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Abstract—Information source sampling and update scheduling
have been treated separately in the context of real-time status up-
date for age of information optimization. In this paper, a unified
sampling and scheduling (S?) approach is proposed, focusing on
decentralized updates in multiaccess wireless networks. To gain
some insights, we first analyze an example consisting of two-
state Markov sources, showing that when both optimized, the
unified approach outperforms the separate approach significantly
in terms of status tracking error by capturing the key status
variation. We then generalize to source nodes with random-walk
state transitions whose scaling limit is Wiener processes, the
closed-form Whittle’s index with arbitrary status tracking error
functions is obtained and indexability established. Furthermore,
a mean-field approach is applied to solve for the decentralized
status update design explicitly. In addition to simulation results
which validate the optimality of the proposed S? scheme and its
advantage over the separate approach, a use case of dynamic
channel state information (CSI) update is investigated, with CSI
generated by a ray-tracing electromagnetic software.

I. INTRODUCTION

For status update (tracking) in, e.g., latency-sensitive cyber-
physical systems, age of information (Aol) [1] is a perfor-
mance metric that captures the end effect of status observation
delay from the destination perspective, and thus enables direct
and fair comparisons between systems with differences in,
e.g., end-to-end delays, information source sampling rates,
throughputs and lossless or lossy designs [2]. However, it
can be argued that Aol is still an intermediate metric [3],
especially in status update systems, whereas the ultimate goal
is to optimize the status tracking accuracy at destinations
with heterogeneous status information generated remotely by
distributed information sources.

We focus on status update through wireless networks. Exist-
ing works in this regard implicitly adopt a separate approach—
the sampling of information sources and the scheduling of
updates/transmissions are treated separately (Fig. 1), with
objectives of minimizing the real-time sampling error and
Aol respectively [3]-[12]. Specifically, in terms of information
sampling, Ref. [3]-[6] consider the scenario that one destina-
tion node is remotely tracking the status of one source node,
with the objective to minimize, e.g., tracking error [4], [6]
or Aol [5]. In this single-source scenario, optimal sampling
strategies are obtained under assumptions such as random
delay due to channel error [6] or limited sampling frequency
[4]; these assumptions are made to model the transmissions in
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Fig. 1. Status update in a multiaccess wireless network.

wireless networks but are insufficient, due to the considerably
more complex behavior of wireless networks. On the other
hand, status update scheduling policies usually ignore the
structures of information sources, or equivalently, assume the
sampling procedure has fully exploited them, and focus on
optimizing the Aol [7]-[12]. In these works, the information
sources are abstracted as status update packets that arrive
randomly [8], [9], [11], or as generate-at-will (active) sources
[71, [10], [12]. Scheduling decisions are made to minimize the
Aol, irrespective of status variation—a node may be scheduled
even if its status is unchanged since the last schedule.

Despite its simplicity, this separate approach is not nec-
essarily optimal in terms of status tracking accuracy based
on a unified formulation, and the performance difference
is unknown. There have been recent efforts [3] towards an
effective Aol metric which, compared to Aol, is more directly
related to status tracking accuracy in a single-link scenario.
The contributions of this paper are summarized as:

1) The joint information sampling and transmission schedul-
ing (S?) problem for multiaccess wireless networks is for-
mulated. Through an example consisting of two-state Markov
nodes, it is shown that the optimal S? achieves smaller status
tracking error than the (near) optimal separate approach. We
then consider sources with random-walk state transitions—
a discrete version of Wiener processes—and arbitrary error
functions; a decentralized near-optimal status update scheme
is proposed. Based on extensive simulations, including a use
case with channel state information (CSI) sources generated
by a ray-tracing software, the proposed scheme shows evident
advantage over state-of-the-art separate approaches.

2) From a methodology perspective, to be best of our
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knowledge, this is the first work that generalizes the Whittle’s
index to incorporate arbitrary functions which measure the
status tracking accuracy, and also the first to apply a mean-
filed approach to derive the decentralized policy explicitly. As
a special case, the Whittle’s index of non-linear Aol (arbitrary
reasonable non-linear functions) and the corresponding mean-
field based decentralized implementation can be readily given.

II. SYSTEM MODEL AND PRELIMINARIES

A multiaccess wireless network is considered, where a
central controller collects status updates from N distributed
source nodes, denoted by {S1,---,Sn}. The status updates
are conveyed in packets which are transmitted through the
wireless multiaccess channel. A time-slotted communication
system is considered. In each time slot, only one packet from a
source node can be transmitted; a collision happens with more
than one simultaneous transmissions. The transmission error
probability is pe, (i.i.d. over nodes and time) if there is no
collision. The source nodes only have knowledge of their own
statuses in each time slot [3], [4] (expect that in Section III, a
genie-aided scheduler which has knowledge of status changes
of all source nodes is assumed to obtain a performance bound).
The packets containing status updates are stored in the buffers
at source nodes when waiting to be transmitted. For active
sources, the buffers are unnecessary since status packets are
generated at will.

