Experience-driven Wireless D2D network Link
Scheduling: A Deep Learning Approach

Shuai Zhang*, Wenlong Shen*, Max Zhang', Xianghui Cao?, Yu Cheng*
Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616
AT&T Labs Research, Middletown, NJ 07748
School of Automation, Southeast University, Nanjing, 210018, China

Abstract—The protocol design of device-to-device (D2D) net-
works have regained research interest in recent years, due to
the increasing number of networking devices and the diverse
deployment settings. Most of the network optimization tasks are
fundamentally difficult NP-hard problems in wireless settings,
because managing interference introduces combinatorial com-
plexity. Existing approaches use general heuristic algorithms for
the underlying graph problems. While efficient and simple, they
are not adaptive to the changing requirement and priorities
of the service providers, and make no use of the past data to
recognize and exploit the information within. In this paper, we
study a representative network optimization task of maximizing
the throughput-based system utility through link scheduling in
a single-radio, single-channel D2D networks, and propose a
learning-based method to leverage past experience to generate
a good scheduling policy. We combine the pattern matching
capabilities provided from recurrent neural networks (RNN)
and the flexibility in changing environment from reinforcement
learning (RL). The algorithm is implemented with existing
software frameworks and tested with numerical experiments. We
find that its overall solution quality is comparable to existing
heuristics with various network scales, and report an improved
system throughput with significant lower computation time.

Index Terms—device-to-device network, deep learning, network
utility maximization

1. INTRODUCTION

The next generation communication system will go through
a fundamental change in its paradigm. In addition to providing
higher data rate to more users, it is envisioned to bring connec-
tivity to heterogeneous devices. In an attempt to increase the
flexibility and robustness of network organization, device-to-
device (D2D) communication is a promising candidate actively
explored in many applications, including internet-of-things,
vehicle-to-vehicle networks. Although the upper layers in the
networking stack may change their function and abstractions,
there are two fundamental limitations that require special
attention in deploying wireless D2D networks: 1) the amount
of orthogonal resources is increasingly limited, and 2) the
user devices’ computation capability cannot be presumed to
increase indefinitely, due to the impending obsolescence of
the Moore’s laws and the proliferation of low-cost networked
smart devices. As a result, how to efficiently schedule the scare
resources with lower overhead to the clients is a critical issue
in designing future wireless networks.

In a typical setting, D2D communications take place in
Gaussian interference channels, and the network designer is
tasked to coordinate the devices’ transmissions to maximize

978-1-5386-8088-9/19/$31.00 ©2019 IEEE

system metrics, often a function of system throughput, subject
to minimum quality-of-service requirements for the individual
links. Through power allocation, transmitters tune their signal
power levels to accommodate for the path loss attenuation
and prevent jamming their neighbors; In the worst case all
transmitters are at their max power with very low data rate
achieved.

As a result, the introduction of link scheduling is necessary.
By selecting subsets of links to transmit simultaneously, the
seriously interfering pairs are designated different time slots
to transmit [1]. Since the data rate is a non-linear function of
SINR, even if the links must time-share, the improved SINR
leads to a significant gain in the combined system throughput.

However, the D2D link scheduling problem presents a
significant technical challenge. Although it can be argued that
scheduling is a special case of power allocation, with the links
not selected set to transmit at zero power, to solve it exactly
amounts to solving an integer combinatorial optimization
problem, and has been shown to be in the class of NP-
hard. Research efforts have been on developing heuristics that
give approximate solutions. The majority of them are based
on finding independent sets in a conflict graph, which is a
representation of the conflict relationship between the links.
The exact standards for “conlict” vary: in one work [2], it
defines conflict as having their individual SINR lower than a
certain threshold if transmitting at the same time; others may
define it based on more nodes or the physical proximity. These
standards may be otherwise known as the physical or protocol
interference models, but in the end the scheduling is reduced
to finding a maximal or maximum weighted independent
set (MWIS) on the conflict graph. This opens the door for
applying the approximation results from the graph theory
literature [3].

