
Experience-driven Wireless D2D network Link

Scheduling: A Deep Learning Approach

Shuai Zhang*, Wenlong Shen*, Max Zhangt, Xianghui Cao+, Yu Cheng*

Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616

AT&T Labs Research, Middletown, NJ 07748

School of Automation, Southeast University, Nanjing, 210018, China

Abstract-The protocol design of device-to-device (D2D) net­
works have regained research interest in recent years, due to
the increasing number of networking devices and the diverse
deployment settings. Most of the network optimization tasks are
fundamentally difficult NP-hard problems in wireless settings,
because managing interference introduces combinatorial com­
plexity. Existing approaches use general heuristic algorithms for
the underlying graph problems. While efficient and simple, they
are not adaptive to the changing requirement and priorities
of the service providers, and make no use of the past data to
recognize and exploit the information within. In this paper, we
study a representative network optimization task of maximizing
the throughput-based system utility through link scheduling in
a single-radio, single-channel D2D networks, and propose a
learning-based method to leverage past experience to generate
a good scheduling policy. We combine the pattern matching
capabilities provided from recurrent neural networks (RNN)
and the flexibility in changing environment from reinforcement
learning (RL). The algorithm is implemented with existing
software frameworks and tested with numerical experiments. We
find that its overall solution quality is comparable to existing
heuristics with various network scales, and report an improved
system throughput with significant lower computation time.
Index Terms-device-to-device network, deep learning, network

utility maximization

I. INTRODUCTION

The next generation communication system will go through

a fundamental change in its paradigm. In addition to providing

higher data rate to more users, it is envisioned to bring connec­

tivity to heterogeneous devices. In an attempt to increase the

flexibility and robustness of network organization, device-to­

device (D2D) communication is a promising candidate actively

explored in many applications, including internet-of-things,

vehicle-to-vehicle networks. Although the upper layers in the

networking stack may change their function and abstractions,

there are two fundamental limitations that require special

attention in deploying wireless D2D networks: 1) the amount

of orthogonal resources is increasingly limited, and 2) the

user devices' computation capability cannot be presumed to

increase indefinitely, due to the impending obsolescence of

the Moore's laws and the proliferation of low-cost networked

smart devices. As a result, how to efficiently schedule the scare

resources with lower overhead to the clients is a critical issue

in designing future wireless networks.

In a typical setting, D2D communications take place in

Gaussian interference channels, and the network designer is

tasked to coordinate the devices' transmissions to maximize

system metrics, often a function of system throughput, subject

to minimum quality-of-service requirements for the individual

links. Through power allocation, transmitters tune their signal

power levels to accommodate for the path loss attenuation

and prevent jamming their neighbors; In the worst case all

transmitters are at their max power with very low data rate

achieved.

As a result, the introduction of link scheduling is necessary.

By selecting subsets of links to transmit simultaneously, the

seriously interfering pairs are designated different time slots

to transmit [1]. Since the data rate is a non-linear function of

SINR, even if the links must time-share, the improved SINR

leads to a significant gain in the combined system throughput.

However, the D2D link scheduling problem presents a

significant technical challenge. Although it can be argued that

scheduling is a special case of power allocation, with the links

not selected set to transmit at zero power, to solve it exactly

amounts to solving an integer combinatorial optimization

problem, and has been shown to be in the class of NP­

hard. Research efforts have been on developing heuristics that

give approximate solutions. The majority of them are based

on finding independent sets in a conflict graph, which is a

representation of the conflict relationship between the links.

The exact standards for "conlict" vary: in one work [2], it

defines conflict as having their individual SINR lower than a

certain threshold if transmitting at the same time; others may

define it based on more nodes or the physical proximity. These

standards may be otherwise known as the physical or protocol

interference models, but in the end the scheduling is reduced

to finding a maximal or maximum weighted independent

set (MWIS) on the conflict graph. This opens the door for

applying the approximation results from the graph theory

Iiterature [3].

Another more ad-hoc thread of research aims to directly

construct a measure of link importance, usually as a function

of the link metrics such as interference and signal strength.

