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The energy implication of climate change on urban wastewater systems

1. Introduction

Wastewater treatment plants (WWTPs) are important energy users in the US, representing around 24 % of
a typical municipality’s energy budget (Edward III, 2004) and around 0.6 % of the nation’s total energy
consumption (Soares et al., 2017). Energy used in WWTPs contributes to 46.4 million metric tons/year of
greenhouse gas emissions in the US (Griffiths-Sattenspiel and Wilson, 2009), in addition to the small but
indispensable amounts of greenhouse gases that are directly released during the treatment processes (Zhao
et al., 2019). Furthermore, a comparable amount of energy is indirectly consumed throughout the supply
chain of the materials/chemicals used in WWTPs (Mo and Zhang, 2012) . WWTPs are also important
energy producers, via means such as combined heat and power (CHP) generation utilizing biogas produced
through sludge digestion (Mo and Zhang, 2013), hydropower generation harnessing the kinetic energy
embedded in wastewater flow (Power et al., 2014), and residual heat recovery from wastewater (Suzuki et
al., 2009). The energy recovery potential of CHP has been estimated to range from 0.4-1.5 times of a
WWTP’s operational energy (Bachmann et al., 2015; Diaz-Elsayed et al., 2019; Gu et al., 2017; Nouri et
al., 2006; Wett et al., 2007). Wastewater hydropower generation potential has been estimated to be around
0.75 % of WWTPs’ operational energy use in the UK on average (Power et al., 2014), while in certain
cases, a full energy offset is possible (Samora et al., 2016). Furthermore, the potential of residual heat
recovery has been estimated to offset at least 50 % of a WWTP’s heating/cooling energy demand (Hao et
al., 2015). Both energy consumption (Li et al., 2018) and energy production (Khalkhali et al., 2018) in
WWTPs are subject to future changes in climate. Increase in precipitation frequency and intensity can
increase pollutant mobilization (Alamdari et al., 2017) , and consequently, the pollution load of combined
sewer systems (Santana et al., 2014), which may lead to higher energy consumptions in the wastewater
treatment processes. Climate also has a direct effect on operational energy and chemical consumptions
through changes in microbial activities (Wilén et al., 2006) and/or chemical reaction rates (Mines et al.,
2007). Changes in runoff volume and temperature can also directly influence hydropower generation, the
efficiency of residual heat recovery (Chae and Ren, 2016), and the effectiveness of biogas generation
(Bowen et al., 2014). Nevertheless, our understandings of the trend and the magnitude of such influences
to inform sustainable WWTP management remain limited.

Efforts have been previously made to quantify the influence of climate change on wastewater quantity (Ma
etal., 2014) and quality (Wang et al., 2017) at WWTPs. These studies commonly use process-based models
or statistical methods. Process-based models take a mechanistic approach to characterize the physical,
chemical, or biological processes in the WWTPs. For instance, Semadeni-Davies et al. (2008) simulated
stormwater and sewer infiltration through hydrological and hydrodynamical models to explore the effect of
climate change on the volume of urban drainage (Semadeni-Davies et al., 2008). Jin et al. (2016) combined
a runoff routing model and a process-based activated sludge model to predict wastewater quantity and
quality under heavy rainfall events (Jin et al., 2016). While process-based models are useful in laying the
theoretical foundation of the relationships between climate and wastewater quantity and quality, they can
be limited in dealing with complex WWTP treatment processes where the underlying mechanisms are less
understood. To address this issue, statistical methods have been applied. Carstensen et al. (1998) found that
a simple regression model based on measured data performed significantly better than a complex
hydrological model in predicting a WWTP’s hydraulic load (Carstensen et al., 1998). Langeveld et al.
(2014) adopted an empirical approach to study the diurnal dynamics of wastewater composition in relation
to climate and predicted the chemical oxygen demand and the ammonium concentrations of the influent
wastewater (Langeveld et al., 2014). Wang et al. (2017) analyzed the influence of cold and warm seasons
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on a Norwegian WWTP using correlation analysis and showed that snow melting has a significant impact
on the quantity and quality of wastewater influent in cold climate area (Wang et al., 2017). None of these
studies, however, further linked climate’s influence to the embedded energy of wastewater treatment.

During the last decade, there has also been a proliferation of life cycle assessment (LCA) studies
investigating both energy consumptions and productions from WWTPs considering construction, operation,
and end-of-life stages (Mo et al., 2011). These LCAs often include a system boundary of upstream processes
(wastewater collection and transport to the plant) (Lassaux et al., 2007), core processes (treatment processes
in the plant) (Tangsubkul et al., 2006), and downstream processes (the production of by-products such as
electricity/heat by biogas or the residuals and their recycling) (Mo and Zhang, 2012). Functional units based
upon unit volume of wastewater being treated have been commonly adopted. Previously reported net life
cycle energy use in WWTPs ranged from 0.09-1.37 kWh/m? (Bodik and Kubaska, 2013; CEC, 2005;
McCarty et al., 2011; Mo and Zhang, 2012; Plappally, 2012; Silvestre et al., 2015; Stillwell et al., 2010;
Wang, H. et al., 2016; Wilkinson, 2000). While these LCAs offer important insights into WWTPs’ life
cycle energy compositions, they are mostly static analyses based upon temporally averaged inventory data,
which cannot be easily extrapolated to investigate potential future changes under climate change. Only a
few studies have examined the dynamic relationship between climate and the life cycle energy of water or
wastewater systems. Santana et al. (2014) adopted a linear regression analysis combined with relative
importance analysis to determine the influence of water quality on the embodied energy of a drinking water
treatment plant. They found that the influent water quality variation can cause up to 14.5 % variation in
total operational embodied energy, mainly due to different treatment chemical dosage requirement (Santana
et al.,, 2014). Mo et al. (2016) and Stang et al. (2018) combined multivariate, regression, and relative
importance analyses to investigate the influence of climate and water quality changes on the energy and
chemical consumptions in drinking water supply. They found future climate change can either increase or
decrease the life cycle energy of water supply depending on geographic locations and treatment processes
(Mo et al., 2016; Stang et al., 2018). Li et al. (2018) is by far the only study that investigated the influence
of rainfall changes on the life cycle energy demand of WWTPs through comprehensive correlation and
regression analyses. They found a positive relationship between rainfall and the studied WWTP’s
environmental impacts, including global warming, acidification, and photochemical ozone creation.
However, future climate scenarios were not used in their prediction of the WWTPs’ dependence on energy.