Another more ad-hoc thread of research aims to directly
construct a measure of link importance, usually as a function
of the link metrics such as interference and signal strength.
The benefits of such approaches are two fold: first, it is easy
for building greedy heuristics — start with an empty link set,
and iteratively select from the unchosen links a link with the
maximum measure, without conflicting too much with chosen
ones; second, it is convenient to add additional constraints
such as fairness between links or priority by adding penalty or
bonus factors in the measure calculation. Recent novel schemes
[4]-[6] follow this route to achieve additional benefit.

Authorized licensed use limited to: lllinois Institute of Technology. Downloaded on September 01,2020 at 03:16:17 UTC from IEEE Xplore. Restrictions apply.

In this paper, we are interested in a generalization of the sec-
ond approach. We explore the latent relationship between link
metrics and scheduling decisions through the use of neural-
network based machine learning techniques. Today neural
network-based learning algorithms have made breakthroughs
in many problems traditionally held to be infeasible. While
we do not believe that learning algorithms can overcome
the complexity of NP-class problems, we consider them to
hold promise for network designers based on the following
observations. First, the distribution of real-world “best-subset”
type of optimization solutions are concentrated in a small
region in a large search space. There is often a pattern
that can be exploited, but is not currently applied since the
current solutions do not make use of past experience to
make future decisions. Second, the engineering practice favors
adaptability, and machine learning algorithms fill the need,
while hand-tailored heuristic rules tend to be designed with
specific and fixed assumptions in mind. Network researchers
are increasingly more interested in finding out how machine
learning could be exploited to help discover ways to optimize
the network. Their application in network protocol designs
have been explored in many areas such as flow engineering,
routing and anomaly detection, where their usage has achieved
significant improvement.

Focusing on the making scheduling decisions based on link
information, our work combines two algorithmic components
from the state-of-the-art artificial neural networks. To the best
of our knowledge this is the first work combining these two
aspects to solve a wireless D2D network scheduling problem.
The first part is recurrent neural networks to process sequential
data, digesting the sequence of link data to give an output
sequence of links to use. The second part, reinforcement learn-
ing, is an algorithmic framework to derive the best-action pol-
icy in a Markov environment to accumulate maximum amount
of rewards. It is able to guide the sequence processing part
to improve over repeated interactions with the environment,
which corresponds to maximizing the system-throughput based
utility over time. We show through simulations that our scheme
can produce comparable high-quality solutions compared with
existing works, and that it achieves such performance with less
computation time without the need to hand-craft data features
or heuristic metrics.

The rest of the paper is organized as follows: in Section II
the mathematical model used for the network is introduced and
a basic analysis of the problem complexity is demonstrated;
in Section III we start from concepts of machine learning
techniques and goes on to explain the effect and workings
of each part of the design, and how they match our problem
under consideration; in Section IV we detail the numerical
experiments to verify the proposed scheme’s achieved ben-
efits, with a comparison to the existing algorithms, and we
summarize our findings in the the final section.

Notes on mathematical notations: calligraphic letters (V)
denote sets while lower-case letters denote single variables.
Bold-face letters are used to stress that a variable is a vector
or matrix, and the notation f(x; @) means that the function f

Fig. 1: System illustration
takes x as the input and is parameterized by vector 6.

II. MODELS AND SETTING

We are interested in the general case of a D2D network, as
shown in Fig. 1. A set of communication nodes V' is randomly
distributed within a square area. The transmission demands are
given in the form of node pairs £ = {l;,l5,",l 5} and each
link is a transmitter and receiver tuple: [, = {¢(¢),r(i)}, Vi €
{1,2,---,|£|}. Assume that each node is equipped with a
single radio interface, as the multi-radio case can be reduced
to the single-radio case by converting the node into parallel
single-radio nodes. All transmissions take place using a shared,
fixed block of bandwidth W, and the system has time slots
which allows time multiplexing. We consider the co-channel
interference to the receiving nodes to be the sum of all
transmitted signals from other node pairs.

