International Journal of Multiphase Flow 129 (2020) 103334

Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier.com/locate/ijmulflow

Effects of turbulence modulation and gravity on particle collision )
statistics i

Bogdan Rosa®*, Jacek Pozorski® Lian-Ping Wang ¢

2 Institute of Meteorology and Water Management National Research Institute, 61 Podlesna Street, 01-673 Warsaw, Poland

b Institute of Fluid Flow Machinery, Polish Academy of Sciences, 14 Fiszera Street, 80-231 Gdansk, Poland

¢ Department of Mechanical Engineering, University of Delaware, Newark, DE 19716-3140, USA

d Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and
Technology, Shenzhen 518055, Guangdong, China

ARTICLE INFO ABSTRACT

Article history:

Received 30 November 2019
Revised 12 March 2020
Accepted 2 May 2020
Available online 11 May 2020

Dynamics of inertial particles in homogeneous isotropic turbulence is investigated by means of numerical
simulations that incorporate the effect of two-way interphase momentum transfer. The continuous phase
is solved in the Eulerian approach employing Direct Numerical Simulations (DNS). The dispersed phase
is treated using the Lagrangian approach along with the point-particle assumption. The main focus is
on computing collision statistics of inertial particles relevant to cloud droplets in typical atmospheric
conditions. The vast majority of previous DNS were performed assuming one-way momentum coupling
between continuous and dispersed phases. Such simplified approach is adequate only for dilute systems
with relatively low mass loading. In this study we investigate the effect of two-way momentum coupling
on the kinematic and dynamic collision statistics of the dispersed phase. A number of simulations have
been performed at different droplet radii (inertia), mass loading, viscosity and energy dissipation rate.
To assess the accuracy of numerical approach the coupling force (exerted by particles on the fluid) was
computed using two different techniques, namely particle in cell and projection onto neighboring node.
To address the effect of gravity, the simulations have been carried out simultaneously both with and
without gravitational acceleration. It has been found that the effect of two-way coupling is significant
both for droplet clustering and the radial relative velocity. It turns out that the collision kernel is more
sensitive to the particle mass loading when the gravitational acceleration is considered. The collision
kernel of settling droplets increases as the droplet mass loading increases. This is direct consequence of
larger radial relative velocity. For non-settling droplets the effect of mass loading is opposite, namely, we
observe a minor reduction of the collision kernel as the number of droplets increases.

© 2020 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Interaction of inertial particles with turbulent flows is a key fac-
tor of many environmental processes including the microphysics
of clouds (Devenish et al., 2012; Grabowski and Wang, 2013), the
dispersion of pollutants, or motion of dispersed particles in wa-
ter and in the atmosphere (Eames, 2008; Ruiz et al., 2004; Rosa
et al., 2013). Turbulent transport is also a driving mechanism in
many technological processes in industry (Brennen, 2009; Crowe
et al.,, 2015), including the fields of power generation or process
engineering. Examples of these are: efficient combustion of pulver-
ized coal in boilers, removal of particulate matter from flue gases,
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pneumatic transport in pipelines, combustion of liquid fuel in en-
gines or large scale boilers, spraying of fertilizers and plant protec-
tion agents.

It is worth noting that detailed knowledge of the mechanism
of turbulence-particle interactions has numerous applications in
meteorology. These include: modeling of sandstorms, volcanic ash
transport and precipitation formation from cloud droplets and ice
crystals. Investigation of the size-broadening and growth of cloud
droplets in a turbulent environment is crucial for quantifying rain
initiation and rain amount in warm clouds (Lau and Wu, 2003).

In this study the focus is on modeling systems akin to clouds
with similar or larger liquid water content. Accurate description of
the droplet collision-coalescence and precipitation formation is es-
sential for reliable weather and climate predictions on Earth. These
processes cannot be fully resolved in Numerical Weather Prediction
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Table 1

Time averaged statistics (in spectral units) of the particle-free turbulent
flows. The simulations (from A to F) have been performed using different
numerical viscosities.

A B C D E F
v.100 28 35 45 6.0 8.0 10
0.21 0.21 0.19 0.18 0.17 0.15
' 0.87 0.86 0.85 0.83 0.82 0.79
R, 121 107 95 82 70 62
n-102 1.0 2.14 2.62 3.30 415 5.06
T,-10  1.16 1.30 1.52 1.82 2.16 2.57
L 1.49 1.51 1.55 1.60 1.65 1.73
A-10  3.90 436 5.01 5.88 6.82 7.85
T, 3.62 3.63 3.73 3.84 3.88 411
S -0474 -0475 -0469 -0441 -0425 -0.424
F 517 512 5.03 4.79 457 4.44
kmacn 113 133 1.64 2.05 2.60 3.16

(NWP) simulations because their characteristic length scales are
significantly smaller than those defining large-scale atmospheric
flows. The detailed examination of the cloud microphysical pro-
cesses is a necessary step in the development of more accurate
parameterizations for NWP models.

Due to their practical importance, the cloud microphysical pro-
cesses have been extensively investigated. Most previous numeri-
cal studies were based on point-particle approximation and one-
way momentum coupling, for example (Rosa et al., 2016; Parishani
et al,, 2015). This simplified approach is adequate only for dilute
systems with low mass loading, i.e. when the concentration of the
disperse phase in a flow is small, with the volume fraction below
106, see (Elghobashi, 1994). For such suspensions, the particles do
not affect the motion of the continuous phase. For larger concen-
trations (mass loading), the effect of the turbulence modulation by
particles becomes important.

The goal of the present study is to investigate the impact of
droplet mass loading on turbulent flows and collision statistics un-
der conditions similar to the atmospheric clouds. To model the
cloud processes, we use the standard Eulerian-Lagrangian approach
along with the point-particle approximation. The method com-
bines fully resolved DNS of turbulent flow with the Lagrangian
tracking of individual droplets. The key element of novelty of the
present study is the inclusion of two-way momentum coupling ef-
fects (mutual interaction between the flow and particles) and grav-
ity. We point out that the radii of considered droplets are at least
one order of magnitude smaller than the grid spacing of compu-
tational meshes used for modeling ambient turbulent flow (see
Table 2). This implies that in one computational cell there may
be a large number of droplets. Therefore, the numerical method
is suitable to represent only the bulk effect of the droplets on the
background flow. It is important to note that in simulations un-
der two-way coupling the interaction force between widely sepa-
rated particles is partially represented. In the case of slowly ap-
proaching particles, the interaction effect results from modula-
tion of the background turbulent flow. The fine structures of the
flow between nearly touching droplets are not captured because
in the point-particle approximation the flow around the individual
droplets is not resolved. The size of the droplets is considered im-
plicitly when computing the coupling force between droplets and
turbulent air (Akiki et al., 2017). On the other hand, the size of
the particles is treated explicitly for detecting collisions between
droplets. In this study, we are only interested in geometric col-
lisions without considering local droplet-droplet aerodynamic in-
teractions and surface-surface contact forces. Namely, droplets are
allowed to overlap at the beginning of a time step and are not re-
moved from the system after collision. This is the first step and
other quantities can be modeled separately as the collision effi-

Table 2

Basic characteristics of particles of radii a with respect to turbulent
scales. The estimates are based on two different turbulent flows A
and C (see Table 1) at zero mass loading. 7. is the ratio of the lon-
gitudinal integral length scale to the rms fluctuating velocity. The
Froude number Fr =St S} is defined as the ratio of particle re-
sponse time to the residence time of the particles in a Kolmogorov
eddy. In all cases the energy dissipation rate was set £=400 cm?/s3.

a [pm] 20 30 40 50 60
St 0.25 0.57 1.01 1.58 2.28
Sv 1.78 4.01 7.14 11.15 16.06
Fr 0.81 9.22 51.79 197.57 589.95
nla 29.6 19.7 14.8 11.8 9.9
Estimates based on Flow A (Table 1)
7p/Te x 107 0.81 1.83 3.25 5.08 7.31
TplTe 0.017 0.038 0.068 0.107 0.154
Vrlu' 0.32 0.72 1.28 2.00 2.88
Ax[a 80.6 53.8 40.3 323 26.9
Estimates based on Flow C (Table 1)
Tp[Te % 102 1.04 2.33 4.14 6.47 9.32
TplTe 0.021 0.048 0.085 0.133 0.191
Vrlu' 0.36 0.81 1.44 2.26 3.25
Ax[a 55.5 37.0 27.8 22.2 18.5

ciency and coalescence efficiency (Wang et al., 2005). Unlike solid
particles where the effect of material elasticity has to be consid-
ered (Goswami and Kumaran, 2010a, 2010b, 2011), the coalescence
efficiency of small liquid droplets is relatively easy to handle due
to the effect of the strong van der Waals force.

Most of the simulations in the present study have been
performed assuming the ambient energy dissipation rate € =
400 cm?/s3. This value is representative for moderate to strong
convection in clouds. In Section 7 we also analyze several simu-
lations performed at lower values of €. Our simulations are limited
to monodisperse systems, i.e. all particles in domain have the same
size. We demonstrate that the turbulence modulation by settling
droplets significantly affects their radial relative velocity and con-
sequently alters the collision rate. This important effect should be
parameterized in future numerical weather prediction models.

2. Related studies

There are several studies aimed at quantifying the effects of
two-way momentum coupling on turbulence modulation and dy-
namics of inertial particles. The first rigorous numerical simula-
tions were performed by Squires and Eaton (1990). Due to com-
putational constraints, their DNS of stationary isotropic turbulence
were limited to relatively coarse grid resolutions (meshes with 323
and 643 nodes) and, consequently, low Taylor microscale Reynolds
numbers (R; < 38). Considered systems were dilute (low volume
fraction) but the particle mass loading was substantial (varied from
0.1 to 1) to have a significant impact on the turbulent flow. The
particle inertia, in terms of 7,/t., was relatively large and varied
from 0.075 to 1.5 (see Table 2 for comparison with the present
study). Here, 7, is the Stokes inertial response time of the parti-
cle, while 7, is the ratio of the longitudinal integral length scale
Ls to the rms fluctuating turbulence velocity v’. In that pioneering
work, the gravitational settling of the particles was not considered.