A. General Status Tracking Error Metric for S?

We assume that for source node S,,, its status is discrete
and belongs to a set K, £ {kn1, - ,fnK,}. A status
Kn ) 18 generic, e.g., sensory data or images, and we assume
each status update consumes one packet. We define a general
measure of difference between two statuses ., , and k, ; as
8Kk, Kin,;); examples include ¢!, ¢ norms when the statuses
are described by vectors. Denote the statuses of source node
S, and the destination node under a policy 7 (including infor-
mation source sampling and transmission scheduling) at time ¢
as s, (t) and $,, - (¢) respectively, and s,,(t), ., = (t) € Kp,. The
T-horizon time-average remote status tracking error can be
expressed as Zﬂ £1 Z;‘F:Bl 3(sn(t), Sn,x(t)). In particular,
we are interested in the infinite-horizon regime where 7" — oo.
Denote the weighted long-time-average remote status tracking
error of all sources as A, = limsups_, % 22;1 wnﬁﬂ,
where [wy,--- ,wy] is a weight vector denoting the impor-
tance of each source node. The objective is therefore to seek
for a policy 7 that minimizes the time-average error, i.e.,

N
min A, subject to Zun(t) <1, Vt, (1
T n=1

where wu,(t) = 1 denotes the source node S, transmits

successfully during time slot ¢; otherwise u, (t) = 0.

B. Conventional Separate Approach

In a separate sampling and scheduling approach, the infor-
mation sampling design concerns with the optimal sampling

time of a single source to minimize the remote tracking
error, with some assumptions on the communication part,
e.g., fixed delay [3], random delay [4] or unreliable channel
[6]; additional constraints include limited sampling frequency
[4]. Afterwards, the transmission scheduling decision is based
on optimizing the Aol [7]-[9], [11] which is defined as
follows. The T-horizon time-average Aol of source node S,

is Efsz L LS hy, o (t), where h,, «(t) denotes the Aol
reported by S, at the t¢-th time slot under policy 7 and
B (1) £ ¢ tin,=(t), where i, ~(t) denotes the sampling
time of the newest status received at the destination until

time ¢. The weighted long-time-average Aol is defined as
= A q. 1 N —(T)
hae = HMSUPT_, o0 7 Dopne1 Wnlty, -

The rationality of this separate approach is that by optimiz-
ing the Aol, the tracking error can be minimized consequently
by assuming the tracking error grows with the staleness of
the information obtained. However, this assumption needs to
be reconsidered with generic status variation. The motivating
example introduced in the following section will show that
this separate approach is not optimal and can be improved by
a unified sampling and scheduling approach.

III. STATUS TRACKING ERROR ANALYSIS FOR A
NETWORK OF TWO-STATE MARKOV SOURCES

Consider a network with N independent Markov infor-
mation sources, each with two symmetrical states {0,1}
and state change probability of p, = Dno—1 = pnjlﬁo.l
We assume reliable channels in this section and later on
generalize in Section IV-A. The performance metric is the
long-time sample average error probability which converges
to the stochastic average denoted by Pr(e,|mw) given policy
T, i.e., 5(Sn(t)7§nm(f)) = ]l{sn(t);ﬁgn,ﬂ_(t)}, Pr(€n|7r) =
limsupy_, .. 7 ZtT:_Ol Lgs, (85, (t)}- We further assume in
this section that w; = 1, Vi € {1,---, N}, namely all nodes
have equal weights. The objective function in (1) is therefore
A=y ZnNzl Pr(ep|m).

A. Optimal S? for Two-State Sources

In this section, we assume that there is a genie coordinating
the status update decisions with all the information to obtain
the optimal performance as a benchmark; this assumption is
unrealistic and will be removed in the next section consider-
ing decentralized status update with only local information.
The Markov decision process (MDP) is formulated to obtain
the optimum, based on which the system state is B(t) =
{(51(¢),51(t)), -+, (sn(t),5n (1))} where s,,5, € {0,1}.
The transition probability with action u,(t) = T(—pn}.
Vne{l,---,N}is

Pr{B(t) » B(t+ 1)} = [] pn ‘H(l—pi),

where W, is the set of source nodes whose statuses change at
time slot ¢, and Wo contains those unchanged. The statuses at

'We only consider p,, < 0.5 since a symmetrical two-state Markov source
with p, > 0.5 can be regarded as the modulo-2 superposition of a constant
source with alternative O and 1 output and a source with change rate 1 — py,.
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time ¢ + 1 at the central controller remain the same as time
t, i.e., S,(t+ 1) = §,(t), Yn # m, except for node m who
is updated to §,,,(t + 1) = s,,(¢). Define the T-horizon total
cost function as (a constant factor of % is omitted)

T—1 N
i E 1y, 5 . 2
u"(t)ﬂfgl{l}’_,_w} ; Z {sn(t)# W(t)}] 2

n=1

The optimal policy is as follows.
Theorem 1 (Optimal S* for Two-State Markov
Sources): The optimal policy for the MDP is at time
t, node SnoPt updates its current status where nopt =
argmin,c, ;) Pn, and x(?) is the set of nodes with
sn(t) # $,(t), and ties are broken arbitrarily.

J

Proof: The optimal policy is to schedule the source node
that has error, and meanwhile is the least likely to change
(avoiding repetitive and hence wasted update). The detailed
proof is given in Appendix A. [ ]

Remark 1: We have derived the optimal policy for the
two-state system with a finite horizon, which is considered
to be the heavy-lifting of the proof. The generalization to
infinite horizon follows standard methods, cf. [13, Theorem
2]. Although significantly simplified, the considered scenario
presents itself when considering a network of nodes for e.g.,
anomaly detection which has two states: normal and alert. [

B. Near-Optimal Separate Approach

In this subsection, we aim to obtain the optimal separate
policy and compare its performance with that of Theorem 1,
in order to show whether S? is beneficial in this scenario.

