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Abstract—NNWarp is a highly re-usable and efficient neural network (NN) based nonlinear deformable simulation framework. Unlike
other machine learning applications such as image recognition, where different inputs have a uniform and consistent format (e.g. an
array of all the pixels in an image), the input for deformable simulation is quite variable, high-dimensional, and
parametrization-unfriendly. Consequently, even though the neural network is known for its rich expressivity of nonlinear functions,
directly using an NN to reconstruct the force-displacement relation for general deformable simulation is nearly impossible. NNWarp
obviates this difficulty by partially restoring the force-displacement relation via warping the nodal displacement simulated using a
simplistic constitutive model — the linear elasticity. In other words, NNWarp yields an incremental displacement fix per mesh node
based on a simplified (therefore incorrect) simulation result other than synthesizing the unknown displacement directly. We introduce a
compact yet effective feature vector including geodesic, potential and digression to sort training pairs of per-node linear and nonlinear
displacement. NNWarp is robust under different model shapes and tessellations. With the assistance of deformation substructuring,
one NN training is able to handle a wide range of 3D models of various geometries. Thanks to the linear elasticity and its constant
system matrix, the underlying simulator only needs to perform one pre-factorized matrix solve at each time step, which allows NNWarp

to simulate large models in real time.

Index Terms—neural network, machine learning, data-driven animation, nonlinear regression, deformable model, physics-based

simulation

1 INTRODUCTION

Nonlinear shape deformation is ubiquitous in our every day life
and simulating deformable objects has long been considered as
an important yet challenging task for computer graphics and
animation. In the past ten years, the finite element method (FEM)
based frameworks [1] become more and more popular due to
its versatility of encoding various material behaviors. With the
prescribed external force foy¢, the dynamic equilibrium is for-
warded by solving a high-dimensional nonlinear system at each
time step. Most nonlinear solvers start with an initial guess of the
unknown displacement u and iteratively refine the result until the
system converges in order to calculate the deformed model shape.
While conceptually straightforward, the requirement of repetitive
evaluations of the nonlinear internal force f;,; or/and its gradient
dfint /du makes the simulation rather computational expensive.
Recently, the rapid development of the computing hardware
pushes forward the frontier of machine intelligence to an un-
precedented extend, and we have witnessed tremendous successes
of utilizing carefully constructed neural networks (NNs) [2] in
many classic computing problems like language processing [3],
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Figure 1: NNWarp is a data-driven neural network based nonlinear
deformable simulator. By learning from full FEM simulation poses, it
yields more accurate results than existing warping methods. We design
three compact contextual features making the network training highly
re-usable. In this example, the maple bonsai model consists of 255,552
elements, and is decomposed into 1,771 domains. A single net trained
using a regular beam handles local dynamics for all the domains. High-
quality animations with well-preserved local high-frequency deforma-
tions are produced at a near-interactive rate (5 FPS) without using model
reduction.

speech recognition [4], [5], object tracking [6], [7] etc. With the
support of sufficient ground truth data, an NN serves as a black
box mapping its input to the output without the necessity of an
explicit mathematical formulation. Since the FEM simulation is
able to provide us as many as needed noise-free data, can we also
exploit NNs to deal with deformable simulation?

At the first sight of the question, the answer seems to be pos-
itive because deformable simulation is essentially the reconstruc-



tion of the force-displacement relation of an elastic body, and NNs
are known good at expressing complex nonlinear relations [8],
[9]. However, this problem is challenging in practice because
the nonlinear force-displacement relation varies significantly (and
intrinsically) under different simulation configurations such as
domain geometries, discretizations, boundary conditions, consti-
tutive laws etc. If one chooses to build a network incorporating all
the possible input permutations, the network would indubitably be
an extremely huge one. Consequently, the corresponding training
data would be very big and a single forward pass of the network
itself could take a longer time than running a regular FEM
simulator due to the complexity of the network.

In this paper, we present a method, named NNWarp, to
leverage neural networks to tackle intricate force-displacement
relations of different nonlinear materials with a simple and light-
weight network. As the name implies, our strategy is not to link
the standard input (fex+) and output (u) of deformable simulation
via a neural network directly. Instead, we map or warp a sim-
plified constitutive law £y to a more complex and nonlinear one
L1 using NNs. It is expected that, the calculated displacement
under L well encapsulates simulation configurations like force
magnitude, domain tessellations and boundary conditions so that
the remaining warp is local, and can be well fit by a simple net. To
this end, we choose to use the linear elasticity for £y. The linear
elasticity has long been used to describe small-scale deformations
(i.e. the infinitesimal strain theory). It is based on the Cauchy
strain tensor, which is the first-order Taylor approximation of the
full Green tensor. Besides, because linear elasticity has a constant
stiffness matrix, setting it as £o makes NNWarp polynomial faster
than another other nonlinear constitutive models with the same
number of simulation DOFs during the run-time simulation. It is
noteworthy that using other existing nonlinear solvers like [10],
[11] as Lo is also legit. However, as those existing nonlinear
solvers already yield good results, the effectiveness of using a
complex deep network is under utilized.

NNWarp uses a single node-wise NN to correct the nodal
linear deformation to the corresponding nonlinear one. In other
words, it takes the linear nodal displacement as the input, and
outputs a corrective displacement fix to warp the linear result to be
a nonlinear one. From this perspective, our method is conceptually
similar to stiffness warping [12] and modal warping [13], in which
a linear solver is used after rotating the deformed shape back to its
undeformed orientation. We augment the input of per-node linear
displacement with three novel discriminative features, namely
the geodesic, potential and digression. We find that with these
three descriptors, NNWarp becomes fairly shape- and tessellation-
independent, and the network trained with a simple model can
be used to warp deformable bodies of distinctively different
geometries making our network training highly re-usable. This
important advantage is further enhanced when combined with
the substructuring method [14], where we decompose the input
model into multiple convex domains, and run NNWarp on each
domain separately. For instance, all the experiments reported in
the paper (except Fig. 11) are based on the network trained using
a simple rectangular beam. NNWarp is fast at both training stage
and simulation stage. We utilize the rotation invariant property
of local deformation and compress the training set by at least an
order. During the simulation, as NNWarp only needs to perform
a pre-factorized linear solve at each time step, it is able to handle
large-scale models interactively.

