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Abstract—With each heartbeat, periodic variations in arterial
blood pressure are transmitted along the vasculature, resulting
in localized deformations of the arterial wall and its surrounding
tissue. Quantification of such motions may help understand vari-
ous cerebrovascular conditions, yet it has proven technically chal-
lenging thus far. We introduce a new image processing algorithm
called amplified Flow (aFlow) which allows to study the coupled
brain-blood flow motion by combining the amplification of cine
and 4D flow MRI. By incorporating a modal analysis technique
known as dynamic mode decomposition into the algorithm, aFlow
is able to capture the characteristics of transient events present
in the brain and arterial wall deformation. Validating aFlow, we
tested it on phantom simulations mimicking arterial walls motion
and observed that aFlow displays almost twice higher SNR than
its predecessor amplified MRI (aMRI). We then applied aFlow to
4D flow and cine MRI datasets of 5 healthy subjects, finding high
correlations between blood flow velocity and tissue deformation in
selected brain regions, with correlation values r = 0.61, 0.59, 0.52
for the pons, frontal and occipital lobe (p < 0.001). Finally,
we explored the potential diagnostic applicability of aFlow by
studying intracranial aneurysm dynamics, which seems to be
indicative of rupture risk. In two patients, aFlow successfully
visualized the imperceptible aneurysm wall motion, additionally
quantifying the increase in the high frequency wall displacement
after a one-year follow-up period (20%, 76%). These preliminary
data suggest that aFlow may provide a novel imaging biomarker
for the assessment of aneurysms evolution, with important
potential diagnostic implications.

Copyright (c) 2019 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This research was partially supported by NSF Grant No. CMMI-1728186
and NIH Grant No. 1R21NS111415-01.

Javid Abderezaei, Gloria Fabris and Aymeric Pionteck are with the
Department of Mechanical Engineering, Stevens Institute of Technology,
Hoboken, NJ, 07030 USA.

John Martinez is with the Department of Biomedical Engineering,
Stevens Institute of Technology, Hoboken, NJ, 07030 USA.

Itamar Terem is with the Department of Radiology, Stanford University,
Stanford, CA, 94305 USA.

Yang Yang is with the Department of Radiology and BioMedical
Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai,
New York, NY 10029 USA.

Samantha J. Holdsworth is with the Department of Anatomy and
Medical Imaging & Centre for Brain Research, Faculty of Medical and Health
Sciences, University of Auckland, Auckland 1142 , New Zealand and also with
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I. INTRODUCTION

The human brain is not traditionally thought of as a me-
chanically active organ. Yet, due to its soft material properties
and intricate boundary conditions (which include vasculature,
cerebrospinal fluid (CSF), and dural folds [1]–[3]), it goes
through constant motion and deformation states inside the
skull. As the heart contracts and relaxes during the cardiac
cycle, the periodic blood pressure variations that travel across
the vasculature, deform the vessels along with the surrounding
tissue [4]–[7]. Recent evidence suggests that brain dynamics
and movement patterns might be altered in specific brain
pathologies [8]–[11], which is why increasing interest is
dedicated to understanding the coupled motion of the brain,
CSF and blood flow [12]. In Chiari I malformation (CM-I),
for instance, loss of proper CSF drainage into the spinal canal
has been suggested to elevate the intracranial pressure, which
in turn would alter the motion of the brain [13], [14]. Other
pathologies that are thought to affect the drainage of CSF
and alter motion include hydrocephalus and syringomyelia [9],
[15], [16].

This coupled tissue-fluid motion has been previously inves-
tigated by various computational methods [17], [18]. For in-
stance, Pahlavian et al. introduced a patient-specific, moving-
boundary computational fluid dynamics (CFD) model of the
cervical-medullary junction to study the central nervous sys-
tem (CNS) tissue motion and its impact on the CSF dynamics
[19]. Moireau et al. modeled the boundary condition between
the vessel walls and the surrounding tissue as a viscoelastic
support condition and suggested a framework to study the
effect of blood flow on artery deformation, which in turn
results in brain tissue movement [20].

Other studies evaluated these subtle motions through various
imaging tools. By exploiting the velocity-encoding capabil-
ity of phase-contrast MRI, for instance, the cardiac-induced
motions in the brain, blood, and CSF flow can be tracked
with high temporal resolution [21], [22]. Pujol et al. used
this imaging technique to analyze CSF dynamics as well as
the pulsatile motion of the brain in CM-I patients [8]. They
reported obstruction of CSF flow from the cranial cavity to
the spine in some patients as a result of abnormal motion
of the cerebellar tonsils. Displacement encoded imaging with
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stimulated echoes (DENSE) MRI is also a quantitative imaging
tool that has been used in multiple studies to track the subtle
motion of tissues [23]–[26]. This method has been shown to be
able to detect brain motions as small as 0.04 mm [27]. Other
imaging techniques such as cine balanced steady-state free
precession (bSSFP) MRI (often referred to as cine MRI) has
also been used to measure the cerebellar tonsil and hindbrain
motion; however, with limited motion sensitivity, especially in
the case of the human brain [9].

