are presented. 
 

2.2 Generation of the Robot’s Swept Surface 
Two steps are required to generate the robot’s swept surface. 

First, forward kinematics are used to determine the location of 
each joint at a few selected sets of joint angles throughout the 
entire robot’s trajectory. Second, these points are used to develop 
boundary curves for the surface to be generated. The boundary 
curves are used to define discrete Coons patches, which yield the 
desired surface in the form of a point cloud.  

To complete the forward kinematics, a coordinate system is 
established at each joint with the joint as its origin and the Z axis 
aligned with the axis of rotation. The origin of a fixed coordinate 
system is selected to be located at the base of the first link of the 
manipulator arm. The origin of the coordinate system attached to 
a joint, 𝑃!, as seen from the coordinate system of the previous 
joint can be fully described by the pre-multiplication of a 
translation matrix and a rotation matrix to account for the 
rotation about the previous joint’s axis of rotation. The 
formulation of the matrices in this paper utilize the Denavit-
Hartenberg notation, specifically applied to the robot as done in 
[11]. These matrices for each joint and link pair are used to 
describe the location of the origin of each joint’s coordinate 
system as seen from the previous joint’s coordinate system.  

It is important to note that since the link geometries are 
assumed to be constant, the translation matrices are constant. If 
cylindric or prismatic joints were present in the robot, the 
translation matrices would not be constant. Also, the links are 
assumed to be straight and aligned. If this were not the case, a 
simple extension would be to treat bends in the link as joints that 
don’t rotate. While both of these assumptions can be addressed 
with simple extensions, for the robot of interest in this paper, this 
is not necessary. By multiplying together translation and rotation 

matrices for the current joint and all preceding joints, each joint 
location can be transformed from its position with respect to its 
coordinate system to its position in the fixed coordinate system.  

A general formula for the determination of the joint 
locations with translation and rotation matrices is shown in Eq. 
(1), where 	𝑇!!"# represents the location of coordinate system i+1 
as seen from coordinate system i, 𝑅! represents the rotation about 
the joint axis associated with the joint in coordinate system i, 𝑃$% 
represents the position of the joint of interest associated with 
coordinate system n as seen in the fixed coordinate system, and 
𝑃% represents the location of the coordinate system of the origin 
of the joint of interest n as seen in its own relative coordinate 
system. In Eq. (1), the location of the nth joint as seen in the nth 
coordinate system is transformed to the fixed coordinate system. 
 
 

𝑃$% = 	𝑇$#	𝑅# &'	𝑇!!"#
%&#

!'#

𝑅!"#(	𝑃% (1) 

 
Each joint location as seen in a fixed coordinate system is 

now described as a function of the rotation angles supplied to the 
rotation matrices. Figure 1 depicts the identified joint locations 
at six different sets of joint angles along with a visualization of 
the actual robot in those configurations.  

FIGURE 1: LOCATION OF THE JOINTS DETERMINED WITH 
FORWARD KINEMATICS 
 

Now, the joint locations can be used to define boundary 
curves to serve as the edges of the swept surface. The total 
surface is subdivided into a series of smaller surfaces which 
represent the area through which each link of the robot travels 
from one instance in time to the next. Four boundary curves 
enclose each of the subdivided surfaces. The definition of these 
curves can be seen for one of the surfaces (Figure 2). 

Let 𝑃!,) be the location of the joint attached to one end of a 
link of the robot at time t, and 𝑃!,)"# be the location of the same 
joint at a future time. Similarly, let 𝑃!"#,) be the location of the 
joint attached to the other end of a the same link of the robot at 
time t, and 𝑃!"#,)"# be the location of the same joint at a future 
time. The first boundary curve follows a line traced from 𝑃!"#,) 
to 𝑃!"#,)"#. The second boundary curve travels along the link at 
the second instance in time from 𝑃!"#,)"# to 𝑃!,)"#. The third 
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boundary curve follows a line traced from 𝑃!,)"# to 𝑃!,). The 
fourth boundary curve travels along the link at the first instance 
in time from 𝑃!,) to 𝑃!"#,). 
 

 
FIGURE 2: DEFINITIONS OF THE BOUNDARY CURVES FOR 
EACH SECTION OF THE ROBOT’S TRAJECTORY 

A discrete Coons patch algorithm [10] is now implemented 
to define locations of intermediate points within the boundary 
curves. A patch is made for each dimension, X, Y, and Z. A time 
dimension patch is also created in which curves two and four are 
characterized by their known times, respectively, and curves one 
and three are defined as linear interpolations between the time at 
the first configuration and the time at the second. The four 
boundary curves for each patch can be described in an m x n x 4 
matrix, where the four m x n layers represent each dimension (X, 
Y, Z) and time, respectively. In the matrix configuration for one 
m x n layer shown below in Eq. (2), 𝒃*,* to 𝒃*,% defines curve 
one, 𝒃*,% to 𝒃+,% defines curve two, 𝒃+,% to 𝒃+,* defines curve 
three, and 𝒃+,* to 𝒃*,* defines curve four. 
 
