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Abstract—Information source sampling and update scheduling
have been treated separately in the context of real-time status up-
date for age of information optimization. In this paper, a unified
sampling and scheduling (S2) approach is proposed, focusing on
decentralized updates in multiaccess wireless networks. To gain
some insights, we first analyze an example consisting of two-
state Markov sources, showing that when both optimized, the
unified approach outperforms the separate approach significantly
in terms of status tracking error by capturing the key status
variation. We then generalize to source nodes with random-walk
state transitions whose scaling limit is Wiener processes, the
closed-form Whittle’s index with arbitrary status tracking error
functions is obtained and indexability established. Furthermore,
a mean-field approach is applied to solve for the decentralized
status update design explicitly. In addition to simulation results
which validate the optimality of the proposed S2 scheme and its
advantage over the separate approach, a use case of dynamic
channel state information (CSI) update is investigated, with CSI
generated by a ray-tracing electromagnetic software.

I. INTRODUCTION

For status update (tracking) in, e.g., latency-sensitive cyber-

physical systems, age of information (AoI) [1] is a perfor-

mance metric that captures the end effect of status observation

delay from the destination perspective, and thus enables direct

and fair comparisons between systems with differences in,

e.g., end-to-end delays, information source sampling rates,

throughputs and lossless or lossy designs [2]. However, it

can be argued that AoI is still an intermediate metric [3],

especially in status update systems, whereas the ultimate goal

is to optimize the status tracking accuracy at destinations

with heterogeneous status information generated remotely by

distributed information sources.

We focus on status update through wireless networks. Exist-

ing works in this regard implicitly adopt a separate approach—

the sampling of information sources and the scheduling of

updates/transmissions are treated separately (Fig. 1), with

objectives of minimizing the real-time sampling error and

AoI respectively [3]–[12]. Specifically, in terms of information

sampling, Ref. [3]–[6] consider the scenario that one destina-

tion node is remotely tracking the status of one source node,

with the objective to minimize, e.g., tracking error [4], [6]

or AoI [5]. In this single-source scenario, optimal sampling

strategies are obtained under assumptions such as random

delay due to channel error [6] or limited sampling frequency

[4]; these assumptions are made to model the transmissions in
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Fig. 1. Status update in a multiaccess wireless network.

wireless networks but are insufficient, due to the considerably

more complex behavior of wireless networks. On the other

hand, status update scheduling policies usually ignore the

structures of information sources, or equivalently, assume the

sampling procedure has fully exploited them, and focus on

optimizing the AoI [7]–[12]. In these works, the information

sources are abstracted as status update packets that arrive

randomly [8], [9], [11], or as generate-at-will (active) sources

[7], [10], [12]. Scheduling decisions are made to minimize the

AoI, irrespective of status variation—a node may be scheduled

even if its status is unchanged since the last schedule.

Despite its simplicity, this separate approach is not nec-

essarily optimal in terms of status tracking accuracy based

on a unified formulation, and the performance difference

is unknown. There have been recent efforts [3] towards an

effective AoI metric which, compared to AoI, is more directly

related to status tracking accuracy in a single-link scenario.

The contributions of this paper are summarized as:

1) The joint information sampling and transmission schedul-

ing (S2) problem for multiaccess wireless networks is for-

mulated. Through an example consisting of two-state Markov

nodes, it is shown that the optimal S2 achieves smaller status

tracking error than the (near) optimal separate approach. We

then consider sources with random-walk state transitions—

a discrete version of Wiener processes—and arbitrary error

functions; a decentralized near-optimal status update scheme

is proposed. Based on extensive simulations, including a use

case with channel state information (CSI) sources generated

by a ray-tracing software, the proposed scheme shows evident

advantage over state-of-the-art separate approaches.

2) From a methodology perspective, to be best of our
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knowledge, this is the first work that generalizes the Whittle’s

index to incorporate arbitrary functions which measure the

status tracking accuracy, and also the first to apply a mean-

filed approach to derive the decentralized policy explicitly. As

a special case, the Whittle’s index of non-linear AoI (arbitrary

reasonable non-linear functions) and the corresponding mean-

field based decentralized implementation can be readily given.

II. SYSTEM MODEL AND PRELIMINARIES

A multiaccess wireless network is considered, where a

central controller collects status updates from N distributed

source nodes, denoted by {S1, · · · , SN}. The status updates

are conveyed in packets which are transmitted through the

wireless multiaccess channel. A time-slotted communication

system is considered. In each time slot, only one packet from a

source node can be transmitted; a collision happens with more

than one simultaneous transmissions. The transmission error

probability is pe,n (i.i.d. over nodes and time) if there is no

collision. The source nodes only have knowledge of their own

statuses in each time slot [3], [4] (expect that in Section III, a

genie-aided scheduler which has knowledge of status changes

of all source nodes is assumed to obtain a performance bound).

The packets containing status updates are stored in the buffers

at source nodes when waiting to be transmitted. For active

sources, the buffers are unnecessary since status packets are

generated at will.

A. General Status Tracking Error Metric for S2

We assume that for source node Sn, its status is discrete

and belongs to a set Kn � {κn,1, · · · , κn,Kn
}. A status

κn,k is generic, e.g., sensory data or images, and we assume

each status update consumes one packet. We define a general

measure of difference between two statuses κn,k and κn,j as

δ(κn,k, κn,j); examples include �1, �2 norms when the statuses

are described by vectors. Denote the statuses of source node

Sn and the destination node under a policy π (including infor-

mation source sampling and transmission scheduling) at time t
as sn(t) and ŝn,π(t) respectively, and sn(t), ŝn,π(t) ∈ Kn. The

T -horizon time-average remote status tracking error can be

expressed as Δ
(T )

n,π � 1
T

∑T−1
t=0 δ(sn(t), ŝn,π(t)). In particular,

we are interested in the infinite-horizon regime where T → ∞.