Accordingly, this study aims to develop a generalizable modeling and assessment framework to investigate
the influence of climate change on WWTPs’ life cycle energy consumption and recovery, considering a
system boundary that includes the upstream, core, and downstream processes. This modeling and
assessment framework includes a correlation analysis between climate and raw wastewater quantity and
quality indicators, as well as regression and relative importance analyses that further link climate and
wastewater quantity and quality indicators with the life cycle energy consumption and recovery at the
WWTPs. The modeling framework was then applied to a WWTP located in Boston, MA. This study allows
generation of new knowledge and understandings in the following areas: 1) the influence of future climate
change on raw wastewater quantity and quality, 2) the influence of climate on future changes in the
volumetric and total energy consumption (direct and indirect) and generation towards the end of the century,
and 3) the influence of climate change on the seasonal energy consumption (direct and indirect) and
generation patterns.

2. Methods
This study adopted life cycle assessment as a framework to inventory the historic WWTP direct and indirect
energy consumptions and energy recoveries. The influence of climate change on the energy use and
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generation at the WWTPs was then quantified through integrated correlation, regression, and relative
importance analyses as described in detail in the following sub-sections.

2.1. Study site description

Deer Island wastewater treatment plant (DIWWTP), located in Boston, Massachusetts, owned and operated
by the Massachusetts Water Resources Authority, is the second largest WWTP in the US. It provides
wastewater treatment services to 2.2 million people (32 % of the state population) in 43 communities (1350
km? service area) of the greater Boston area. Around 93 % of its service area is served by separate sanitary
and stormwater systems, while 7 % is served by combined sewers. However, only about half of the annual
flow treated at the DIWWTP is sanitary flow, with the remaining flow being groundwater infiltration and
stormwater inflow (I/I) entering the separated sewer system, as well as stormwater from combined sewers
(MWRA, 2013). The average daily flow to the plant is 1.36 million m? and the plant has a peak wet weather
capacity of 4.81 million m* per day. The plant employs a treatment process that consists of primary and
secondary treatment, followed by disinfection and dechlorination. The detailed treatment process and
chemicals applied are outlined in Figure 1. The types of energy directly used onsite are electricity and
diesel. Electricity is primarily used for wastewater pumping and treatment as well as for administrative and
support activities. Diesel is used as a backup power supply. Additionally, sludge is treated for phosphorous
removal, thickened, and anaerobically digested. The biogas is combusted in a CHP system onsite to offset
the plant’s electricity and heating demand. The digested sludge is pumped to a residual pellet plant, where
it is processed into fertilizer pellets. However, given the residual pellet plant is a separate entity beyond the
DIWWTP, production of the fertilizer pellets in the pellet plant was not included in the system boundary
of the current study.
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Figure 1 The treatment process and the chemicals used in the Deer Island Wastewater Treatment Plant

Six electric power sources are currently available for the DIWWTP: grid electricity, the electricity
recovered from the CHP system, diesel electricity generation (as backup), onsite hydropower generation,
onsite wind turbines, and onsite solar photovoltaic arrays. The CHP system consists of two steam turbine
generators (STG) of 18 and 1.2-MW power, respectively. The backup power system consists two
combustion turbine generators (CTGs) with a capacity of 52 MW. However, diesel electricity generation
was not included in the current study due to the intermittent and uncertain nature of its usages. The amount
of energy provided by diesel is also insignificant as compared to the total operational energy consumption
(2.5 %). The hydropower facility generates electricity from the treated wastewater prior to discharge into
effluent outfall tunnel using two 1.1-MW Kaplan hydroelectric turbine generators. The onsite wind and
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solar electricity generations are also not included in this study because they are not directly linked with
wastewater characteristics.

In this study, historic monthly precipitation, wastewater quantity and quality, treatment chemical use, and
energy use and generation data were directly obtained from the DIWWTP, supplemented by temperature
and snowfall data from the National Climate Data Center for Station USW00014739 in Boston, MA
(NOAA, 2017). Table 1 shows a summary of the data that have been used by this study.
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Table 1 Annual variations in climate, wastewater characteristics, energy consumption, and energy offset of the Deer
Island Wastewater Treatment Plant

Minimum | Average Maximum
Data item Time period monthly monthly monthly Usage/Application
value value value
Temperature (°C) Jul 22%(1(;"\” 747 11.09 25.17
3}
£ | Precipitation (m) Jul 2000-Apr 0.02 0.09 0.38 NA.
o
Snowfall (m) Jul %%%‘Apr 0.00 0.12 1.65
8 Influent flowrate (m%s) Jul %%%‘Apr 9.40 14.61 31.79
k]
5 Water temperature (°C) Jan 58?;-Oct 12.71 17.52 22.97
°
[ Jan 2007-0ct 6.31 6.64 6.85
5 N.A.
5 | TSS(maL) Jul 2200(’16éA“9 89.42 183.72 281.55
©
3 | BoDs(mgL) Jul 2200(’16éA“9 83.22 172.89 269.66
§ Jan 2010-A
= COD (mglL) an 2018, g 17379 | 391.97 551.47
Hydrogen peroxide (mL/m?) Jul Zz%gz;-Apr 0.00 1.70 11.94 Pretreatment & Odor control
Sodium hypochlorite Jul 2004-Apr . .
§ (mL/m) 2017 5.62 12.11 22.00 Disinfection
T | Sodium bisulfite (mL/m?) Jul 2004-Apr 0.00 0.93 1,52 Dechlorination
E Control the formation of struvite and
[ i i -
S Ferrgus/Ferrlc chloride Jul 2004-Apr 0.44 1.48 3.20 reduce H2S in biogas for emission
© (g/m®) 2017
control
Polymer (g/m?3) Jul ZZ%Cié;-Apr 0.02 0.15 0.35 Used for sludge thickening
Office, laboratory, maintenance shops
and warehouse, including a small-
scale replica of the plant secondary
- 3 Jul 2006-Apr treatment to test and compare a
Support facilities (MJ/m?) 2017 0.03 0.07 0.11 variety of biological and physical
treatment processes on a large scale
before those processes become part
of the full-scale facility.
Used for lifting collected urban
Pumping (MJ/m?) Jul 22%26;'Ap' 0.31 0.34 0.37 wastewater to the head of the plant
o (46 m)
S ) 3 Jul 2006-Apr Used for non-suspended solids
§ Primary treatment (MJ/m?) 2017 0.08 0.16 0.25 settlement
2 Used for onsite oxygen generation for
w . pure oxygen-activated sludge system
Secongary treatment Jul 2006-Apr 0.18 0.37 0.61 and non-settleable solids removal
(MJ/m?3) 2017 f : .
through biological and gravity
treatment
Used for sludge thickening of primary
Residual processing Jul 2006-Apr 0.07 0.19 0.31 and secondary sludge, pumping of
(MJ/m3) 2017 ’ ’ ’ sludge and anaerobic digestion of
sludge.
Jul 2006-Apr Used for thermal energy production
Thermal plant (MJ/m?) 2017 P 0.04 0.10 0.15 for processes and facility heating and
power generation
Electricity generated from steam
- Steam turbine generation Jul 2006-Apr 0.76 217 315 produced from utilization of methane
3 (MJ/m3) 2017 ’ ) ’ gas generated from sludge digestion
5 in boilers
> ) Byproduct of sludge digestion
g Methane gas (MJ/m®) Jul 22%2?5 Apr 0.00 1.89 3.36 Used for heating and power
u=J generation
3 Jul 2006-Apr Generated from the effluent water of
Hydropower (MJ/m?) 2017 0.00 0.04 0.06 the plant