To begin with, the sampling strategy which is independent
with the transmission scheduling is considered. The sample-
at-change sampler, i.e., sampling the source whenever there
is a state change, is clearly the optimal lossless sampler in
terms of minimum sampling times. Moreover, since there are
only two states, the optimal sampling strategy in [4], which is
based on a threshold of the status change and proved optimal
considering Wiener sources, reduces to sample-at-change. In
general, we remark that the optimal sampling strategy is
related to assumptions on communications, €.g., random delay
and erasure channel. However, it is very difficult to model
the overlay wireless network perfectly. Hence, we adopt the
sample-at-change strategy which is also used in [3].

According to the separate approach, the sampling strategy
deals with the information source structure and the scheduling
policy is designed to minimize the Aol. Based on the sample-
at-change sampler, the sampled packets arrive at the buffer
of S,, based on a Bernoulli distribution with parameter p,,.
There are rich existing works on the scheduling policy for
Aol optimization in this system setting [7]-[9], [11]. It has
been shown that although the optimal scheduling policy seems
elusive, a closed-form Whittle’s index based policy is obtained
in [9, Theorem 3]. Thereby, each node only retains the most
up-to-date packet, and the node with the highest index is
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Fig. 2. Tracking error comparisons between optimal S? and near-optimal
separate approach based on the two-state Markov sources setting.

scheduled. The index is given by m(an,bn,pn) = 322 +

( L %) Tn, if by, > 22 (a2 — ay,) + ap; and 22

1 Zn otherwise,

where z,, £ %, the age of the packet at buffer of
S, is denoted by (;n, the current Aol of S, is denoted by h,,
and b,, £ h,, — a,. It is well-known that the Whittle’s index
based policy can achieve near-optimal performance of restless
multi-armed bandit problems, especially with a large number
of source nodes [14]. Therefore, we claim that the index policy
is close to optimal to minimize the Aol of the system.

Now we have obtained the optimal S? policy and a near-
optimal separate policy in a network with independent 0-1
Markov sources, the status tracking error performance com-
parisons are in order.

C. Comparisons between S? and Separate Approach

In Fig. 2, we compare the status tracking error performances
of the two-state Markov source network with optimal S2
derived in Theorem 1, and the near-optimal Whittle’s index
policy based separate sampling and scheduling approach de-
scribed in the last subsection. The transition probability p,,
is uniformly distributed in [Py min, %] The simulation runs
for 10® time slots. It is observed that the performance gap
between S? and the separate approach is evident. The reason
is that the separate approach, although optimizing the status
update timeliness, does not account for the real status change,
i.e., instead of being event-triggered, the separate approach is
timing-triggered. In this specific case, the separate approach
may squander status update opportunities on nodes with large
Aol but correct statuses due to the back-and-forth state tran-
sition of the two-state Markov chain. In contrast, the optimal
S? selects the node with both incorrect status and smallest p,,
(least likely to change back).

Having witnessed the potential benefit by S, let us turn to
a more general scenario and consider more practical issues.

IV. DECENTRALIZED EVENT-TRIGGERED STATUS UPDATE
FOR NODES WITH RANDOM-WALK STATE TRANSITIONS

One can immediately realize that the optimal S? proposed
in Theorem 1 is not feasible, expect for illustration purposes,
in the sense that it requires a genie to inform the scheduler
about the set of nodes where events (status changes) happen
at the considered time. Moreover, even the assumption of a
central scheduler to make scheduling decisions is questionable,
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considering the prohibitive signalling overhead in the massive
Internet-of-Things (IoT) system. In summary, there are two
distinct challenges in designing event-triggered status update
in a multiaccess wireless network:

1) How to measure the event importance for status update
such that by scheduling nodes with important updates, the
overall status tracking accuracy is improved?

2) How to design a decentralized status update scheme
based on the event importance?

A natural idea to measure the event importance is by
measuring the status change amplitude; however, problems
arise in the case with heterogeneous nodes, e.g., different error
functions due to different nodes’ sensitivities towards error. To
address this issue, we adopt a Whittle’s index-based solution.

A high-level overview of the proposed scheme, i.e., event-
triggered status update (ETSU), is as follows. The Whittle’s
index, which is denoted by I,,(¢) for node n at time ¢, is
calculated by each source node based solely upon its local
information, e.g., status change; it is therefore adopted to
measure the status change importance and triggers the status
update. Each node maps its index to a transmission probability
pn(t) based on a pre-defined function W(7,,(¢)) which is public
and identical among nodes (to be specified later), i.e., p,(t) =
U(I,(t)), Vn € {1,--- ,N}. The nodes undergo a contention
period based on their distinct transmission probabilities and the
winner transmits a status update packet. Intuitively, a higher
index, indicating a higher importance, should be mapped to a
higher transmission probability. The methodology is described
here.

ETSU

Contention period:

Node S,, transmits with probability p, () = (I, (t)).
Transmission or collision time slot:

In case of collision, the central controller feeds back
a NACK; otherwise ACK.