In order to maximize the throughput-based system perfor-
mance, we assume that there are two decisions to make:
scheduling, by which a node pair decides if they should
communicate at all; power control, where the transmitting
nodes individually tune the transmitting power to achieve good
overall system metrics, through some form of coordination or
information sharing.

A commonly adopted received signal model is used in the
following discussion. We use h; ; to denote the “out-pair”
channel state information (CSI) from the transmitter of link
i to the receiver of link j, and h; ; denotes the “in-pair” CSI
within the link . At a receiver node of link /;, the received
signal is the sum of all the other transmitter signal weighted
by the CSI and the power level control p;, plus the Gaussian
receiver noise n; ~ N (0,02):

i =) /Bt M

jELNL;
where the signal z; has a pre-determined power
E(|lz;|?) = P, The effective signal-to-interference-
plus-noise ratio (SINR) then can be summarized as
T = |h; i *pi Py
) =

UQWJFZ]-EA\M |h'j,7:|2pk:P() ’
For convenience, we can use the logarithm of the power
with the base as P,

a;,;+b;
" ewasy B
i Lt
@, b;
Fai® = |h7‘,,j|2PO? Pt = i, 3)

Authorized licensed use limited to: lllinois Institute of Technology. Downloaded on September 01,2020 at 03:16:17 UTC from IEEE Xplore. Restrictions apply.

where a; ; and b; are the logarithm of the channel and power
control magnitude, and we call the former effective channel
strength.

‘We use Shannon’s information theoretic formula to calculate
the achievable rate per unit of spectrum resource for a node
pair:

r; =log(1+T),), @

and the achievable rate vector r = (ry, 7y, +,7) is defined
as the all the rates from the node pairs.

The design goal is to maximize the system utility,
which is the long-term average of the instant utility r_:
lim, Hm%Zizl U(r,). The function U is assumed to be
concave and non-decreasing for each component in the input.
This assumption ensures that when this measure is maximized,
all the components must already be as large as possible;
it also has the good property that when the solution space
is convex, the optimum exists and is unique. The input of
the problem consists of all the effective channel strength
X = {{al,lv'"7a'|£\,l}?{al,Zv"'va\£|,2}7{al,w\v"'valﬁ\,wl}}’
and the schedule policy 7(x) returns a series of link subsets
to transmit. We defer the power allocation to a later step by
setting all b; to zero, the optimum scheduling within a time
horizon T is formulated as a network utility maximization
(NUM) problem in the most general form:

T
maximize T;U(rT)

s.t.r, éﬂw(x) VT 5)

, where R_(x) is the space of the achievable rates given the
link information x under a scheduling policy 7. After solving
this problem, the system power can be further lowered by
solving for optimum power allocation vectors, but it is outside
the scope of this paper.

III. MACHINE-LEARNING BASED SCHEDULING

The separation of scheduling and power allocation provides
a good entry point for the introduction of machine learning
techniques: in recent works [7], it has been show that the
scheduling decisions often uses a limited number of link
subsets. We note that the search for suitable subsets in an ex-
ponentially large search space bears remarkable similarity with
the recent successful application of reinforcement learning in
the field of gaming control [8]. Multi-layer neural networks
can be universal approximators given the right amount of data
and proper training method; this property could be leveraged
for adapting to the traffic pattern in the search of good subsets.

A. Sequence Data Prediction with RNN

In our problem model, all the information needed for
scheduling is contained in the effective channel strength be-
tween all links. And the scheduling decisions can be conve-
niently expressed by a vector y that represents the subset of
links to be scheduled. This mapping relationship should be
stable against different network configurations: the physical
locations of the communication nodes and the channel states

.