2.2. Life cycle energy estimation

Life cycle energy was calculated using Egs. (1) and (2) in this study. It includes three components: 1) direct
energy, which includes all types of energy that is directly used onsite of the WWTPs; 2) indirect energy,
which includes the energy embodied in the supply chain of the chemicals used during the operation of the
WWTPs; and 3) energy offset, which includes energy that is recovered through the CHP system (through
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steam turbine generation) and the onsite hydropower generation. The present study focuses on the operation
stage of the WWTPs because the construction and end-of-life phases of the WWTPs are less relevant to
climate change (Mo et al., 2016).
VCED; = VCEDgjrect + VCEDingirect — VCEDoffser = ZiPEi X E; + % PEj X Ej — ¥ PEy X Ey,
Eq. (1)

CED, = VCED; X Q; Eq. (2)
Where,

VCED = volumetric cumulative energy demand of wastewater services in month 7, MJ/m?;

E = volumetric energy use / chemical use / energy offset in wastewater services, (MJ or ml or g)

/m?;

PE= primary energy content, as listed in Table 2, MJ of primary energy;

i = energy use index for items listed under “Energy use” in Table 1;

Jj = chemical species index for items listed under “Chemical use” in Table 1;

k = energy offset index for items listed under “Energy offset” in Table 1;

CED,;= cumulative energy demand of wastewater services in month ¢, MJ; and

O, = total volume of the influent wastewater during month z, m>.

The Ecoinvent 3 and the USLCI databases embedded in the SimaPro software (version 9.0.033) and the
“Cumulative Energy Demand V1.09” method were utilized to calculate the life cycle energy of the
DIWWTP (Jassal et al., 2013). A list of the data entries used in SimaPro is provided in Table 2. Steam
turbine and hydropower generation was assumed to replace electricity supply from the grid.

Table 2 Data entries in SimaPro corresponding to each type of energy implication and their unit primary energy

content
Direct Electricity (MJ) Electricity, at eGrid, NEWE, 2010/kWh/RNA 2.26
energy use
Indirect Hydrogen Hydrogen peroxide, without water, in 50 % solution state (GLO))| 0.03
energy use Peroxide (mL) market for | Alloc Def, U
Sodium Sodium hypochlorite, without water, in 15 % solution state (GLO)| 0.02
hypochlorite (mL) market for | Alloc Def, U
Bisulfite (mL) Sodium hydrogen sulfite (GLO)| market for | Alloc Def, U 0.05
Polymer (g) Cationic resin (GLO)| market for | Alloc Def, U 0.04
Ferrous / Ferric Iron (111) chloride, without water, in 40 % solution state (GLO)| market ~ 0.02
Chloride (g) for | Alloc Def, U
Energy Steam turbine Electricity, at eGrid, NEWE, 2010/kWh/RNA 2.26
offset generator (MJ)
Hydropower (MJ) Electricity, at eGrid, NEWE, 2010/kWh/RNA 2.26

2.3. Multivariate and multi-linear regression analyses

Multivariate and multi-linear regression analyses were conducted to model the climate’s influence on the
influent wastewater characteristics as well as the required treatment. A multivariate analysis and a Principal
Component Analysis (PCA) was first conducted using the JMP Pro 14.2.0® software to investigate the
correlations among three monthly climate indicators (mean temperature (Tmean), total snowfall amount
(Stotal), and total rainfall amount (Piww1)) and six wastewater indicators (pH, mean wastewater temperature
(Tw), total suspended solids (TSS), five-day biochemical oxygen demand (BODs), chemical oxygen demand
(COD), average influent wastewater rate (Qavg)). Strength of the pairwise correlations were evaluated using
the Pearson correlation coefficients (r) which has a value between +1 and -1, where +1 indicates total
positive linear correlation; 0 indicates no linear correlation; and -1 indicates total negative linear correlation
(Stigler, 1989). In this study, r values in ranges of [0.7-1), [0.5-0.7), [0.2-0.5), and (0-0.2) are considered
to indicate strong, moderate, fair, and weak correlations, respectively (Akoglu, 2018). While no two
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variables are entirely “independent” from a statistical perspective, extremely high collinearity (r>0.99)
could mean that the variables essentially represent the same information. Information redundancy can result
in over-inflated variances, making the following regression analysis inaccurate. Data availability, causal
relationships, and prior knowledge of the processes being modeled are used to eliminate redundant variables
and select the most appropriate predictor. It has to be noted that Tmean Was selected as the only temperature
indicator in this study because a previous study has found extremely high collinearity among mean,
maximum, and minimum monthly temperatures in Boston (r>0.99) (Mo et al., 2016).

Comprehensive regression analyses were then performed to predict climate’s influence on the operation of
the DIWWTP. A regression analysis was first conducted to investigate the influence of climate indicators
on influent wastewater quantity. Both climate and wastewater quantity indicators were then used to predict
wastewater quality. Lastly, all climate and wastewater quality indicators were used to predict direct and
indirect energy consumptions as well as the energy offset of wastewater treatment. The regression analyses
were also performed in the JMP Pro 14.2.0® software. The stepwise methods (both backward elimination
and forward selection algorithms) using both minimum AICc (Akaike Information Criterion) and BIC
(Bayesian Information Criterion) stopping rules were adopted and the highest obtained adjusted R squared
(R%4;j) values were reported. The R%j value compares the descriptive power of regression models. It is a
modified version of R? that has been adjusted for the number of predictors in the model (Wherry, 1931).
The R?%q increases only if the newly added predictive variable improves the model more than would be
expected by chance. The R?; value is normally between 0 and 1. A higher R?; indicates that the model
has a stronger predictive power. In this study, models with a R?,qj value higher than 0.5 (50 % of variation
of the response is explainable by the independent predictors) were used for future predictions.