More recently, a new technique called amplified MRI
(aMRI) was introduced [28]. Using aMRI, small motions
that were difficult to track on cine MRI became more easily
discernible through a Eulerian video magnification (EVM) al-
gorithm [29]. aMRI was further improved by Terem et al. [30]
by using a ”phase-based” approach [31] which has better noise
handling compared to its EVM predecessor. In such an aMRI
approach, local phase variations corresponding to the motion
are computed through complex steerable pyramids [32], and
the evaluated temporal phase differences are then magnified
with a specific amplification factor, enabling the visualization
of imperceptible displacements through an advanced noise-
filtering methodology. With this approach, the subtle motions
of the brain were amplified, and abnormalities were found in
the subsequent free form deformation maps of a CM-I patient
[30]. In a nutshell, aMRI functions as a lens, magnifying the
steady-state brain motion. But brain motion is intrinsically
coupled to blood circulation, which is a prime example of a
transient phenomenon, i.e. an event whose dynamical features
change very rapidly [33] and that cannot be fully captured by
aMRI.

Therefore, in this study, we further improved the aMRI
method to extend its applicability also to the analysis of
transient phenomena. This was mainly achieved through an
incorporation of a modal analysis technique called dynamic
mode decomposition (DMD) in aMRI’s image processing
pipeline [34]. Such modal analysis techniques have been pre-
viously used in studying the blood velocity profiles in human
cardiovascular system [35]. Proper orthogonal decomposition
(POD), for instance, was applied to 4D flow MRI data, result-
ing in an improvement in error metrics, which in turn allowed
for a more accurate computation of the flow velocity data [35].
Divergence-free wavelet transform is another technique that
has been applied to 4D flow MRI and phantom data [36].
This method demonstrated an improvement in noise reduction,
especially in the presence of discontinues and nondivergence-
free components in the flow fields [36].

In the present work, through the incorporation of DMD in
the aMRI’s image processing algorithm, we enabled its appli-
cability in capturing the transient phenomena. By adding the
extra information on blood flow and tissue motion coupling,
our novel technique (which we call aFlow), has the potential
to be used in the analysis of a wide range of pathological
conditions whose patterns of small motions are believed to
be reflecting the general state of health of a tissue. This
is especially important in the case of cerebral aneurysms,
where blood circulation and wall motion are known to engage
in a complex dynamical interplay, often causing difficult-to-
predict wall thinning and potential rupture [37]. Aneurysm

rupture can have catastrophic consequences, with a mortality
rate of up to 60% [38], and significant morbidity in about
50% of the survivors [39]. Therefore, reliable and quantifi-
able criteria enabling to monitor aneurysm progression and
to predict rupture risk are critical in any clinical setting.
Currently, however, there is no general consensus in the
medical community as to what method can best deliver the
most accurate indications of aneurysm’s evolution, growth, and
rupture risk. Typical parameters that are monitored, include
the aneurysm size, location, multiplicity and shape [40], [41].
Among these risk factors, aneurysm size has been used as an
objective quantifiable parameter in imaging models proposed
to study the risks of aneurysm rupture, such as in the recently
published PHASES score [42] and in the 2015 American
Heart Association and American Stroke Association guideline
management of unruptured aneurysms [43]. However, several
studies have shown that aneurysm size alone is an imperfect
measure for individualized risk stratification since a signifi-
cant number of ruptured aneurysms can be small [44]–[46].
Recently, however, a number of studies have associated the
risk of aneurysm rupture with changes in its wall motion [47]–
[51]. Meyer et al., for instance, used cine phase-contrast MRI
to track the aneurysms’ motion and observed that ruptured
aneurysms had a larger variability in pulsatility compared to
unruptured ones [52]. Using digital subtraction angiography,
a correlation between abnormal aneurysm wall motion and
a potential mechanism of injury such as wall shear stress
(WSS) has been hypothesized [37]. 4D flow MRI which allows
capturing dynamic, multi-directional blood velocity data is
also one of the image acquisition methods that has been
recently used to assess the aneurysm rupture risk [53], [54].
In short, in 4D flow MRI, the velocity is encoded in 3 spatial
directions and a 3D velocity field is acquired [55]. Then, a
post-processing algorithm is typically used to combine 3D
velocity and magnitude data, allowing one to visualize the
motion of the blood vessels. [56].

In order to extend the applicability of aMRI to the analysis
of transient dynamics, in this work we further improved the
aMRI image processing technique by introducing amplified
Flow Imaging (aFlow). aFlow is a phase-based aMRI algo-
rithm that uses DMD as a temporal filter and amplifies the sub-
voxel motion of both the brain parenchyma and vasculature
to enable better visualization of these motions. Using DMD
in the algorithm, aFlow is able to retrieve the characteristics
present in a transient event such as the vasculature motion
[57], [58] observed in 4D flow MRI. The ability of aFlow to
reveal sub-voxel motions was tested by using simple digital
phantom simulations that mimic the pulsatile motion of ar-
teries. Next, using aFlow data acquired on 5 healthy subjects,
the correlation between the blood flow speed and the localized
brain tissue deformation in regions surrounding the vasculature
was analyzed. Finally, the potential diagnostic applicability of
aFlow was tested by characterizing aneurysm wall motion. To
do so, we applied aFlow to 4D flow MRI datasets acquired on
two patients with intracranial aneurysm scans to evaluate how
aneurysm wall motion changed over the course of one year.
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II. METHODS

A. Human subjects

With institutional review board approval (IRB-17-01563)
and informed consent, scans were performed on 5 healthy
adult volunteers (3 females and 2 males between 48 and 63
years of age) to study the correlation between blood flow and
the deformation of its surrounding tissue. Additionally, with
IRB approval, an initial and a follow-up scan after 1 year were
acquired on 2 aneurysm patients (Case 1: A 54 year old female
and Case 2: A 32 year old male), in which, Case 1 aneurysm
experienced a 1 mm increase in diameter after one year. Cross
sections of the basilar arteries were chosen as the control and
their deformation was compared with that of aneurysm walls.