Several important conclusions result from that study. First, at-
tenuation of the turbulent kinetic energy depends on the mass
loading but is weakly sensitive to the particle response time. Sec-
ond, the energy and dissipation spectra in two-way coupled flows
are larger at higher wave numbers and increase with the particle
mass loading. It is worth noting that this effect was observed only
in simulations performed on the mesh with 643 grid nodes. Third,
the turbulent flow is modulated more homogeneously by particles
of larger inertia. This is a natural consequence of more uniform
spatial distribution of large-inertia particles.
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The results of Squires and Eaton (1990) were confirmed and ex-
tended in a follow-up study by Elghobashi and Truesdell (1993).
The succeeding DNS were performed at larger mesh size 963 with
particles of inertia St = O(1). Here, the Stokes number is defined
as St =1p/t¢, where 7y is the Kolmogorov time scale. In con-
trast to the previous study, the new simulations were limited
to decaying turbulence, but the gravitational acceleration was in-
cluded in the particle equation of motion. Elghobashi and Trues-
dell (1993) claimed that the increase of energy (at high wave num-
bers) is the effect of the larger viscous dissipation rate. The in-
crease in dissipation rate results in an increase in the rate of en-
ergy transfer from the large-scale motion. They also observed that
gravity changes the mechanism of the momentum transfer. The
settling particles transfer their momentum to the small-scale mo-
tion in a non-isotropic manner. The effect of anisotropy is miti-
gated by the redistribution of energy (at the same wavenumber)
by pressure-strain correlation.

Boivin et al.,, 1998 extended the conclusions formulated by
Elghobashi and Truesdell (1993) and Squires and Eaton (1990).
Their study focused on quantifying the effects of Stokes number
(St =1.26, 4.49 and 11.38) on turbulence modulation. Turbulence
was simulated using DNS on mesh with 963 nodes (R = 62).
The particle equation of motion did not include the gravitational
term. Boivin et al., 1998 showed that viscous dissipation in the
fluid decreases with increasing mass fraction and is larger for par-
ticles with smaller inertia.

In a subsequent study, Sundaram and Collins (1999) analyzed
different mechanisms responsible for energy exchange between
continuous and dispersed phases. Their DNS were performed for
decaying turbulence on a uniform mesh with 1283 nodes. The
number of tracked particles reached 643. Particle gravitational set-
tling was neglected. Interestingly, the numerical model included
the effects of particle collision. The collisions were treated as elas-
tic or momentum and energy conserving. They claimed that in the
absence of gravity (and other source terms), particles reduce the
turbulent kinetic energy of the fluid by increasing the viscous and
drag dissipation. Moreover, in simulations with two-way coupling
the particle velocities remained correlated at longer distances.

Vermorel et al. (2003) used DNS to investigate the turbulence
modulation in a particle laden slab flow. The inertial particles
were injected at high velocity into a cube with freely decaying
isotropic turbulence. Transfer of momentum from the particles re-
sulted in strong fluid acceleration in the slab region. At the bor-
ders of the slab turbulence was enhanced due to the production
by mean fluid velocity gradients. The opposite effect was observed
in the slab core, namely the turbulence was suppressed by par-
ticles. Their study was limited to relatively low initial Reynolds
number, ie. R =35 (mesh size 1283). Gravity forces were ne-
glected due to large relative velocity of the particles and short du-
ration of the simulations. Although valuable per se as a numerical
experiment on droplets in turbulence, the geometrical configura-
tion of the problem considered there is not closely related to the
problem of cloud microphysics.

Bosse et al. (2006) examined the effect of the two-way momen-
tum coupling on the settling rate of the disperse phase in station-
ary homogeneous isotropic turbulence. They found that particles
exert a collective force on the carrier fluid, especially in regions of
high concentration, causing local fluid acceleration in the direction
aligned with gravity. The enhanced downward fluid motion leads
to larger settling velocity in these regions, thus increasing the over-
all mean particle settling velocity. This study was limited to low
Taylor microscale Reynolds number ( ~ 40).

In a recent study, Monchaux and Dejoan (2017) performed a
similar two-way coupled DNS at R, =40 on 643 grid. Their nu-
merical results were in good agreement with the experiments of
Aliseda et al. (2002). They confirmed earlier observations that the

settling velocity increases with increasing volume fraction and lo-
cal concentration. They also considered the impact of two-way
coupling on the particle preferential concentration. It has been
shown that clustering of small inertia particles is weaker for larger
volume fraction and larger gravity. A reverse tendency is observed
for large inertia particles. This behavior is related to an attenuation
of the centrifuge effects and to an increase of particle accumulation
along the gravity direction.

The simulations described above have been performed under
the point-particle assumption. As for the fully resolved simulations
of turbulence with finite-size particles, the two-way momentum
coupling is automatically accounted for there. Yet, due to high nu-
merical complexity, such studies have become possible only in re-
cent years (Garcia-Villalba et al., 2012; Hui et al,, 2013; Maxey,
2017; Peng et al.,, 2019). With nowadays computational resources
it is feasible to simulate systems with up to O(10°) particles.

Most previous studies were focused mainly on investigating the
effect of two-way momentum coupling on the continuous phase.
In the present work we address the collision statistics of the dis-
persed phase. In Section 3 we describe the essentials of the nu-
merical method. Detailed characteristics of the turbulent flows are
presented in Section 4. A thorough analysis of the impact of parti-
cles on turbulence modulation is provided in Section 5. The two-
point statistics from the DNS are discussed in Section 6. The results
include sensitivity of the radial distribution function, radial rela-
tive velocity and collision kernel to the droplet mass loading. In
Section 7 we briefly address the effect of energy dissipation rate
on kinematic collision statistics. Section 8 contains a summary and
main conclusions.

3. The numerical method

To simulate homogeneous isotropic turbulence a standard
pseudo-spectral method (Orszag and Patterson, 1972) was used. In
the method, the Navier-Stokes (N-S) equations are solved on a 3D
uniform mesh with N equally spaced grid points in each spatial di-
rection. The flow domain is a cube with size 2. Periodic boundary
conditions are naturally imposed which is consistent with the 3D
discrete Fourier transform applied to the fluid velocity field. The
fluid velocity U is found from numerical integration of the N-S
equation in rotational form

au P 1

- _V(—-+= 2) 2 (p)

o = Uxo <p+2U +VV2U LX) + (1)
for an incompressible fluid satisfying the continuity equation:
V.U(x,t) =0. (2)

Here w = V x U is the vorticity, P is the pressure, p is fluid
density and v is fluid kinematic viscosity. To obtain statistically
stationary turbulence, we used a spectral forcing scheme simi-
lar to that of Sullivan et al. (1994). The forcing term f(x, t) is
nonzero only for a few low wavenumber modes (|k| < 2.5) in
the Fourier space. The energy of the first two wavenumber shells
(0.5 < |k|] < 1.5 and 1.5 < |Kk| < 2.5) is specified to be a constant.
The values of energy in these shells are preset so that their ra-
tio satisfies k=3/3 energy spectrum, accounting for the number of
modes forced in each shell volume. A total number of 80 modes
are forced in this scheme.

The last term ) in Eq. 1 refers to the cumulative force per
unit mass exerted by particles (see Eq. (5) below) on the fluid, as
detailed in (Ireland and Desjardins, 2017; Kasbaoui et al., 2019)

Nc i _vyi
P (x, t) = —% > omj, Uy, -vie t)r b2 +g)5(x-Y)
i=1 p
 m D) <U(x, t) —inx, t) +VET(X)> 3)
p
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Fig. 1. Schemes of two different approaches for computing mean interphase momentum transfer (as in Garg et al., 2007). (a) Particles in cell (PIC) - momentum at grid
node 1 is modulated by the motion of all particles located in the square area (or cube in 3D) bounded by a dashed line. Typically, size of the square/cube corresponds to
size of grid box. (b) Projection onto neighboring nodes (PNN) - contribution of the particle momentum to the fluid momentum at a grid node depends on the separation
distance (particle - node), as for example in Elghobashi and Truesdell (1993). Alternatively, the particle force is projected onto neighboring nodes using weights which are
proportional to cell volumes (Squires and Eaton, 1990). For example, the fluid flow at grid node 1 is affected by a fraction of the particle Stokes drag proportional to the area

with marker 1.

where § is the Dirac delta (suitably mollified in computations), ¢,
is the local mass loading, V(x,t) is the Eulerian particle velocity
at the location x and in the absence of gravity. Consistently, V(x)
is the particle terminal velocity defined at nodes of the regular
mesh. In numerical simulation V(x,t) can be computed directly
from the Lagrangian particle velocities

N¢
Vex.0) =Y Vi)o (| x - x|
i=1

where o is an interpolation kernel (Kasbaoui et al., 2019) whose
width is equal to the grid spacing. The same method can be
used to determine Vbi'T(x). Parameter M is a weighting factor
(Elghobashi, 1994) defined as the ratio of N;/N.. Here, N, and N,
represent the number of real and computational particles, respec-
tively. Simulations with M > 1 are based on an assumption in
which one super-particle (computational particle or parcel) rep-
resents a distribution of several smaller (real) particles. This ap-
proach allows to reduce the computational cost of simulations with
a prohibitively large number of particles, in particular at large mass
loadings. The force term f(P) in the simplified approach is evaluated
for all computational particles and multiplied by the parameter M.
As noted in (Garg et al., 2009), the average momentum transfer
from particles to the fluid, in traditional Eulerian/Lagrangian sim-
ulations with M # 1, strictly depends on the grid resolution. The
numerical error associated with the mean interphase momentum
transfer increases with the grid refinement. Moreover, the error is
non-uniform in space and depends indirectly on the particle iner-
tia. The remedy proposed by (Garg et al., 2009) consists in updat-
ing (in time) the statistical weight in a way that the number den-
sity of computational particles remains nearly uniform. Although
the method yields a numerically convergent solution in terms of
mean momentum transfer, the consequences of particles annihila-
tion and cloning on the collision statistics have not been explored
in detail. Therefore, most simulations presented in this study were
performed for M = 1. Simulations with M > 1 were necessary to
address the problem of turbulence modulation at large mass load-
ings, but in these simulations, we tried to keep the parameter M
possibly close to unity.