Denote the weighted long-time-average remote status tracking

error of all sources as Δπ � lim supT→∞
1
N

∑N
n=1 wnΔ

(T )

n,π ,

where [w1, · · · , wN ] is a weight vector denoting the impor-

tance of each source node. The objective is therefore to seek

for a policy π that minimizes the time-average error, i.e.,

min
π

Δπ, subject to

N
∑

n=1

un(t) ≤ 1, ∀t, (1)

where un(t) = 1 denotes the source node Sn transmits

successfully during time slot t; otherwise un(t) = 0.

B. Conventional Separate Approach

In a separate sampling and scheduling approach, the infor-

mation sampling design concerns with the optimal sampling

time of a single source to minimize the remote tracking

error, with some assumptions on the communication part,

e.g., fixed delay [3], random delay [4] or unreliable channel

[6]; additional constraints include limited sampling frequency

[4]. Afterwards, the transmission scheduling decision is based

on optimizing the AoI [7]–[9], [11] which is defined as

follows. The T -horizon time-average AoI of source node Sn

is h
(T )

n,π � 1
T

∑T−1
t=0 hn,π(t), where hn,π(t) denotes the AoI

reported by Sn at the t-th time slot under policy π and

hn,π(t) � t − μn,π(t), where μn,π(t) denotes the sampling

time of the newest status received at the destination until

time t. The weighted long-time-average AoI is defined as

hπ � lim supT→∞
1
N

∑N
n=1 wnh

(T )

n,π .

The rationality of this separate approach is that by optimiz-

ing the AoI, the tracking error can be minimized consequently

by assuming the tracking error grows with the staleness of

the information obtained. However, this assumption needs to

be reconsidered with generic status variation. The motivating

example introduced in the following section will show that

this separate approach is not optimal and can be improved by

a unified sampling and scheduling approach.

III. STATUS TRACKING ERROR ANALYSIS FOR A

NETWORK OF TWO-STATE MARKOV SOURCES

Consider a network with N independent Markov infor-

mation sources, each with two symmetrical states {0, 1}
and state change probability of pn � pn,0→1 = pn,1→0.1

We assume reliable channels in this section and later on

generalize in Section IV-A. The performance metric is the

long-time sample average error probability which converges

to the stochastic average denoted by Pr(εn|π) given policy

π, i.e., δ(sn(t), ŝn,π(t)) = �{sn(t) �=ŝn,π(t)}, Pr(εn|π) =

lim supT→∞
1
T

∑T−1
t=0 �{sn(t) �=ŝn,π(t)}. We further assume in

this section that wi = 1, ∀i ∈ {1, · · · , N}, namely all nodes

have equal weights. The objective function in (1) is therefore

Δπ = 1
N

∑N
n=1 Pr(εn|π).

A. Optimal S2 for Two-State Sources

In this section, we assume that there is a genie coordinating

the status update decisions with all the information to obtain

the optimal performance as a benchmark; this assumption is

unrealistic and will be removed in the next section consider-

ing decentralized status update with only local information.

The Markov decision process (MDP) is formulated to obtain

the optimum, based on which the system state is B(t) �

{(s1(t), ŝ1(t)), · · · , (sN (t), ŝN (t))} where sn, ŝn ∈ {0, 1}.

The transition probability with action un(t) = �{n=m},

∀n ∈ {1, · · · , N} is

Pr {B(t) → B(t+ 1)} =
∏

n∈Ψ1

pn
∏

i∈Ψ2

(1− pi),

where Ψ1 is the set of source nodes whose statuses change at

time slot t, and Ψ2 contains those unchanged. The statuses at

1We only consider pn ≤ 0.5 since a symmetrical two-state Markov source
with pn > 0.5 can be regarded as the modulo-2 superposition of a constant
source with alternative 0 and 1 output and a source with change rate 1− pn.
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time t + 1 at the central controller remain the same as time

t, i.e., ŝn(t + 1) = ŝn(t), ∀n �= m, except for node m who

is updated to ŝm(t + 1) = sm(t). Define the T -horizon total

cost function as (a constant factor of 1
N

is omitted)

min
un(t), n∈{1,··· ,N}

E

[

T−1
∑

t=0

N
∑

n=1

�{sn(t) �=ŝn,π(t)}

]

. (2)

The optimal policy is as follows.

Theorem 1 (Optimal S2 for Two-State Markov

Sources): The optimal policy for the MDP is at time

t, node Snopt
updates its current status where nopt =

argminn∈χ(t) pn, and χ(t) is the set of nodes with

sn(t) �= ŝn(t), and ties are broken arbitrarily.

Proof: The optimal policy is to schedule the source node

that has error, and meanwhile is the least likely to change

(avoiding repetitive and hence wasted update). The detailed

proof is given in Appendix A.

Remark 1: We have derived the optimal policy for the

two-state system with a finite horizon, which is considered

to be the heavy-lifting of the proof. The generalization to

infinite horizon follows standard methods, cf. [13, Theorem

2]. Although significantly simplified, the considered scenario

presents itself when considering a network of nodes for e.g.,

anomaly detection which has two states: normal and alert. �

B. Near-Optimal Separate Approach

In this subsection, we aim to obtain the optimal separate

policy and compare its performance with that of Theorem 1,

in order to show whether S2 is beneficial in this scenario.