B. Amplified Flow Imaging (aFlow) input data acquisition

Two imaging methods underlie the aFlow method: cine
MRI, which is used to capture the movement of the brain
parenchyma, and 4D flow MRI, which is used to capture the
movement of the brains arterial vasculature. In both cases,
a 3T whole-body GE MR750 Discovery MRI system (GE
SIGNA scanner) and an 8-channel head coil were used to scan
the patients. In the first step, cine MRI was used to obtain
cardiac gated time-resolved data of each patient’s brain. Cine
MRI typically accomplishes this by using steady-state free
procession (bSSFP) [59] and syncing the pulse sequence with
the patient’s heart rate through the use of an electrocardiogram
or pulse oximeter. The process is repeated consistently to
acquire all the spatial information needed to fill the k-space.
Each frame or ”cardiac phase” is tagged to a specific time
in the cardiac cycle to create videos of the brain motion
during one heartbeat [59]. For each subject, whole brain cine
MRI were acquired using the following imaging parameters:
acquisition matrix = 512 × 512, flip angle = 45◦, FOV =
180 mm, TR/TE = 3.66/1.18 ms, ±128 kHz bandwidth, 85
cardiac phases, and 14 slices with a thickness ranging from
4-5 mm.

Secondly, 4D flow MRI was used to track the motion of
blood vessels [56]. This scan is based on traditional phase-
contrast enhanced MRI, which determines the blood’s velocity.
Also acquired as a cine sequence, here the velocity was
encoded in three directions to capture the blood flow for each
cardiac phase. Before the visualization of the 4D flow MRI,
the following de-noising steps were performed on the data-set:
Phase-offset errors were corrected for Maxwell terms [60],
gradient field nonlinearity [61] and eddy currents [62]. For
the background phase errors, a second-order polynomial was
fitted to the static regions of the image and subsequently sub-
tracted from the velocity data [62]. Following these steps, the
acquired magnitude data was combined with the 3D velocity
information, allowing visualization of the blood vessels [56].
4D flow MRI of the major cerebral arteries at the level of the
circle of Willis were acquired based on the following imaging
parameters: acquisition matrix = 224 × 224 × 75, flip angle
= 14◦, FOV = 180 mm, TR/TE = 5.76/3.1 ms, ±128 kHz
bandwidth, 20 cardiac phases, temporal resolution of 40-60
ms (depending on the subject’s heart rate), velocity encoding
factor (VENC) = 3.5 cm/s and slice thickness of 1 mm.

C. aFlow algorithm

aFlow improves on the current aMRI technique [28], [30]
by integrating a sophisticated modal analysis method into
the algorithm which allows to precisely separate closely-
spaced transient phenomena present in biological tissues; this
technique is known as DMD [2], [63]. Specifically, in this
work we apply aFlow to study the interplay between the
blood and brain motion according to the following steps:
First, appropriate cine MRI and 4D flow MRI datasets are
selected as the input videos. Then, aFlow decomposes the local
phases of each time frame at different scales and orientations
using a linear complex-valued steerable pyramid ( [31], see
Fig. 1(a)). It should be noted that the variations between
the acquired phases from the steerable pyramid correspond
to displacements [31]. DMD is then incorporated in lieu of
a temporal filter, allowing to isolate the motion in specific
temporal frequencies and enabling analysis of highly transient
phenomena. DMD achieves this by summing up the modes
in the specified frequency range, which can be chosen based
on the desired application. This modal analysis technique
allows to capture the modal behavior of a data-set even in
the absence of its governing model, and as such has found
widespread applications in biomedical signal analysis, fluid
and structural mechanics [64]–[66]. In order to use DMD, we
constructed a displacement field u(x, y, t) from the retrieved
phase variations of the decomposed data (at each scale and
orientation from the steerable pyramid) at different time points.
Here, x and y are the spatial location of each node of the frame
at time t. Assume that there are N equally spaced snapshots
of M nodes, which in the case of video frames result in
a 2 degrees of freedom at each snapshot. Using DMD, the
displacement fields can be decomposed as follows:

u(x, y, t) =
N∑
n=1

an exp(λnt)φn(x, y) (1)

where UN1 = {u1, u2, ..., uN}. Here, an is the modal coef-
ficient, λn is the complex modulus, and φn is the spatial
distribution of each mode. DMD assumes a linear mapping
between consecutive snapshots, where uj+1 = Auj , that
results in UN1 = {u1, Au1, ..., AN−1u1}. The eigenvalues and
eigenvectors of A are then evaluated using singular value de-
composition (SVD) to form a companion matrix S̃ = HTAH ,
where H are the left singular vectors of U. By using the
eigenvectors of S̃, the modes of the data can be represented
as:

Ψ = UN−1
1 T (2)

where Tj are the left eigenvectors of S̃. It should be noted that
the parameters λn are calculated through the eigenvalues of
S̃ and the frequency ωj corresponding to each mode is ωj =
Re(λn). In a nutshell, the aFlow uses DMD as a temporal filter
by summing up the modes from the retrieved phases only in
the specified frequency range, i.e., for a subset K of modes
such that K ≤ N . The displacement field is reconstructed as:

uFiltered(x, y, t) ≈
K∑
m=1

am exp(λmt)φm(x, y) (3)