2 RELATED WORK

The concept of neural network based learning can be dated back to
late 1980s [15] in the machine learning community. Empowered
by recent hardware advance, neural networks of various archi-
tectures and deeper depths have been harnessed to solve many
long-standing computer vision problems such as recognition [16],
[17], classification [18]-[21] and segmentation [22]-[24]. Some
existing methods are able to match or even beat human’s vision
perception system e.g. see the report from the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [25]. Given suf-
ficient training data, Deep neural networks (DNNs) provide a
general “template” for the user to learn the input-output corre-
spondence, which could be otherwise difficult or even impossible
to be analytically formulated.

Learning for animation Indeed, the idea of learning is not
new to computer animation, and it is also widely-known as data
driven methods [26]. For the cloth animation, low-resolution
simulation can be enriched by using pre-computed high-resolution
results with detailed wrinkles [27], [28]. Wang et al. [29] built a
piecewise linear stretching and bending model based on measured
data to better depict the nonlinear dynamics of different cloth
materials. Miguel et al. [30] further enhanced this framework and
recorded more deformation behaviors of the cloth simulation. Kim
et al. [31] proposed a method to compress a large pre-simulation
dataset so that these poses can be used at run time to improve
the inertial cloth deformation. Following the similar idea, Xu et
al. [32] blended pre-computed cloth shapes to directly synthesize
the cloth deformation using the sensitivity analysis. Learning-
based methods have also been popular for motion and control i.e.
the reinforcement learning [33]-[36]. NNs provide a convenient
approach for further improving the learning effects [37]. Following
this direction, Liu et al. [38] employed the deep Q-network to
reorder existing control fragments and created necessary responses
to unseen disturbances. Peng et al. [39] used an NN to train a
high-level controller and a low-level one, which achieved robust
locomotion coordinately. Holden et al. [40] designed a phase-
functioned neural network, whose weights are computed using
a cyclic function. For solid modeling, learning is also a powerful
tool, which allows the user to obtain actual physical parameters
based on captured point cloud sequences [41]. Xu and Barbic¢ [42]
fine-tuned the damping model based on a few example defor-
mations. Kim et al. [43] combined the physics-based simulation
and data-driven to produce realistic soft tissue animation. Jones et
al. [44] used the similar idea to simulate plastic deformation with
a skinning-alike method. An et al. [45] proposed a learning-based
numerical procedure named Cubature to efficiently evaluate the
internal force and the force gradient during reduced deformable
simulation. Deep learning also benefits the fluid animation. For
instance, Ladicky et al. [46] proposed a random forest based
regression method to accelerate fluid simulation by predicting the
kinematic configurations of particles based on a large training set.
Chu and Thuerey [47] used the convolutional neural networks
(CNN) to extract necessary features to augment a coarse simu-
lation and add back high-frequency details.

Nonlinear deformable simulation Physics-based deformable
simulation has been an active research topic in graphics and ani-
mation since the exemplar work by Terzopoulos et al. [48]. While
particle-based methods [49]-[51] or mass-spring systems [52],
[53] are also legit, FEM becomes more widely-used [54] for



solid simulation. Wang et al. [55] proposed a strain limiting
method to increase the numerical stability for stiff deformable
bodies. Alternatively, Irving et al. [56] tweaked the principle
stress to resolve degenerated elements from extreme deformations.
Forming the deformable simulation as a nonlinear optimization
procedure, Hecht et al. [57] used an incremental Cholesky factor-
ization scheme to lower the frequency of matrix re-factorization
during the simulation. Zhu et al. [58] adopted the multi-grid
method to simulate high-resolution deformable volumes. Bouaziz
et al. [10] introduced a robust local-global iterative solver named
projective dynamics. This idea later was generalized as the
ADMM solver [59] and synergized with Chebyshev [11], [60],
L-BFGS [61] and GPU Gauss-Seidel [62]. Accelerating nonlin-
ear simulation can also be achieved by pre-computed models,
for instance using modal analysis [63]-[65] or recent fullspace
simulations [66]. Also known as model reduction methods, it
is assumed that the deformed shape be a linear combination of
those pre-computed poses or modes so that the simulation can
be projected into the spanned subspace. In an asymptotic sense
however, model reduction is not better than regular simulation as
the time complexity remains cubic w.r.t. the number of simulation
DOFs.

NNWarp and existing warping methods In this paper, we re-
investigate this classic animation problem of nonlinear deformable
simulation from a data-driven point of view by shaping it as
a nonlinear regression using the neural network. Unfortunately,
the full spectrum of the force-displacement relation is complex
and sensitive to the variance of simulation settings. For instance,
modifying the boundary condition (the anchor nodes of an FE
mesh) could completely alter the deformed shape even with other
simulation parameters unchanged. Besides, the dynamic simula-
tion is essentially 4D — the kinematic status of the deformable
body does not only depend on its current external stimuli but also
on its historic motion trajectory. To circumvent these two practical
obstacles, we forge our regression based on the simulation result
obtained using the linear elasticity. This idea is not new in graph-
ics. An epic example would be the stiffness warping [12], which
re-used the linear stiffness matrix by un-rotating the external
force back to the model’s rest shape orientation. Similarly, modal
warping [13] and rotation-strain coordinate [67], [68] embedded a
local coordinate frame at each node/element to relieve the artifacts
of the linear elasticity under rotational deformation. This idea was
also used for geometrically constructing nonlinear modes [69].
These geometric warping techniques have been proven effective
for animation editing [70], [71], which requires performing high-
dimensional space-time optimization.

Solving the linear elasticity encodes many simulation param-
eters such as boundary condition, tessellation resolution, external
force etc. into the resulting linear displacement vector. On the top
of this, we train a neural network to further correct the result to be
a plausible and nonlinear one without worrying about accommo-
dating all the simulation settings into the net. The trained network
using a regular model of few thousand elements generalizes to a
wide range of geometrically complex deformable bodies. During
the simulation, because the system matrix for the linear elasticity is
constant and pre-factorized, we obtain O(N 2) run-time complexity
in fullspace, which is polynomially faster than existing nonlinear
solvers.