The Navier-Stokes equations have to be solved together with the
particle equation of motion (Maxey and Riley, 1983)

avi(r) Vi(t) —U(Y'(¢).t)
dt T t8

(4)

= —f(Rep) (5)

p
dyi(t)

a VO

(6)

where i is the particle number, 7, is the Stokes inertial response
time, Vi(t) is actual particle velocity, U(Yi(t), t) denotes the fluid
velocity at the particle location Yi(t) and g is the gravitational ac-
celeration. Rep = 2aV,,/v is the particle Reynolds number, where
Ve is the particle-fluid relative velocity; f is the drag correction
factor (beyond the Stokes regime) which in this study was set to
f=1

To incorporate the effect of the particle motion on the back-
ground turbulent flow, the coupling force f?) needs to be com-
puted at every time instant. It should be noted, however, that
adding this coupling term to the momentum equation (Eq. 1) may
have an indirect effect on the continuity equation. As a result, the
fluid velocity field will not be divergent free. However, accord-
ing to Elghobashi and Truesdell (1993), this undesirable effect can
be safely neglected if the volume fraction of the particles is rela-
tively low. Let us notice that Pakseresht and Apte (2019) proposed
an update to the map of particle-turbulence interaction regimes
(Elghobashi, 1994), extending it with the volumetric two-way cou-
pling. They found that the so-called volumetric displacement ef-
fects in the governing equations of the carrier phase become sig-
nificant for the volume fractions above 5%. In the vast majority
of simulations performed in the present study the volume frac-
tion did not exceed 10-3. Hence, it can be safely taken that the
continuity equation is practically unchanged by the presence of
droplets. In the pseudo-spectral code, the divergence of fluid ve-
locity is maintained to be zero by projecting the velocity vector
on the plane normal to k, at every time step. The second prob-
lem concerns the non-zero mean fluid velocity in simulations with
settling particles. This undesirable effect may lead to instability of
computations. Therefore, we apply a procedure to fix the mean
flow velocity. In the Fourier space the mean flow is represented
by the mode at |k| = 0. We set the amplitude for this mean flow
mode to zero. Essentially, this amounts to applying a vertical pres-
sure gradient to counter-balance the weight of the solid particles.
In case of simulations with a large number of settling particles, es-
pecially those of high inertia, an important question arises about
the loss of energy due to this filtering (high-pass). We evaluated
the energy losses based on a simulation with 8 million settling
droplets of radii 50 pm. The effect of filtering is very small, and
the energy loss, at every time step, is of the order of ©(10-7) of
the total kinetic energy. In reality, the potential energy loss is com-
pensated by the work associated with the applied vertical pressure
gradient.

To integrate in time the N-S equation, the coupling force f(P)
must be evaluated at all grid nodes of the regular mesh. All
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droplets that are in the vicinity of a given grid node contribute
to fP). The carrier fluid around each droplet is not resolved be-
cause the size of the considered droplets is much smaller than
the grid spacing. This implies that the coupling force evaluated at
the grid node is a function of the local volume-averaged pertur-
bation velocity generated by droplets. According to 3rd Newton’s
law, the force exerted by particles on the fluid is opposite to the
drag exerted on the particles by the fluid. Here comes a concep-
tual problem, as the forces acting on the particles are known at
the particles’ locations only. Under the point-particle assumption,
the force is zero everywhere except for a delta function at the lo-
cation of each particle. Thus, for the purpose of practical compu-
tations, it is necessary to introduce a mollified | regularized delta
function instead, see Eq. 4. In other words, the corresponding com-
ponents of fiP) need to be projected/interpolated from particle lo-
cations to the nodes of the regular mesh. Typically, the contribu-
tion to fiP) is restricted to the neighboring particles. In applica-
tions where the size of the particles is much smaller than both
the grid spacing and the Kolmogorov length such simplification is
justified. There are several approaches in the literature (Garg et al.,
2007) to compute the source term f{P). The most common are: (1)
the particle-in-cell, (2) the projection onto neighboring nodes, and
(3) the projection onto identical stencil. In this study, we tested
two of the methods, namely, particle-in-cell (PIC) and projection
onto neighboring node (PNN), see Fig 1. In the PIC approach, the
coupling force is computed as the summation of forces exerted
on the fluid by each particle in the control volume surrounding
a grid node. In other words, the interpolation kernel o has a uni-
form top-hat shape. The PNN method takes into account separa-
tion distance between the grid node and the nearby particle. Thus,
o is a standard bi- or tri-linear function. In the present study the
weights were computed based on the cell volume partition, see
Fig. 1b.

To integrate the equation of motion, Eq. 5, the Stokes drag force
needs to be evaluated for every particle and at every time step.
In the numerical (Eulerian-Lagrangian) approach the drag force is
proportional to the difference between the actual particle veloc-
ity and the fluid velocity at the particle location. Since the fluid
velocity is solved on a regular grid and has discrete representa-
tion, another interpolation method is needed to evaluate its value
exactly at the particle location. In all simulations performed in
the present study the standard 6-point Lagrangian interpolation
scheme in each direction was employed (Ayala et al., 2014). This
method has been extensively and successfully used in many ear-
lier studies concerning modeling of two-phase flows under one-
way momentum coupling. Recently, several alternative methods for
computing particle drag have been developed. Ireland and Des-
jardins (2017) proposed an improved formulations of the drag
that provide accurate and grid-independent predictions of parti-
cle settling in two-way coupled flows at low particle Reynolds
numbers. In turn, Akiki et al. (2017) extended the point-particle
model in a way that the drag force includes also effects of hy-
drodynamic interactions between neighboring particles. In another
study, Horwitz and Mani (2016) showed that in two-way cou-
pled point-particle simulations the Stokes drag acting on the par-
ticle may be underestimated if evaluated based on the disturbed
fluid velocity (disturbed by the particle itself and all neighbor-
ing particles). To predict the Stokes drag more accurately a new
method was proposed that allows to estimate the undisturbed
fluid velocity from the neighboring disturbed fluid velocity infor-
mation. This improved method was tested and analyzed in the fol-
low up study by Horwitz and Mani (2018). The important conclu-
sion resulting from these analyses is that the correction to the
drag force is required if 2a/n > 101 (see the regime diagram,
Fig. 10 therein). In all simulations performed in the present study
the droplet radii were much smaller than the Kolmogorov length

Table 3

Correspondence between the number of particles/droplets and the
mass fraction in turbulent flows of different statistical characteris-
tics. The estimates are based on data listed in Table 1. Five differ-
ent droplet sizes were considered, i.e. radii from 20 to 60 pm. The
energy dissipation rate was assumed to be & = 400 cm?/s3.

Particle mass loading

# particles Estimates for Flow A (Table 1)

in millions 20pum 30pm 40pm 50 pm 60 pm
1 0.004 0.013 0.030 0.060 0.103
2 0.008 0.026 0.061 0.119 0.206
3 0.011 0.039 0.091 0.179 0.309
4 0.015 0.051 0.122 0.238 0.412
5 0.019 0.064 0.152 0.298 0.514
6 0.023 0.077 0.183 0.357 0.617
7 0.027 0.090 0.213 0417 0.720
8 0.030 0.103 0.244 0.476 0.823

Estimates for Flow C (Table 1)

1 0.012 0.039 0.093 0.182 0.315
2 0.023 0.079 0.187 0.365 0.631
3 0.035 0.118 0.280 0.547 0.946
4 0.047 0.158 0.374 0.730 1.261
5 0.058 0.197 0.467 0.912 1.576
6 0.070 0.236 0.560 1.095 1.892
7 0.082 0.276 0.654 1.277 2.207
8 0.093 0315 0.747 1.460 2.522

scale, so according to Horwitz and Mani (2018) the correction is
not required. Nevertheless, this aspect is worth checking in future
studies.

It is important to note that the PIC/PNN methods and the 6-
point Lagrangian method differ in the size of the stencil. That
one for PIC /| PNN methods is 6 times smaller in each direction.
Therefore, the question arises about accuracy of these two methods
and consequences of spatial discretization. This problem was thor-
oughly examined by Sundaram and Collins (1996). They derived
the analytical formula for the maximum error associated with in-
consistent interpolations. Based on the formula and numerical tests
they recommended to use the same high order method for forward
and backward interpolations. However, in realistic simulations the
numerical error depends mainly on the velocity fluctuations at fine
scales. Therefore, it can be assumed that if the velocity gradients of
the flow are small (flow cases with higher viscosities, see Table 1)
the order of interpolation is of secondary importance. In Appendix
we show that the statistics computed using the PIC and PNN meth-
ods are in good quantitative agreement.