Go to the contention period.

\. J

ETSU can be viewed as a prioritized p-persistent carrier-
sense multiple access (CSMA) scheme, and has been proposed
in [9] to address Aol optimization in wireless uplinks. How-
ever, the challenges here are to design I,,(¢) to accommodate
event importance instead of Aol in [9], and to design the
mapping ¥(-) explicitly for which we adopt a novel mean-
field approach. In what follows, we tackle these challenges
one-by-one.

A. Whittle’s Index for Nodes with Random-Walk Transitions

Two assumptions on state transitions and status tracking er-
ror metric are in order before diving into the index derivation.

1) We consider source nodes with state transitions modeled
as random walk on a one-dimensional line. Formally, s, (t +
1) = su(t) + an(t), where

Pr{a,(t) = ilsn(t)} = Pr{a.(t) = i} = gni; )

and ¢,1 = 0.5, g,,—1 = 0.5, Vn. Hence the status evolution
of each node is a random walk with i.i.d. (among nodes) and
time-homogeneous increments.

2) The status tracking error functions &, (s, (t), 5, (t)),
Vn € {1,---,N}, is only related the absolute status differ-
ence, i.e., 0, (55, (t), 8, (t)) = 6n (|sn(t) — $,(t)]), and satisfy:
Vn e {1l,--- N}, 0,(0) =0 < 0,(1) < -+ < 0p(d) < -+,
and there exists D > 0, Vd > D, §,,(d) > 0.

The random-walk state transitions capture the essence of
many real-world physical phenomenons, e.g., the stock price
and the path traced by a foraging animal; the Wiener process
considered in the literature [4] is the scaling limit of a random
walk with very small steps. Note that the state values s,, should
be viewed as normalized status values, and the end effect of
heterogeneous status values, e.g., temperature status ranging
in [—30,30] and an image pixel in [0, 255], is captured by
distinct error functions d,,(+). Several extensions to the random
walk assumption are considered trivial and thus not treated
specifically: Random walk with different step sizes which, as
mentioned before, can be treated by formulating different error
functions ¢, (-); Asymmetrical random walk where, say ¢,, 1 >
0.5, can be treated with adding a constant drift of (2¢, 1 —1)7,
where 7 denotes the last update time, to the tracking status
$n(t); For random walk with stay probability, i.e., gno 7# O
which can be different among nodes, the corresponding index
is the one without stay probability multiplied by a factor of
1/(1 — ¢n,0) by the standard Markov chain uniformization
technique [15, Chapter 6.4]. One other reason to consider
random walks is that state transitions of information sources
in real world are difficult to model and thus often unknown,
whereas random walks offer an approximation.

The second assumption, together with the random walk as-
sumption, essentially makes the problem state-homogeneous,
i.e., the status tracking difference is sufficient statistics. There-
fore, the system state can be simplified to be one-dimensional,
ie., (5,(t),5,(t)) & (dn(t) 2 [sn(t) — 3.(t)|). The state-
homogeneous error functions are still considered quite general
since a wide range of metrics, e.g., 01, 2 norms and threshold-
type error functions, can be included. The requirement of non-
decreasing of d,,(d) is also reasonable, considering a larger
status difference should have a larger status tracking error.

The Whittle’s index is a technique to deal with the restless
multi-armed bandit (RMAB) problem which usually suffers
from the curse of dimensionality when considering a large
number of arms. Our status update problem clearly fits into
the RMAB framework since the status update decisions for
nodes are binary, like pulling arms of bandit machines, and
the status changes even if the node is not scheduled i.e.,
restless. The philosophy of the Whittle’s index is to decompose
the NN-dimensional RMAB into /N one-dimensional MDP
problems; solving each one-dimensional problem is equivalent
to comparing each bandit machine to a machine with constant
payoff (or cost) m,, which is also equivalent to solving a
relaxed Lagrange dual problem [14]. By this methodology, the
index m,, can be viewed as a measure of the event importance
optimized for multi-node status update. The challenge when
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applying the Whittle’s index is that it is only defined for a
subset of RMAB problems which are indexable.

Definition 1 (Indexability): For the decomposed problem,
given auxiliary costs my and mo, and the sets of states that the
optimal action is to idle denoted by 1I,,,, and IL,,,, respectively,
the RMAB is indexable if VO < m; < mg, II,,,, CII,,,, and
Iy = 0; for 11, o, is the entire state space. O

Several existing works [7], [9]-[11], [16] have adopted
the Whittle’s index. Hence we omit the index formulation
and problem decomposition, diving directly into solving the
decomposed problems which are described as follows (the
node and time indices are omitted for brevity).

} )

with d > 1. Considering the long-time average cost MDP
formulation, the relative cost function is denoted by f(d),
the optimal average cost is denoted by J*, and the auxiliary
constant cost in the Whittle’s index methodology is denoted
by m. We can prescribe f(0) = 0 and the state-0 will transit
to state-1 with probability 0.5; otherwise stays at state-0.

(S(d) + f(d;l) + f(d;l)7

f(d) + J* = min

Theorem 2 (Whittle’s Index for Random-Walk Infor-
mation Sources): The Whittle’s index, denoted by

Irw,n(d,,) with status difference d,, = |s,, — §,,], is

dn

Iewn(dn) = wn ¥ _ (20— dn) 2()). (5
i=1

The problem is indexable.