To begin with, the sampling strategy which is independent

with the transmission scheduling is considered. The sample-

at-change sampler, i.e., sampling the source whenever there

is a state change, is clearly the optimal lossless sampler in

terms of minimum sampling times. Moreover, since there are

only two states, the optimal sampling strategy in [4], which is

based on a threshold of the status change and proved optimal

considering Wiener sources, reduces to sample-at-change. In

general, we remark that the optimal sampling strategy is

related to assumptions on communications, e.g., random delay

and erasure channel. However, it is very difficult to model

the overlay wireless network perfectly. Hence, we adopt the

sample-at-change strategy which is also used in [3].

According to the separate approach, the sampling strategy

deals with the information source structure and the scheduling

policy is designed to minimize the AoI. Based on the sample-

at-change sampler, the sampled packets arrive at the buffer

of Sn based on a Bernoulli distribution with parameter pn.

There are rich existing works on the scheduling policy for

AoI optimization in this system setting [7]–[9], [11]. It has

been shown that although the optimal scheduling policy seems

elusive, a closed-form Whittle’s index based policy is obtained

in [9, Theorem 3]. Thereby, each node only retains the most

up-to-date packet, and the node with the highest index is
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Fig. 2. Tracking error comparisons between optimal S2 and near-optimal
separate approach based on the two-state Markov sources setting.

scheduled. The index is given by m(an, bn, pn) = 1
2x

2
n +

(

1
pn

− 1
2

)

xn, if bn > pn

2 (a2n − an) + an; and bn
pn

otherwise,

where xn �
bn+

an(an−1)
2 pn

1−pn+anpn
, the age of the packet at buffer of

Sn is denoted by an, the current AoI of Sn is denoted by hn

and bn � hn − an. It is well-known that the Whittle’s index

based policy can achieve near-optimal performance of restless

multi-armed bandit problems, especially with a large number

of source nodes [14]. Therefore, we claim that the index policy

is close to optimal to minimize the AoI of the system.

Now we have obtained the optimal S2 policy and a near-

optimal separate policy in a network with independent 0-1
Markov sources, the status tracking error performance com-

parisons are in order.

C. Comparisons between S2 and Separate Approach

In Fig. 2, we compare the status tracking error performances

of the two-state Markov source network with optimal S2

derived in Theorem 1, and the near-optimal Whittle’s index

policy based separate sampling and scheduling approach de-

scribed in the last subsection. The transition probability pn
is uniformly distributed in [pn,min,

1
2 ]. The simulation runs

for 106 time slots. It is observed that the performance gap

between S2 and the separate approach is evident. The reason

is that the separate approach, although optimizing the status

update timeliness, does not account for the real status change,

i.e., instead of being event-triggered, the separate approach is

timing-triggered. In this specific case, the separate approach

may squander status update opportunities on nodes with large

AoI but correct statuses due to the back-and-forth state tran-

sition of the two-state Markov chain. In contrast, the optimal

S2 selects the node with both incorrect status and smallest pn
(least likely to change back).

Having witnessed the potential benefit by S2, let us turn to

a more general scenario and consider more practical issues.

IV. DECENTRALIZED EVENT-TRIGGERED STATUS UPDATE

FOR NODES WITH RANDOM-WALK STATE TRANSITIONS

One can immediately realize that the optimal S2 proposed

in Theorem 1 is not feasible, expect for illustration purposes,

in the sense that it requires a genie to inform the scheduler

about the set of nodes where events (status changes) happen

at the considered time. Moreover, even the assumption of a

central scheduler to make scheduling decisions is questionable,
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considering the prohibitive signalling overhead in the massive

Internet-of-Things (IoT) system. In summary, there are two

distinct challenges in designing event-triggered status update

in a multiaccess wireless network:

1) How to measure the event importance for status update

such that by scheduling nodes with important updates, the

overall status tracking accuracy is improved?

2) How to design a decentralized status update scheme

based on the event importance?

A natural idea to measure the event importance is by

measuring the status change amplitude; however, problems

arise in the case with heterogeneous nodes, e.g., different error

functions due to different nodes’ sensitivities towards error. To

address this issue, we adopt a Whittle’s index-based solution.

A high-level overview of the proposed scheme, i.e., event-

triggered status update (ETSU), is as follows. The Whittle’s

index, which is denoted by In(t) for node n at time t, is

calculated by each source node based solely upon its local

information, e.g., status change; it is therefore adopted to

measure the status change importance and triggers the status

update. Each node maps its index to a transmission probability

pn(t) based on a pre-defined function Ψ(In(t)) which is public

and identical among nodes (to be specified later), i.e., pn(t) =
Ψ(In(t)), ∀n ∈ {1, · · · , N}. The nodes undergo a contention

period based on their distinct transmission probabilities and the

winner transmits a status update packet. Intuitively, a higher

index, indicating a higher importance, should be mapped to a

higher transmission probability. The methodology is described

here.

ETSU

Contention period:

Node Sn transmits with probability pn(t) = Ψ(In(t)).
Transmission or collision time slot:

In case of collision, the central controller feeds back

a NACK; otherwise ACK.

Go to the contention period.

ETSU can be viewed as a prioritized p-persistent carrier-

sense multiple access (CSMA) scheme, and has been proposed

in [9] to address AoI optimization in wireless uplinks. How-

ever, the challenges here are to design In(t) to accommodate

event importance instead of AoI in [9], and to design the

mapping Ψ(·) explicitly for which we adopt a novel mean-

field approach. In what follows, we tackle these challenges

one-by-one.

A. Whittle’s Index for Nodes with Random-Walk Transitions

Two assumptions on state transitions and status tracking er-

ror metric are in order before diving into the index derivation.