{Xy, Xz, . Xn}
Input sequence
(link information)

Y Yoy o Y
Output sequence
(link set prediction)

Encode Decode

Fig. 2: Sequence Processing. Both the encoder and the decoder
are made up of multiple layers of artificial neurons which
are non-linear functions. The layers are connected by linear
transformations. RNN has its state as an input to change with
the incoming new inputs.

are all contained in the effective channel strength vectors, so if
a meaningful mapping relationship could be learned, it applies
to many network states.

Processing such sequential type of data is implemented
with the recurrent neural network (RNN) structures widely
used in machine translation tasks [9]. The idea of using
RNNSs is to give an approximate measure of the conditional
probability distribution of the output sequence given the input
sequence. Specifically, consider that each entry in a dataset is
an input and output pair (x,y), and the input is a sequence of
vectors X = (X4, Xq, **+, X,,), where all x;’s vectors of a fixed
dimension, and the output is another sequence of potentially
different length y = (y1,¥s,+,¥,,), Where y,’s can have a
different dimension than that of x;.

In this setting the neural network finds the probability
through the tuning of its parameter set 6:

m
plylx) = [[pilyios, > y1,%) = f(x;6%), (6)
i=1
where f(+; 0) is a neural network and the first equality derives
from the Bayesian chain rule.

The basic structure for sequence processing is illustrated in
Fig. 2, with two parts: The encoder is an RNN which maintains
an internal state that changes as it takes an input x;. As the en-
tire x is fed to it, its final internal state will contain information
derived from the whole sequence. The decoder neural network
takes the encoder state as the input, and sequentially produces
the conditional probabilities p(y;|y,_1,*» ¥1,X). The y value
with the maximum probability at each step is taken as the
inferred item y,.

B. Reinforcement Learning

Another component of our proposed scheme is reinforce-
ment learning [10]. It is an algorithmic framework for optimiz-
ing an agent’s rewards in an Markov environment. Compared
with the supervised methods where the training is done with
existing best control action, we consider the RL approach to
have the following advantages in our problem setting: first of
all, the system is left on its own to discover a good policy with

Authorized licensed use limited to: lllinois Institute of Technology. Downloaded on September 01,2020 at 03:16:17 UTC from IEEE Xplore. Restrictions apply.

performance feedback, and the training can potentially explore
better alternatives to known approaches; second, it reduces the
requirement of training cases to be provided with high quality
target solutions, which can be prohibitively infeasible in many
difficult network problems; third, with no preference for one
specific optimized target, RL frameworks can be tailored to
optimize different system metric.

In the RL terms, at each time slot ¢, an agent is an entity
able to perform acrions a(t) in a system’s environment. An
environment is assumed to have an internal states s(t), with
Markovian property: the next system state is a function of the
current state and action only, independent from the history
when conditioned on the current time information. The agent
receives a reward based on the environment state and action,
and his goal is to maximize his total rewards over time.

Since the agent does not know the exact relationship gov-
erning how much reward one can receive given a state and
an action, it is necessary to interact with the system for
multiple rounds in order to get an idea and improve his
policy w(a(t)|s(t)), defined as the probability distribution of
actions to take when given a certain system state observation
(the deterministic policy is a special case). The policy update
makes use of the state-value function given in Eq. (7), defined
as the sum of expected current and future rewards, either a
direct sum or a exponentially weighted sum when the systems
is at state s to encourage a trade-off between immediate and
long-term benefits. The state-action value function, or Q-value
function is defined with the action as an additional input, and
is connected with value functions through a summation over
actions.

VTK‘(S) = [E’JT[Z rythJrA:lS] (7)
k=1

Q7r<57 a) = IE’II‘[Z ’ykRH»k"sv a’] (8)
k=1

Va(s) = Y ExQq(s,a)m(als) ©)

The above model is a model-free one, meaning that the agent
assumes no prior knowledge of the environment or reward, and
does not use any special knowledge other than his observations
and rewards to devise a policy.