Two approaches were tested for conducting the regression analysis: 1) a lumped approach and 2) a month-
based approach. The lumped approach uses all available monthly data for the regression analysis. The
lumped dataset does not differentiate inter- and intra-annual changes. In other words, both the inter- and
the intra-annual changes in the climate are used as a surrogate to predict the influence of future climate
change on the operation of the DIWWTP. The month-based approach performs a regression analysis for
each of the twelve months. Inter-annual changes are hence separated from intra-annual changes and only
intra-annual changes are used to predict future operation of the DIWWTP. This approach, however,
significantly reduces the amount of data that can be used for each regression. In this study, when sufficient
data are available, a mixed approach was adopted, which determines whether the lumped or the month-
based approach would be used to maximize the R%; values for each month. Overall, the mixed approach
was found to be more suitable for wastewater quantity predictions, while the lumped approach was found
to be more suitable for predicting wastewater quality as well as chemical and energy consumptions due to
lack of data availability.

The relative importance of each predictor was then calculated using the standardized regression
coefficients, also labeled as Standard Betas (Bring, 1994). Standardized regression coefficients are the
average changes of the dependent variables in response to one-unit change of a predictor, when other
predictors are held constant. The variance inflation factor ( VIF)is used to assess multicollinearity of the
selected regression models, which further indicates the degree to which the precision of the model (R?.q) is
degraded by multicollinearity (James et al., 2013). VIF values of less than 10 have been previously
considered to show that collinearity problems are negligible or non-existent (Marquaridt, 1970), while VIF
values of greater than 100 have been considered to indicate significant multicollinearity (O’brien, 2007) .
The same criteria are adopted to evaluate the multicollinearity of the regression models reported in this
study.

2.4. Climate change scenarios
Downscaled climate model outputs including monthly average temperature and precipitation were obtained
from the Bureau of Reclamation for 21 General Circulation Models (GCMs) from the CMIP5 archive. The
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21 models, listed in Table S-1, have been statistically downscaled to 1/8th degree resolution over the
continental United States using the Bias-Correction and Spatial Disaggregation technique (Wood et al.,
2002). Two Representative Concentration Pathways were used for future predictions, one representing a
low/medium emission scenario (RCP 4.5) and one representing a high emission scenario (RCP 8.5). These
scenarios are consistent with a wide range of possible changes in future anthropogenic greenhouse gas
emissions and have been widely adopted by previous studies (Daniel et al., 2018). Emissions in the RCP
4.5 scenario peak around 2040, then decline, while in the RCP 8.5 scenario, emissions continue to rise
throughout the 21st century (Collins et al., 2013). Snowfall amount under climate change scenarios is
assumed to be proportional to the amount of precipitation being projected under these scenarios.

3. Results and discussion

In this section, historic life cycle energy consumption and generation, correlations between water
quality/climate indicators and energy consumption and generation, as well as the future inter- and intra-
annual energy use trends of the WWTP are reported.

3.1. Average monthly life cycle energy of the DIWWTP

Figure 2 shows the average monthly influent wastewater volume, the average monthly volumetric
cumulative energy demand (VCED), and the total monthly cumulative energy demand (CED) of the
DIWWTP for the period of 2007-2017. The average monthly influent wastewater volume peaks in March
and then drops to its lowest value in September (a 63 % reduction compared to March) before rising again
in winter. The high raw wastewater volume in March could be contributed by a combined effect of higher
rainfall volume, melting snowpack, and lower stormwater infiltration and evapotranspiration. On the other
hand, the low raw wastewater volume in September can be contributed by the combined effect of lower
rainfall volume, lower groundwater table, and higher stormwater infiltration and evapotranspiration. It has
to be noted that the rate of drinking water supply in the same region is the highest in July and August and
the lowest in February. This indicates a weak correlation between drinking water supply and wastewater
generation in the region (r=-0.4).

Support
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Figure 2 The embodied energy of DIWWTP in three groups of direct, indirect and energy offset. (a) the monthly
volumetric cumulative energy demand (VCED) to treat 1 m3 of wastewater in stacked bars as well as the average
monthly influent wastewater rate in red dashed line; and (b) the monthly cumulative energy demand (CED) in stacked
bars

In terms of the VCED, direct energy represents around 86-92 % of the monthly energy consumption, which
is much more significant than the indirect energy. Secondary treatment (30 %) and pumping (27 %) are the
two largest components of the volumetric direct energy use, followed by residual processing (16 %),
primary treatment (13 %), thermal plant (8 %), and support of the system (6 %). Volumetric direct energy
consumption is the highest in August-September and the lowest in March-April, which is mainly resulted
from changes in secondary treatment and residual processing (Figure S-1 in the supporting information).
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The mixed nature of urban runoff and sewage in the DIWWTP can play a significant role in creating this
pattern. During spring, sewage is diluted by snow melt and hence is lower in pollutant concentrations,
resulting in a lower treatment need. Temperature also has a significant impact on the dissolved oxygen
(DO) of wastewater and the need for aeration and mixing (Marx et al., 2010). Temperature has a positive
relationship with biological activity and its associated DO consumption (Dugan et al., 2009). In addition,
warmer water has a lower DO holding capacity (Dugan et al., 2009; Lekov et al., 2009). Collectively, these
effects increase the volumetric direct energy consumption in summer, especially the energy used for
secondary treatment in which cryogenic and aeration facilities are typically the main energy consumers
(McCarty et al., 2011). This aligns with previously reported findings that the energy intensity of secondary
treatment is relatively higher at higher temperatures (Bowen et al., 2014). The total direct CED presents a
different pattern than the direct VCED. Total direct CED consumption is relatively stable over the year with
the highest direct CED occurring in March and the lowest in February. The relatively small variances over
the year (17 % difference between months with highest and lowest direct CEDs) can be explained by the
opposite seasonal trends in the wastewater flow rate and the direct VCED.

Indirect VCED represents around 9-14 % of the monthly volumetric energy consumption depending on the
month. It shares a similar seasonal pattern as the direct VCED (Figure S-2 in the supporting information).
This is because more chemicals are needed in summer to treat the same volume of wastewater due to a
lower wastewater quality in summer months. Sodium hypochlorite has the highest contribution to the
volumetric indirect energy use, representing 65 % of the average indirect energy use intensity. Hydrogen
peroxide has an average annual contribution of 14 % in indirect energy intensity. This is closely followed
by sodium bisulfite (13 % of the indirect energy intensity), and the rest of the chemicals together contribute
around 8 % of the indirect energy intensity. Hydrogen peroxide is only applied in summer for odor control.
This is because when increased DO demand is not sufficiently satisfied by increased aeration, dead spots
will be created where concentrations of ammonia, phosphates, or sulfur compounds will increase. When
combined with the monthly wastewater flow rate, indirect CED still peaks in August, although to a lesser
extent. January presents the lowest indirect CED, which is 47 % below the level of consumption in August.