1) We consider source nodes with state transitions modeled

as random walk on a one-dimensional line. Formally, sn(t+
1) = sn(t) + an(t), where

Pr{an(t) = i|sn(t)} = Pr{an(t) = i} = qn,i, (3)

and qn,1 = 0.5, qn,−1 = 0.5, ∀n. Hence the status evolution

of each node is a random walk with i.i.d. (among nodes) and

time-homogeneous increments.

2) The status tracking error functions δn(sn(t), ŝn(t)),
∀n ∈ {1, · · · , N}, is only related the absolute status differ-

ence, i.e., δn(sn(t), ŝn(t)) = δn (|sn(t)− ŝn(t)|), and satisfy:

∀n ∈ {1, · · · , N}, δn(0) = 0 ≤ δn(1) ≤ · · · ≤ δn(d) ≤ · · · ,

and there exists D > 0, ∀d ≥ D, δn(d) > 0.

The random-walk state transitions capture the essence of

many real-world physical phenomenons, e.g., the stock price

and the path traced by a foraging animal; the Wiener process

considered in the literature [4] is the scaling limit of a random

walk with very small steps. Note that the state values sn should

be viewed as normalized status values, and the end effect of

heterogeneous status values, e.g., temperature status ranging

in [−30, 30] and an image pixel in [0, 255], is captured by

distinct error functions δn(·). Several extensions to the random

walk assumption are considered trivial and thus not treated

specifically: Random walk with different step sizes which, as

mentioned before, can be treated by formulating different error

functions δn(·); Asymmetrical random walk where, say qn,1 >
0.5, can be treated with adding a constant drift of (2qn,1−1)τ ,

where τ denotes the last update time, to the tracking status

ŝn(t); For random walk with stay probability, i.e., qn,0 �= 0
which can be different among nodes, the corresponding index

is the one without stay probability multiplied by a factor of

1/(1 − qn,0) by the standard Markov chain uniformization

technique [15, Chapter 6.4]. One other reason to consider

random walks is that state transitions of information sources

in real world are difficult to model and thus often unknown,

whereas random walks offer an approximation.

The second assumption, together with the random walk as-

sumption, essentially makes the problem state-homogeneous,

i.e., the status tracking difference is sufficient statistics. There-

fore, the system state can be simplified to be one-dimensional,

i.e., (sn(t), ŝn(t)) ⇔ (dn(t) � |sn(t) − ŝn(t)|). The state-

homogeneous error functions are still considered quite general

since a wide range of metrics, e.g., �1, �2 norms and threshold-

type error functions, can be included. The requirement of non-

decreasing of δn(d) is also reasonable, considering a larger

status difference should have a larger status tracking error.

The Whittle’s index is a technique to deal with the restless

multi-armed bandit (RMAB) problem which usually suffers

from the curse of dimensionality when considering a large

number of arms. Our status update problem clearly fits into

the RMAB framework since the status update decisions for

nodes are binary, like pulling arms of bandit machines, and

the status changes even if the node is not scheduled i.e.,

restless. The philosophy of the Whittle’s index is to decompose

the N -dimensional RMAB into N one-dimensional MDP

problems; solving each one-dimensional problem is equivalent

to comparing each bandit machine to a machine with constant

payoff (or cost) mn, which is also equivalent to solving a

relaxed Lagrange dual problem [14]. By this methodology, the

index mn can be viewed as a measure of the event importance

optimized for multi-node status update. The challenge when
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applying the Whittle’s index is that it is only defined for a

subset of RMAB problems which are indexable.

Definition 1 (Indexability): For the decomposed problem,

given auxiliary costs m1 and m2, and the sets of states that the

optimal action is to idle denoted by Πm1 and Πm2 respectively,

the RMAB is indexable if ∀0 ≤ m1 < m2, Πm1 ⊆ Πm2 , and

Π0 = ∅; for Π+∞ is the entire state space. �

Several existing works [7], [9]–[11], [16] have adopted

the Whittle’s index. Hence we omit the index formulation

and problem decomposition, diving directly into solving the

decomposed problems which are described as follows (the

node and time indices are omitted for brevity).

f(d) + Ĵ∗ = min

{

δ(d) + f(d+1)
2 + f(d−1)

2 ,

m+ f(1)
2 + f(0)

2

}

, (4)

with d ≥ 1. Considering the long-time average cost MDP

formulation, the relative cost function is denoted by f(d),
the optimal average cost is denoted by Ĵ∗, and the auxiliary

constant cost in the Whittle’s index methodology is denoted

by m. We can prescribe f(0) = 0 and the state-0 will transit

to state-1 with probability 0.5; otherwise stays at state-0.

Theorem 2 (Whittle’s Index for Random-Walk Infor-

mation Sources): The Whittle’s index, denoted by

IRW,n(dn) with status difference dn = |sn − ŝn|, is

IRW,n(dn) = wn

dn
∑

i=1

(2i− dn) δn(i). (5)

The problem is indexable.

Proof: A sketch of the proof is given in Appendix B.

Corollary 1 (Index for Unreliable Channels): Assuming

the transmission error probability is pe,n (no collision), the

corresponding Whittle’s index, denoted by ÎRW,n(dn, pe,n), is

the index without transmission error multiplied by 1 − pe,n,

i.e., ÎRW,n(dn, pe,n)
pe,n→0
−→ IRW,n(dn)(1− pe,n) + O(1). �

Proof: This result has an intuitive explanation: For a

node with transmission error probability pe,n, it takes approx-

imately 1/(1− pe,n) times to reach a successful transmission

whose equivalent service charge (system is willing to pay) is

IRW,n(dn), and hence the corresponding index with error is the

one without transmission error divided by 1/(1− pe,n) times

of trials. However, the exact expression with general value of

pe,n is more complicated and cumbersome without insights.