The solution quality of this framework depends on how well
the value functions or policy distribution can be learned. As a
result there are two approaches, one is to directly optimize the
policy itself, and the other is to estimate the Q-value function.
And with neural networks, these functions are parameterized,
and finding good function approximations is translated to
searching for the best coefficients for the network layers.

The current state-of-the-art RL techniques favor a mixture
of both, called actor-critic [11]. It consists of two parts: critic
network updates the value function parameters, usually in the
form of Q-value functions; and the actor network updates the
policy parameter according to the information from the critic.
In each iteration the critic network predicts the value of the
current policy, and is an estimation of the Q-value function for
the actor to choose actions from. The actor network improves

the policy iteratively, performs a policy gradient descent to find
actions based on the critic’s values. They are two different
neural networks with separate parameters, so in each iteration
there are two update operations.

The update of the parameters in the actor and critic networks
can be derived as the application of gradient descent and
temporal-difference learning:

i
0=0+a) Vylogmy(s,a,)> ry—b), (10)
t t=t
where « is the learning rate and b, is the value provided by
the critic as a reference.

The above two components form the data-driven scheme
to develop a link scheduling mechanism. The policy network
and the critic value network are both made up of RNN
sequence processing blocks described in Section III-A, but
parameterized differently with 68, and 6. In the training
process, the state is defined as s, = [x; u,], where u, € Z/“! is
vector recording how many times each link has been scheduled
so far; the state has Markovian properties, since it depends only
on the current state and action. The action a, is the vector of
link subsets, and the reward r, is the system utility U(r,). We
train the networks with a batched process: in each iteration,
we generate B cases, and for each case we run the network
for a fixed number of time slots, calculating the system utility
and update the coefficients as needed. Since the parts listed so
far are made from differentiable blocks, it can be trained with
gradient descent methods. The training algorithm is listed in
Algorithm 1.

Algorithm 1: Learning-Based Scheduler Training

Train (8, I, B) // the training set, maximum
training iterations, the batch size
0 «Pretrain(S)
/* supervised training of the RNN in
(Section III-A) with gradient descent L]

for i «(1,-,I) do
s;, ~ GENERATECASE()
a,, r, ~ RunPoLicy(s;)
By «Critic(s;|0,)

B
04 <0, +af 21— By)Ve, logpg, (as]s;)

/* gradient descent update. uses the critic

Vb€ {1,2,-, B}
Vb € {1,2,-, B}

value and current reward il

0(: (_0(: + Oé% Z()le VBCHﬁb - Tb(ab)”Z

/* gradient descent update for critic

network. uses the distance with reward */
end

return 6 4,0,

C. Data Ordering

An issue related to using RNN is that the result is dependent
on the data ordering; In the experiment we found that the input
link data ordering has a subtle effect on the final output. It
is due to the fact that the encoder itself is a highly-nonlinear

Authorized licensed use limited to: lllinois Institute of Technology. Downloaded on September 01,2020 at 03:16:17 UTC from IEEE Xplore. Restrictions apply.

a(t)
Action

System state
P St —> Sts1

r(t)

Reward

Critic

Fig. 3: Diagram of the reinforcement learning.

function, and compositions of them are usually not equivalent;
the final encoded state contains information on how the data is
ordered. This is useful for data where information order must
be differentiated, but undesirable in our case as it introduces
unnecessary order dependence and can potentially overfit.

To mitigate such an effect, an additional processing step
[12] can be added to mitigate this, with similar forms to the
attention mechanism. Instead of passing the new input and the
current state (which only contains parts of the input seen so
far) to a non-linear function, this step mixes all inputs at each
step:

w, = softmax(f(x;,e,)) Vi
e, = [et,ZW;TFXi]
i

where e, is the encoder’s internal state, and function f is
a neural network with its own set of parameters, and this
function is applied for all x; to get a vector of the same length
as x. And the final encoder state is obtained after repeating this
operation P times, which is part of the hyperparameters to be
determined before training. From the expression of e one can
see that it is invariant under the permutations of x; because the
all the inputs are combined with a weight w,. This effectively
removes the training dependence on the input data order.