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on August 01,2020 at 00:00:10 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.3012932, IEEE
Transactions on Medical Imaging

4

In the above equation, the m indexes correspond to K
modes such that ωmin ≤ ωj ≤ ωmax with j = [1,K]. For
a more comprehensive description of the DMD method, see
[34], [67], [68]. Having applied DMD on the retrieved phases
in a specific temporal frequency range, an amplitude-weighted
Gaussian spatial filter is then used to remove any unwanted
noise that may later arise from the amplification. Next, the
filtered phase components are multiplied by an amplification
factor α and added back to the original phase data. Finally,
the modified video is reconstructed by collapsing the steerable
pyramid, resulting in an amplified video in the desirable range
of frequencies [31]. The general pipeline of aFlow image
processing algorithm is shown in Fig. 1.

D. Digital phantom simulations

Having developed the aFlow algorithm, it was tested on
digital phantom models that mimic the motion of arteries
during pulsatile flow in two steps (Fig. 2). In the first step, we
validated the method and discerned the feasible amplification
boundaries. In the second step, we proposed a modification to
the phantom simulations and compared the image quality of
aFlow output with respect to its predecessor aMRI.

Initially, a Gaussian filtered 2D thin-walled circular shell
with radius r, thickness h, and constant pixel intensity of 1
was created in MATLAB (MathWorks, Natick, MA, version
R2017b). This was followed by pixel intensity changes be-
tween 0 and 1 inside the circular phantom (Fig. 2(a)). In this
simulation, the thin-walled shell represents the artery wall,
while the interior pixel intensity changes imitate the blood
flow inside the artery. The blood flow and the correspond-
ing deformation of the arterial wall were simulated using
the Womersley solution for thin-walled elastic circular shells
which has often been used to study arterial deformation [69]–
[71]. The equation of motion of the phantom at time t is [70]:

∂2η

∂t2
=
pω − p0
hρω

− E

(1− ν2)Rρω
(
η

R
+ ν

∂ξ

∂z
) (4)

where Re(η) and Re(ξ) are the radial and axial displacements,
respectively. Here, Re(·) denotes the real part of a scalar. p0
represents the pressure on the outer and pω represents the
pressure on the inner surface of the artery. R denotes the
radius; h denotes the thickness and z denotes the axial position
which is assumed a constant number in this study. Here, ρω , E,
and ν denote the density, Young’s modulus, and Poisson ratio
of the aneurysm wall, respectively. The axial u and radial v
momentum equations as well as the continuity equation for an
in-compressible Newtonian fluid representing the blood flow
are as follows [70]:

∂u

∂t
= −1

ρ

∂p

∂z
+
µ

ρ
(
∂2u

∂r2
+

1

r

∂u

∂r
) (5)

∂v

∂t
= −1

ρ

∂p

∂r
+
µ

ρ
(
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
) (6)

∂u

∂z
+
∂v

∂r
+
v

r
= 0 (7)

with p, µ and ρ denoting the pressure, viscosity, and density of
the fluid, respectively. Having constructed the fluid-structure

coupling based on Eq. 4 and Eq. 5-7, the radial displacement
of the thin-walled shell is in the following form:

η(t) = Ceiω(t−z/c) (8)

where c is the wave propagation speed and C is a constant
that is determined in [70]. For more information regarding
the fluid-structure coupling at the interface of the circular
shell and the utilized boundary conditions, see [70], [72].

TABLE I: Material and geometric properties of the phan-
tom model mimicking arterial wall motion. Properties from
[73]–[76] were used in the phantom simulations.

Phantom parameters Assigned properties
R 1 mm
h 0.075 mm
ρω 1366 kg/m3

E 2.1 MPa
ν 0.45
µ 3.5 × 10−3 Pa.s
ρ 1060 kg/m3

The simulated phantom model was then amplified using
aFlow and converted into DICOM images with the same image
matrix size as acquired in vivo (512× 512).

In the first step, we investigated the dependence of amplified
displacement on: varying amplification factor α between 0
and 7, varying internal pressure between 75 mmHg and 100
mmHg, and varying Rician noise parameter s between 0 and
0.01. A list of the material and geometric properties used in the
digital phantom simulations (Eq. 4-7) can be found in Table I
([73]–[76]).

In the second step, we compared how sensitive aFlow and
its predecessor aMRI are to noise. We incorporated a trav-
elling wave motion - a common characteristic in vasculature
dynamics [77], [78] - in the Womersley solution (Eq. 8) and
calculated the temporal SNR for each of the methods. In this
case, the radial displacement of the thin-walled shell is:

η(t, θ) = C(eiω(n1t−z/c)+ik1θ + eiω(n2t−z/c)+ik2θ) (9)

where n1 and n2 are the harmonic numbers, k1 and k2 are the
wavelengths of each signal, and θ denotes the circular position
along the thin-walled shell.
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Fig. 1: Schematics of the aFlow image processing technique: aFlow decomposes the cine MRI and 4D flow MRI data in
different scales and orientations and amplifies the local phases over time to visualize the subtle motion in the arteries and the
brain. a) A linear complex-valued steerable pyramid is used on the cine MRI and 4D flow MRI input videos to decompose
each time point into different spatial scales and orientations. These components are then separated into local phases and
amplitudes. b) Dynamic mode decomposition (DMD) is used on each local phase to capture the transient characteristics of the
cine MRI and 4D Flow data in the selected frequency range. c) The SNR of the captured phases is spatially improved using
amplitude-weighted Gaussian spatial smoothing. d) The processed phases are amplified by the amplification factor and added
to the original phase components. e) The amplified videos are reconstructed. f) The reconstructed cine MRI and 4D flow data
are co-registered and the time of blood flow entering the brain and its following brain motion is synchronized.

r

h

θ

(a)

t (ms)

R
e(
η
)
(m
m
)

1

(b)

Fig. 2: Simple digital phantom mimicking the pulsatile
motion of an artery. a) A phantom model mimicking the
cross-section of an artery. b) A pulsatile motion based on the
Womersley solution for thin-walled elastic circular shells is
imposed on the phantom model. *Re(·) denotes the real part
of a scalar.