3 CONTEXTUAL FEATURE VECTOR

The underlying mathematical relations between external forces
and displacements of elastic bodies could be intrinsically changed
under different simulation settings, and it is impossible in practice
to encode the entire simulation configuration into a feature vector
and feed it to a neural network. Therefore, the primary challenge
we are facing is to figure out an informative and compact feature
vector as the input. Informative refers to the discriminability of the
feature so that an irrelevant training instance does not interfere.
Compact means the feature should also be general so that the built
network is small and light-weight. In this section, we start with a
short review of the deformable model, pointing out that while the
simulation is sophisticated, the linear-nonlinear deformation map
of a small local volume is actually smooth. Bearing that in mind,
we show that our heuristic feature vector augments the extracted
kinematic information and produces plausible results.

3.1

Given an arbitrary material point x on the deformable body, its
deformation gradient F € R3*3 is computed as F = dx/d%, where
X and x denote its rest shape position and the deformed position.
Alternatively, we can also express X using its displacement u as
X =X+u. Let G = du/dx and we name this 3 by 3 tensor as
displacement gradient tensor. It is easy to verify that F= G+ 1.
Under the linear elasticity, the deformation is described usin& the
Cauchy strain: € = %(G +GT), and the strain energy density ¥ is:

Deformable model: a quick review

fif:y’é:’é+%tr2('é). (1)

Here p and A are the Lamé coefficients. As ¥is a quadratic
function of G, the corresponding Piola stress becomes a linear
function of Gt

P=u(G+G")+1 tr(G)L )

For most other hyperelastic materials, the deformation is actually
described with the Green strain: € = %(FF T-I)=¢+ %GGT.
One can see that the Cauchy strain used in linear elasticity is
simply the linear portion of the Green strain. Take the St. Venant-
Kirchhoff (StVK) material as example, whose strain energy den-
sity is formulated by replacing € by &:

A
lPStVK =UEE+ ztrz(s), (3)

which is a fourth-order polynomial of the displacement gradient

G, and its stress is cubically related to G. With the help of FEM,

the differential strain-stress relation is integrated and becomes the

macroscopic force-displacement relation that we are interested in.
In reality, the magnitude
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stress) and within the same monotonically increasing interval (a
larger strain yields a larger stress). This implies that the strain-

stress curves of the linear elasticity and a nonlinear elasticity do
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not fundamentally differ from each other in regular deformable
simulations. An example is given in the inset figure, where we
plot the strain-stress curves of the linear, co-rotation, StVK and
Neo-Hookean laws under a rotation-free linear stretch.

Geometric warp In fact, the dominant factor that drives the lin-
ear elasticity away from a nonlinear counterpart is not the material
nonlinearity, but the geometry nonlinearity. This is because a rigid,
deformation-free rotation leads to a non-zero Cauchy strain, which
produces unrealistic deformation effects. Under this consideration,
the modal warping (MW) technique [13] embeds each node on the
mesh local frame. The curl of local displacement field around the
i-th node is calculated: w; = V x u;. If it takes a unit time to
displace node i from X; to X; +u;, u; also represents its velocity
at t = 1. w; can then be understood as its angular velocity at the
same moment. Based on this assumption, MW linearly maps the
angular velocity from the rest shape to the current time instance ¢
and calculates a warp transformation as:

Wy = ;/Ot exp (;[Wi]x> dr, ()]

where [w;]x is the skew symmetric matrix of w;. Similarly, one
can use rotation-strain coordinate by decomposing the G; into
a skew symmetric part: [w;]x = (G; — G, )/2 and a symmetric
part: S; = (G; +G;) /2 [67], [68]. The rotation-strain warp (RSW)
transformation can then be computed treating w; as an Euler
vector:

Wrsy = exp ([wi]x) (S;+1) — L )

After a nodal linear displacement u is obtained, it is corrected via
u < Wy or u + Wygyu. For rotation-strain warping, a global
Poisson reconstruction is also solved to calculate the final warped
displacement. While not physically accurate, these geometric
warping methods produce visually pleasing shapes and have been
used in many time-critical graphics applications [70], [71].

3.2 Linear-nonlinear correspondence
NNWarp is inspired by the encouraging results from the existing

warping methods. However, NNWarp does not explicitly assume
a fixed nonlinear regression formula as Egs. (4) or (5). Instead,
we train an NN to obtain a more accurate regression based on
full simulations. The key question here is how to determine what
is the “right” nonlinear deformation that corresponds to the one
A Y

Figure 2: Different motion trajectories lead to different equilibrium
shapes even under the same external force.

calculated using the linear elasticity.
—__Pk//

A naive thought is to solve the quasi-static equilibrium of
fint (u) = foy for a deformable body under the same external force
and boundary condition using the linear elasticity and a nonlinear
constitutive model. Unfortunately, this method is only valid for
small deformations. Under large external forces, depending on the
context, i.e. the history of the deformation trajectory, a different
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minima can be reached (Fig. 2). From a numerical point of view,
the solution of fint (0) = foxt depends on the initial guess of u and
the strategy of computing Au during the iteration. The iteration
may not converge to the global minimum if the starting guess is
far away from it.

Our solution to this
problem is to register
a linear deformation se-
quence to a nonlinear
one starting from the rest
shape. Specifically, given
an external force foye,
we compute a series of
quasi-static linear defor-
mation by solving the Euler-Lagrange equation with an increased
mass damping so that the acceleration at each time step is
negligible. Each time step yields a linear displacement vector u,
and we estimate a local rotation for the i-th node as:

ool v mn) W)@

M Full FEM result
M Eq. (7) result
M Linear result

Figure 3: In practice, Eq. (7) yields good
approximations of full nonlinear FEM simu-
lation.

where columns in P; and U; are rest shape positions and dis-
placements of neighbor nodes adjacent to i so that (P;P;") _1PiTU,-
gives a least-square evaluation of G around the i-th node. The
linear internal force at the current time step is fin« = Ku. Note
that fin, # foxe until the final equilibrium is reached due to the
existence of the damping. Afterwards, the corresponding nonlinear
deformation u is obtained by solving:

min |f;,¢ (u) — RKu|, (7
u

where R is a block-diagonal matrix, and each of its 3 by 3
diagonal block is the estimated nodal rotation computed via
Eq. (6). Eq. (7) is clearly an approximate because in practice when
NNWarp is being used, we do not know what are the “ground
truth” acceleration (which yields the inertia force) and the velocity
(which yields the damping force) corresponding the linear pose.
Therefore, our best guess is to solve the nonlinear equilibrium of
Eq. (7) according to its linear counterpart (i.e. see Fig. 3). We use
Newton’s method to solve Eq. (7) by setting the initial guess of u
as the solution in the previous time step. In our implementation,
we notice that Newton’s method occasionally fails during the
iteration. Therefore, we impose the Wolfe condition [72] to adjust
the step length.