Therefore, we give a sketch of the proof in Appendix C for

the case with pe,n → 0 which has this clear structure.

The Whittle’s index policy which, at each time, updates

the node with the largest index has been shown to have a

strong performance for a wide range of RMAB problems [7],

[9], [11], [16], especially in scenarios with a large number of

nodes. The results in Theorem 2 and Corollary 1 are, as far as

we know, the first results that establish closed-form Whittle’s

indices and their indexability for general and heterogeneous

cost functions δn(·).

B. Optimality of Whittle’s Index with Homogeneous Nodes

The Whittle’s index policy is in fact optimal for a specific

scenario where nodes are homogeneous, i.e., identical error

function and identical transmission error. Similar observations

that the index policy is optimal in symmetrical networks are

found in, e.g., [7], [16], however in different contexts where

only identical transmission error is considered.

Proposition 1: Assuming random-walk state transitions and

δn(·) = δ(·), wn = 1, pn,e = pe, ∀n ∈ {1, · · · , N}, the index

policy based on (5) is optimal. �

Proof: The proof technique is similar with the proof of

Theorem 1. Basically, the index policy updates the node with

the largest status difference in this case, which is also the

myopic policy based on the MDP formulation. Again, based on

backwards induction, it can be shown that the myopic policy

is optimal. The details are omitted for brevity.

C. Design of Ψ(·): A Mean-Field Approach

The design of the mapping from index, representing the

event importance, to transmission probability in a system with

a large number of nodes can be formulated into a mean-field

control problem [17]. The key idea is that when N → ∞,

under some conditions specified later, the control of all the

nodes can be simplified to the control of the mean-field.

Definition 2 (Mean-Field): The mean field is defined as the

probability distribution of the states over the set of nodes, i.e.,

F(d, t) � limN→∞
1
N

∑N
n=1 �{dn(t)=d}. �

The general assumptions that guarantee the convergence

of the optimal control to the mean-field control [17] include

interchangeability of nodes, and interaction with the mean-

field for each node. For ease of exposition, we consider one

class of homogeneous nodes (identical error functions) in

this subsection, such that the former assumption is satisfied;

extensions to multiple classes of nodes are straightforward

by treating nodes in each class as a mean-field. The latter

assumption is also satisfied since every node only concerns

with the statistical distribution of other nodes, instead of the

state of each individual node.

Unlike the conventional mean-field approach that adopts the

Hamilton-Jacobi-Bellman (HJB) equation [17] to account for

the system dynamics, the Whittle’s index solution derived in

Theorem 1 has significantly simplify the control, namely the

objective at each time slot is only to schedule the node with

the largest index (in the homogeneous case, it is equivalent to

the largest d) by considering the mean-field of the states. A

schematic of the approach is specified as

Dth 
→ Fn(Dth)
(a)

→ F (Dth)

F (D∗

th)=1−ν

→ D∗

th,

which can be explained as follows. First select an index thresh-

old Ith(Dth), and any node with index above the threshold

transmits with probability ptx; this produces a stationary dis-

tribution of each node Fn(Dth). The equivalence of (a) stems

from the mean-field assumption, i.e., the state distribution over

the set of nodes approaches the stationary distribution of one

node in the large system limit. Finally, the index threshold is
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derived which allows nodes with indices larger than the top

ν-fraction of all nodes to transmit with the same probability

ptx. Note that ideally, the maximum index of the mean-field

is scheduled; however such an approach is unstable given

a continuous mean-field distribution. Therefore we adopt a

mapping function that lets the top ν-fraction of nodes compete:

Ψ(I) =

{

ptx, if I ≥ Ith;

0, otherwise.
(6)

The following theorem gives closed-form expressions of Ith
and ptx for a general Markov chains where the state transition

given Dth can be described in the below figure. The random

� �
�

�

�

�

�

�

��� � ��

��� � ��

��� � ��

��� � ��

��� � ��

�

� � � � � � � � �� � � � �� �� � �� �� � � � �� �� � ��

walk considered in Section IV-A is a special case with λ =
μ = 0.5. Note that the transition in only among adjacent states;

this is not a restriction when sufficiently small time slots are

considered. The probability of successful transmission when

D ≥ Dth is ε = 1
νN

, i.e., the top ν-fraction of nodes (νN
nodes) get equal transmission probability.

Theorem 3 (Optimal Mean-Field Control): When N →
∞, the index threshold Ith that allows the top ν-

fraction of nodes to transmit is given by the index

expression, e.g., (5), with d being the unique solution

of the equation

ν−1 =

⎧

⎨

⎩

(λ
µ )

1−d
−λ

µ

1−λ
µ

(

1
λβ

− ε
λ−µ

)

+ εd
λ−µ

+ 1, λ �= μ,

d
λβ

+ ε(d−1)d
2λ + 1, λ = μ,

(7)

where ε = 1
νN

, β = e
T
1

(

I − P̂

)−1

1 (see (15)). The

transmission probability ptx of the top ν-fraction of

nodes is given by the unique solution of the equation

(1− ptx)
νN =

tslot
tc

(

νNptx + (1− ptx)
νN − 1

)

, (8)

where tslot is the duration of one time slot and tc is

the duration of one contention slot.

Proof: See Appendix D.