To perform the two-way coupled simulations a massively par-
allel application was employed. The MPI code was designed to run
on supercomputers with distributed memory. A complete descrip-
tion of the code, along with results of former numerical experi-
ments and scalability analysis can be found in (Ayala et al., 2014;
Parishani et al., 2015; Rosa et al., 2015). The two-point particle col-
lision statistics such as the radial distribution function and radial
relative velocity are handled using a specially designed parallel al-
gorithm with optimized data communication between processes.
The algorithm employs the cell-index method and the linked lists
concept (Allen and Tildesley, 1987) for efficient detection of closely
spaced particles.

In simulations with M =1 the particle collisions are computed
in a deterministic way, that means all collisions between individ-
ual particles are treated explicitly. This method cannot be applied
when M > 1 because collisions of two parcels of particles may
bring M or even more (self-collisions of droplets within a parcel)
realistic collisions. The problem of the collision detection has been
analyzed in several previous studies. In terms of numerical perfor-
mance, the most promising are methods based on the stochastic
approach e.g. (Sommerfeld, 2001; O'Rourke et al., 2009). However,
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Fig. 2. Energy spectra of turbulent flows simulated using DNS at different parame-
ters of viscosity (marked with different colors of lines). Solid lines - simulations un-
der one-way momentum coupling. Dashed lines - simulations with particles (40 pm
droplets) and two-way momentum coupling. (a) Simulations with non-settling par-
ticles, (b) effect of gravitational settling included. In each simulation under two-way
coupling the particle mass loading was fixed and equal to &,,=0.24.

the number of assumptions and parametrizations of different phys-
ical processes in these models question their accuracy. Recently,
(Johnson, 2019) proposed a novel deterministic method to address
particle-particle collisions when M # 1. The method involves ar-
tificially enhancing the collisional radius depending on the iner-
tia of the tracked particles. For two extreme cases, i.e. low inertia
particles (t, — 0) and high inertia particles (tp — oo) the colli-
sional radius should be increased to ¥/M(2a) and ~/M(2a) corre-
spondingly. This approach has potential to be used in simulations
in large computational domains (grids). It should be added, how-
ever, that the method has been developed neglecting two-way mo-
mentum coupling effects.
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Fig. 3. Normalized energy spectra of turbulent flows; consistently with Fig. 2.

Since the currently available methods do not guarantee the re-
quired accuracy, the collision statistics of the systems at larger
mass loading have been evaluated only coarsely. To reduce the
statistical error, we carried out simulations with possibly large
number of computational droplets. In Section 6 we show that the
statistics computed using the approximate method, at low mass
loading, are in quantitative agreement with the statistics evaluated
using the exact method. In simulations with larger mass loading
we observe some discrepancies, but their absolute value is rela-
tively small. This positive effect may be due to the weaker clus-
tering (more uniform distribution) of particles in two-way coupled
systems.

4. Results on flow statistics

In turbulent clouds the transfer of momentum from micro-
droplets to the air occurs mainly at fine turbulent scales and
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Fig. 4. The normalized energy spectra of turbulent flows with droplets of radii 30 pm (plots a and ¢) and 40 pum (plots b and d). Solid lines: results from simulations
performed under two-way coupling with different mass loading (the number of droplets varied from 1 million to 8 millions). The energy spectrum from the simulation
under 1-way momentum coupling is plotted (using black dashed line) for comparison. Plots (a) and (b): simulations without gravity, (c) and (d): simulations with gravity.
(e) is the average energy dissipation rate in the whole computational domain, computed in DNS without droplets.

is largely limited to the dissipation range of the energy spectra.
This can be explained by the fact that the characteristic length
scale of droplet (e.g., the radius) is much smaller than the Kol-
mogorov length scale, namely a « 7. In DNS of turbulent flows
n is typically smaller or equal to the grid spacing Ax (that de-
pends on viscosity, see Table 2). Based on this dimensional anal-
ysis, we confirm that the numerical approach in which the cou-
pling force is projected on the nearest grid nodes only, is accurate
enough for modeling the cloud processes. Although the character-
istic length scale of the momentum transfer is relatively small, the
effect of two-way coupling may be important also on dynamics
of the systems at larger scales, corresponding for example to the
integral length scale. This stems from the fact that the disperse
phase alters the energy cascade. The transfer of kinetic energy
among different scales depends on non-trivial triadic interaction
of wave numbers. According to Ferrante and Elghobashi (2003) the
spectral nonlinear energy-transfer rate to wave number k is

given

Tl = Y kPja0s] Y a;)a k- K)a; (k)

k<|k|<k+1 Kk

(7)

where P; is the projection tensor and 3 stands for the imagi-
nary part. The superscripts “~”and “*” denote, correspondingly, the
Fourier transform and the complex conjugate.

In that regard, it is important to investigate how the mecha-
nism of momentum transfer between droplets and small-scale vor-
tical structures affects the dynamics of the system in the entire
range of energy spectra. A typical measure of flow resolution (in
terms of small-scale structures) in pseudo-spectral DNS is the pa-
rameter kmax?). The parameter must be greater than unity for fine
scales to be resolved. Here kmax is the maximum wave number
of computations. In all DNS analyzed in the present study kmax =
int(N/2 — 1.5) was fixed and equal to 62.
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Fig. 5. Three-dimensional normalized dissipation spectra; consistently with Fig. 4.

The main factor that determines the flow resolution (kmax7) is
fluid viscosity. To quantify this mutual relation six consecutive sim-
ulations of homogeneous isotropic turbulence, each with a differ-
ent value of viscosity, have been performed. The basic parameters
and flow statistics at the stationary stage of these flows (with-
out particles) are listed in Table 1. In addition to above men-
tioned quantities, Table 1 contains: the energy dissipation rate &,
the r.m.s. fluctuating velocity u’, the Taylor microscale Reynolds
number R; = u’A/v, the integral length scale L, the transverse Tay-
lor microscale A, the eddy turnover time Te, the skewness S and
flatness F of the fluid velocity gradient.

The data in Table 1 reveal the strict dependence between the
resolution parameter (kmaxn) and the numerical viscosity. As ex-
pected, larger viscous dissipation causes stronger suppression of
small-scale motions. This effect can be quantified in terms of
characteristic scales of the turbulent flow. Both the Kolmogorov
length scale and the time scale increase for the increasing vis-
cosity. Since the size of the computational domain is fixed (27
in DNS units), larger Kolmogorov scales result in narrower energy
spectra and consequently lower Reynolds numbers. It should be

noted that for numerical modeling of cloud processes, the effect of
Reynolds number may be important (Rosa et al., 2013), especially
for droplets with larger inertia. Dynamics of small-size droplets
is dominated mainly by fine turbulent structures. In atmospheric
clouds R, is of the order of 10* and such value is a few orders
of magnitude larger than in DNS ( ~ 102). Due to computational
cost, achieving such high Reynolds numbers in simulations is not
feasible. To maximize R, in DNS it is necessary to reduce the vis-
cosity parameter to a value that allows to maintain the stability
of the numerical method. From this perspective, it is justified to
keep kmax?n close to unity. On the other hand, kmaxn ~ 1 results
in large velocity gradients at small spatial scales. This in turn may
have negative impact on the accuracy of the interpolation in PIC
and PNN schemes. Therefore, in most of the simulations we used
Flow C (see Table 1), for which kmaxn = 1.64. In order to assess
the accuracy of the interpolation methods (i.e. PIC and PNN) an
additional set of two-way coupled simulations was performed at
maximal value of R, = 121. Results from these simulations are pre-
sented in Appendix. We conclude that even at the highest R;, both
series of results are in good quantitative agreement.
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Fig. 6. The normalized energy and dissipation spectra of turbulent flows from simulations under two-way momentum coupling. The simulations were peformed for different
droplet radii (20-50 pm) but at fixed mass loading (®,,=0.1). Plots (a) and (b) - results for nonsettling droplets. Correspondingly, plots (c) and (d) - results from simulations

with gravity. Black dashed lines represent spectra of particle-free flow.

5. Impact of particles on turbulence modulation

Motion of inertial particles in turbulent flow alters the energy
transfer between different flow scales and thus affects the dynam-
ics of the entire system. Because the dynamical features of the car-
rier fluid have a major impact on the collision statistics of the dis-
perse phase, it is important to gain a closer insight into the sta-
tistical properties of the modeled flows. To quantify the strength
of turbulence modulation by the droplets in two-way coupled sys-
tems a number of simulations have been carried out. The radii of
tracked droplets varied between 20 and 60 pm. Basic properties of
the droplets are specified in Table 2. For converting physical units
to spectral units, the kinematic viscosity was assumed equal to
0.17 cm?/s. The initial conditions in each DNS were set based on
the energy dissipation rate from Table 1. It should be noted that
in simulations under two-way momentum coupling € may depend
on the particle mass loading. The parameter Sy is defined as the
ratio of particle still-fluid terminal velocity to the Kolmogorov ve-

locity. Further, Table 3 contains data showing the mutual relation
between the number of droplets, their radii, and mass loading for
flows modeled with two different parameters of viscosity, corre-
sponding to flow cases A and C. As it transpires from Table 3, in
all considered cases the mass loading of the droplets does not ex-
ceed 2.5. Equivalently, the maximal volume fraction of the water
droplets is of the order of 1%. Therefore, we may assume that for
most of the time particles remain far apart, so that including the
exact representation of aerodynamic interactions (so-called four-
way coupling) among them is not necessary. An important part
of this analysis concerns gravitational effects. We address the role
of gravitational settling by comparing results of simulations per-
formed with and without gravity.