 
 

 
[𝒃] = %

𝒃0,0 ⋯ 𝒃0,𝑛
⋮ ⋱ ⋮

𝒃𝑚,0 ⋯ 𝒃𝑚,𝑛
) (2) 

 
The points that lie at each set of indices i and j in 𝒃!,/, where 

i and j range from 1 to m-1 and 1 to n-1 respectively, are 
calculated in the discrete equation of a Coons patch Eq. (3). The 
values for m and n can be selected to tune the resolution of the 
Coons patch. They define what will be referred to in this paper 
as the mesh. Influences of the mesh size on computational 
efficiency are explored in more depth in the evaluation section 
of this paper. 

Applying Eq. (3) to every discretized point within the 
boundary curves defines a tightly packed point cloud 
representing X, Y, and Z positional data and time data for one 
link as it moves from one orientation to the next (Figure 3 – Left). 
Each link at each joint configuration can be stepped through. 
Patches connecting each robot configuration (pose) can be 
generated by Eq. (3), defining the spatial and temporal data of 
the robot as it sweeps through the trajectory (Figure 3 – Right) 
[10]. 

 𝒃𝒊,𝒋 = *1 − 𝑖 𝑚/ 0𝒃𝟎,𝒋 + 𝑖 𝑚/ 𝒃𝒎,𝒋 
 

	+ 21 − 𝑗 𝑛/ 5𝒃𝒊,𝟎 +
𝑗
𝑛/ 𝒃𝒊,𝒏 		

− 61 − 𝑖 𝑚/ 𝑖 𝑚/ 7 8
𝒃𝟎,𝟎 𝒃𝟎,𝒏
𝒃𝒎,𝟎 𝒃𝒎,𝒏

9 &
1 − 𝑗 𝑛/
𝑗
𝑛/

( 

(3) 

 

 
FIGURE 3: APPLICATION OF COONS PATCH TO DEFINE 
SURFACE SWEEP 

This surface represents the area occupied by the centerline 
of the robot as it moves. To account for the thickness of the robot 
as it sweeps through its trajectory, the surface must be offset in 
both normal directions to bound the swept volume of the robot 
between two surfaces. The direction of the offset is determined 
by the normal vector of each Coons patch used. In each plane, 
three points are selected to define a unit normal vector: the center 
point of the patch, 𝑏#, and two corner points on the patch, 𝑏5, and 
𝑏6. With these three points, the unit normal vector, 𝑛;, is 
calculated Eq. (4). This is done for each surface that makes up 
the total swept surface. 
 
 𝑛; = |(𝑏# − 𝑏5) 	×	(𝑏# − 𝑏6)| (4) 
 

The normal vector is then scaled to create a vector with a 
magnitude equal to half the width of the robot arm. The X, Y, and 
Z components of the scaled 𝑛; vector are added to or subtracted 
from the X, Y, and Z position of each point within the patch to 
create each respective bounding surfaces. The two bounding 
surfaces allow the collision detection to take place at the 
approximated surface of the robot rather than at the centerline of 
the robot (Figure 4).  
 

2.3 Generation of the Obstacle Surface 
Once the robot trajectory has been described as a discrete 

surface in the form of a point cloud with temporal data, a similar 
methodology for obstacles is utilized to model the obstacle 
location over time in a computationally efficient way that can be 
compared with the swept surface.  
    The position, size, and orientation of the obstacle throughout 
its trajectory are assumed to be defined by the shape dimensions, 
the position of the centroid throughout time, and the angle by 
which the object is rotated about the trajectory. From the 
positional information, a velocity vector, v, can be approximated 
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in the X, Y, and Z direction by dividing the change in distance by 
the change in time between two positions. Similarly, an 
acceleration vector, a, can be approximated between each 
velocity vector. This kinematic information is used to derive an 
intrinsic coordinate system composed of a tangential (Eq. (5)), a 
normal (Eq. (6)) and a binormal unit vector (Eq. (7)) along the 
obstacle trajectory. 