IV. NuMERICcAL REsULTS

We implement this system with the existing software frame-
work Tensorflow in Python, and conducted experiments to test
its system performance. We consider the testing network to
be located within a square area of 1000 meters sides, with
its illustration shown in Fig. 1 and the parameters listed in
Table I. The communication nodes are randomly distributed
with a minimum separation of 0.5m to 30m. Although the links
are formed by randomly chosen pairs, there is a maximum cap
on the distance between the two nodes. This is to prevent the
cases where the effective link strength is too weak to make
feasible transmission.

We generate 500 configurations in this manner with the total
amount of nodes not exceeding 200, then randomly change the

Carrier Frequency 2.4 GHz
Bandwidth 10 MHz
Maximum Power 20 dbm
Receiver Noise Spectral Density | -173 dBm/Hz

Encoder layers [256, 256, 256]
Batch size 64

Pair distance [0.5, 30]

Train, validation, test 18000, 1000, 1000

TABLE I: List of Parameters Used

link strength for more variations. The amount of training cases
total to 20000, and the system utility function is chosen to
be an unweighted sum of all link throughput. For comparison
purposes, we run two heuristic algorithms that are reported to
be efficient for such kind of problems. One is based on the
greedy approximation of independent set on conflict graphs
[2] to get a baseline comparison; the other is the link SINR
based FlashLinQ scheme [13]. The experiments are done on a
workstation with a moderate computational power, using Intel
i7-6700 processor and 16GB RAM, and the model training
part is delegated on an Amazon Web Services p3.2xlarge GPU
compute instance.

When the data is used in the learning-based system, we
divide them into separate training, validation and test sets.
Care has been taken to ensure that only the training dataset is
used in the learning process for tweaking the parameters, and
the validation data is used for evaluating the training process
and hyperparameter setting, not in the learning process. The
final reported measures are based on the test data, which is
the part the system has never seen in the training, and is used
to check whether the system overfits.

In Fig. 4 we show how our algorithms achieve good system
throughput when we vary the number of system links in the
test cases and plot their average. A high overall throughput is
observed, and the gain over the greedy heuristic is consistent
across different number of system links, with close to 50%
increases in the large system regime. Compared with the
other scheme, the performance is on a similar level; the

Authorized licensed use limited to: lllinois Institute of Technology. Downloaded on September 01,2020 at 03:16:17 UTC from IEEE Xplore. Restrictions apply.

800

I proposed
700 1 mmm FlashLinQ
600 - HEEA |S-Greedy

N w e v
o (=] o o
o o o o
1 1 1 1

=

o

o
L

System Throughput (bits/s/Hz)

o

100 200 300

Number of Links

50

Fig. 4: The average system throughput with the error bar
showing the range.

1.0 H /-—__,__...___.-»
-
-~
'
0.8 o /;
g
z /k
= 06 - A
: !
- i
£ 04 1 ;
o !
i
i
02 A B, —— proposed
J === FlashLinQ
A 4 | | | e 1S-Gr:
00 - / _/ S-Greedy
T T T T
1 2 3 4 5

Case Computation Time (s)

Fig. 5: The cumulative distribution function for the system
throughput, compared with existing heuristics based schemes.
Graph more to the left is better.

gain in performance is not pronounced, possibly due to its
performance close to optimal in the test cases. Despite this,
the findings indicate that the machine learning-based scheme
could learn a reasonably good strategy. However, the downside
is reflected on the vertical bar representing the error range.
The solution variance of obtained with the proposed scheme
can be significant. This has been an observed issue in many
reinforcement learning based methods and it needs to be
addressed with additional variance reduction methods in future
work.