The first series of simulations was performed using different
values of the kinematic viscosity, and identical liquid water con-
tent (®,,=0.24). The weighting factor was set to M = 1. It is worth
recalling that different viscosities in DNS yield different values of
Kolmogorov scales (see Table 1). This, in turn, results in different
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Fig. 7. Distributions of droplets of radii (a) 20 pm, (b) 30 pum, (c) 40 um, and (d) 50 um and the second invariant of the velocity gradient tensor in a two-dimensional
cross-section of the computational domain. Color indicates the field of II- in DNS units. Black dots show location of all particles from two grid cell layers adjacent to the Il
plane. All results have been obtained in simulations with 8 million droplets and without gravity.

size of computational domains in physical units. The reason for
that is the translation of DNS units to physical units by matching
the Kolmogorov scales (length and time). Since the actual domain
size is different in each simulation the number of droplets must be
suitably adjusted to obtain the same mass loading.

Fig. 2 shows the energy spectra of turbulent flows computed in
simulations at four different values of viscosity (marked with dif-
ferent line colors). As expected, the energy decreases with viscos-
ity at wavenumbers greater than 2, but with Kolmogorov scaling
(E/({€)v>)114), all the spectra collapse to one curve (see Fig. 3). Re-
sults from DNS at zero mass loading, i.e. simulations without dis-
persed phase, are plotted using solid lines. Dashed lines represent
the energy spectra of flows modulated by droplets. The systems
are monodisperse, which means that all droplets have the same
size (a= 40 pm). Two panels (a) and (b) correspond to simulations
without and with gravity. The data were collected during the sta-

tistically stationary stage, i.e. after at least 10T, and then averaged
over time.

Several important conclusions emerge from Figs. 2 and 3. The
kinetic energy at two lowest wavenumbers is identical in all sim-
ulations and does not depend on droplets mass loading or grav-
ity. These values were preset in the algorithm for enforcing tur-
bulent flow. As explained in Section 3, the energy is supplied to
the system at every time step to maintain constant level of ki-
netic energy at two first wavenumber shells. At higher wavenum-
bers the amount of energy largely depends on gravity. For non-
settling droplets a noticeable reduction of the kinetic energy oc-
curs in the range of intermediate wavenumbers and enhancement
is seen at high wavenumbers. The suppression of kinetic energy
is a consequence of larger effective dissipation, while the increase
is a combined effect of the larger viscous dissipation (at smaller
scales) and transfer of momentum from the droplets to the fluid.
Such phenomenon was observed in several previous studies, e.g.
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Fig. 8. As in Fig. 7 but with gravitational settling. Gravity is pointed down and aligned vertically. The data show the flow structure and droplet locations at the end of

simulations.

(Squires and Eaton, 1990; Elghobashi and Truesdell, 1993; Bosse
et al., 2006) and is known as “pivoting”.

Interestingly, for very small viscosity, the enhancement of en-
ergy at very high wavenumbers is not observed. It should be
pointed out, however, that for this particular case the level of ki-
netic energy of the particle-free turbulent flow is larger than in
other simulations. This observation may be a hint to understand
why Squires and Eaton (1990) noticed the augmentation of the ki-
netic energy only in simulations at mesh 643 but not at coarser
mesh 323. The authors hypothesized that this may be related to
the Reynolds number. In the light of new results this inconsistency
can be explained as a peculiar effect of different settings of viscos-
ity.

The energy spectra are significantly different if the gravitational
settling is considered. In such a case, a large increase of kinetic
energy takes place for both medium and high wavenumbers. This
increase is due to larger transfer of momentum from particles to
the fluid. Furthermore, the settling droplets induce larger velocity

gradients in the fluid and thus act as an additional mechanism for
enforcing turbulence. It is worth noting that in simulations with
gravity, the amount of kinetic energy in the shell corresponding
to k =3 is slightly greater than that at k=2. In this configuration,
the forcing scheme acts as an absorber, which reduces the kinetic
energy at larger turbulent scales.

To quantify the effect of turbulence modulation at different
mass loadings, an additional set of simulations has been per-
formed. For all these runs we used identical settings for the fluid
(i.e. flow C, see Table 1), while the number of droplets varied
from 1 to 8 millions (consistently M = 1). Since the particle inertia
has significant impact on the preferential concentration and con-
sequently turbulence modulation, the simulations were performed
for different droplet sizes. The quantitative analysis of the obtained
results is based on comparison of both the energy and dissipation
spectra.

Fig. 4 shows the normalized energy spectra of turbulent flows
modulated by droplets of radii 30 pm and 40 pm. The simulations
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Fig. 9. Same as in Fig. 8 but horizontal cross-section.

were performed for both non-settling droplets (panels (a) and (b))
and including the effects of gravity (panels (c) and (d)). In all con-
sidered cases we observe clear dependence of the spectra on the
mass loading but in simulations with gravity this effect is more
pronounced. It is also noteworthy that the effect of droplet mass
loading is different at low (or moderate) and large wavenumbers.
In the range of large wavenumbers the kinetic energy increases
with the mass loading. This is due to larger momentum transfer
from particles to the fluid. At moderate wavenumbers an oppo-
site trend is observed, which can be attributed to a stronger ef-
fective dissipation caused by larger concentration of the disperse
phase. Furthermore, the spectra are more sensitive to droplets of
larger inertia. It should be emphasized that similar simulations but
with even smaller droplets (a < 30 um) and in absence of gravity
yield energy spectra which are not sensitive to droplet concentra-
tion (tested up to ~ 107 droplets).

The mass of considered droplets is relatively large, and there-
fore their motion is largely dominated by gravitational accelera-

tion. Rosa et al. (2015) showed that gravity significantly affects
the structure of particle clusters. The heavy droplets accumulate
in the downward flow regions forming elongated (filament-like)
structures. Thus, it is expected that the process of turbulence mod-
ulation is no longer isotropic. The 3D spectra plotted in Fig. 4c
and 4d reveal a strong monotonic relation between the kinetic en-
ergy and the particle concentration. To better illustrate the effect
of particle settling on the turbulent fluid also dissipation spectra
were computed and visualized in Fig. 5. A tremendous increase of
the dissipation is observed in two-way coupled simulations and its
magnitude again depends on the droplets mass loading. The results
allow us to conclude that droplets transfer a significant amount of
momentum to the system, and increase dissipation by enforcing
large velocity gradients in the fluid.

To address more broadly the effect of droplet size on the tur-
bulence modulation, an additional analysis has been performed.
Fig. 6 shows the normalized spectra of energy and dissipation com-
puted in simulations at different droplet sizes but at the same (rel-
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Fig. 10. Time averaged statistics of simulated flows under two-way momentum
coupling normalized by the corresponding statistics from simulations with zero
mass loading. (a) Kolmogorov time scale and (b) eddy turnover time as a func-
tion of particle number. Different colors corespond to different droplets radii. WG
(with gravity) marks the cases for sedimenting droplets. NG refers to cases without
gravity.

atively low) mass loading equal 0.1. The results prove that the size
of the droplets (equivalently particle inertia) is of secondary im-
portance to the energy of the system. Alternatively, it means that
in terms of large-scale eddy turnover time, all particles have rel-
atively small inertia. This observation is consistent with conclu-
sions formulated by Squires and Eaton (1990). In simulations with
gravity we observe large difference in dissipation spectra between
simulations performed under one-way and two-way coupling. The
difference is more pronounced at larger wavenumbers, so we can
conclude that this is effect of short-range interaction of relatively
fast settling droplets with the fluid. The characteristic scales of the

particle settling speed with respect to the rms fluctuating velocity
are given in Table 2.

In the subsequent steps of this analysis, the effects of two-way
momentum coupling on the local particle distribution will be con-
sidered first (see Figs. 7-9). Then we address the effects of gravity
on turbulence, the rms velocity of the particles, and particle energy
budgets. The above analysis confirms that droplets may both en-
hance and suppress turbulent flows and thus affect their structure.
The modulation of turbulence primarily depends on the droplet
mass loading and gravity. In simulations without gravity the effect
of two-way coupling results in reduction of the kinetic energy at
larger scales and enhancement in the dissipation range. If gravity
is considered the increase of energy takes place in the entire range
of the spectra. In order to gain a deeper insight into the structure
of the two-way coupled systems, detailed analysis of instantaneous
flow fields is necessary. Therefore, 2D visualizations (cross-sections
through domains) of the modeled flows along with locations of
droplets have been performed. The used data were taken at the
statistically stationary state, mostly at the end of simulations. The
flow field is represented by the second invariant II;- of the veloc-
ity gradient tensor I';; = du;/dx; (Squires and Eaton, 1990) defined
as

Ir =

S 20xj 0x; 2
where S;; is the rate of strain, and w; - vorticity.

Fig. 7 shows spatial distributions of IIr (in DNS units) com-
puted in two-way coupled simulations with droplets of four dif-
ferent radii (20, 30, 40 and 50 pum). Locations of the droplets are
marked by tiny black dots. In all simulations we used the same
number of droplets (8 millions), which means the mass loading is
different in each case. Gravitational settling was not considered.
We avoided normalization of Il to compare the relative differ-
ences between simulations with and without gravity. The blue re-
gions in Fig. 7 corresponding to large and negative values of I
indicate areas of high strain rate. The red regions where I is
large and positive are regions of high vorticity. This qualitative
comparison shows that the location of droplets is strictly corre-
lated with structures of the turbulent flow. The spatial distribu-
tion of 20 pm droplets seems to be more uniform than distribu-
tion of 50 pm droplets. This is a combined effect of the Stokes
number and two-way momentum coupling. As the droplet mass
loading increases, more pronounced changes in the flow struc-
ture are observed. The extreme values of IIr remain similar, but
the size of the smallest eddies becomes larger. This can be ex-
plained as an effect of the momentum transfer from droplets to
fluid.

In absence of gravity, the motion of droplets does not have any
distinctive direction. Therefore, the effect of turbulence modulation
is largely isotropic. On the contrary, in two-way coupled simula-
tions with gravity, the flow is modulated differently in the direc-
tion aligned with gravity and in the plane perpendicular to gravity.
Therefore, in further analysis we address the differences in vortical
structures formed along the vertical and horizontal directions.