In our network training, we simplify the external force setting
by only considering two types of feyt: directional force field and
circular force field. The directional field uses a prescribed force
direction, while the force direction in the circular field follows the
tangent direction of a set of concentric circles. Such simplification
frees us from generating an overwhelmingly large training set due
to diverse external force conditions. Its limitation is also obvious:
NNWarp loses some local deformation effects induced by high-
frequency external forces. Extra training efforts would be needed
if one wants to incorporate such deformation effects via NNWarp.

3.3 Discriminative feature

With paired (u,u), we can build a node-wise regression machine
using a neural network that replaces Eq. (4) or Eq. (5). For the i-th
node, in addition to its linear displacement u;, the rotation infor-
mation of its local displacement gradient G; is directly pertinent to
the warp transformation, and should be passed to the network as
the input. To this end, we choose to use the skew symmetric part of



no discriminative feature

nodes from training poses with similar feature (relative L2 error < 5%)

with geodesic

Figure 4: Only using kinematic feature as the input of the network yields noticeable jittery artifacts. A node, because of its kinematic feature is not
discriminative, could be influenced by many irrelevant instances in the training data. Large discrepancies among these mismatched nodes induce
high-frequency variations of the NNWarp. Incorporating geodesic feature effectively eliminates this artifact.

G; and represent it as a 3-vector as in [67]. However, only feeding
these two pieces of information to the network is not enough, and
the resulting deformation appears jittery and non-smooth as shown
in Fig. 4. In this example, we use the Neo-Hookean elasticity,
whose strain energy is:

L —tog()

I} and I, are the invariants of the deformation gradient, defined
based on F’s singular values 67, 6» and o3 such that: I = 612 +
07+ 07 and s = 676707.

This artifact was also noticed and discussed in previous data-
driven simulation literature [46], which is because pure node-wise
kinematic features do not contain sufficient contextual informa-
tion, and thus are not discriminative to reach a conclusive per-node
linear-nonlinear map. To further illustrate this artifact, we pick a
jittery node (marked as a red sphere in the figure) and inversely
query for nodes in our training set that have similar features (< 5%
relative L2 error w.r.t. the feature vector from the picked node). We
can see from the figure that there are a number of training poses
having multiple nodes (on the red-shaded areas) with very similar
feature vectors as the input. In other words, the final displacement
of the picked node becomes a certain mixture of displacements
of many distant and irrelevant nodes. Such ambiguity of pure
kinematic feature is the primary reason behind this artifact.

One of our contribution is to design a compact contextual
feature to resolve this mismath. While one could follow the
method used in [46] to use the integral features of local dynamic
parameters around a node, we found that our simple strategy yields
satisfying result. We speculate that this is because DOFs in solid
simulation are more tightly coupled than in fluid simulation [46].
An important advantage of such compactness is that the network
training is also quite fast. Compared with state-of-the-art pre-
computed deformable models i.e. [45], we can finish training
in a few minutes, and the obtained network can be applied to
a wide range of models. Concretely, we will design geodesic,
potential and digression features to provide necessary contextual
information to avoid ambiguity during the network training. As to
be explained shortly, geodesic feature describes “how far” a mesh
vertex is from the boundary condition so vertices are not mis-
matched because they undertake larger external force. Similarly,
potential characterizes the distance between vertex and force
direction to differentiate the training pairs when the geometric
symmetry exists. Digression further enhances the local contextual
information so that the network training could be applied to
models of different shapes.

)
| —3]+ T log?(I3). (8)

Discriminative feature I: geodesic The geodesic of a node i,
gi is the normalized length of the shortest path from node i to its

nearest anchor node within the deformable body. For a training
model, we first uniformly scale it to fit a unit bounding sphere.
Then, we compute the shortest path using the Dijkstra’s algorithm
for all the un-anchored nodes. Lastly, calculated path lengths are
scaled by the maximum geodesic so that all the g values are
within the normalized interval of [0,1]. It should be noted that
if one uniformly scales a mesh by a factor of S, the stiffness K
is scaled by S only, but the mass matrix M is scaled by S°. Due
to this reason, the final deformation and vibrational frequency of
the trajectory after scaling are altered. However, NNWarp treats
deformation at each time step a quasi-static pose, and its output
only depends on kinematic and contextual features. Therefore,
scaling scheme is a viable training pre-processing as in other NN
based systems.

Our heuristic of choosing the geodesic feature is based on
the observation that if a node is closer to an anchor node, it
tends to have less deformation than nodes that are away from
it. By inducing the geodesic feature, a node far from anchor nodes
does not miss-pair to a node close to anchor nodes only because
it undertakes a smaller external force. Consequently, the jittery
artifact is effectively removed as shown in the rightmost snapshot
in Fig. 4.

geodesic only

training nodes with similar feature geodesic + potential
Figure 5: Volume expansion artifact remains even with the geodesic
feature added. This is because the nodes with similar geodesic value
may have different internal tractions. We use the potential feature to sort
the training data to avoid this issue.
/}Nﬁ

/P
volume increase and shrinkage. As
shown in Fig. 5, bending the beam
also increases its volume noticeably, especially at curved areas.
In order to dig out the missing contextual information behind this
issue, we use the similar approach by picking a node within the
problematic area and query the instances from our training set that
have a similar feature of the selected one. We can see from the
figure that, thanks to the incorporated geodesic feature, now this

selected node only pairs with a training pose under a very similar
deformation. However, it still matches multiple nodes on this pose.

Discriminative feature II: potential
Including the geodesic feature how-
ever, does not avoid the artifact of
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Figure 6: We test the generality of the designed features on a variety of shapes. The training data are generated using the standard rectangular
beam (highlighted by a red box). The resulting DNN successfully handles many beam-like models but with distinctively different shapes. The

distributions of three features are also plotted.