 
FIGURE 4: GENERATION OF OFFSET SURFACES TO 
ACCOUNT FOR ROBOT’S VOLUMETRIC SIZE 
 
 

	𝑒)A =
[𝑣7				𝑣8				𝑣9]

E𝑣75 + 𝑣85 + 𝑣95
 

 
(5) 

 
𝑒%F =

6𝑎7				𝑎8				𝑎97
E𝑎75 + 𝑎85 + 𝑎95

 

 
(6) 

 𝑒:F = 𝑒)A × 𝑒%F (7) 
   

In the intrinsic coordinate system, the obstacle, modeled as 
an ellipse, with a specified width and height, is generated with 
discrete points at the ellipse’s perimeter. By using an intrinsic 
coordinate system, the pitch, 𝜃, and the yaw, Ψ, are specified by 
the supplied predicted obstacle trajectory. The roll of angle f, 
assumed to be supplied with the input data, is accounted for by 
multiplying the ellipse in the intrinsic coordinate system by a 
rotation matrix, R, to rotate it about the tangential axis, Eq. (8).  
 

 𝑅 = J

cos	(f) −sin	(f) 0 	0
sin	(f) cos	(f) 0 	0
0 0 1 	0
0 0 0 1

Q (8) 

 
To account for uncertainty in the prediction of the object’s 

location, the dimensions of the ellipse are set to increase 
proportionally with time. The rational is that the further out the 
prediction is made, the greater the uncertainty in the prediction. 
This results in a cone like shape for the swept ellipse. A scaling 
factor relating the time to the dimensions of the ellipse can be 
tuned to adjust the safety threshold of the robot. 

Finally, after the ellipse has been generated in the intrinsic 
coordinate system, it is transformed to a fixed coordinate system 
via the intrinsic to fixed transformation matrix,	𝑇$;, formulated 
by aligning the intrinsic coordinate system, 𝑒)A , 𝑒%F, and 𝑒:F with 
the fixed coordinate system and translating the origin of the 
intrinsic coordinate system to the specified location of the 
obstacle as seen in the fixed coordinate system 𝑥!, 𝑦!, and 𝑧!.  
This fixed transformation matrix takes the form of Eq. (9).  

 

𝑇$; = J

𝑒%7F 𝑒:7F 𝑒)7F 	𝑥!
𝑒%8F 𝑒:8F 𝑒)8F 	𝑦!
𝑒%9F 𝑒:9F 𝑒)9F 	𝑧!
0 0 0 1

Q (9) 

 
Figure 5 shows a side view and a front view of a sample of 

an obstacle’s swept volume, in which temporal data is displayed 
in the form of the plotted color.   
 

 
FIGURE 5: SWEPT VOLUME ALONG THE OBSTACLE’S 
TRAJECTORY WITH TIME DISPLAYED AS COLOR 

2.4 Collision Check Between the Surfaces 
Now that both the robot and the obstacle(s) have been 

described in the form of separate point clouds, each containing 
positional and temporal data, potential collisions can be detected. 
In order to compare the point clouds, they must be resolved to a 
standard 3D spatial grid. Similarly, a standard discretized time 
array is adopted.  

Once a desired grid spacing and time step is selected, the 
value of each point in the point clouds is set to equal the nearest 
spatial grid coordinate (X, Y, Z) and standard time value. The 
robot’s point cloud is then compared with the obstacle(s) point 
cloud(s), determining all common points where the positional 
(X, Y, Z) and time data are equal; each representing a collision. 
In Figure 6, the point clouds are plotted against each other. The 
color signifies the time at which these points are occupied.  

 
FIGURE 6:  OVERLAID POINT CLOUDS: TIME AT WHICH A 
LOCATION IS OCCUPIED IS DISPLAYED AS COLOR (CASE A) 
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After comparing the standardized data, the collisions 
between the point clouds are identified and plotted against the 
swept surface (Figure 7).  The red indicates a predicted collision 
location between the robot and the obstacle(s). 
 

 
FIGURE 7:  TEST CASE A:  DETECTED COLLISION OF THE 
ROBOT AND THE OBSTACLE (DENOTED IN RED) 

3. EVALUATION 
Multiple test cases were developed to evaluate the speed and 

effectiveness of the algorithm. These test cases were 
implemented on an Intel® Core™ i7-7500 CPU processor.  

Test Case A is shown in Figures 6 and 7.  In this case, a 
collision was identified (shown in Figure 7 as red points). For the 
test shown, six poses of the robot throughout its trajectory were 
used to construct the sweep. In further evaluation, the term 
“resolution” is used to refer to the number of poses used to 
construct the sweep. Test Cases B and C are shown in Figure 8 
and Figure 9, respectively. Test Case B demonstrates the 
situation in which the plot of the two swept volumes intersect; 
but the times at which each body is at the intersection are not the 
same. Therefore, there is no collision between the robot and 
obstacle.  In Test Case C, a collision is identified, in that, both 
point clouds share the same temporal data value at their spatial 
intersection location.  
 