Fig. 8 shows a qualitative comparison of the flow fields (as
in Fig. 7) in a vertical cross-section through the computational
domain. Gravity is pointed down and aligned vertically. Next,
Fig. 9 presents turbulent flows and locations of droplets in the
plane perpendicular to gravity. The simulations with gravity were
performed using the same settings (number of droplets, fluid vis-
cosity, etc.) as the simulations without gravity. It should be pointed
out that the values of Il in Figs. 8 and 9 are significantly larger
than in Fig. 7. This is because settling droplets induce larger ve-
locity gradients in the flow. Since the settling velocity depends on
droplet inertia the increase of IIj- strictly depends on droplet radii.
It is worth noting that the size of vortical structures (in the sta-

10u; du; 1 fww;
- = (7‘“12 l _Sijsij> (8)
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Fig. 12. The rms of droplet velocity normalized with the Kolmogorov velocity of the fluid (modeled without droplets) as a function of the droplet number. (a) Results from

simulations without gravity, (b) with gravity.

tistical sense) is significantly smaller in simulations with gravity
than in simulations without gravity. Moreover, the eddies become
smaller as the droplet inertia increases. Interestingly, the pattern of
turbulent flows in Fig. 8 reveals clear anisotropy. In simulations at
large mass loading, eddies are elongated in the vertical direction.
Such anisotropy is not present in Fig. 9 because gravity is directed
perpendicular to the plane of this cross-section.

A more quantitative measure of turbulence modulation can be
obtained from the flow statistics. Our attention is directed to char-
acteristic time scales, energy dissipation rate and fluctuating veloc-
ity of the fluid. The statistics were computed in simulations with
droplets of different radii and at different mass loadings. The data
were averaged over time and normalized by the corresponding val-
ues computed in simulations under one-way momentum coupling.
Fig. 10 shows (a) the Kolmogorov time scale and (b) the eddy
turnover time obtained from simulations with and without gravita-
tional settling. Although T and T, characterize turbulence features
at different scales, the observed trends in Figs. 10a and Fig. 10b are

rather similar. In simulations without gravity Tty increases as the
mass loading and droplet inertia increase. This is consistent with
the qualitative information presented in Fig. 7, namely, larger Ty
results in larger vortical structures. The increase of 7y is a conse-
quence of larger viscous dissipation scales which is an effect in-
duced by droplets. In simulations with gravity the trends are op-
posite, i.e. both tx and T decrease as the droplet mass loading
increases.

The energy dissipation rate and the rms fluctuating velocity
are presented in Fig. 11a and Fig. 11b correspondingly. Here, we
observe a tremendous increase of both quantities in simulations
with gravity. The enhancement of € depends on droplet radii and
droplet mass loading. This effect can be explained with larger ve-
locity gradients caused by the fast settling droplets. This is also
directly linked to larger values of v’

In order to assess how the fluid anisotropy develops when grav-
ity is included the rms of droplets velocity V' has been computed.
For comparison, similar computations were made using data ob-
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Fig. 13. The total kinetic energy addition (per unit time) by the droplets to the

turbulent fluid as a function of the droplet number.

tained in simulations without gravity. The results are presented in
Fig. 12. If gravitational settling is not considered V' decreases with
the mass loading and is lower for droplets of larger inertia. This
is a direct effect of the suppression of fine turbulent structures by
inertial particles. When the gravity is included, similar trend is ob-
served but only for the horizontal component of V' (LLg). The verti-
cal component of V' (||g) significantly increases with mass loading.
This is a combined effect of droplet settling and stronger fluid vor-
ticity at fine turbulent scales.

The large increase of the rms fluctuating velocity of the tur-
bulent fluid (v’ ~ +E) in simulations with gravity (see Fig. 11b)
is likely due to larger energy transfer from the particles. Since
the enhancement occurs for the settling droplets only it is ex-
pected that the slope of v’ in Fig. 11b is related to the input of
the potential energy from the particles. To confirm this interdepen-
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dence, the time change of the total kinetic energy (Epar) of 40 pm
droplets has been computed. We made use of the formula derived
by Sundaram and Collins (1996)

_ i mLVi(0) - [UCY(0), 1) - VI(D)]

i=1

dE part

7
Tp

The computations were performed for both settling and non-
settling droplets. The time averaged values of temporal changes of
energy are presented in Fig. 13. As expected, the trends of time
changes of the particle kinetic energy and u’ are in good agree-
ment.

For a more complete description of the modeled processes, an
additional analysis of the overall energy balance has been per-
formed. This effort also aims at confirming the correctness of the
numerical simulations. Again, we considered separately the two
cases, i.e. with settling and non-settling 40 nm droplets. The re-
sults in form of the time evolution of different components of the
temporal changes of energy are presented in Fig. 14. In both cases
we obtained good agreement (red and black lines almost overlap)
with theory which says that the sum of additional energy from
external forcing and kinetic energy from the particles should be
equal to the total dissipation.

The simulation results show that gravity (droplet settling) has
significant impact on the kinetic energy of the entire system. Fur-
thermore, the motion of droplets can generate and enhance turbu-
lent flow. Hence the question arises about mutual importance of
two different mechanisms maintaining turbulent flows. These are:
external forcing scheme (implemented at larger scales) and mo-
tion of the droplets (efficient at droplet/grid scales). To analyze this
problem more thoroughly additional simulations were developed.
In the new simulations the forcing algorithm was turned off and
droplets were added to the stagnant air. It should be noted that
the condition of fluid incompressibility (V -U(x,t) =0) and zero
mean flow were maintained. The results are presented in Fig. 15
in a way consistent with previous visualizations. The sequence of
plots shows that droplets are capable to generate turbulent flow
even without any external forcing mechanism. The vortical struc-
tures of the flow are similar to those from Fig. 8, but there is a
distinct difference in the droplet distribution. In simulations with-
out forcing scheme the spatial distribution of droplets is more uni-
form. This may be effect of another mechanism: so called prefer-
ential concentration (the situation where the spatial distribution
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Fig. 14. Time evolution of the energy balance: (a) results from simulations without gravity, (b) with gravity.
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Fig. 15. Distributions of droplets (black dots) with radii (a) 20 pum, (b) 30 um, (c) 40 um, and (d) 50 pm and II- in a two-dimensional vertical cross-section of the computa-

tional domain. The turbulent flow is enforced by the motion of settling droplets only.

of particles is correlated to the local properties of the flow). In
simulations without the large-scale forcing the initial condition for
the flow is U(x,t = 0) = 0 so there is no mechanism for enforcing
droplet clustering.

To complete the analysis, the spectra of Kkinetic energy
(Fig. 16a), and dissipation (Fig. 16b) are also presented. In the range
of larger wavenumbers, the values are in quantitative agreement
with the results obtained from simulations with external forcing
(Fig. 4d and Fig. 5d). However, the difference is significant at low
wave numbers, namely, there is no characteristic energy damp-
ing. This effect is expected because the level of energy at low
wavenumbers is fixed only in simulations with forcing scheme.

6. Kinematic and dynamic collision statistics for inertial
particles

In this section we discuss various effects of two-way momen-
tum coupling on the particle collision statistics. The main focus is

on the radial distribution function (RDF) and the radial relative ve-
locity (RRV), see (Rosa et al., 2013). The RDF is a local measure
of the effect of preferential concentration of particles on the colli-
sion rate. The common method for computing the RDF(r) involves
counting the number of particle pairs at a given separation dis-
tance r. In our approach we considered a set of discrete values of
r in the range R < r < 10R, where R = 2a is the collision radius.
Then the RDF can be obtained by dividing the number of pairs at
a given separation distance by the number of pairs characteristic
for a nominally uniform distribution. According to definition, for
monodisperse systems the RDF takes the form

npairs/vs
n(n - 1)/2Vbox '

where n is the total number of particles in the computational box
of volume Vj,ox. Then, n,;5 is the total number of pairs detected at
a separation distance r, falling in a spherical shell of inner radius
equal to r — § and outer radius equal to r+ 4. § is a small fraction

RDF(r; t) = (10)
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Fig. 16. The energy and dissipation spectra of flows enforced by the settling droplets only. Different colors of solid lines refer to simulations with different mass loading (or
equivalently different particle number). Droplet radii in all simulations were fixed and equal 40 pm.

( ~ 1%) of collision radius and Vs is the volume of the spherical
shell. The discrete values of RDF(r; t), denoted henceforth by g1,
are averaged over time and the best power-law fit allows to evalu-
ate the RDF at contact g11(R).

The RRV of two nearly touching particles is defined in terms of
the relative velocity w in the limit r — 0 as w;(r) = w-r/|r|. The
methodology for computing w, between particles is similar to that
for computing the RDF. More details on this method can be found
in (Rosa et al.,, 2013). The RRV and the RDF are directly propor-
tional to the kinematic collision kernel

Il =2 R*(|Jw,|(r =R))gu (r =R). (11)

These parameters are key statistical characteristics commonly
employed to quantify the collision rate of the inertial particles in
turbulent flows. In particular, they are often used to characterize
the effects of air turbulence on the growth of cloud droplets during
warm rain initiation.