This is because the beam is a symmetric shape, and a loop of
nodes on its surface have similar geodesic values — among which,
some are stretched and some are compressed. Without being able
to distinguish these contexts, the volume of the warped model is
likely to shrink or expand unnaturally.

We notice that whether nodes are being stretched or com-
pressed typically depends on their relative positions in the applied
force field. Therefore, we introduce another scaler feature named
potential p to resolve this ambiguity. If a directional force field is
applied, for each node on the mesh, we project its rest shape posi-
tion onto the force direction and re-map the resulting projections
to the interval of [0, 1]. On the other hand, if a circular force field
is applied, the potential of a node is the distance between its rest
shape position and the circular axis, as shown in the inset figure.
This value is also scaled to [0,1]. As we can see from Fig. 5,
the deformation of the beam model is almost identical to the one
obtained using the full simulation after we inject the potential
feature into the network.

Discriminative feature III: digression So far, we generate a
set of registered linear and nonlinear poses of the beam model.

AN

~—_——————

geodesic + potential

an irregular beam NNWarp ground truth geodesic + potential + digression

Figure 7: In order to make NNWarp re-usable for various deformable
bodies, we use the digression as our third discriminative feature. With
this feature included, the neural network is able to handle an irregular
beam based on the training set generated using a standard rectangular
beam model.



Node-wise linear to nonlinear deviation is learnt by a neural
network, which is then used to warp a linear displacement of the
same model to obtain its nonlinear shape. While the results are
visually plausible, real-world applications will require deformable
animations of various 3D models. NNWarp becomes cumbersome
and less practical if one needs to re-train a network for each
different deformable body.

Unfortunately, if we alter the rest shape geometry of the beam
model as shown in Fig. 7, unrealistic jittery deformations are
observed again even after incorporating geodesic and potential
features. By querying the training set, we see that because the
updated shape is irregular and asymmetric, the most similar train-
ing poses become the ones under oblique force fields regardless
an upright gravity force field is applied in the simulation. To
further correct this mismatch, we use the digression feature d to
describe the nodal position w.r.t. the direction of the external force.
Specifically, the digression for node i is defined as:

X;i —X,

d; = arccos ( ! foxt ) , )

% —%a| [foxt]

where X, is the rest shape position of the anchor node that is
closest to node i. Indeed, digression sorts nodes based on their
local orientational deviations from the external force direction.
The digression feature ranges from O to . If a circular force field
is applied, the digression is simply set as —1. As shown in Fig. 7,
with geodesic, potential and digression included, the training data
generated using a rectangular beam model can also be used to warp
the irregular beam, and NNWarp produces high-quality nonlinear
deformation.

N
&

ground truth

&

&

Figure 8: NNWarp works well under circular force field too. In this case,
the digression feature is set as -1 for all the nodes on the mesh.

Discussion Our features allow the resulting network properly
handles models with various shapes and different tessellations.
More results can be found in Figs 6 and 8. From these exam-
ples, readers may probably notice that geodesic, potential and
digression features actually provide a volumetric parametrization
of deformable bodies so that models of different geometries and
tessellations are somehow registered in a meaningful way, and
node-wise neural network can then be applied. In fact, there are
many elegant algorithms in graphics and computational geometry
that generate the volumetric map between different shapes [73]—
[75]. However in the context of NNWarp, this volumetric map
depends on the configuration of external force and boundary
conditions. While existing methods may also be modified to
incorporate these additional conditions or constraints, we found
that our simple strategy suffices in most cases. An exception is
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reported in Fig. 9, and we find that NNWarp using a convex
training model often fails when the deformable body gets more
concave. Next, we will show how to walk around this limitation
without re-training the network for a different target shape.

Figure 9: When the shape becomes more concave, the network trained
using a rectangular beam produces artifacts.

4 INCORPORATE COMPLEX SHAPES

The exhaustiveness of 3D geo-
metric diversity is endless. Ob-
viously, training set generated
with a single rectangular beam
cannot cover all the different
feature combinations. We find
that the network trained using
the beam model is able to deal
with many convex 3D shapes
(i.e. see Fig. 6). However, it
often fails when the target de-

Figure 10: Building domain graph
formable body becomes more for the domain decomposed model

is an easy and effective way to iden-

concave (Fig. 9). A straight-
tify shapes with similar concavity.

forward idea is to train a new
network using a model with similar concavity of the target
deformable body, but how to describe the similarity of concavity
among 3D shapes?

We borrow the idea from the graph theory [76], and subdivide
a concave model into several convex components or domains.
Afterwards, we create a domain graph G by using a graph vertex to
represent each of the subdivided domains. An edge connects two
vertices if and only if the corresponding two domains are face-
connected on the original mesh. We find that if the domain graph
§G is isomorphic to the domain graph of the training model Gyrain
or § ~ Girain, NNWarp typically yields satisfying results. An
example can be found in Fig. 10. The T-shape beam is decomposed
into three domains, each of which is convex and rectangular. Its
domain graph is isomorphic to many similar concave shapes like
the Y-shape beam, the arrow-shape beam, the crossing beam etc.
If we use the T-shape beam as the training model, the resulting
neural network is able to handle all of these variations as verified
in Fig. 11.

Even utilizing the concept of graph isomorphism, one may still
have to re-train the network (and re-generate training poses) for an
arbitrary geometrically complex model, which is tedious and time
consuming. A more general and powerful solution maximizing
the re-usability of the network training is to use the substructuring
method [14]. This method wisely leverages the hierarchical propa-
gation of the deformation over a complicated structure and isolates
the deformable simulation at each individual domain sequentially.
While it loses some physics accuracy (mostly, the frequency of
the trajectory due to the mass lumping, which can also be fixed as
in [77]), the resulting deformation is natural and realistic. After the
domain decomposition is complete so that each domain is a convex
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Figure 11: While a simple rectangular beam is not able to handle highly concave shapes, by referring to the domain graph we can train a network
using a T-shape beam and the resulting network can be used to warp a wide range of concave beams whose domain graphs are isomorphic to the

T-shape beam.

3D shape, we can use one representative convex model to train
the network. With the help of the proposed three discriminative
features, the resulting network is able to correct local dynamics
of all the domains. It should also be noticed that having a loop
in the domain hierarchy could be problematic. Using the penalty
method (adding an implicit spring force to close the loop) is a
commonly used method [14]. Doing so however, requires more
training efforts for poses for to the penalty forces.