\ J

Proof: A sketch of the proof is given in Appendix B. B
Corollary 1 (Index for Unreliable Channels): Assuming
the transmission error probability is pe, (no collision), the
corresponding Whittle’s index, denoted by IARWm(dn, Den)s 1S
the index without transmission error multiplied by 1 — pe »,

e Tawn(dns Pen) "25 " Towin(dn) (1 = pen) +0(1). O
Proof: This result has an intuitive explanation: For a
node with transmission error probability pe ., it takes approx-
imately 1/(1 — pe ) times to reach a successful transmission
whose equivalent service charge (system is willing to pay) is
Irw n(dy), and hence the corresponding index with error is the
one without transmission error divided by 1/(1 — pe,,) times
of trials. However, the exact expression with general value of
De,n is more complicated and cumbersome without insights.
Therefore, we give a sketch of the proof in Appendix C for
the case with p.,, — 0 which has this clear structure. [ |
The Whittle’s index policy which, at each time, updates
the node with the largest index has been shown to have a
strong performance for a wide range of RMAB problems [7],
[9], [11], [16], especially in scenarios with a large number of
nodes. The results in Theorem 2 and Corollary 1 are, as far as
we know, the first results that establish closed-form Whittle’s
indices and their indexability for general and heterogeneous
cost functions d,,(-).

B. Optimality of Whittle’s Index with Homogeneous Nodes

The Whittle’s index policy is in fact optimal for a specific
scenario where nodes are homogeneous, i.e., identical error
function and identical transmission error. Similar observations
that the index policy is optimal in symmetrical networks are
found in, e.g., [7], [16], however in different contexts where
only identical transmission error is considered.

Proposition 1: Assuming random-walk state transitions and
0n (1) =08(-), wy, =1, ppe =pe, Vn € {1,--- N}, the index
policy based on (5) is optimal. 0

Proof: The proof technique is similar with the proof of
Theorem 1. Basically, the index policy updates the node with
the largest status difference in this case, which is also the
myopic policy based on the MDP formulation. Again, based on
backwards induction, it can be shown that the myopic policy
is optimal. The details are omitted for brevity. [ ]

C. Design of U(-): A Mean-Field Approach

The design of the mapping from index, representing the
event importance, to transmission probability in a system with
a large number of nodes can be formulated into a mean-field
control problem [17]. The key idea is that when N — oo,
under some conditions specified later, the control of all the
nodes can be simplified to the control of the mean-field.

Definition 2 (Mean-Field): The mean field is defined as the
probability distribution of the states over the set of nodes, i.e.,
F(d, t) 2 1imy oo % Yoy 1 d, (=) O

The general assumptions that guarantee the convergence
of the optimal control to the mean-field control [17] include
interchangeability of nodes, and interaction with the mean-
field for each node. For ease of exposition, we consider one
class of homogeneous nodes (identical error functions) in
this subsection, such that the former assumption is satisfied;
extensions to multiple classes of nodes are straightforward
by treating nodes in each class as a mean-field. The latter
assumption is also satisfied since every node only concerns
with the statistical distribution of other nodes, instead of the
state of each individual node.

Unlike the conventional mean-field approach that adopts the
Hamilton-Jacobi-Bellman (HJB) equation [17] to account for
the system dynamics, the Whittle’s index solution derived in
Theorem 1 has significantly simplify the control, namely the
objective at each time slot is only to schedule the node with
the largest index (in the homogeneous case, it is equivalent to
the largest d) by considering the mean-field of the states. A
schematic of the approach is specified as

Dy = Fu(Dy) & F(Dy) "5 Dy,
which can be explained as follows. First select an index thresh-
old Iih(Dyn), and any node with index above the threshold
transmits with probability py; this produces a stationary dis-
tribution of each node F;,(Dyh). The equivalence of (a) stems
from the mean-field assumption, i.e., the state distribution over
the set of nodes approaches the stationary distribution of one
node in the large system limit. Finally, the index threshold is
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derived which allows nodes with indices larger than the top
v-fraction of all nodes to transmit with the same probability
Pix- Note that ideally, the maximum index of the mean-field
is scheduled; however such an approach is unstable given
a continuous mean-field distribution. Therefore we adopt a
mapping function that lets the top v-fraction of nodes compete:

Dix, Af T > Iin;
W) = _ ©)

0, otherwise.
The following theorem gives closed-form expressions of Iy,
and py for a general Markov chains where the state transition
given Dy, can be described in the below figure. The random

£ £
p 2 I > =g > _il-2
1 u 2 u eve pu(l—e) Dy, ﬂ(l—E)Dth+1 ul—eg
1-2 1-1-u (A-2-p@A-e) (A-2-pdA-9

walk considered in Section IV-A is a special case with A =
1 = 0.5. Note that the transition in only among adjacent states;
this is not a restriction when sufficiently small time slots are
considered. The probability of successful transmission when
D > Dy, is € = ﬁ i.e., the top v-fraction of nodes (v
nodes) get equal transmission probability.