Due to relatively low inertia of the cloud droplets the colli-
sion statistics are sensitive to the small-scale vortical structures.
In simulations under two-way momentum coupling the dynamics
of turbulent flow at small-scales, i.e. corresponding to the dissi-
pation range of the energy spectrum, depends on both fluid vis-
cosity and momentum transfer (from particles to the fluid). There-
fore, in the first step, we compare the values of RDF and RRV
computed in simulations with different viscosities (equivalently:
different resolution parameter kmax7). The two series of simula-
tions were limited to droplets of radii 30 and 40 um. Gravitational
settling was not considered. In every simulation we tracked tra-
jectories of 8 millions droplets. The collision statistics were com-
puted “on the fly” at each time step and then averaged over time,
as in (Rosa et al,, 2013). The postprocessed data are presented in
Fig. 17. The results show that the kinematic collision statistics in-
deed depend on the resolution parameter. The RDF of nearly touch-
ing droplets decreases as the fluid viscosity increases. This is ow-
ing to the fact that larger viscosity suppresses small eddies which
have a key impact on the droplet clustering. An opposite trend is
observed for the radial relative velocity. This, in turn, is the effect
of the larger inertia of the droplets (droplet radii are the same).
Such an apparent contradiction can be explained by referring to
the settings of the numerical simulations. The characteristic scales
of particles (e.g. radii) in DNS code are set based on matching the
Kolmogorov scales. Since 1 depends on fluid viscosity the size of
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Fig. 17. Effect of viscosity (or, equivalently, the resolution parameter) and Reynolds
number on the kinematic collision statistics of cloud droplets. Gravitational settling
was not considered. All simulations were performed using 8 millions droplets of the
same radii.

the particles in spectral units is no longer the same. This leads to
another conclusion, namely, for the same number of droplets the
mass loading increases as the viscosity (and consequently 1) in-
creases.

In order to compare the RDF and RRV at the same mass loading
and different viscosities additional simulations were performed. In
these simulations the number of droplets was adjusted to obtain
the same &. The results are presented in Fig. 18. We find that the
collision statistics depend on kmaxn much less than in Fig. 17. The
little reduction of the RDF and increase of the RRV are observed
only for droplets of larger radii. This stems from the fact that par-
ticles of lower inertia have little effect on turbulence modulation.
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gravitational settling considered. Black lines indicate results from simulations performed under one-way momentum coupling.

Large droplets alter turbulence more strongly, which in turn affects
their dynamics and spatial distribution.

In the next step, we address more specifically the effect of
droplet inertia, mass loading and gravity on the kinematic colli-
sion statistics. The analysis concerns monodisperse systems char-
acterized by the same physical parameters, such as £=400 cm?/s3
and R; = 95. To assess the effect of droplet inertia on the RDF we
performed a number of two-way coupled simulations for differ-
ent droplet radii and the same mass loading in each series. Fig. 19
shows the RDF of nearly touching droplets computed in simula-
tions (a) without and (b) with gravity. Several important conclu-
sions can be formulated based on these data. First, the RDF is more
sensitive to the mass loading in simulations with gravity. Second,
if the gravitational settling is not considered the effect of two-
way coupling on the RDF is negligible for small (20 pm) and large
(60 um) droplets. This can be explained as follows: the particles
with low inertia have little effect on the turbulence modulation,

while the motion of particles with large inertia is not sensitive to
the small velocity perturbation generated by other particles. It is
worthwhile to emphasize that, at given mass loadings there are
less larger particles in the computational domain. Third, in the in-
termediate range of 30 — 50 pwm, a reduction of RDF is observed,
and its magnitude is proportional to the mass loading. The re-
duction of RDF is a consequence of vortex suppression, which is
the main mechanism causing inhomogeneity of particle distribu-
tion. Fourth, if the gravitational settling is considered there is lit-
tle increase of the RDF with increasing @ for low inertia droplets
(20 um). This is due to formation of additional vortical structures
by settling droplets. Fifth, the RDF of large inertia droplets is sig-
nificantly reduced. The reason for the homogenization is the high
vorticity of the background flow generated by rapidly falling drops.

The relation between the RDF and droplet number is presented
more closely in Fig. 20. The zero value on the X axis corresponds
to simulations under one-way momentum coupling. Here, the ef-
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Fig. 20. RDF as a function of droplet number. Simulations performed at R = 95: (a) without gravity and (b) with gravity. Comparison of RDF computed at two different R;,
(or, equivalently, different kmaxn) and: (c) without gravity and (d) with gravity. Different colors correspond to different droplet radii.

fect of gravity is clearly discernible. The RDF computed in sim-
ulations without gravity (Fig. 20a) decreases monotonically (for
each droplet size/radius) as the droplet mass loading increases.
The largest reduction of the RDF is observed for droplets of radii
40 pm. The difference between simulations under one-way cou-
pling and simulation with 8 millions droplets exceeds 60%. When
the gravitational settling is considered (Fig. 20b) the RDF increases
for droplets of low inertia. For medium size droplets (25 — 30 um)
the RDF is not monotonic and reaches a maximum at the inter-
mediate range of droplet number, while for heavy drops a strong
reduction of RDF occurs even at very low droplet concentrations.
This reduction is significantly larger than in simulations without
gravity and for 50 pm reaches 90% (the difference between simu-
lations under one-way coupling and simulation with maximal con-
sidered droplet concentration). This effect is due to increase of the
relative velocity between droplets and will be further analyzed in
detail.

Figs. 20c and 20d show a comparison of the RDF computed in
simulations with different resolution parameters (kmax77). In other
words, we analyze the sensitivity of the collision statistics to the
range of turbulent scales (R, ). However, it should be emphasized

that the droplets mass loading in the corresponding simulations
(i.e. with the same droplet number) is not the same. The do-
main size in simulations at kmax7 = 1.13 is larger, which is a con-
sequence of shorter Kolmogorov length scale. Fig. 20c shows the
RDF of non-settling droplets of four different radii. It turns out
that the RDF is less sensitive to the droplet number in simula-
tions at kmaxn=1.13. This result is in line with expectations because
larger resolution (kmaxn) corresponds to smaller domain and con-
sequently greater droplet mass loading. The effect of the flow reso-
lution in simulation with the gravitational settling depends on the
droplet radii. The RDF of 20 pm droplets is larger in simulations
at kmaxn = 1.64. This can be explained as a result of the turbu-
lence enhancement. In turn for larger droplets the trend is oppo-
site, namely, the RDF of 50 um droplets is lower in simulations at
kmaxn = 1.64.

A more intuitively appealing comparison of the RDF computed
for droplets of different size and the same mass loading is shown
in Fig. 21. Again we consider two cases, i.e. simulations without
gravity (Fig. 21a) and including gravitational settling (Fig. 21b). Due
to high numerical complexity some of the simulations were per-
formed using approximate model (i.e. with the weighting factor
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M # 1). The simplified method was used for systems with large ®
and droplets of small radii. The simulations without gravity were
performed for larger values of &, up to 1.5. It should be recalled
that according to the literature the approximation based on the
two-way momentum coupling is accurate for ® < 1 only. The sim-
ulations with gravity were performed for a narrower range of ®,
up to 0.5.

Based on these results, we conclude that the effect of two-way
momentum coupling is important for both non-settling and set-
tling droplets. If the gravitational settling is neglected the effect of
turbulence modulation on the RDF is significant for medium size
droplets and for a quite wide range of the mass loading up to 1. If
the gravity is considered the effect of two-way coupling is stronger,
but the RDF remains almost constant above ¢ > 0.3.

An analogous (to the RDF) analysis has been carried out for the
radial relative velocity. Fig. 22 shows the RRV of nearly touching
droplets normalized by the Kolmogorov velocity (evaluated for the
turbulent flow without particles) for different ®. The data are con-
sistent with those presented in Fig. 19. In absence of gravity the
differences in the RRV are rather small. The little enhancement is
observed for the medium size droplets and its value increases with
the mass loading. This is a direct effect of two-way momentum
coupling and consequence of the turbulence modulation by mov-
ing droplets. The transfer of momentum from particles to the fluid
occurs at grid-scale and increases the local fluid velocity. This in
turn affects the motion of the neighboring droplets and causes a
greater decorrelation of their velocity. If the gravitational settling
is considered, we observe a tremendous increase of the normalized
RRV. For 50 pm droplets the difference in the RRV between simu-
lations under one-way coupling and these at ®=0.1 is one order
of magnitude. The reason for that is strong modulation of turbu-
lent flow by fast settling droplets. Formation of small-scale vortical
structures (as those in Fig. 8) of high angular velocity (vorticity)
has a strong impact on the droplets relative motion and conse-
quently alters the RRV. We point out that the increase of RRV is
correlated with reduction of the RDF (Figs. 20c and 21b).

Next, we address the relation between the RRV and droplet
number. In absence of gravity (Fig. 23a) the RRV is weakly sen-
sitive to the droplet concentration. A little increase is observed for
droplets of radii 30 — 40 wm. For large droplets (60 pm) the trend
is opposite and the RRV decreases with mass loading. For settling
droplets, the RRV depends more strongly on the droplet concentra-
tion (note the log-scale on the Y axis). There is a continuous and
monotonic increase with the mass loading and inertia.

Further, we analyze sensitivity of the RRV to the resolution pa-
rameter. Based on data presented in Figs. 23c and 23d we conclude
that larger kmaxn results in larger RRV. This applies to the systems
with both settling and non-settling droplets. However, in simula-
tions with gravity the differences are greater. The results are some-
what counterintuitive because one may expect that a wider energy
spectrum and the presence of small-scale eddies should enhance
the RRV. In the present study such regularity is not observed. This
is because the corresponding series of simulations were performed
at different mass loadings.

Fig. 24 shows additional comparison of the RRV for droplets of
different radii and the same range of the mass loading. The two-
point collision statistics at large ® were computed using the ap-
proximate model. Interestingly, the results are in good quantitative
agreement with these from exact simulations.