In our NNWarp version of substructuring, the dynamics of the
domain D; is updated and corrected by NNWarp. After that, we
calculate the best-fitting linear transformation A for the small
patch of the mesh interfacing D; and one of its children domain
say Dy as Aj; = (PjykPjT’k)’leT’ijyk, where P;; and Q; store
the rest shape and deformed positions of all the nodes on the
interface patch. We extract the relative rotation between D; and
Dy, using the polar decomposition as A = R;;S; ;. Based on
this, the angular velocity ®;; and the angular acceleration @;
can be calculated. Each domain is pinned to a local non-inertial
reference frame. Therefore, in addition to the regular external
forces, inertial forces originated from the accelerated linear and
angular motion of the interface should also be computed as the
system force and the interface force. We refer the reader to the
related reference from Barbi¢ and Zhao [14] for the detailed
formulation.

An example is given in Fig. 1, where NNWarp is still based on
a rectangular beam model. However, because we decompose the
maple tree into domains of branches and leaves, the neural network
well handles nonlinear dynamics for each domain regardless how
complex the original mesh is. Unlike other tree simulation results
in the literature [14], [65], [77], [78], the example given in the
figure is simulated in the fullspace without any reduction of the
simulation DOFs. Therefore, local high-frequency details are well
preserved. The simulation is close to interactive at 5 FPS — this
is roughly 1,000 times faster than running fullspace nonlinear
simulation using substructuring.

5 NETWORK STRUCTURE AND TRAINING

The input of our neural network includes kinematic features of
the linear displacement of the i-th node u; and its instantaneous
angular velocity w; = V x (PiPiT)_lPiTUi as in Eq. (6). As to
be discussed shortly, we further compress this pair of vectors
into three scalars utilizing the rotation invariance property of the

isotropic hyperelastic material. Doing so significantly relieves the
effort of generating the training set. Besides, three discriminative
features of geodesic, potential and digression are also included.
We find that the Young’s modulus k behaves more like a lin-
ear amplifier. Increasing Young’s modulus yields a deformation
similar to the one obtained by reducing the magnitude of the
external force. Therefore, this material parameter is not explicitly
fed to the network. However, Poisson’s ratio v controls the volume
change, and its impact on the final deformation is much more
nonlinear. This is also reflected in the strain energy formulation
of Egs. (1), (3) and (8). As a result, the Poisson’s ratio is also
an input feature. Other simulation configurations like the external
force, tessellation, boundary conditions are not the input since
we believe this information is well encoded during the linear
solve. The final input feature is a seven-dimension vector, and
the network outputs a 3D vector of du; corresponding to a node-
wise displacement fix so that w; + du; is a well approximated
nonlinear nodal displacement for a target material model. We use
a different network for a different nonlinear material model instead
of building a comprehensive one.

Training data alignment The
complexity of a neural network
highly depends on its input [9]. For
instance, w; can be extracted from
the displacement gradient tensor
G;. Nevertheless, if we simply put
all the nine elements of G; into the
network, much higher training and
testing errors are observed, which
could only be improved by spanning the network depth and
generating more training data. In order to make the network as
compact as possible, we further align vectors u and w based on
the fact that a nodal deformation measure can always be examined
within a local coordinate frame which is invariant under rotations.

Figure 12: Rotation invariance
allows us to further compress
the input kinematic feature.

This procedure is illustrated in Fig. 12. Suppose we have two
nodes i and j. They are surrounded by two infinitesimal volumes,
which are small enough to be considered as symmetric in all the
orientations. We first rotate these two volumes so that the linear
displacements w; and u; are both in the positive y direction. The
follow-up rotation is around the y axis. One can pick an arbitrary
direction (the black vector in the figure) within plane IT;, which
is perpendicular to the y axis. In our implementation, we set
this direction as the negative x axis. After that, w; and w; are



rotated so that they both reside in plane I, i.e. the xy plane in
our implementation. Because the second rotation is around the y
axis, u; and u; remain aligned. By doing so, pairs of u and w only
differ at the magnitude or the norm of the linear displacement, the
magnitude of w and the angle between them. In other words, the
real useful kinematic information hidden behind vectors u and w
are only three scalars. If one insists on putting the original u and w
into the network, the net must learn this double-rotation alignment
out of the training data first and then fits the linear-nonlinear map.
Unfortunately, the neural network is not good at processing such
rotation invariant features. For instance, in existing works of using
deep learning to perform 3D shape analysis [79], [80], in order
to relieve the burden of the analysis of rotation invariant shape
features, it is common to use rotation augmentation that duplicates
a training data by rotating it from multiple angles. The final result
is pooled out of all the rotated duplicates. Using data alignment,
the size of the training set is reduced by over 10 times, and the
training time is also significantly shortened.

Generating training set It is important to make sure that the
training set covers the feature space of the simulation, because
machine learning is known to have a relatively poor performance
for extrapolation. For the direction of the external force field, we
evenly scatter samples over a unit semi-hemisphere surface for
the rectangular beam model. Specifically, we uniformly sample
two variables o and B from the interval of [0,7/2], which
correspond to the latitudinal and longitudinal spans on the semi-
hemisphere. The unit directional vector can be calculated as:
e = [sin B cos &,cos 3, sin B sin ] ' . The magnitude of the external
force determines the magnitude of the linear displacement, which
could be an infinitely large vector in theory. However, as we
have already normalized our training model into a unit sphere,
an excessively large displacement vector is unlike to occur in a
real simulation application. Therefore, we stop applying bigger
external force if [u;| > 2 during the training data generation. Such
assumption could lead to artifacts if sharp and high-frequency
external forces occur in the actual simulation. However in many
other cases, pre-known external forces are applied, such as the
gravity or the wind forces, and NNWarp can then be well leveraged
based on compact training set.