Corollary 2 (Closed-Form Solution for Random-Walk

Nodes): When λ = μ, the solution of (7) is

d =
1

2
−

νN

β
+ 2

√

ν2N2

β2
−

νN

β
+

1

4
− 2λνN(1− ν−1),

β =
1 + a/2b+

√

a2/4b2 − 1

a+ 2b
,

where a � 2λ(1− 1
νN

) + 1
νN

, and b � −λ
(

1− 1
νN

)

. �

Proof: The proof is based on an inversion lemma of

Toeplitz tridiagonal matrices given in [18, Theorem 3.3]. The

details are omitted due to lack of space.

The above methodology can be readily applied to derive

the decentralized mean-field control for non-linear AoI cost

(arbitrary function of AoI satisfying the non-decreasing as-

sumption) minimization problem [19]. Define the AoI cost

function as g(h) and consider the generate-at-will sources

whereby each update drops the AoI to one. The following

corollary gives the mean-field control based on Whittle’s index

and scheduling design of ETSU.

Corollary 3 (Mean-Field Control for Non-Linear AoI):

The index threshold with arbitrary AoI cost function

g(h), ∀h ≥ 1 is given by

Ith =

Hth
∑

h=1

(g (Hth)− g(h)) (1− pe),

where Hth =
(1−ν)N
1−pe

, the transmission error probabil-

ity is pe, and by setting ν we let the top ν-fraction of

nodes to transmit with probability given by (8).

We have thus far addressed the two issues proposed at

the beginning of the section, by applying Theorem 2 to

decide the event importance and Theorem 3 based on mean-

field approach to determine the importance-to-transmission-

probability mapping of Ψ(·) in (6).

D. Performance Evaluations

Compared with the centralized optimal status update

scheme, the sub-optimality of ETSU comes from three pos-

sible aspects, which will be investigated in order in this, and

following sections. First, the Whittle’s index policy (Theorem

2), in contrast to the MDP optimal solution, is strictly speaking

sub-optimal. Additionally, although the index in Theorem 2 is

precise, the index approximation in Corollary 1 with unreliable

channels needs to be validated. This aspect is evaluated in Fig.

3(left), where it is observed that the approximate index with

channel error, being derived assuming transmission failure

probability approaches zero, is close to optimum with a wide

range of pe. The x-axis is pe,1 and we set pe,2 = 0.9; we

also let the error functions reflect the error sensitivities, i.e.,

δ1(d) = d (error-tolerant) and δ2(d) = ed−1 (error-sensitive).

The second aspect of sub-optimality comes from the mean-

field-based transmission probability mapping, which assumes

the number of nodes is large. Fig. 3 (right) simulates scenarios

with various numbers of nodes. Since it is impossible to obtain

the MDP-based optimum with many nodes due to curse of

dimensionality, the performance of ETSU is compared with

centralized index policy by Theorem 2 which has been shown

near-optimal based on Fig. 3(left). We adopt δn(d) = d,

∀n, tslot
tc

= 10, and pe,n is uniformly generated from [0, 0.3].
The transmission probability mapping function Ψ(·) is given

by Corollary 2 and we let ν = 5/N such that there are

about 5 nodes with indices above the threshold at each time

slot. In general, ETSU achieves near-optimal performance

with a moderate number of nodes. Furthermore, the separate

approach is also simulated with AoI-based scheduling (with
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Fig. 3. Performance evaluations. (a) Theorem 2 is compared with the optimum
by MDP; (b) ETSU is compared with the centralized index policy (no random
access) given by Theorem 2.
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(c) ETSU

Fig. 4. CSI (in decibel-milliwatts) update based on ETSU and a separate
approach [9] with a UAV BS traversing over the area.

channel error) according to index policy In(h) = (1−pe,n)h
2
n

derived in [7]; its performance is outperformed by ETSU in

all cases.

The third part is the modeling error of the information

source nodes. We model them as random walk transitions,

with several trivial extensions to, e.g., stay probability and

asymmetrical walk discussed in Section IV-A. Nevertheless,

the current model cannot encompass state-inhomogeneous

transitions which render the index policy untractable. In this

regard, we test the algorithms based on real-world information

sources in Section V: CSI variations with an unmanned aerial

vehicle (UAV) base station (BS) traversing an area.

V. CASE STUDY: ETSU FOR DYNAMIC CSI UPDATE

We study a distributed CSI update use case where there

are a large number of terminals (1 m apart in a 140 m

× 250 m area and a total of 251 × 141 ≈ 3.5 × 104)

reporting measured CSI to a sink node. The CSI variation

is generated by the Wireless InSite� ray-tracing simulator

and letting a UAV BS (transmitter with a height of 50 m)

traverse the intended area from the bottom left corner to the

top right with a velocity of 10 km/h. We assume each CSI

update occupies one time slot of length 0.5 ms. The error

function in ETSU is chosen as the squared error function, i.e.,

δn(sn(t), ŝn(t)) = |sn(t) − ŝn(t)|
2. To be fair, we assume

perfect CSI at the sink node at the beginning and evaluate the

status tracking performance when the UAV flies past the area

(at the top right corner). The CSI tracked at the sink node by a

separate approach and ETSU is shown in Fig. 4, together with

the perfect CSI. We assume reliable channel in this case. The

separate approach based on [9] implements sample-at-change

sampling and scheduling that minimizes the average AoI of

nodes, while neglecting the fact that the key status is not the

one that is the stalest, but the one with, roughly speaking, the

largest error. In contrast, ETSU, although assuming random-

walk state transitions which does not match the CSI transitions,

achieve evidently better CSI tracking performance.