Volumetric energy offset is around 15-20 % of the volumetric energy consumption in the DIWWTP. Energy
offset is mostly achieved through steam turbine generation. Volumetric generation of the STG is the lowest
in March and April - the snow melting season, which can be explained by the relatively high hydraulic load
and low temperature during these months. One thing needs to be noted is that volumetric energy offset from
biogas recovery is not the highest in months with the highest organic loadings. Optimal efficiency of
anaerobic digestion is achieved under a delicate balance among several groups of microorganisms (Henze
et al., 2008). However, this balance can be interrupted by organic shock during the months with the highest
organic loadings, resulting in reduction of methane productions (Ketheesan and Stuckey, 2015). This aligns
with findings from many previous WWTP behavioral studies that there is an optimal organic loading to
achieve the highest efficiency of methane gas productions (Orhorhoro et al., 2018).

Hydropower generation from the effluent water, with a much smaller contribution to energy offset, does
not show significant seasonality due to its dependence to both the effluent flow rate and the tidal elevation
variation of the downstream water body. The total CED offset has a slight peak in May and an evident drop
in August and September. This drop is primarily resulted from the lower inflow rates in these months.

When energy consumption and recovery are combined, net CED consumption is the highest in August and
the lowest in April.

3.2. Multivariate and multiple linear regression analyses
This sub-section reports outcomes related to the correlations between water quality/climate indicators and
energy consumption and generation, as well as the future trends of the wastewater treatment demand.
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3.2.1. Multivariate correlation analysis

Multivariate correlation analysis was conducted on a dataset consisting of 83 historic months with available
information about climate, wastewater, and operation of the plant. The obtained Pearson correlation
coefficients (r) for all the existing pairs in this correlation analysis are provided in Figure 3. There is no
extremely high correlation (1>0.99) between climate and wastewater indicator variables. Hence, all
variables were kept for the following regression analysis. This is also supported by results obtained from
the PCA, which are provided in Table S-3 of the supporting information.

Average influent wastewater flow rate (Qave) has a moderate positive correlation with total rainfall Pyl
(r=0.61), a fair negative correlation with mean temperature Tmean (r=-0.40), and a very weak positive
correlation with snowfall Syl (r=0.09). The positive correlation between Py and Qave can be explained by
the fact that half of the treated wastewater in this plant is from groundwater infiltration and stormwater
inflow. A similar high correlation between Pio1 and Qayve in WWTPs has been reported in Li et al. (2018).
A higher Tmean reduces soil moisture and hence groundwater infiltration and inflow into the wastewater
collection system. Wastewater temperature (Ty) presents a strong similarity to Tmen in terms of its
correlation with other indicators, except that it has stronger positive correlations with other water quality
indicators than Tmean. pH is the only wastewater quality indicator that has very weak correlations with
climate indicators (|r|<0.2). It has a fair negative correlation with Qa..s, which might be explained by the
dilution effect of stormwater on raw sewage, which usually has a higher pH than drinking water due to
detergents and soap. There are strong correlations between wastewater quality indicators of BODs, COD,
and TSS, which is expected based upon their definition (Abdalla and Hammam, 2014). TSS, BOD, and
COD also present a strong similarity in their correlations with Qav, and climate indicators. They all have a
strong negative correlation with Qave (r<-0.75), a fair negative correlation with Pioa1 (r<-0.39), a fair positive
correlation with Tmean (£>0.24), and a very weak negative correlation with Siw (r<-0.09). Negative
correlations with Qaye and Py can be explained by the dilution effect of rainfall and increase in I/I which
result in less TSS, BOD, and COD, while the positive correlation with Tmean can be explained by the higher
pollutant loadings found during the summer months.

2 P (M)| P
25 ol (M)} Proa 0.7<r|<1 Strong
(W] o
L_‘:j._g Tiean(°C)| -0.08 | Tmean 0.55|r|<0.7 Moderate
£ Sea (M)] 007  -063 | S 0.2<|r<0.5 Fair
Qg (M¥s)| 0.61 =040 009 | Q. Ir<0.2 Weak

TL/°C)| -0.15 086 -0.51 -0.65 Tw

oH| 011 006 006 -038 027 | pH
7SS (mgiL)| 039 035 -017 075 049 | 040 | TSS
BOD (mg/L)| 048 024 -009 -081 046 | 041 091 | BOD
coD (mgiL)| 049 030 -010 -087 053 | 038 093 096 | coD

Wastewater indicators

Figure 3 Pearson correlations coefficient among wastewater and climate indicators

3.2.2. Regression analysis for wastewater quantity and quality

A multi-linear regression analysis was first performed to examine how climate indicators contribute to the
variations of wastewater quantity and quality indicators. The lumped approach was first used for the
regression analysis. The obtained results show that Qay, obtained from the lumped approach was not able
to replicate the peak flows in March as well as during October and November (Figure S-4 in the SI). The
month-based approach was then investigated, which was found to have higher R%j values than the lumped
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approach for seven out of the twelve months (Table 3 and Table S-3 of the SI). Thus, the mixed approach
was adopted for Q.. modeling. Based on the obtained relative importance of the climate variables, Py is
the main variable in explaining the Qg variation for all months except for October. It is the only selected
predictor of Qaye in March, which is the month with peak flow. In October, snowfall is possible in the study
region and it is the only month that Q.. is positively and significantly affected by Siowi, probably due to
rain-on-snow events. For the remaining months with lower temperature, precipitation mainly happens in
the form of snow and due to decrease in rainfall, a decrease in Qg in December, January, and February is
expected. Tmean generally has weak and negative influence on Qave in most months, due to its impact on
evaporation and soil moisture.
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Table 3 Regression analyses result used for wastewater influent flow rate modeling through Mixed approach