Theorem 3 (Optimal Mean-Field Control): When N —
00, the index threshold Iy, that allows the top v-
fraction of nodes to transmit is given by the index
expression, e.g., (5), with d being the unique solution
of the equation

(ﬁ)lid_% 1 € ed
- j(m—,\_ﬂ)‘i‘A_ﬂ‘i‘lv A #
Ll g A=,
» )
where ¢ = ﬁ, 8= eI I-P 1 (see (15)). The

transmission probability py, of the top v-fraction of
nodes is given by the unique solution of the equation

t
(1= pe)"™ = =% ("Npoc+ (1= po)Y = 1), ®)

©
where tgo¢ 1s the duration of one time slot and %. is
the duration of one contention slot.
Proof: See Appendix D. [ ]
Corollary 2 (Closed-Form Solution for Random-Walk
Nodes): When A\ = p, the solution of (7) is

1 vN v2N2 YN 1
= U g [ L oNN( - vt
d S +\/ﬁ2 5 +4 AN (1 —v=1),

= 1+a/2b+ \/a?/40%* — 1

a+2b

where a £ 2)\(1— -5 )+ L, and b2 —X (1 - ). O
Proof: The proof is based on an inversion lemma of
Toeplitz tridiagonal matrices given in [18, Theorem 3.3]. The

details are omitted due to lack of space. [ ]

The above methodology can be readily applied to derive
the decentralized mean-field control for non-linear Aol cost
(arbitrary function of Aol satisfying the non-decreasing as-
sumption) minimization problem [19]. Define the Aol cost
function as g(h) and consider the generate-at-will sources
whereby each update drops the Aol to one. The following
corollary gives the mean-field control based on Whittle’s index
and scheduling design of ETSU.

Corollary 3 (Mean-Field Control for Non-Linear Aol):
The index threshold with arbitrary Aol cost function
g(h), Yh > 1 is given by

Hy,
L= (g (H) — g(h) (1 - pe),
h=1
where Hy, = (lf_p)N, the transmission error probabil-

ity is pe, and by seetting v we let the top v-fraction of
nodes to transmit with probability given by (8).

We have thus far addressed the two issues proposed at
the beginning of the section, by applying Theorem 2 to
decide the event importance and Theorem 3 based on mean-
field approach to determine the importance-to-transmission-
probability mapping of ¥(-) in (6).

D. Performance Evaluations

Compared with the centralized optimal status update
scheme, the sub-optimality of ETSU comes from three pos-
sible aspects, which will be investigated in order in this, and
following sections. First, the Whittle’s index policy (Theorem
2), in contrast to the MDP optimal solution, is strictly speaking
sub-optimal. Additionally, although the index in Theorem 2 is
precise, the index approximation in Corollary 1 with unreliable
channels needs to be validated. This aspect is evaluated in Fig.
3(left), where it is observed that the approximate index with
channel error, being derived assuming transmission failure
probability approaches zero, is close to optimum with a wide
range of pe. The z-axis is pe1 and we set peo = 0.9; we
also let the error functions reflect the error sensitivities, i.e.,
61(d) = d (error-tolerant) and d(d) = e? — 1 (error-sensitive).

The second aspect of sub-optimality comes from the mean-
field-based transmission probability mapping, which assumes
the number of nodes is large. Fig. 3 (right) simulates scenarios
with various numbers of nodes. Since it is impossible to obtain
the MDP-based optimum with many nodes due to curse of
dimensionality, the performance of ETSU is compared with
centralized index policy by Theorem 2 which has been shown
near-optimal based on Fig. 3(left). We adopt d,(d) = d,
vn, ttﬂ = 10, and pe ,, is uniformly generated from [0, 0.3].
The transmission probability mapping function W(-) is given
by Corollary 2 and we let v = 5/N such that there are
about 5 nodes with indices above the threshold at each time
slot. In general, ETSU achieves near-optimal performance
with a moderate number of nodes. Furthermore, the separate
approach is also simulated with Aol-based scheduling (with
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Fig. 3. Performance evaluations. (a) Theorem 2 is compared with the optimum
by MDP; (b) ETSU is compared with the centralized index policy (no random
access) given by Theorem 2.
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Fig. 4. CSI (in decibel-milliwatts) update based on ETSU and a separate
approach [9] with a UAV BS traversing over the area.

channel error) according to index policy I,(h) = (1—pe.,)h?
derived in [7]; its performance is outperformed by ETSU in
all cases.

The third part is the modeling error of the information
source nodes. We model them as random walk transitions,
with several trivial extensions to, e.g., stay probability and
asymmetrical walk discussed in Section IV-A. Nevertheless,
the current model cannot encompass state-inhomogeneous
transitions which render the index policy untractable. In this
regard, we test the algorithms based on real-world information
sources in Section V: CSI variations with an unmanned aerial
vehicle (UAV) base station (BS) traversing an area.