VI. CONCLUSIONS

A unified sampling and scheduling approach is proposed

for status update in multiaccess wireless networks, capturing

the key status variation in contrast to the conventional sep-

arate approach which samples the information sources and

then schedules the nodes based on minimizing the AoI. The

Whittle’s index methodology is generalized to characterize the

status packet importance based on arbitrary status tracking

error functions. A mean-field approach is applied to derive

the decentralized implementation in closed-form. As a special

case of our results, we describe the closed-form decentralized

non-linear AoI (arbitrary cost function of AoI) minimization

scheme. The proposed ETSU evidently outperforms the sepa-

rate approach as shown by extensive simulation results, includ-

ing a realistic case study where we adopt ray-tracing generated

CSIs as information sources with a mobile transmitter.
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APPENDIX A

PROOF OF THEOREM 1

Define the cost-to-go function as Vt(B(t)) =
min

u(t),u(t)T1=1 qt(B(t),u(t)), qt(B(t),u(t)) �

E [Vt+1(B(t+ 1)) + gt (B(t),u(t))], where VT (B(T )) =
E[gT (B(T ))] is the terminal cost, the expected immediate

cost at time t is denoted by E[gt (B(t),u(t))], denote

u(t) � [u1(t), · · · , uN (t)]T ∈ {0, 1}N , and the time index

is omitted for brevity. According to the MDP methodology

[20], the optimal total cost for the T -horizon problem is

V ∗(B(0)) = V0(B(0)), and the optimal dynamic policy

is given by U
∗ = {u(0)∗, · · · ,u(T − 1)∗}, where u(t)∗

minimizes the cost-to-go for t ∈ {0, · · · , T − 1}. Because

symmetrical two-state Markov sources are considered,

it is clear that the system state can be simplified as

B̂(t) � {�{s1(t) �=ŝ1(t)}, · · · ,�{sN (t) �=ŝN (t)}}, indicating

whether the current statuses at source and destination are

identical; we further denote dn(t) � �{sn(t)�=ŝn(t)}.

The proof includes two steps: first, we prove that the policy

in Theorem 1 is the myopic policy, i.e., it minimizes the

expected immediate cost (this is straightforward and hence

omitted); secondly, a backwards induction (on time t) based

proof is given showing that the myopic policy is indeed the
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optimal policy. Define the total cost from time t on given the

current state and following the myopic policy in Theorem 1

as Wt(B̂(t)). Concretely, we will show the following state-

ments are valid. Denote W
t

n,m(s, r) � Wt(c1, · · · , dn(t) =
s, · · · , dm(t) = r, · · · , cN ) and dl(t) = cl, ∀l �= n,m.

I. Wt(B̂(t)) is the optimal total cost from t on.

II. For any t ≥ 0 and pi ≤ pj , W
t

i,j(0, 1) ≤ W
t

i,j(1, 0).

Let us first establish the induction basis. For t = T ,

hypothesis I is obviously true since the policy of Theorem

1 is the myopic policy and the last step only concerns with

the immediate cost. Hypothesis II also holds with equality.
Suppose hypothesis I and II are valid from time t+1 to T ,

at time t denote the myopic solution as un∗(t) = 1 and zero
otherwise, which indicates that n∗ = argminn∈χ(t) pn where

χ(t) is the set of nodes with dn(t) = 1. Then ∀l ∈ χ(t) with
pl ≥ pn∗ , it follows from the cost-to-go function, after some
manipulations, that

qt(B̂(t), n
∗)− qt(B̂(t), l) = E[gt (B(t), n

∗)]− E[gt (B(t), l)]
︸ ︷︷ ︸

M1

+
∑

cn,n �=l,n∗

pn∗,l

(

pn∗ − pl)(W
t+1
n∗,l(1, 1)−W

t+1
n∗,l(0, 0))

︸ ︷︷ ︸

M2

+ (1− pn∗ − pl)(W
t+1
n∗,l(0, 1)−W

t+1
n∗,l(1, 0))

)

︸ ︷︷ ︸

M3

,

where pn∗,l denotes the transition probability from

B̂(t)\{dn∗ , dl} to {c1, · · · , cN}\{cn∗ , cl}, i.e., the transition

probability to a given state excluding node n∗ and cl (without

loss of generality, assume n∗ < l). Note that it is unnecessary

to consider nodes with index m /∈ χ(t) since their states are

correct. Based on the definition of myopic policy, M1 ≤ 0.

It is straightforward that W
t+1

n∗,l(1, 1)−W
t+1

n∗,l(0, 0) ≥ 0 since

W
t+1

n∗,l(1, 1) includes a state with two tracking errors and

W
t+1

n∗,l(0, 0) a state that corrects both; hence, combining with

the pl ≥ pn∗ , we obtain M2 ≤ 0. Since ∀n, pn ≤ 0.5, and

based on hypothesis II, we have M3 ≤ 0. Therefore, we

arrive at the conclusion that the myopic solution at time t,
i.e., n∗, is also the optimal action. With this, we have proved

hypothesis I. Next, we can prove hypothesis II based on

induction, by analyzing three cases on the myopic solution.

The details are omitted due to lack of space. With this we

conclude the induction proof.

APPENDIX B

PROOF OF THEOREM 2

Following the technique used in, e.g., [9], [10], [16], we first

assume the optimal policy has a threshold-type structure and

solve the Bellman equations based upon it; after obtaining the

optimal solution, consistency with this assumption is checked

to conclude the proof.