E. In vivo analysis

To check whether the acquired amplification boundaries
in the digital phantom simulations lead to physiologically
meaningful information, we tested aFlow on five healthy
volunteers. Here, aFlow was used to individually amplify
the acquired cine MRI and 4D flow MRI videos at α = 6
and frequency range of f = 0 − 1.7 Hz. Next, to evaluate
whether there is a correlation between the cerebrovascular
deformation and the regional displacement of the brain, the

acquired 4D Flow MRI data was registered to the cine MRI
images. This allows proper alignment of the blood vessels in
the brain tissue to evaluate the interplay between the blood
flow and the brain motion. Here, ITK-SNAP (University
of Pennsylvania, Philadelphia PA, and University of Utah,
Salt Lake City, UT, version 3.6.0) was used to perform an
initial manual rigid body transformation of the data. This was
followed by an automated registration with ANTs (University
of Pennsylvania, Philadelphia PA, [79]) to overlay the blood
vessels in their corresponding areas in the cine MRI scans.
The co-registration was then evaluated by an experienced
radiologist. Finally, the Pearson’s correlation coefficient r
between the regional blood flow speed and the brain tissue’s
displacement rU and the Lagrange strain rE was calculated
for the pons, frontal lobe, and occipital lobe and the results
were averaged between 5 healthy subjects.

Next, we applied aFlow on two aneurysm patients. To
visualize the motion in the major cerebral arteries, we chose
α = 6, and amplified 4D flow MRI videos of the two
patients at the following frequency ranges: f = 0 − 1.7 Hz
(denoted as ”main harmonics”) and f > 1.7 Hz (denoted
as ”higher frequencies”). α = 6 was chosen since phantom
simulations demonstrated a linear correlation between α and
the amplified displacement for α ∈ [0, 7] (Fig. 3(a)). We
have also found that the amplified displacement was still
significantly correlated (r > 0.96, p < 0.05) with the ground
truth for α ∈ [0, 10], regardless of the α of choice (Fig. 3(c)).
The linear correlation between the amplified displacement
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and α, however, was not present for α > 7. As for the
selected frequency band, since a resting heartbeat could
reach a rate of approximately 1.7 Hz [80], we limited the
main harmonics frequency range to this value. Additionally,
nonlinear systems such as aneurysms are known to exhibit
dynamics with super-harmonic resonances [78]. However, due
to low time resolution of the acquired 4D flow MRI, the study
of different harmonics (e.g. 2nd and 3rd) separately was not
feasible. Here, because of that limitation, we assumed that the
collective presence of the higher harmonics is the telltale sign
of the nonlinear dynamics; hence, frequencies higher than
1.7 Hz were also amplified. After the amplification of the 4D
flow data, an axial cross-section containing the aneurysm was
selected. We then quantified the mean in-plane displacement
of the aneurysm wall in the selected plane and compared it
with the mean in-plane displacement of the basilar arteries
(control group) in a selected axial cut.

F. Displacement tracking in the amplified videos

To quantitatively evaluate the displacement of the amplified
videos, a free-form deformation algorithm developed in [81]
was used to register each subsequent time frame (floating
image) to the initial time frame (reference image). The floating
image is locally deformed to match the reference using cubic
B-Splines which guarantees continuous deformation [82]. The
implemented algorithm uses normalized mutual information
(NMI) to evaluate the similarity between the frames [82]. The
NMI is a similarity measure based on the paired-intensity
distribution. A larger level of information shared between the
two images results in a higher NMI value. The optimization is
based on a three levels pyramidal approach [81]. The final re-
sult is a displacement map that reflects the differences between
the reference and the floating image. Using this algorithm, we
were able to isolate the pixels of the wall of arteries and obtain
their direction and amplitude of displacement.

III. RESULTS

A. Phantom simulations

For the phantom simulations based on the generated sig-
nal from Eq. 8, we observed a linear correlation between
the amplified displacement and amplification factor for α ∈
[0, 7] (R2 ≈ 0.94, Fig. 3(a)). Similar results were observed as
we varied the internal pressure of the phantom with a constant
α = 6, which again suggests a linear correlation between
amplified displacement and true displacement (R2 ≈ 0.87,
Fig. 3(b)). Additionally, the normalized mean displacement
maps between the amplified displacement and the ground
truth were compared (Fig. 3(c)). The high correlation value
r > 0.96 between the amplified displacements and the ground
truth, showed that upon increasing α, the pattern of motion
does not change (p < 0.05, Fig. 3(c)). These results show that,
within the aforementioned range of α and internal pressure,
the amplified displacement is linearly correlated with the
ground truth displacement (Fig. 3). This means that aFlow
can visualize the subtle motions of the phantom model (not
visible before amplification), while being independent from

parameters such as Rician noise, varying changes of intensity
and partial volume effects (Fig. 3).
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Fig. 3: Regression results between the amplified dis-
placement and ground truth displacement for phantom
models mimicking arterial pulsatility. A linear correlation
was observed between the amplified displacement and a) The
amplification factor α and b) The internal pressure. This sug-
gests that, within this range of α and internal pressure, aFlow,
amplifies the ground truth displacement linearly; thus, is
independent from noise. c) Normalized mean of the phantom’s
displacement at different amplification factors was compared
with the ground truth. This shows that with increasing the
amplification factor the pattern of motion does not change.