Month / Jan / Lumped approach Feb / Lumped approach Mar / Month-based approach
Method Raq?>=0.54 method=AlCc, BIC Raq?>=0.54 method=AlCc, BIC Raq?=0.71 method=AlCc, BIC
Co S p RI (%) VIF Co S p RI (%) VIF Co S p RI (%) VIF
Intercept | 13.708 0.508 <.0001 13.197 0.201 <.0001 13.680 1.067 <.0001
Pt (M) |43.873 3.477 <.0001 49 1.012(52.322 2.06 0.002 64 1.190] 51.236 8.180 <.0001 100
Stotar (M) | -2.447 0.993 0.015 12 1.637|-3.006 0.324 0.056 36 1.190
[Tmean (°C)| -0.208 0.027 <.0001 39 1.623
Month / Apr / Lumped approach May / Month-based approach Jun / Month-based approach
Method Rag?=0.54 method=AlCc, BIC Rag?=0.77 method=AlCc, BIC Raq?=0.69 method=AlCc, BIC
Co S p RI (%) VIF Co S p RI (%) VIF Co S p RI (%) VIF
Intercept | 13.708 0.508 <.0001 19.365 4.747 0.001 9.929 1.016 <.0001
Prota (M) | 43.873 3.477 <.0001 49 1.012|37.036 6.741 0.000 77 1.138|46.841 7.926 <.0001 100 1.000
Stotar (M) | -2.447 0.993 0.015 12 1.637
Tmean (°C)| -0.208 0.027 <.0001 39 1.623|-0.495 0.301 0.125 23 1.138
Month / July / Lumped approach Aug / Month-based approach Sep / Month-based approach
Method Raq?=0.54 method=AlCc, BIC Raq?>=0.58 method=AlCc, BIC Raq?>=0.56 method=AlCc, BIC
Co S p RI (%) VIF Co S p RI (%) VIF Co S p RI (%) VIF
Intercept | 13.708 0.508 <.0001 21.919 6.189 0.003 9.714 0.607 <.0001
Pt (M) | 43.873 3.477 <.0001 49 1.012]28.160 6.239 0.001 70 1.000| 31.312 6.808 0.000 100
Stotar (M) | -2.447 0.993 0.015 12 1.637
[Tmean (°C)| -0.208 0.027 <.0001 39 1.623|-0.517 0.269 0.075 30 1.000
Month / Oct / Month-based approach Nov / Month-based approach Dec / Lumped approach
Method Raq?>=0.88 method=AlCc, BIC Raq?>=0.59 method=AlCc, BIC Raq?=0.54 method=AlCc, BIC
Co S p RI (%) VIF Co S p RI (%) VIF Co S p RI (%) VIF
Intercept | 22.377 3.150 <.0001 4.686 2.505 0.082 13.708 0.508 <.0001
Protal (M) 56.433 12.301 0.000 69 1.001|43.873 3.477 <.0001 49 1.012
Stotal (M) [335.300 30.416 <.0001 78 1 -2.447 0.993 0.015 12 1.637
[Tmean (°C)| -0.791 0.247  0.007 22 1 0.606 0.295 0.059 31 1.001| -0.208 0.027 <.0001 39 1.623
“Co”: coefficients in linear regression model, “S”: standard errors of the coefficients, “p”: the observed significance level of each
predictor variable, “RI”: relative importance of each selected predictor variable in each type of chemical or energy uses calculate
based on Standard Betas, “VIF”: variance inflation factor.

The lumped approach was selected for examining the contributions of climate and wastewater flowrate to
wastewater quality changes, as the data availability (n=7) limited the use of the month-based approach. The
regression analysis yielded acceptable prediction models for all wastewater quality parameters except for
pH. Both Tiean and Q.ve were found to be statistically significant contributors to Ty variations (Table 4).
Qave was found to be a very significant contributor to TSS, BOD, and COD predictions. Other predictor
variables present limited contributions to the wastewater quality indicators.
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Table 4 Regression analyses results for modeling wastewater quality indicators

2
Response m':;ﬁo d Par. Int. | Piotar (M) | Stotar (M) | T mean (°C) | Qavg (M?/s) Modeled (black) vs. observed (red)
Co |20.727 | 14.705 | -0.791 0.210 -0.464 | 5
Sd | 0.613 | 2.606 0.529 0.017 0.040 17
o 0.74
Tw(®C) | Alce p |<.0001| <0001 | 0138 | <.0001 | <.0001 | 14
RI (%) 17 4 41 38 1
VIF 1.810 1.825 2.343 2.260 Jan Feb Mar AprMay Jun Jul AugSep Oct NovDec
230
Co |299.068| 92.780 | -15.255 -8.379
TSS 0.64 Sd | 8.230 | 49.767 | 8.092 0.669
(mg/L) | AlCc p |<0001| 0.059 | 0.058 <.0001
RI (%) 12 9 79 140
VIF 1.586 1.025 1.604 Jan Feb Mar AprMay Jun Jul AugSep Oct NovDec
220
Co [309.507 0525 | -9.037
BOD 0.70 Sd 9.469 0.210 0.554 170
(mg/L) |AICc,BIC| p |<.0001 0.014 <.0001
RI (%) 13 87 120
VIF 1.255 1.255 Jan Feb Mar AprMay Jun Jul AugSep Oct NovDec
Co |684.062 -0.749 -20.051 460
cop 074 | Sd |22.722 0.496 1.385
(mglL) | AICc p |<.0001 0135 | <0001 | *°
RI (%) 9 91 Lumped ———Obs
VIF 1.232 1.232 Jan Feb Mar Apr May Jun Jul Aug Sep Oct NovDec
Co | 6.869 | 0.435 -0.019
0.19 Sd | 0.045 | 0.270 0.004
pH AlCc p |[<.0001| 0.110 <.0001
RI (%) | 0.000 24 76
VIF 1.585 1.585 %