V. CASE STUDY: ETSU FOR DYNAMIC CSI UPDATE

We study a distributed CSI update use case where there
are a large number of terminals (1 m apart in a 140 m
x 250 m area and a total of 251 x 141 ~ 3.5 x 10%)
reporting measured CSI to a sink node. The CSI variation
is generated by the Wireless InSite® ray-tracing simulator
and letting a UAV BS (transmitter with a height of 50 m)
traverse the intended area from the bottom left corner to the
top right with a velocity of 10 km/h. We assume each CSI
update occupies one time slot of length 0.5 ms. The error
function in ETSU is chosen as the squared error function, i.e.,
Sn(80(t), 3, (1)) = |sn(t) — 8,()]2. To be fair, we assume
perfect CSI at the sink node at the beginning and evaluate the
status tracking performance when the UAV flies past the area
(at the top right corner). The CSI tracked at the sink node by a

separate approach and ETSU is shown in Fig. 4, together with
the perfect CSI. We assume reliable channel in this case. The
separate approach based on [9] implements sample-at-change
sampling and scheduling that minimizes the average Aol of
nodes, while neglecting the fact that the key status is not the
one that is the stalest, but the one with, roughly speaking, the
largest error. In contrast, ETSU, although assuming random-
walk state transitions which does not match the CSI transitions,
achieve evidently better CSI tracking performance.

VI. CONCLUSIONS

A unified sampling and scheduling approach is proposed
for status update in multiaccess wireless networks, capturing
the key status variation in contrast to the conventional sep-
arate approach which samples the information sources and
then schedules the nodes based on minimizing the Aol. The
Whittle’s index methodology is generalized to characterize the
status packet importance based on arbitrary status tracking
error functions. A mean-field approach is applied to derive
the decentralized implementation in closed-form. As a special
case of our results, we describe the closed-form decentralized
non-linear Aol (arbitrary cost function of Aol) minimization
scheme. The proposed ETSU evidently outperforms the sepa-
rate approach as shown by extensive simulation results, includ-
ing a realistic case study where we adopt ray-tracing generated
CSIs as information sources with a mobile transmitter.
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APPENDIX A
PROOF OF THEOREM 1

Define the cost-to-go function as V;(B(t))

My, (1) w(yT1=1 9t (B(t), u(t)), a(B(t), u(t))
E [Vier (B(t + 1)) + g0 (B(1) u(®))]. where Vp(B(T)) =
E[gr(B(T))] is the terminal cost, the expected immediate
cost at time t is denoted by E[g; (B(t),u(t))], denote
ut) = [ur(t), - ,un(®)]" € {0,1}", and the time index
is omitted for brevity. According to the MDP methodology
[20], the optimal total cost for the 7-horizon problem is
V*(B(0)) = Vu(B(0)), and the optimal dynamic policy
is given by U* = {u(0)*, -+ ,u(T — 1)*}, where u(t)*
minimizes the cost-to-go for t € {0,---,T — 1}. Because
symmetrical two-state Markov sources are considered,
it is clear that the system state can be simplified as
B(t) £ {Lgsw#si0) s Lsn(zsn(y ). indicating
whether the current statuses at source and destination are
identical; we further denote d,,(t) £ T, ()80 (0)}

The proof includes two steps: first, we prove that the policy
in Theorem 1 is the myopic policy, i.e., it minimizes the
expected immediate cost (this is straightforward and hence
omitted); secondly, a backwards induction (on time t) based
proof is given showing that the myopic policy is indeed the

(1> 11
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optimal policy. Define the total cost from time ¢ on given the
current state and following the myopic policy in Theorem 1
as W;(B(t)). Concretely, we will show the following state-
ments are valid. Denote W;_m(s,r) £ Wiler, - ,dn(t) =
8,y dp(t) =7, cy) and di(t) = ¢, VI # n,m.

L. W, (B(t)) is the optimal total cost from # on.

IL. For any ¢ > 0 and p; < pj, W;j((), 1)< sz(l,O).

Let us first establish the induction basis. For t = T,
hypothesis I is obviously true since the policy of Theorem
1 is the myopic policy and the last step only concerns with

the immediate cost. Hypothesis II also holds with equality.

Suppose hypothesis I and II are valid from time ¢+ 1 to T,
at time ¢ denote the myopic solution as u,+(t) = 1 and zero
otherwise, which indicates that n* = argmin,, ¢, ) pn where
X (t) is the set of nodes with d,,(¢t) = 1. Then VI € x(¢) with
P1 > pn~, it follows from the cost-to-go function, after some
manipulations, that

a:(B(t),n") — qu(B(t),1) = E[ge (B(t),n")] — Elge (B(t),1)]
My

+ Y B (P )WL) -

cp,n#l,n*

Wit (0,0))

Mo
+ (1= par = p)(W,50(0,1) = W, E0(1,0))),
Mg
where p,., denotes the transition probability from
B(t)\{dn+,di} to {c1, -+ ,en\{en=, a1}, ie., the transition

probability to a given state excluding node n* and ¢; (without
loss of generality, assume n* < [). Note that it is unnecessary
to consider nodes with index m ¢ x(t) since their states are
correct. Based on the deﬁmtlon of myoplc E)ohcy, My <0.

It is straightforward that W (1 1) — W 1(0,0) > 0 since

=t
W,f /(1,1) includes a state with two trackmg errors and

Wt+1 1(0,0) a state that corrects both; hence, combining with
the p; > py+, we obtain My < 0. Since Vn, p, < 0.5, and
based on hypothesis II, we have M3 < 0. Therefore, we
arrive at the conclusion that the myopic solution at time ¢,
1.e., n*, is also the optimal action. With this, we have proved
hypothesis I. Next, we can prove hypothesis Il based on
induction, by analyzing three cases on the myopic solution.
The details are omitted due to lack of space. With this we
conclude the induction proof.