After having incorporated travelling wave motion (Eq. 9)
with two wavelength numbers (k2, k1) in the phantom model
simulations, we amplified the videos using aFlow and aMRI.
aFlow was found to be less sensitive to noise when compared
to aMRI (Fig. 4). We observed that for a lower wavelength
ratio of k2/k1 = 1.25, the SNR for aFlow and aMRI
were similar (13.05 vs. 12.57, respectively (Fig. 4)). The
SNR values for aFlow videos, however, was almost twice
as high as the aMRI ones when k2/k1 was increased to
2.25 (13.04 vs. 6.01, respectively (Fig. 4)). This shows the
capability of the incorporated DMD temporal filter in aFlow
to more reliably capture the travelling wave characteristics
when compared to the FFT-based temporal filter that is used in
aMRI. In the limited case of a simple periodic loading (when
k2/k1 ≈ 1), DMD can be simplified to a Fourier analysis
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Fig. 4: Noise maps of aFlow and aMRI for phantom
simulations with sub-voxel travelling wave motion in the
phantom wall. As the wavelength ratio k2/k1 increased
in the phantom models, the SNR for aFlow output videos
experienced a negligible change, while for aMRI output videos
it decreased by approximately 50%.

[83]. Here, however, since the input signal is in the form of a
travelling wave, DMD seems advantageous for capturing the
dynamics of the phantom motion.

B. In vivo validation

Before implementing aFlow as a tool to visualize the motion
in the aneurysms, we analyzed whether it can capture the
physiological coupling between the blood flow speed and the
deformation of the brain. First, at each time-frame, the 3D
velocity and magnitude data from 4D flow MRI was used to
visualize the blood vessels. Next, we amplified the processed
4D flow MRI and cine MRI videos with α = 6, since at
this magnitude, the digital phantom simulations remained free
of confounding noise (Fig. 3). After registration of the 4D
flow MRI on the cine MR images (Fig. 5; see Supplemental
Material, Video S1), we evaluated the correlation r between
the deformation of the brain and blood flow speed at the
pons, frontal lobe, and occipital lobe (Fig. 6). The average
of the correlations between 5 healthy subjects is summarized
in Table II. Here we observed rU and rE values of at least
0.52 and 0.51 across the aforementioned regions, respectively
(p < 0.001; Table II). These results suggest that with the rush
of blood flow into the major cerebral arteries, the brain tissue at

Fig. 5: Registration of the cerebral arteries on the brain.
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Fig. 6: Correlation between blood flow speed and deforma-
tion of the brain at specific regions. a) aFlow was utilized
to visualize and evaluate the subtle motion in the arteries and
the surrounding tissue in the pons, frontal, and occipital lobes
for 5 healthy patients. b) Averaged blood flow speed (Vblood)
and brain displacement (Ubrain) in the occipital lobe for one
subject. Note that blood speed and displacement curves were
shifted to match their peak values.

those regions experience subtle deformation (see Supplemental
Material, Video S1).

TABLE II: Averaged Pearson’s correlation coefficients
between averaged blood flow speed and brain tissue’s displace-
ment (rU ) or Lagrange strain (rE) at different regions. For all
of the cases p < 0.001.

Location rUrUrU rErErE
Pons 0.61± 0.18 0.69± 0.18
Frontal lobe 0.59± 0.09 0.51± 0.08
Occipital lobe 0.52± 0.08 0.51± 0.13

C. Application of aFlow in evaluating aneurysm wall motion

To test the potential ability of aFlow to analyze the
biomechanics of a specific cerebrovascular condition, here we
characterized the dynamics of the intracranial aneurysm wall
in two patients who had a baseline scan and a follow up
scan one year later. Case 1 was a 54 year old female with
right internal carotid aneurysm which experienced a growth
of approximately 1 mm over one year and was diagnosed
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unstable. Case 2 was a 34 year old male with a basilar artery
aneurysm which did not experience change in size over one
year and was diagnosed stable. An α = 6 was chosen since
at this magnitude the digital phantom simulations remained
free of confounding artifacts (Fig. 3). We observed that, while
there was a negligible change in the basilar wall motion of
both cases after one year, there was a substantial rise in the
aneurysm wall displacement at higher frequencies (Fig. 7).
Specifically, for both Case 1 and Case 2, the mean displace-
ment of the basilar artery at the main harmonics and the
higher frequencies decreased by less than 12% and 8% after
one year, respectively (Fig. 7(a,c)). The mean displacement
of aneurysm’s wall at the main harmonics also experienced a
negligible change of +4% and -1.5% in Case 1 and Case 2,
respectively (Fig. 7(b,d)).