3.2.3. Future wastewater treatment demand

Regression analysis was then performed to examine the contribution of both climate and wastewater quality
indicators to the volumetric chemical and energy uses of the DIWWTP. The obtained results are provided
in Table 5. Out of the direct energy consumption models, electricity use for pumping is the only response
variable that did not yield an acceptable prediction model (R%4<0.50). This is expected as pumping energy
intensity is primarily determined by pumping efficiency, which is not expected to present a significant
seasonal pattern. The remaining direct electricity uses are all well explainable by climate and wastewater
indicators (R%4>0.79). COD is the most frequently selected predictor for different types of direct energy
uses, followed by Ty, TSS, Tmean, Protal, Stotat, and pH. Out of the chemical response variables, ferrous/ferric
chloride and sodium bisulfite are the two response variables that did not result in satisfactory regression
models. This can be explained by the expected higher uncertainty related to processes where these
chemicals are used: struvite control in anaerobic digestion and dichlorination, respectively. Sodium
hypochlorite, hydrogen peroxide, and polymer resulted in satisfactory predictive models (R?%4>0.52).
Sodium hypochlorite usage can be predicted by pH, COD, and Ty, as less sodium hypochlorite is needed
with lower pH, higher pollution concentration is and lower water temperature. Hydrogen peroxide usage
increases with higher wastewater temperature, higher pH, and lower Py It enhances oxidation as due to
temperature rise and decrease in solubility of oxygen, mechanical aeration will not be sufficient to increase
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the DO during hot summer months. Polymer use in secondary treatment can be predicted by BOD, COD,
Ty and P In terms of energy offset, the analyses did not result in an acceptable predictive model for
energy offset through the steam turbine generator (STG) (R?,4=0.44). Methane gas generated from sludge
digestion in this system is the primary fuel for the STG. Further analysis shows that an acceptable model
can be obtained for the volumetric methane gas production (R%,4=0.77) with TSS, BODs and COD selected
as predictors. The difference between the R%g values of the STG and the methane gas models can be
explained by the seasonal changes in the turbine generation and waste heat recovery efficiencies, which
cancels out the effect of seasonal water quality changes. No satisfactory model was found for volumetric
hydropower generation.
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Table 5 Regression analyses coefficients for modeling wastewater indirect/direct energy use and energy offset
Radj?
Ptotal o 0, TSS BODs COD
Response me;ho Par. Int. (m) Stotal (M) | T mean(°C) | Tw (°C) pH (mg/L) (mg/L) (mg/L)
Co 0.4465 | 0.0884 0.0016 | -0.0212 | -0.0003 | 0.0003
Electricity use | 0.39 sd 0.0555 | 0.0257 0.0004 | 0.0087 | 0.0001 | 0.0001
for Pumping AICc, p <0001 | 0.0009 <0001 | 0.0169 | 0.0003 | 0.0010
(MJ/m?3) BIC RI (%) 13 17 9 31 29
VIF 1.2675 12922 | 1.2074 | 57458 | 6.2367
. Co -0.0275 | -0.2056 0.0015 | 0.0093 -0.0002 0.0003
E'?Cg'?'ty use 0.87 Sd 0.0145 0.0388 0.0004 0.0012 0.0001 0.0001
:‘rea't'm;{ Alce p 0.0607 | <.0001 0.0002 <.0001 0.0556 0.0002
(MJ/m?) RI (%) 1 17 37 10 25
VIF 1.4927 6.2340 7.6258 9.4987 12.9490
. Co -0.0307 | -0.1684 0.0124 -0.0013 0.0011
'?'egt"c'tlguse 0.86 sd 0.0237 | 0.0678 0.0012 0.0002 0.0001
'“Trz:t"n'l‘e :try Alce p 0.1984 | 0.0152 <.0001 <.0001 <.0001
(MJ/m3) RI (%) 5 22 26 47
VIF 1.4092 1.4271 7.5958 9.1851
. Co 0.4200 | -0.2292 | 0.0287 0.0075 | 0.0589 | -0.0004 0.0005
E'.ecg'c'%’ ”Te 0.84 sd 0.1197 | 0.0589 | 0.0103 0.0010 | 0.0189 | 0.0002 0.0001
'F:‘rocees;si‘:lag AICc, P 0.0008 | 0.0002 | 0.0065 <0001 | 0.0026 | 0.0164 <.0001
M) BIC | RI(%) 10 8 24 7 15 36
VIF 1.4591 | 1.8064 2.2877 | 1.2443 | 8.3634 10.3316
Co 0.1641 | -0.1493 | 0.0146 0.0031 | 0.0251 0.0002
Electricity use | 0.79 sd 0.0653 | 0.0306 | 0.0053 0.0005 | 0.0103 0.0000
in Thermal AlCc, p 0.0141 | <0001 | 0.0072 <0001 | 0.0169 <.0001
Plant (MJ/m?) BIC RI (%) 19 12 28 9 32
VIF 1.2837 | 1.5506 2.1011 | 1.1980 1.8846
. Co 0.0099 | -0.0586 | 0.0118 0.0005 0.0025 -0.0002 0.0002
E'fc"'c'? use 0.86 sd 0.0077 0.0167 0.0035 0.0002 0.0006 0.0001 0.0000
°s’uspy:°ﬁtm AICc, P 0.2033 | 0.0008 | 0.0013 0.0185 0.0001 0.0009 <.0001
Molme) BIC | RI(%) 8 8 1 19 19 35
VIF 1.5056 | 1.7501 6.2727 7.1283 9.8226 13.6215
10.859
) Co | -71.9216 0.3348 4 0.0160
, S°d;“:m_t :I-gz sd 16.1945 0.1096 | 2.5154 0.0048
y{’n‘l’flm‘;;' e Blg' P <.0001 0.0031 | <.0001 0.0012
RI (%) 29 38 33
VIF 14034 | 11771 1.5250
Co | -33.5213 | -11.451 0.5964 | 3.8567
Hydrogen 0.64 sd 9.5365 | 4.0725 0.0585 | 1.4557
Peroxide AlCc, p 0.0007 | 0.0062 <0001 | 0.0098
(mL/m?) BIC RI (%) 18 66 17
VIF 1.0034 1.0672 | 1.0644
Co 0.0979 | -0.1492 0.0046 0.0009 | 0.0001
0.63 sd 0.0296 | 0.0867 0.0014 0.0002 | 0.0000
Polymer (g/m®) | o0 p 0.0013 | 0.0882 0.0018 <0001 | 0.0024
RI (%) 1 21 48 20
VIE 1.3592 1.3817 2.3104 | 1.4220
Co 74226 | -3.5723 | 06183 0.0292 1.3476
Ferrous & 0.28 sd 2.8997 | 1.2530 | 0.2560 0.0078 0.4349
Ferric chloride | AlICc, p 0.0124 | 0.0056 | 0.0181 0.0003 0.0027
(g/md) BIC RI (%) 22 21 33 24
VIF 1.0173 | 1.7329 1.7110 1.0179
Co 1.6814 0.0067 -0.034 -3.5310
. 0.0000
:.';d'l‘f’.:’; 0.08 sd 0.2720 0.0037 0.0115 2
(r'“fln'ﬁ) AlCc p <.0001 0.0795 | 0.0037 0.1119
RI (%) 65 20 15
VIF 4.0414 4.5491 1.3203
] Co 0.0058 | -0.2336 | 0.0723 0.0027 0.0006
Stef’“tt?".tt"“e 0.44 sd 0.0499 | 0.1480 | 0.0328 0.0011 0.0001
ee‘r’l‘;r’;ii'oﬁ‘ Alce p 0.9082 | 0.1186 | 0.0305 0.0112 <.0001
9 (M) RI (%) 13 20 25 42
VIF 1.3360 | 1.7119 1.8739 1.4810
Co 17.9468 0.2975 | 0.1949 | 0.2853
Digester Gas 0.77 sd 6.7759 0.0926 | 0.1294 | 0.0623
Production Alce p 0.0103 0.0021 | 0.1373 | <.0001
(L/m3) RI (%) 27 17 56
VIF 6.7183 | 12.671 | 14.0483
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3.3. Future trend of DIWWTP’s embodied energy under climate change