Another important aspect worth addressing is the magnitude of
the radial relative velocity. In simulations with gravity, at ® ~ 0.5,
the RRV of 50 um droplets is about 100 times larger than v. It
should be noted, however, that the vg used for normalization in
Figs. 20, 22, 23 and 24 is related to the single-phase turbulent flow.
As the mass loading increases the Kolmogorov velocity increases,
so that the ratio of the RRV to the actual vk should be smaller
(approximately 2 times). But even with this scaling, the normalized
values of the RRV are relatively large and their magnitudes exceed
2u’. Here we find an analogy with the variance of droplet velocities
presented in Fig. 14. We hypothesize that this increase of the RRV
is a combined effect of large settling velocity and stronger vorticity
of fine turbulent scales. It is expected that the large variation of
the RRV and sensitivity to @ in simulations with gravity (Fig. 24b)
will have a significant impact on the droplet collision rate.

The dynamical collision statistics such as dynamic collision ker-
nel can be obtained from the simulation by detecting (directly) all
collision events for a given time period. According to the definition
I'P = fi./nyn,, the dynamic collision kernel is the ratio of collision
rate to the average number densities of the two size groups of par-
ticles (for monodisperse systems n; =n,). In absence of aerody-
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namic interaction, the dynamic collision kernel matches the kine-
matic kernel (within statistical uncertainty) (Rosa et al., 2013).

In Fig. 25 we compare the dynamic collision kernels computed
in simulations at several values of mass loading and different
droplet radii, while the weighting factor was set to 1. There is
a notable difference between I'® computed for settling and non-
settling droplets. In the absence of gravity, the collision kernel de-
creases with the mass loading and droplet inertia. This reduction
is due to lower values of the RDF or equivalently more uniform
droplet distribution. If gravity is considered, I'® increases with the
mass loading. Moreover, there is a noteworthy difference between
simulations under one-way coupling and simulations at relatively
low ®=0.015. The increase is mainly due to enhancement of the
RRV. Concurrently, the RDF decreases with ®. The difference be-
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Fig. 25. Dynamic collision kernel as a function of droplet radius for different mass
loadings. Dashed lines - simulations without gravity, solid lines - simulations with
gravity.

tween simulations under one-way coupling and two-way coupling
is particularly large for heavy droplets. Therefore, we can hypoth-
esize that this is an effect of aerodynamic interaction between
droplets. Namely, large drops settling under gravity affect strongly
the fluid velocity and indirectly the motion of neighboring droplets
(located closer than one grid spacing). This perturbation is more
pronounced for larger droplets and consequently alters the two-
point collision statistics. In simulations under one-way coupling
the aerodynamic interaction is not considered so the results are
much different than results computed at low &. In other words,
there are different mathematical formulations to model these dy-
namical systems.

The relations between the collision kernel and the droplet num-
ber and mass loading are presented in Fig. 26. The results confirm
that in absence of gravity I'?, and consequently the collision rate,
decrease with mass loading. This is due to more uniform droplet
distribution (lower RDF). In simulations with gravity the RDF of
large droplets also decreases with ®. However, in this case the
dominant role plays the radial relative velocity. Enhancement of
the RRV results in the increase of I' up to one order of magni-
tude.

Finally, we examine the collision kernels of droplets in flows
with different range of turbulent scales, equivalently different
Reynolds numbers. Two sets of simulations have been performed
using, as initial conditions, the flows A and C (see Table 1). The Ry,
values of these particle-free flows are 121 and 95 respectively. It
should be added that R, does not remain constant during simula-
tions, because particles may generate additional vortical structures
or suppress them. Moreover, different flows (A and C) are simu-
lated in domains of different sizes so that systems with the same
number of droplets have a different mass loading. This time the
comparison is restricted to the settling droplets. Fig. 27a shows I'?
as a function of particle number for these two flows. In all simula-
tions the weighting factor was set to 1. To expose more clearly the
differences at the small size droplets the same data are presented
in Fig. 27b but using logarithmic scale. It is observed that I'P is
consistently larger at smaller R, . In the context of previous results,
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it can be concluded that observed effect is mainly due to larger
mass loading. The systems with heavier particles are characterized
by larger relative velocities and this is reflected in larger I'P.

7. Effect of energy dissipation rate

All the simulations discussed in the previous sections were
performed at the same value of energy dissipation rate equal to
£=400 cm?/s3. Here, we extend the analysis and compare the
kinematic collision statistics computed at different &, in the range
100 — 400 cm?/s3. This range is typical of the cloud microphysi-
cal processes and particularly important for the rate of the pre-
cipitation formation. To simplify further analysis the gravitational
settling was not considered. The computations were reduced to
30 pm and 40 pm droplets in radii, because the effect of two-way
momentum coupling for these droplets was most meaningful.

The results of the above analyzed simulations prove that the
main factor that determines the RDF is droplet inertia. The iner-
tia is quantified by a non-dimensional parameter that is the Stokes
number. In turn, St depends on the energy dissipation rate as fol-
lows St ~ /. Therefore, we expect reduction of the RDF at smaller
values of &. Results obtained in numerical simulations presented in
Fig. 28 confirm these theoretical predictions. There is a systematic
reduction of the RDF along with decreasing of &. For particles of
lower size (30 um) the RDF linearly depends on the mass loading
for all considered ¢. For larger droplets (40 yum) this dependence is
linear only for small St corresponding to & = 100 cm?2/s3.

Similar verification has been done for the radial relative veloc-
ity of the nearly touching droplets. It is well known that the ve-
locity decorrelation between fluid and particles depends on their
relative inertia. Since the inertia of the fluid is fixed, we may ex-
pect larger RRV between particles with greater St. The numerical
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results shown in Fig. 29 are in line with these theoretical consid-
erations. It should be noted that the RRV in Fig. 29 is normalized
by the Kolmogorov velocity scale which also depends on the en-
ergy dissipation rate vg ~ (£)'/4. Nevertheless, the increase of the
RRV is dominant so the nondimensional quantity increases with &.

8. Conclusions

The effects of two-way momentum coupling on the collision-
coalescence of water droplets have been examined using the com-
bined Eulerian-Lagrangian numerical approach. The simulations
have been performed for both sedimenting droplets and droplets
without sedimentation. The main focus was on modeling kinematic
and dynamic collision statistics at different droplet mass loadings.

The simulations have been carried out for droplets of radii in the
range 20 — 60 pum. Moreover, we considered different turbulent
Reynolds numbers, viscosity and energy dissipation rate. Several
important conclusions can be drawn from this study. First, the
two-way momentum coupling affects more strongly the dynam-
ics of the systems with the settling droplets. This is mainly re-
flected in significant increase of the radial relative velocity at larger
mass loadings. Second, the effect of two-way coupling on the RDF
is rather complex and depends on particle inertia. For smaller
droplets we observed little enhancement of the RDF which is a
consequence of formation of additional vortical structures by set-
tling droplets. The RDF of large inertia droplets is significantly re-
duced. Fourth, if gravity is not included, the RRV grows with mass
loading and reaches a plateau for droplets of radii 60 pm. This may
be due to strong flow perturbations at scales corresponding to the
highest wave numbers. Fifth, the RDF of small (20 pm) and large
droplets (60 pm) in simulations without gravity is not sensitive to
the mass loading because droplets with low inertia have very little
effect on the flow also because their mass fraction is lower for a
given total number of droplets. In turn the motion of large droplets
is weakly sensitive to flow perturbations generated by neighbor-
ing droplets. The effect of mass loading on the RDF is important
mainly for medium size droplets (30 — 50 p«m), where monotonic
reductions systematically occur. Finally, we computed dynamic col-
lision kernels at different mass loadings. It turned out that there is
a fundamental difference between I'° of settling and non-settling
droplets. In the absence of gravity, the collision kernel decreases
with the mass loading and droplet inertia, which is mainly the ef-
fect of lower RDF. If gravity is considered, I'P increases with the
mass loading.

At the end we outline possible perspectives for further research
in this field. The present results are a step forward in quantifying
the cloud processes but are limited to the monodisperse systems.
Therefore, one potentially significant direction of future research is
to consider a polydisperse systems under two-way coupling. Such
systems more realistically describe cloud processes. In most for-
mer studies, as for example (Saw et al., 2012a; 2012b) bidisperse
systems were simulated assuming one-way coupling. Furthermore,
new massively parallel supercomputers open new perspectives for
performing such simulations at significantly larger resolutions. In
the context of large-eddy simulations, following an earlier work
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Fig. A2. (a) Comparison of dynamic collision kernel computed using different interpolation methods (i.e. PIC and PNN). (a) Comparison of dynamic and kinematic collision

kernels computed using PNN method.

limited to one-way coupling (Rosa and Pozorski, 2017), it may be
worthwhile to examine the impact of filtering on the collision
statistics. An important topic is also investigation of the settling
velocity of small heavy particles under two-way coupling, espe-
cially for the development of realistic parameterization of thermo-
dynamic processes in NWP models.
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Appendix A

Here we study the effect of the force interpolation formulae
from Section 3. Two series of simulations with different interpola-
tion schemes, i.e. PIC and PNN have been performed. The schemes
were employed to evaluate the particle Eularian velocities at nodes
of the regular mesh. To maintain consistency between simulations,
all other settings and parameters were identical. For simplicity, the
gravitational settling of the droplets was not considered. Since the
largest differences were expected for the flow with the highest ve-
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locity gradients, we used, as the initial condition the flow with
minimal value of viscosity (flow A, see Table 1).

Based on results presented in Figs. A.30 and A.31 we conclude
that both interpolation approaches, i.e. PIC and PNN produce qual-
itatively similar collision statistics. The largest differences in the
RDF are observed for the medium size droplets (30 — 40 pwm). The
RDF computed using the PIC method is about 5% lower compar-
ing to results from simulations with the PNN method. Sensitiv-
ity of the RRV to the interpolation formulae is relatively low but
slightly increases with the droplet inertia. Kinematic and dynamic
collision kernels computed using different interpolations methods
are in perfect quantitative agreement.
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