In Case 1, however, - a right internal carotid artery aneurysm
characterized by interval growth - the mean displacement of
the high frequency motion of the aneurysm wall showed a
substantial increase of approximately 76% in the follow up
motion when compared to the baseline scan (Fig. 7(b); see
also Supplemental Material, Videos S2 and S3). Interestingly,
because of its variation in size over the one year follow-up
period, this patient’s aneurysm was classified as unstable upon
radiological examination. In Case 2 (a stable basilar artery
aneurysm that did not change in size during the course of
the follow-up), the mean displacement of aneurysm’s wall
at higher frequencies was only modestly increased (approx-
imately 20%) when compared to the baseline scan (Fig. 7(d)).

IV. DISCUSSION

Movement is a ubiquitous feature of the living matter which
ultimately affects physiological processes and organ function.
Yet, the most subtle ways in which such motions unfold are
often unexplored due to the lack of appropriate experimental
methods and comprehensive analytical models to characterize
tissue dynamics. At the same time, it is becoming clear
that organ motion can be exploited as a marker describing
the pathophysiological state of tissue; suffice to think of the
widespread diagnostic use of techniques such as magnetic
resonance elastography (MRE), which allows to assess tissue
stiffness upon imaging the way shear waves propagate into the
body [84]–[86].

To help fill this gap, in this paper we introduced a new
image processing technique called aFlow that enables the
frequency-selective amplification (hence, the visualization)
of simultaneous soft tissue and vascular motion by post-
processing standard clinical cine MRI and 4D flow imaging
data, with potential application in the evaluation of various
cerebrovascular disorders.

In the first step, we evaluated the feasible amplification
boundaries of aFlow by testing various amplification factors on
digital phantom models constructed to mimic the deformation
of arteries during pulsatile flow. We observed that for the
utilized parameters, aFlow successfully amplified the ground
truth motion up to the amplification value of α = 7, while
retaining a linear dependence of the amplified displacement
on the amplification factor. Additionally, while keeping α
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Fig. 7: Amplified basilar and aneurysm wall deformation
at two frequency ranges in two patients one year apart: (a)
In Case 1, the basilar artery does not experience a substantial
change in its displacement at both frequency ranges. (b)
The aneurysm’s wall displacement at the main harmonics
experiences a negligible change of +4%, while its motion at
the higher frequencies varies by +76% after one year. (c) In
Case 2, the basilar artery does not experience a substantial
change in its displacement at both of the frequency ranges.
(d) The aneurysm’s wall displacement at the main harmonics
experiences a negligible change of -1.5% for Case 2, while its
motion at higher frequencies varies by +20% after one year.
An outline of the aneurysms are shown for reference.

constant, we varied the boundary conditions of the simulations
(by changing the internal arterial pressure in the model) and
again found that the amplified displacement was independent
of partial volume effect, Rician noise and varying phantom
intensity.

The sensitivity of aFlow and its predecessor aMRI to
noise was then calculated in the modified phantom models
experiencing travelling wave motion as a combination of two
input signals of different wavelength numbers (k1 and k2; see
Eq. 9). We observed that with increasing wavelength number
ratio k2/k1, the SNR for the aFlow amplified videos remained
rather stable, whereas for the aMRI ones, it decreased by ap-
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proximately 50%. This finding is in line with our expectations,
given that DMD has been shown to have an advantage over
FFT for transient systems [2], [63], as it provides a more
accurate description of the system’s response [63]. For the
limited case of steady state motion in the phantom model,
however, aFlow and aMRI showed comparable results. This
highlights the potential ability of the DMD-based filter to
capture the transient and non-stationary characteristics that
exists in the motion of neurovasculature [78], [87], [88].

After the amplification boundaries of the algorithm were
determined through the phantom models, we applied aFlow
to in vivo cine MRI and 4D flow MRI data sets of 5 healthy
subjects and analyzed whether the blood flow in the cerebral
arteries could cause motion in the surrounding tissue. We
calculated rE and rU correlation values in the range of
approximately 0.50− 0.60 between the blood flow speed and
the corresponding tissue deformation at the pons, frontal and
occipital lobes (p < 0.001). This suggests a possible link
between the blood flow, arterial deformation and the displace-
ment of the brain tissue. Our findings are in agreement with
[30], where by using aMRI, a high correlation was identified
between the CSF/blood flow and the motion of mid-brain and
pons. Similarly, these results are in line with previous work
of Hirsch et al., who applied motion-sensitive phase-contrast
MRI and magnetic resonance elastography (MRE) to measure
the volumetric strain of various brain structures, reporting that
in the frontal and occipital lobes the latter would be related to
the intracranial passage of the arterial pulse wave [12].

To demonstrate the potential application of this image
processing technique to the characterization of a physiological
disorder, we next applied aFlow to visualize aneurysm wall
motion. This visualization is important since recent evidence
has suggested that as aneurysms progress towards instability,
their patterns of motion and deformation begin to change
more erratically [37], [48]–[50]. A number of previous stud-
ies focused on analyzing the pulsatile patterns of unstable
aneurysms [47], [89]: Ishida et al., for instance, obtained 4-
D CT movies and observed irregular pulsation in growing
aneurysms in patients suffering from subarachnoid hemorrhage
[47]. Neurosurgical assessment during endovascular interven-
tion confirmed that these aneurysms had ruptured at sites of
pulsating blebs [47]. Using the 4-D CT technique, it has also
been found that the aneurysms’ rupture point matched the loca-
tion of observed wall motion during preoperative analysis in 2
out of 4 patients [89]. One of technical challenges reported by
these studies, however, was the difficulty to accurately measure
aneurysms’ wall motion with conventional imaging techniques
[90]; such deformations are in fact so small and often close
to the imaging resolution, thereby rendering this approach
ultimately unreliable in clinical settings [90]. Therefore, the
capacity of aFlow to amplify and visualize sub-voxel motions
makes it a promising candidate to be used in such studies.