Next we show a summary of the cumulative distribution
function of the average running time to achieve such a per-
formance in Fig. 5. For the proposed learning method we
measure the time of making model inference, that is, the step
for the trained model to make decisions, and the other methods
are measured when the main iteration starts to exclude the
effects of data loading. Thanks to the fact that the inference
task can be massively parallelized onto GPU devices, the
learning-based scheme generally works very fast. The results
suggest that there is a clear advantage of computation time,
with a median computation time reduced by 57.3% and 41.6%

respectively.

V. SUMMARY

We propose a learning-based algorithmic framework for
generating the link scheduling policy in a D2D network-
ing scenario. The problem is modeled as a sequence data
prediction, and combined with the actor-critic reinforcement
learning to improve the robustness of the scheduling policy.
The findings suggest that it is feasible to discover complex
network optimization policies with comparable performance
to some existing approaches and low computation cost. The
algorithmic components of learning systems can find wide
application in network protocol designs, and we expect more
work to further improve their efficacy in the future.

ACKNOWLEDGMENT

This work was supported in part by the NSF of USA
under Grants CNS-1816908, ECCS-1610874 and the National
Natural Science Foundation of China under Grant 61573103.

REFERENCES

H. Li, Y. Cheng, C. Zhou, and P. Wan, “Multi-dimensional Conflict
Graph Based Computing for Optimal Capacity in MR-MC Wireless
Networks,” in 2010 IEEE 30th International Conference on Distributed
Computing Systems, Jun. 2010, pp. 774-783.
L. Liu, X. Cao, Y. Cheng, L. Du, W. Song, and Y. Wang, “Energy-
efficient capacity optimization in wireless networks,” in INFOCOM,
2014 Proceedings IEEE, IEEE, 2014, pp. 1384-1392.
L. Liu, Y. Cheng, X. Cao, S. Zhou, and Z. Niu, “Joint Opti-
mization of Scheduling and Power Control in Wireless Network:
Multi-Dimensional Modeling and Decomposition,” arXiv preprint
arXiv:1701.06502, 2017.
W. Wang, Y. Wang, X.-Y. Li, W.-Z. Song, and O. Frieder, “Effi-
cient interference-aware TDMA link scheduling for static wireless
networks,” in Proceedings of the 12th Annual International Conference
on Mobile Computing and Networking, ser. MobiCom *06, New York,
NY, USA: ACM, 2006, pp. 262-273.
B. Hajek and G. Sasaki, “Link scheduling in polynomial time,” IEEE
Transactions on Information Theory, vol. 34, no. 5, pp. 910-917, Sep.
1988.
X. Wu, R. Srikant, and J. R. Perkins, “Scheduling efficiency of
distributed greedy scheduling algorithms in wireless networks,” IEEE
Transactions on Mobile Computing, vol. 6, no. 6, pp. 595-605, Jun.
2007.
L. Liu, B. Yin, S. Zhang, X. Cao, and Y. Cheng, “Deep learning
meets wireless network optimization: Identify critical links,” IEEE
Transactions on Network Science and Engineering, pp. 1-1, 2018.
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” p. 9,
I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” p. 9,
Y. Li, “Deep reinforcement learning: An overview,” Jan. 25, 2017.
J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing,
Progress in Modeling, Theory, and Application of Computational
Intelligenc, vol. 71, no. 7, pp. 1180-1190, Mar. 1, 2008.
O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,”
arXiv:1506.03134 [cs, stat], Jun. 9, 2015. arXiv: 1506.03134.
X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia,
and A. Jovicic, “FlashLinQ: A synchronous distributed scheduler for
peer-to-peer ad hoc networks,” IEEE/ACM Transactions on Networking,
vol. 21, no. 4, pp. 1215-1228, Aug. 2013.

[1]

[2]

[3]

[4]

[5]

[6]

[71
[8]
[91]
[10]

[11]

[12]

[13]

Authorized licensed use limited to: lllinois Institute of Technology. Downloaded on September 01,2020 at 03:16:17 UTC from IEEE Xplore. Restrictions apply.