Figure 4 provides the predicted future trend of wastewater generation and life cycle energy of the DIWWTP
under RCP 4.5 and RCP 8.5 climate change scenarios. The response variables that were not found to be
correlated with climate data in the previous step were assumed constant under climate change. Q. has
shown an overall decreasing trend towards the end of the century under both climate scenarios (Figure
4(a)). Temperature increase plays a dominant role in the decrease of Qave. Under RCP 4.5, the estimated
Qavg for the late-century period is slightly higher than the mid-century period. This is because under this
scenario, carbon emissions peak in 2040 and as a result, temperature increase slows down toward the late-
century.

Direct and indirect VCEDs are expected to increase by 2.7-3.3 % and 6.4-7.9 % under RCP 4.5 and 8.5
scenarios, respectively. This increasing trend in direct and indirect VCEDs can be linked to the decrease in
Qave and its influence on wastewater quality. Volumetric energy offset presents a relatively stable or slightly
decreasing trend towards the late century, although temperature and organic concentrations are expected to
be higher. This could again be the result of potential shocks in organic loadings and the limitations in
maximum achievable efficiency in energy recovery. Total monthly CED of the DIWWTP is projected to
increases by 2 and 6 % under the RCP 4.5 and 8.5 scenarios, respectively. Both direct and indirect CEDs
were projected to increase by around 1.7-2.3 % and 3.9-5.3 % towards the end of the century under climate
change, while offset CED was projected to drop by 1-2 %. The DIWWTP has been looking into combining
food waste with sludge digestion to increase biogas recovery.

(a) Flowrate (m%/s) (b) Direct VCED (MJ/m®) los
15,54
15.0- ~ 2.4
(c) Indirect VCED (MJ/m?) (d) VCED Offset (MJ/m?)
0.354 F0.58
0.30
F0.56
96 (e) Total CED (TJ) (f) Direct CED (TJ)
" 1104
88 Lg6
(g) Indirect CED (TJ) (h) CED Offset (TJ)
144 F24
114 F21
Baseline Early Mid Late Baseline Early i Late
Century Century Century Century Century Century

Figure 4 The future wastewater volume and embodied energy of DIWWTP under climate change scenarios of RCP
4.5 (black) and RCP 8.5 (red)
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3.4. Future seasonality of the embodied energy under climate change condition

Figure 5 presents the estimated seasonal variation in Qayve, VCED, and CED at the late-century period under
RCP 4.5 (black) and RCP 8.5 (red) scenarios. Qayg is projected to maintain a seasonal pattern with peaks in
March and drops in late summer and early fall. However, a larger seasonal variation in Qayg is observed
under both scenarios. Differences between the highest and lowest flow rates within a year are going to
increase from 63 % in the baseline period to as much as 121 % in the late-century period. This is also
evidenced in the standard deviation of Qaye, Which increases from 2.39 m*/s in the baseline period to 2.75-
3.57 m®/s in the late-century period under the two climate scenarios. These changes can potentially result
in more frequent system shocks with extremely high and low flow rates, and hence create operational
difficulties. The VCED of the plant will experience a relatively consistent increasing trend through the year.
October will experience the highest increase in VCED from the baseline for 0.23 and 0.53 MJ/m® under
RCP 4.5 and 8.5 scenarios, respectively. November will experience decrease in VCED compared to the
baseline due to slight rise in the region’s precipitation in this month and its dilution effect on water quality.
Projections of future intra-annual CED changes show that the plant will experience a significantly larger
seasonal variation of CED between June and November. Differences between the highest and lowest month
CEDs within the timeframe increased from 19 % in the baseline period to as much as 39 % in the late-
century period.

¢ (a) Flowrate (m3/s) ‘ (b) VCED (MJ/m3) e (c) CED (TJ)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Baseline  ====- RCP 4.5 Late-certury = ===== RCP 8.5 Late-century
Figure 5 Comparison of the projected seasonal changes in (a) wastewater flowrate, (b) volumetric cumulative energy
demand, and (c) total cumulative energy demand in late-century period under the RCP 4.5 and 8.5 scenarios

4. Conclusions and Implications

In this study, the future trends of intra- and inter-annual life cycle energy consumption and generation under
climate change is explored, using the Deer Island Wastewater Treatment Plant as a testbed. Currently, direct
energy contributes more than 86 % to the total Cumulative Energy Demand (CED) consumption, while
energy recovery through Combined Heat and Power and hydropower generation allows the treatment plant
to offset more than 15 % of its energy demand. A multivariate analysis based upon historical data show
wastewater quantity and most wastewater quality variables have a strong correlation with climate factors.
Most of the energy and chemical consumption as well as energy offset variables can be predicted by climate
and wastewater characteristic parameters. Two climate scenarios of the RCP 4.5 and RCP 8.5 are
investigated. Annual influent wastewater quantity is predicted to decrease towards the end of the century
under both climate change scenarios, mainly due to the expected increase in temperature. However, a larger
seasonal variation in the flow rate is projected, which might more than double the current seasonal
variations in flow rates. This can potentially result in more frequent system shocks with extremely high and
low flow rates, and hence challenge the operation of the treatment plant. The influent wastewater quality
will also decrease under climate change conditions which implies more direct and indirect energy
consumptions for wastewater treatment. Overall, the plant’s CED consumption is expected to rise. Direct
energy demand will increase more than indirect energy demand. The energy offset potential of the plant is
projected to slightly decrease due to potential disturbances to the delicate microbial balance required for
efficient biogas recovery in the anaerobic digestion. Projections of future intra-annual responses show that
the seasonal variations of wastewater flowrate as well as the monthly cumulative energy demand can
potentially experience a two-fold increase, resulting in more frequent system shocks and create operational
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difficulties. Future study can extend the current work to additional wastewater treatment plants to
investigate the influence of treatment system design and geospatial heterogeneity on the outcome as well
as allow comparison of various data-driven regression and machine learning models.
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