3.1 Run time data for the Collision Detection Algorithm 
The computational efficiency of the algorithm was 

evaluated at various resolutions of the sweep. At each resolution 
(number of robot poses used to generate the sweep), the 
algorithm was run ten times. The tests were timed, and their 
average times reported in Table I. The effectiveness of the 
algorithm in accurately predicting whether or not a collision will 
occur was determined by tracking the reported collisions at each 
resolution. It is assumed that higher resolution tests yield better 
predictions than lower resolution tests. Thus, as the resolution 
increases, it is expected that the algorithm will converge on a 
prediction. Table I reports for each test case at various resolutions 
whether or not a collision is identified with either a “yes” or a 
“no”.  Since all tests converged on a solution, the effectiveness 

of the algorithm is characterized by the lowest resolution at 
which the prediction converges (highlighted in Table I). 

Plotting the run time versus the resolution for each test case 
reveals that the relation between the resolution and the run time 
is exponential (Figure 10). Starting at a resolution of around 40, 
the computational time begins to rapidly grow. Thus, for this 
implementation of the algorithm, the resolution must be carefully 
selected. As seen in Table I, the algorithm was able to 
successfully predict collisions at resolutions far below the 
resolution range at which the computational efficiency is 
dramatically affected. 
 

 
FIGURE 8:  TEST CASE B: SPATIAL INTERSECTION OF 
SWEPT VOLUMES; BUT NOT IN TIME – NO COLLISION 

 
FIGURE 9:  TEST CASE C:  SPATIAL INTERSECTION OF 
BOTH SWEPT VOLUMES OCCUR AT SAME TIME – 
COLLISION 

Greater computational efficiency can also be achieved by 
optimizing the mesh size of the Coons patches. The tests carried 
out previously were redone with a coarser mesh for the Coons 
patches. Rather than a (16x16) mesh, an (8x8) mesh was used in 
each patch. The modeled surfaces for the sweep with the (16x16) 
mesh and the (8x8) mesh are shown in Figure 11. An important 
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result was obtained with this mesh. With a coarser Coons patch 
mesh, the algorithm identified the collisions with the same 
accuracy as the finer mesh results in Table I, but at a much lower 
computational cost. This indicates that the mesh size should be 
selected in order to accurately model contours and finer detail, 
not simply to increase point density. Results from these tests can 
be seen in Table II and in Figure 10. The “Collision Detected” 
field was omitted as the data for Table II in this field exactly 
matched that of Table I.  Since the algorithm was still able to 
demonstrate the same collision detection capabilities with a 
reduced Coons patch mesh, results in Table II are an indication 
of the computational efficiency at which this algorithm can 
detect collisions. 
 

TABLE I   
RUN TIME AND COLLISION DETECTION TEST RESULTS (MESH (16X16)) 

 Test Case A Test Case B Test Case C 

Resolution Run Time (seconds) 
Collision 
Detected 

Run Time 
(seconds) 

Collision 
Detected 

Run Time 
(seconds) 

Collision 
Detected 

5 0.1297 yes 0.1266 yes* 0.1328 no** 
10 0.1750 yes 0.1969 yes* 0.1813 yes 
15 0.2313 yes 0.2297 no 0.2922 yes 
20 0.3250 yes 0.3203 no 0.3234 yes 
25 0.3719 yes 0.3344 no 0.3438 yes 
30 0.4906 yes 0.4938 no 0.4625 yes 
35 0.6234 yes 0.5734 no 0.5938 yes 
40 0.7500 yes 0.7031 no 0.6328 yes 
45 0.7891 yes 0.8078 no 0.7984 yes 
50 0.9734 yes 1.0047 no 0.9766 yes 
60 1.4063 yes 1.4500 no 1.4984 yes 
70 1.9219 yes 2.0938 no 1.9703 yes 
80 2.8344 yes 2.6953 no 2.7203 yes 
90 3.7781 yes 3.8141 no 3.7781 yes 
100 6.5359 yes 6.0875 no 6.0750 yes 

*   False positive, algorithm falsely identifies a collision 
** Missed collision, algorithm fails to identify a collision  
 

Since the coarser mesh had the same collision detection 
ability as the finer mesh, and since the results in Table I suggest 
that a resolution as low as 15 was able to accurately predict 
collision, much longer trajectories than those tested in this paper 
can be expected to be evaluated with only a proportional increase 
in computational time. This provides the robot with a greater 
ability to look ahead and respond to collisions that may occur. 