Assume the optimal policy to solve (4) is update when d ≥
D, and idle when 0 ≤ d < D. Denote the upper term in the

minimization in (4) as γ0(d) and the lower term γ1(d). Then

for d ≥ D, the optimal action is to update, and hence

f(d) = m+
f(1)

2
− Ĵ∗, d ≥ D. (9)

Likewise, the optimal action is to idle otherwise, and

f(d) + Ĵ∗ = δ(d) +
1

2
f(d+ 1) +

1

2
f(d− 1), 0 < d < D,

and the case with d = 0 is specially treated with outcomes

f(1) = 2Ĵ∗. Together with f(0) = 0 we can obtain the

formula for f(d) when 0 ≤ d ≤ D based on the differential

equation of (10).

f(d) = d(d+ 1)Ĵ∗ − 2
d−1
∑

i=1

i
∑

j=1

δ(j), 0 ≤ d ≤ D. (10)

With the following three equations we can solve for the

Whittle’s index in (5).

f(D) = m = D(D+1)Ĵ∗−2
D−1
∑

i=1

i
∑

j=1

δ(j), γ0(D) = γ1(D).

(11)

The first equation follows from (9) and (10) with d = D. The

second one is based on the fact that the auxiliary cost m should

be the minimum cost that make the update decision equally

beneficial give the current state. Therefore, when d = D, two

options should be equally valuable.

Consistency with the threshold-type assumption can be

checked to be satisfied with the derived optimal policy, whose

details are omitted for brevity. The indexability can be verified

by checking that when m = 0, the threshold is zero but update

and idle are equally beneficial and hence one should idle; when

m → ∞, the threshold also goes to infinity. Additionally, the

monotonicity can be proved by checking

IRW,n(d)−IRW,n(d−1) = dδn(d)−
d−1
∑

i=1

δn(i)
(a)

≥
d

∑

i=1

δn(i) ≥ 0.

The inequality (a) follows from the non-decreasing property

of the error functions, i.e., δn(d) ≥ δn(i), ∀i ≤ d. With this,

we conclude the proof.

APPENDIX C

PROOF OF COROLLARY 1

The cost-to-go function is changed to

f(d) + Ĵ∗ = min

{

γ0(d),

m+ (1− pe)f(1)/2 + peγ0(d)

}

,(12)

Following from (11), we can obtain f(D) = m
1−pe

. For d ≥ D,

based on the lower term in (12),

pe
2
f(d+ 1)− f(d) +

pe
2
f(d− 1) = pe

(

Ĵ∗ − δ(d)
)

−m.

Solving this equation recursively gives us

pef(D + 1)−
(

1−
√

1− p2e

)

f(D) =
pe(m− peĴ

∗)

1− pe +
√

1− p2e
.

Analyzing this in the regime pe → 0, we can obtain

f(D + 1)
pe→0
−→

m

1− pe
+ O(1). (13)
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Plugging (13) into (12), we obtain a similar equation as in

(11), expect that m is replaced with m
1−pe

, and hence the

corresponding index follows immediately. The indexability

also follows because m
1−pe

, compared with m, does not affect

the monotonicity or index values at zero and infinity.

APPENDIX D

PROOF OF THEOREM 3

The state transition matrix with parameter Dth (denote γ �

1− λ− μ) is PDth
�

[

P P̃

P̆ P̂

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1− λ λ

μ γ λ

. . .
. . .

. . .

μ γ λ

ε μ(1− ε) γ(1− ε) λ(1− ε)

...
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where P is a (Dth−1)-dimensional square matrix. Denote the

stationary distribution as π � [π, π̂] correspondingly. Solving

for the first Dth − 1 states yields (first assuming λ �= μ and

then generalized)

πd =

(

λ

μ

)d (

π0 −
εσ

λ− μ

)

+
εσ

λ− μ
, 0 ≤ d < Dth, (14)

where σ � π̂1. Solving for the remaining states yields

π̂ = λπDth−1e
T
1

(

I − P̂

)−1

, (15)

where e1 � [1, 0, 0, · · · ]T, and that I − P̂ is invertable, since

P̂ has eigenvalues smaller than one (ε > 0). Plugging (14)

into (15) yields

σ = λβ

[

(

λ

μ

)Dth−1 (

π0 −
εσ

λ− μ

)

+
εσ

λ− μ

]

, (16)

where β � e
T
1

(

I − P̂

)−1

1. Then summing over all states

yields
∑∞

i=0 πi = 1, combining with (14) and (16) we obtain

1−
(

λ
µ

)Dth

1− λ
µ

(

π0 −
εσ

λ− μ

)

+Dth

εσ

λ− μ
+ σ = 1,

and hence π0 =
(

µ
λ

)Dth−1
(

1
λβ

− ε
λ−µ

)

+ εσ
λ−µ

. It follows

that (7) gives the solution of Dth. Next we will show that σ
is monotonically non-increasing with Dth and hence σ = ν
yields a unique solution (note that when Dth = 0, σ = 1;
when Dth → ∞, σ → 0).

dσ−1

dDth

=
− log λ

µ

λβ
(

1− λ
µ

)

(
λ

μ

)1−Dth

+

(

1 +
log λ

µ

1− λ
µ

(
λ

μ

)1−Dth

)

ε

λ− μ

(a)

≥

(

1−

(
λ

μ

)1−Dth

)

ε

λ− μ
≥ 0,

where the inequality (a) stems from log(x) ≤ x− 1, ∀x > 0.

Thus far, we have shown that there is a unique solution to

the threshold equation of (7), and thereby the index threshold

can be derived accordingly based on Theorem 2. Since the top

ν-fraction of nodes are allowed to compete for a transmission

slot, which corresponds to approximately νN nodes, the

transmission probability, i.e., ptx, can be derived based on the

p-CSMA results in, e.g., [21, Theorem 1].
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