The observed high frequency pulsatile motion of the in-
tracranial aneurysms’ wall could be due to several factors, such
as its complex geometry and nonlinear material properties,
as well as its interactions with the blood flow [78]. High-
resolution, patient-specific computational fluid dynamics sim-
ulations have recently demonstrated the presence of ”turbulent

type” flow, characterized by transient high-frequency flow
instabilities in some aneurysms [91]. Some studies revealed
that such turbulent flows, associated with abnormal WSS, may
lead to cell inflammation, and therefore may also be relevant
for the assessment of intracranial aneurysms rupture risk [92],
[93]. These simulations also demonstrated instability in the
blood flow through high frequency fluctuations in pressure and
velocity [94]. Such fluctuations of the blood flow could also
result in a similar high frequency oscillations of the WSS in
both magnitude and direction [94]. Consequently, capturing
high-frequency arterial wall motion from aFlow could be an
indicator of the presence of a turbulent regimen within the
aneurysm, and therefore a possible indicator of risk of rupture.

In this work, aFlow successfully visualized and quantified
aneurysm wall displacements from 4D flow data of two pa-
tients (Case 1 and Case 2) in which no motion was apparently
discernible. In both cases, we observed that the basilar artery
(control artery) experienced negligible changes in the one year
follow-up studies. In the patient whose aneurysm demonstrated
interval growth of 1 mm in diameter (Case 1), we observed
a substantial (76%) increase of the aneurysm wall motion at
higher frequencies; for Case 2, this variation was of 20%.
This difference might be due to the geometry and location of
the aneurysms, more specifically to the fact that the second
aneurysm was located at the top part of the basilar artery and
in proximity of a branching point, where the blood flow input
is divided into multiple outflows (Fig. 7(d)). This division
could result in a decrease of the local blood flow velocity for
Case 2. As a result, the aneurysm in Case 1 could be more
exposed to locally elevated WSS, potentially translating into
higher instability [95].

These findings demonstrate that aFlow is capable to visual-
ize the hidden motions that exist in the human vasculature as
acquired by 4D flow MRI and suggests, albeit in an extremely
preliminary manner, a possible link between aneurysm insta-
bility and its motion at higher frequencies.

It is worth noting that, even though aFlow showed promising
results in the phantom simulations, caution is advised when
using this technique for in vivo analysis. The algorithm, in
fact, works under the assumption that the motion in the
studied problem is subtle and the variations of intensity not
too substantial. If applied to visualize a motion that is already
clearly visible, aFlow could introduce noise and artifacts to the
input video. One limitation of this study is that out-of-plane
motion is not detected, hence further work will be required to
expand the aFlow algorithm to 3 dimensions in order to ac-
curately amplify and evaluate motion in all spacial directions.
To limit the effect of out-of-plane motion in the measured
displacements, different planes containing the aneurysm were
selected and amplified. For both of the aneurysm cases, an
axial plane over the aneurysm, which showed the maximum
displacement was selected for the comparisons in this study.
Additionally, here we chose the amplification factor α based
on phantom simulations specifically designed to mimic blood
vessel pulsatility. We observed that by increasing α to 7,
the displacement increased linearly and the pattern of motion
remained the same as the ground truth. Upon increasing α
further beyond this value, however, the simulations might give
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rise to confounding artifacts. To use the proposed algorithm
in other MRI domains, we recommend testing the input
video with lower amplification factors in the beginning and
then gradually increase α to find the optimum amplification
value. Therefore, in order to evaluate the optimal algorithm’s
boundaries for application to other types of cardiovascular or
neuroanatomical conditions, further work will be necessary.

Finally, we want to point out that our study does not attempt
to draw conclusions on the definitive causal link between
aneurysms’ rupture risk and their high frequency motion;
our sample size is obviously insufficient to answer such a
complex, open, scientific question. However, the capability
of aFlow to visualize amplified vascular wall motion will
hopefully set a technical foundation, enabling future studies
to investigate aneurysm dynamics more in depth, which might
present profound clinical and diagnostic implications.

V. CONCLUSION

In this paper, we introduced aFlow, a novel image pro-
cessing technique based on aMRI that allows more accurate
visualization of sub-voxel tissue motion and better noise
handling compared to its predecessor. With standard clinical
cine MRI and 4D flow data as an input, aFlow allows for
the amplification of subtle motions in the brain and the
cerebrovasculature that would otherwise be difficult to mea-
sure. These subtle patterns of motion might hold important
information regarding the physiological state of a tissue, as
recently hypothesized for instance for the case of cerebral
aneurysms. A preliminary analysis of 4D flow data from two
patients highlighted the applicability of aFlow to analyzing
the subtle pulsatile motion of intracranial aneurysms’ walls.
Given that aFlow is a post-processing algorithm carried out on
a standard imaging technique, it holds great potential for being
easily translated into the clinic. With further validation studies,
aFlow could not only provide a unique imaging biomarker
to complement the existing clinical and imaging tools for
the follow-up of intracranial aneurysms, but might also be
applied to a wide range of other clinical conditions such as
hydrocephalus, Chiari malformation, and intracranial pressure
abnormalities.
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