The discriminative features g, p and d are essentially for

model registration. Therefore, how they are sampled depends
on the training model’s geometry and tessellation. In general, a
moderately fine mesh should suffice for these features. However,
if the training model is too coarse i.e. with few hundred elements,
one may observe artifacts after warping.
Training specifications In our implementation, the beam model
for the network training consists of 2,629 elements, and we
generate 20,829 training poses including 16,730,893 training
nodal pairs and 167,309 validation nodal pairs. The test data is
1/7 of the training data with 2,064,812 nodal pairs. Training
and testing data are stored as binary files in .npy format with
a total size of 1.42 GB. Unlike [47], we do not need to load these
training poses during the simulation. Only the resulting network
parameters are needed. The network structure is rather simple — for
co-rotation and Neo-Hookean materials there are only two hidden
layers, and each of which has 16 neurons. For StVK material, the
network has three hidden layers with 16 neurons at each layer.

The network is optimized using the Adam solver [81]. Dur-
ing the training, the neural network was built using Google
Tensowflow [82] and optimized with Google Cloud
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Platform with 8 virtual CPUs. In practice, we typically stop
at 10 epoches. The total training time is less than 10 minutes on
Google Cloud. It takes similar time if one performs the training
on an i7 PC with a high-end video card. The minibatch size is
1,024 and the learning rate is set as 0.001. Two hyper-parameters
B1 and B, control the exponential decay rates of moving averages,
which are set as B; = 0.9 and B, = 0.999, and € = le — 8.
We use the tanh defined as ¢* — e */e* + ¢~ as the nonlinear
activation function. We found that tanh outperforms the widely-
used ReLU in our experiment. We guess this is because the input-
output relation of the net is clearly a smooth nonlinear function
in our case, and ReLU may excel when the input-output relation
contains discontinuity and/or singularity as in many computer
vision problems like image recognition. Also, because all the
training data generated using FEM simulation are clear and noise-
free, and the data coverage is carefully controlled to avoid over-
and under-sampling of the input feature space, we do not apply
dropout during our training.
Generating all the training set
takes about 154 min with multi-
treading enabled. Together with the
training time, the entire NNWarp
preparation is 164 min. Thanks to
our compact features, the network
is simple, and applying it over 10
each nodal displacement is also
parallelizable. Therefore, NNWarp Figure 14: The training effort is
. . paid off for an animation of mod-
is orders-of-magnitude faster than g 40 length.
the full nonlinear simulation. Take
the dinosaur model an example, the standard full simulation runs
only at 0.04 FPS and 164 min (i.e. the total time used for
network training) only generates about 400 frames of animation
(see Fig. 14). In other words, the NNWarp training easily gains a
profit for producing an animation of moderate length.
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6 OTHER EXPERIMENTAL RESULTS

The simulator module was implemented using MS Visual C++
2013 on an Alienware desktop PC with an Intel 17 5960
CPU (at 3.0 GHz) and 32 GB memory. It also equips with an
nvidia GTX 970 GPU. We used Eigen C++ template for
most numerical computations. Some of our implementations also
used the published Vega library [83]. NNWarp utilizes a
standard linear simulation running at background. The external
force applied at each node needs to be rotated back to its rest-
shape orientation as in stiffness warping [12]. This local rotation
is computed by converting w; into a rotation matrix, which only
induces minor extra computing efforts since w; itself is also
the network’s input. The timing statistics of examples shown in
the paper are reported in Table 1. The source code (for both
neural network and simulator) and executables can be found in
the supplementary file. The training data (for the Neo-Hookean
material) is also available from an anonymous dropbox link
provided in the supplementary file.

Comparison with existing geometry warping methods First
of all, we compare our method with existing geometry warping
methods including modal warping (MW) [13] and rotation-strain
warping (RSW) [67]. We stick with using the rectangular beam
as our training model, and simulate the bending deformation of a
Neo-Hookean toy statue using MW, RSW, NNWarp and fullspace
FEM simulation. While all the methods demonstrate plausible
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Figure 13: A side-by-side comparison shows a clear advantage of NNWarp over the existing warping techniques. Its data-driven nature makes the
result almost identical to the ground truth while the simulation is as fast as the linear elasticity. The training still uses the rectangular beam model.

nonlinear bending effects, when putting together, one can see that
MW and RSW are actually quite different from the ground truth
result. On the other hand, NNWarp yields a result that is hardly
distinguishable from the ground truth. Because MW and RSM
use a fixed linear-nonlinear map template (i.e. Eqs (4) and (5)),
they show no difference with different hyperelastic materials.
However, NNWarp is able to produce high-quality results for
various material models due to its data-driven nature.
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5 3 under damping —Neohookean 1/150
EzZ —NNWarp 1/50
2 'E ~—NNWarp 1/150
)
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Figure 15: The deformable motion trajectory (at the nose tip of the wolf
head) generated using NNWarp well matches the ground truth under
different time step sizes. The vibration frequency resembles the ground
truth as well. We use the Newmark integrator in this example.

Trajectory comparison Another aspect we would like to inves-
tigate is the motion trajectory, and see how far NNWarp deviates
from the ground truth along the simulation time. To this end, we
apply NNWarp to a wolf totem model and plot the displacement
of the node at the nose tip of the wolf head w.r.t. time. Our
reference is the fullspace FEM simulation using the Newmark
integration and the material model is Neo-Hookean. In both cases,
the totem model is scaled into a unit cube. We compare the
resulting trajectories with time step size set as 1/50 sec and
1/150 sec respectively. Surprisingly, the trajectory generated using
NNWarp is very close to the ground truth in both time step size
settings. The vibration frequency is almost identical to the ground
truth. This is probably because NNWarp is essentially a fullspace
simulator, where the mass inertial is lossless unlike in reduced
simulations. On the other hand, we do observe an artificial under-
damping issue as we can see from the plotted trajectories. It seems
that the linear Rayleigh damping dissipates less energy (~ 10%
in this example) than the nonlinear one. As NNWarp is a pure
geometric-based correction, and it breaks a deformation trajectory
into frames, adding new features into the current NNWarp network
does not resolve this artifact. Instead, this issue should be fixed by
dynamically adjusting the Rayleigh damping coefficients as did
in [78].

More examples & GPU implementation With the help of
substructuring method [14], training a single model can be utilized
to handle geometrically complex deformable bodies. In addition to
the example shown in Fig. 1, Fig. 16 shows more results using
NNWarp. The Armadillo, dinosaur and dragon models are of
StVK, co-rotation and Neo-Hookean materials respectively. The
networks used are still based on a single rectangular beam model.