APPENDIX B
PROOF OF THEOREM 2

Following the technique used in, e.g., [9], [10], [16], we first
assume the optimal policy has a threshold-type structure and
solve the Bellman equations based upon it; after obtaining the
optimal solution, consistency with this assumption is checked
to conclude the proof.

Assume the optimal policy to solve (4) is update when d >
D, and idle when 0 < d < D. Denote the upper term in the
minimization in (4) as vy(d) and the lower term 7 (d). Then
for d > D, the optimal action is to update, and hence

f(d):m+@fj*7d2D. )

Likewise, the optimal action is to idle otherwise, and

F(d) + J* :6(d)+%f(d+1)+%f(d 1),0<d<D,

and the case with d = 0 is specially treated with outcomes
f(1) = 2J*. Together with f(0) = 0 we can obtain the
formula for f(d) when 0 < d < D based on the differential
equation of (10).

i

d—1
—2225 ),0<d<D. (10
15=1

i=

F(d) = d(d+1)J

With the following three equations we can solve for the
Whittle’s index in (5).

J(D) = m = D(D+1* =2 3" 3" 6(4), 20(D) = 1(D).
i=1 j=1 (11)

The first equation follows from (9) and (10) with d = D. The
second one is based on the fact that the auxiliary cost m should
be the minimum cost that make the update decision equally
beneficial give the current state. Therefore, when d = D, two
options should be equally valuable.

Consistency with the threshold-type assumption can be
checked to be satisfied with the derived optimal policy, whose
details are omitted for brevity. The indexability can be verified
by checking that when m = 0, the threshold is zero but update
and idle are equally beneficial and hence one should idle; when
m — oo, the threshold also goes to infinity. Additionally, the
monotonicity can be proved by checking

d—1 a d
Tew.n (@) —Trw,n (d—1) = d6, (d) =Y _ 6,(i) z) > 6a(i) > 0.

The inequality (a) follows from the non-decreasing property
of the error functions, i.e., 0,(d) > d,(7), Vi < d. With this,
we conclude the proof.

APPENDIX C
PROOF OF COROLLARY 1

The cost-to-go function is changed to

Yo(d),
mt (1= p) £(1)/2 + pero(d) }12)

1 Ford> D,

f(d) 4+ J* = min {

Following from (11), we can obtain f(D) =
based on the lower term in (12),

~ Fd)+ 2= 1) = pe (J* - 5<d>) —m.
Solving this equation recursively gives us
pe(m — peJ*)
D+1)—(1—-+1-p2 D)= .
pef(D+1) = (1= VI=12) /(D) = T2 =

Analyzing this in the regime p. — 0, we can obtain

Pe rda+1)

F(D+1) ”ﬁolm +o(1). (13)

— De
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Plugging (13) into (12), we obtain a similar equation as in
(11), expect that m is replaced with %e and hence the
corresponding index follows immediately. The indexability
also follows because 11’;3, compared with m, does not affect
the monotonicity or index values at zero and infinity.

APPENDIX D
PROOF OF THEOREM 3

The state transition matrix with parameter Dy, (denote -y £
) | P|P
1—AX—p)is Pp,, = 5P =
F1—Xx A )
1% yooA

1% v A ’
€ pl—e) [ v(1—e) Al—¢e)

where P is a (Dy, — 1)-dimensional square matrix. Denote the
stationary distribution as 7 £ [, 7] correspondingly. Solving
for the first Dy, — 1 states yields (first assuming A # p and
then generalized)

AN\ ¢
= <> (m— = )+ Y 0<d< Dy, (14
p A—p A—p
where o £ 71. Solving for the remaining states yields
N\ -1
ﬁ::AWDWQBI(I—mP) , (15)

where e, £11,0,0,---]7, and that I — P is invertable, since
P has eigenvalues smaller than one (¢ > 0). Plugging (14)
into (15) yields

A3 (A)D‘“_l( co )+ co
o= - ™ — ;
I A—p A=p

-1
where 3 £ el (I — P) 1. Then summing over all states
yields Z?io 7; = 1, combining with (14) and (16) we obtain

1 <A)Dth
_\r)

(16)

co co
- D —1,
-2 (”0 /\—u> e e
and hence wy = (%)Dmfl ﬁ — ﬁ) + 52, It follows

that (7) gives the solution of Dy,. Next we will show that o
is monotonically non-increasing with Dy, and hence 0 = v
yields a unique solution (note that when Dy, = 0, 0 = 1;
when Dy, — 00, 0 — 0).

A _
_ —log; (5)1 D
A (1-2) \n
log 2 1= Dy
w1+ 2 (5) £
1—2 \n A—p

(@ 1=Duw
= 1—<5> = >y,
% A—p

do~t
d Dy

where the inequality (a) stems from log(z) <z —1, Vo > 0.
Thus far, we have shown that there is a unique solution to
the threshold equation of (7), and thereby the index threshold
can be derived accordingly based on Theorem 2. Since the top
v-fraction of nodes are allowed to compete for a transmission
slot, which corresponds to approximately v/N nodes, the
transmission probability, i.e., pi, can be derived based on the
p-CSMA results in, e.g., [21, Theorem 1].
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