The algorithm is designed to be run each time the robot 
creates a new plan. Once the algorithm has run once, the sweep 
of the robot along this trajectory can be used to re-evaluate 
collision with dynamic obstacles each time the environment is 
updated.  This algorithm can serve as an auxiliary function to the 
main robot controller acting as a “watchdog” to predict 
collisions. 

From the data collected on whether or not a collision was 
detected, the consequences of too coarse of a resolution are 
manifested. At low resolutions, Test Cases B and C both made 
an incorrect prediction as to whether or not there was a collision. 
Test Case A did not seem to have this problem. One explanation 
is that since the discrete Coons patches are essentially linear 
interpolations between the selected robot poses, greater 

resolution is required to avoid cutting off large sections of the 
curvature when the surface displays a high degree of curvature. 
To emphasize this point, note the geometric difference between 
Test Case C at a resolution of thirty (Figure 12 – Left), and ten 
(Figure 12 – Right). While both tests were able to predict 
collision, it is obvious that the curved nature of the surface 
caused the approximation to miss vital sections of the trajectory.  
 

 
FIGURE 10:  RUN TIME IN SECONDS VERSUS THE NUMBER 
OF ROBOT CONFIGURATIONS USED TO DEVELOP THE 
SWEEP FOR COONS PATCH MESH SIZES (8X8) AND (16X16) 

 
FIGURE 11:  SURFACE CONSTRUCTED WITH TWO MESH 
SIZES 

TABLE II   
TEST RESULTS FOR COARSE COONS PATCH MESH (8X8) 
Step Size Test Case A 

(seconds) 
Test Case B 
(seconds) 

Test Case C 
(seconds) 

5 0.0922 0.0938 0.1094 
10 0.0969 0.1000 0.1016 
15 0.1469 0.1203 0.1422 
20 0.1672 0.1891 0.1437 
25 0.1344 0.1328 0.1359 
30 0.1484 0.1547 0.1516 
35 0.1891 0.1688 0.1594 
40 0.1797 0.1781 0.2203 
45 0.1922 0.1969 0.2031 
50 0.2641 0.2594 0.2844 
60 0.2687 0.2734 0.2656 
70 0.3281 0.3141 0.3344 
80 0.3656 0.4078 0.3969 
90 0.4922 0.4234 0.4250 
100 0.4750 0.4750 0.4797 
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A topic for further study will be to develop an evaluation of 
the curvature of a trajectory to optimally set the required 
resolution for accurate modeling. To further optimize the 
algorithm settings, the Coons patch mesh can be selected to be 
as course as possible without leaving spacing between points 
large enough for the smallest dimension of the obstacles in the 
environment to pass through. In other words, the minimum 
obstacle dimension in the environment can be used as the 
maximum coarseness of the Coons patch mesh. Both of these 
evaluations can serve as prechecks completed before execution 
of the algorithm to optimally set parameters by which the 
algorithm should execute. 
 

 
FIGURE 12: SENSITIVITY OF TEST CASE C TO INCREASED 
COARSENESS 

 

CONCLUSION 
This paper presents an algorithm that is able to detect 

collisions along lengthy robot trajectories in fractions of a 
second. The fundamental idea to this approach was to combine 
the strengths of “Multiple Interference Detection” and “Swept 
Volume Interference” by creating a continuous sweep of the 
robot motion from a limited number of sample configurations 
(poses) of the robot throughout the trajectory. The continuous 
surface is approximated by connecting each sample 
configuration with Coons patches. Thus, the algorithm is able to 
approach the collision detection robustness of a swept volume 
with the computational cost of taking just a few samples. 

It is important to note the limitations of the work. It is 
assumed that the joints of the robot are precisely known. Error in 
the actual joint position of the robot is unaccounted for directly. 
It should also be noted that the compounding error of each joint 
will result in the maximum positional error at the end effector. 
One way to account for this error is to quantify the worst-case 
scenario positional error based on all the joints and add this error 
to the offsets of the surface to ensure the surface bounds the 
uncertain region of the robot’s sweep.   

In conclusion, the techniques implemented in this paper 
yield a fast, predictive collision detection algorithm that can be 
used to give the robot the power to look ahead and preemptively 
respond to dynamically changing environments. This work 
serves as a contribution to a work-in-progress to develop an 
effective integration of perception, cognition, and prediction data 
to provide real-time intelligent human-robot collaborative 
control in smart factories. 
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