Figure 16: Substructuring allows us to re-use the training data of a regu-
lar shape to handle complex deformable bodies. The Armadillo, dinosaur
and dragon models use the StVK, co-rotation and Neo-Hookean mate-
rials respectively. They use the networks trained with the rectangular
beam.

NNWarp is node-wise. Its local correction of each nodal
displacement is independent and can be parallelized trivially on
GPU. We also implemented a shader version of NNWarp. NNWarp
relies an underlying linear solver during the simulation run time.
It is known that the asymptotic time complexity of solving a
pre-factorized matrix is O(N?) while NNWarp correction is just
O(N). In other words, the benefit of the GPU implementation is
limited in general. It is easy to see that NNWarp also synergizes
well with model reduction. One can use the linear modal analysis



Model # Tetrahedra | # Domains | Factorization Solve NNWarp (CPU) | NNWarp (Shader) | FPS (CPU/GPU)
Beam 2,629 1 6.9ms < lms 1.5ms < lms 333/666
Dragon 51,850 14 307ms 15ms 15ms < lms 16/22
Armadillo 52,278 15 403ms 15ms 18ms < lms 15/21
Dinosaur 54,796 14 334ms 18ms 15ms < lms 18/24
Bunny 24,956 4 273ms 10ms Tms < lms 33/43
Maple bonsai 255,552 1,771 1,556ms 83ms 109ms < lms 5/10
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Table 1: Time performance of the examples reported in the paper. Factorization is the time needed to pre-factorize the system matrix of the linear
elasticity. We use simplicialLLT solver shipped with Eigen. During the simulation, we only need to solve the system once. FPS reports both

CPU and GPU performance.

to construct a r-dimensional linear subspace. Because the model
reduction is applied to the linear solver, other more expensive
pre-computations like Cubature training [45] are not needed. The
network training for NNWarp is much faster than the Cubature
training. More importantly, Cubature training is model-dependant,
while NNWarp training is more general. With the linear modal
reduction, the cost for the diagonalized linear solver is reduced
to O(r), and one should expect more noticeable accelerations by
using the GPU. We do not report extra results using model reduced
NNWarp since this is a natural extension and not the primary
contribution of this work, nevertheless the simulation performance
of the maple bonsai model shown in Fig. 1 can easily exceed 100
FPS with modal reduction.

When using the GPU-based NNWarp, some extra cares are
needed for the deformation substructuring. This is because all
the information regarding the final nonlinear displacement is in
the GPU memory, which prevents us to evaluate the system and
interface forces for per-domain dynamics at the CPU side. For the
interface force, since it is assumed that the number of nodes on the
domain’s interface is small, we compute a CPU-based NNWarp
for all the interface nodes to obtain their corrected displacement.
For the system force, we treat an entire domain as a single mass
point and estimate a domain-level rotation to warp it to the local
non-inertial frame. Doing so compromises the physics accuracy,
but avoids expensive data exchange from GPU and CPU.

Figure 17: We can simulate free-floating deformable bodies by creating
an artificial boundary condition to constrain the element near the mass
center.

Free-floating deformable bodies Free-floating objects do not
have boundary conditions, and our discriminative features are ill-
defined under this situation. As an easy walk-round, we pick a
tetrahedron that is closest to the mass center of the deformable
body, constrain all of its four nodes and training the network based
on it. During the simulation, we couple a rigid body simulator with
the deformable simulation as in [84], where NNWarp is applied
within the reference frame attached to the rigid body simulator
(Fig. 17).

7 CONCLUSION

NNWarp uses a node-wise light-weight neural network to correct a
linear displacement to be a nonlinear one. While it is conceptually
similar to existing geometry warping method like stiffness warp-
ing, modal warping and rotation-strain warping, NNWarp yields
better simulation results in terms of both shape deformations
and motion trajectories. Observing that simply feeding kinematic
feature into the network leads to serious artifacts, we design
three discriminative features: geodesic, potential and digression
to provide sufficient contextual information while these features
are still quite general so that a network training can be used for
deformable bodies of different shapes. Using the substructuring
method, NNWarp can simulate large-scale and complex nonlinear
deformable objects efficiently without repetitively generating new
training poses and training the networks for unseen deformable
bodies. The training data alignment also significantly reduces the
training effort.

Limitations While it shows some unique advantages over the
existing methods like its efficiency, accuracy and re-useable train-
ing, the current version of NNWarp also has many limitations.
First of all, as a common drawback of learning-based methods,
the performance of NNWarp drops rapidly if an extrapolation is
needed. Figs 18 and 19 report limitation in detail. In Fig. 18,
we keep the external force direction along negative y axis and
gradually increase its magnitude. When the force magnitude is
within the training coverage, NNWarp yields good results of low
errors compared with ground truth. When the force magnitude
exceeds the coverage of the training set indicating an extrapolation
occurs (i.e. over 100%), we can see artifacts and errors increase
accordingly. Similar behavior can also be observed when we keep
the force magnitude unchanged, but alter the force field direction
as shown in Fig. 19. In this example, our training force fields
range from —90° to 0°. In other words, if the training set does not
cover the feature vectors that appear in the simulation, NNWarp
may produce unrealistic deformations. In our current setting, we
only consider isotropic hyperelastic materials. While we believe
NNWarp should be able to handle more complicated nonlinear
materials like Mooney Rivlin, Yeoh, Ogden etc, doing so may
require a re-design of contextual features and more training efforts
since we cannot align training pairs within a local frame. Adding
a new feature into the network input increases the sampling space
by one dimension, which requires significant more training efforts.
The corresponding network may also be more complex and deeper.
We use directional and rotational force fields as the external forces
in our current training data generation, both of which are low-
frequency forces. As a result, NNWarp is less accurate when a
high-frequency external force is applied i.e. during the collision
and contact. One may observe popping artifact when the bunny
hits the floor in Fig. 17. A potential solution may be to use the idea
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Figure 18: Extrapolation errors when the force magnitude exceeds the
training coverage.

Z(\NS

60°

Maximum error
Mean error

0
-90° 0° 15° 30° 45° 60°
Angle between applied force and maximum training force

Figure 19: Extrapolation errors when the force direction exceeds the
training coverage.

of condensation [85] by splitting the deformable body according
to its contact regions and rolling NNWarp back to a regular
nonlinear solver to accurately simulate detailed denting effects, or
to exhaustively sample the high-frequency external forces during
the network training.
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