The benefits of such approaches are two fold: first, it is easy

for building greedy heuristics - start with an empty link set,

and iteratively select from the unchosen links a link with the

maximum measure, without conflicting too much with chosen

ones; second, it is convenient to add additional constraints

such as fairness between links or priority by adding penalty or

bonus factors in the measure calculation. Recent novel schemes

[4]-[6] follow this route to achieve additional benefit.

978-1-5386-8088-9/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 03:16:17 UTC from IEEE Xplore. Restrictions apply.

has a pre-determined power

effective signal-to-interference­

then can be summarized as

(3)

(2)

where the signal x j

E(lxjI2) Po. The

plus-noise ratio (SINR)
r _ Ihi .;l2pi Po

i - o-2W+~jE£\li Ihj ..d2PkPO·

For convenience, we can use the logarithm of the power

with the base as Pref :

Fig. 1: System illustration

takes x as the input and is parameterized by vector O.

II. MODELS AND SETTING

We are interested in the general case of a D2D network, as

shown in Fig. 1. A set of communication nodes N is randomly

distributed within a square area. The transmission demands are

given in the form of node pairs J: = {11,12,···,11£1} and each

link is a transmitter and receiver tuple: li = {t(i),r(i)}, Vi E
{I, 2, "', IJ:I}. Assume that each node is equipped with a

single radio interface, as the multi-radio case can be reduced

to the single-radio case by converting the node into parallel

single-radio nodes. All transmissions take place using a shared,

fixed block of bandwidth W, and the system has time slots

which allows time multiplexing. We consider the co-channel

interference to the receiving nodes to be the sum of all

transmitted signals from other node pairs.

In order to maximize the throughput-based system perfor­

mance, we assume that there are two decisions to make:

scheduling, by which a node pair decides if they should

communicate at all; power control, where the transmitting

nodes individually tune the transmitting power to achieve good

overall system metrics, through some form of coordination or

information sharing.

A commonly adopted received signal model is used in the

following discussion. We use hi,j to denote the "out-pair"

channel state information (CSI) from the transmitter of link

i to the receiver of link j, and hi i denotes the "in-pair" CSI

within the link i. At a receiver n'ode of link Ii' the received

signal is the sum of all the other transmitter signal weighted

by the CSI and the power level control Pi' plus the Gaussian

receiver noise n i rv N(O, a 2):

Yi = L hj,iy!PjXj + n i , (1)
jE£\I'i

In this paper, we are interested in a generalization of the sec­

ond approach. We explore the latent relationship between link

metrics and scheduling decisions through the use of neural­

network based machine learning techniques. Today neural

network-based learning algorithms have made breakthroughs

in many problems traditionally held to be infeasible. While

we do not believe that learning algorithms can overcome

the complexity of NP-class problems, we consider them to

hold promise for network designers based on the following

observations. First, the distribution of real-world "best-subset"

type of optimization solutions are concentrated in a small

region in a large search space. There is often a pattern

that can be exploited, but is not currently applied since the

current solutions do not make use of past experience to

make future decisions. Second, the engineering practice favors

adaptability, and machine learning algorithms fill the need,

while hand-tailored heuristic rules tend to be designed with

specific and fixed assumptions in mind. Network researchers

are increasingly more interested in finding out how machine

learning could be exploited to help discover ways to optimize

the network. Their application in network protocol designs

have been explored in many areas such as flow engineering,

routing and anomaly detection, where their usage has achieved

significant improvement.

Focusing on the making scheduling decisions based on link

information, our work combines two algorithmic components

from the state-of-the-art artificial neural networks. To the best

of our knowledge this is the first work combining these two

aspects to solve a wireless D2D network scheduling problem.

The first part is recurrent neural networks to process sequential

data, digesting the sequence of link data to give an output

sequence of links to use. The second part, reinforcement learn­

ing, is an algorithmic framework to derive the best-action pol­

icy in a Markov environment to accumulate maximum amount

of rewards. It is able to guide the sequence processing part

to improve over repeated interactions with the environment,

which corresponds to maximizing the system-throughput based

utility over time. We show through simulations that our scheme

can produce comparable high-quality solutions compared with

existing works, and that it achieves such performance with less

computation time without the need to hand-craft data features

or heuristic metrics.

The rest of the paper is organized as follows: in Section II

the mathematical model used for the network is introduced and

a basic analysis of the problem complexity is demonstrated;

in Section III we start from concepts of machine learning

techniques and goes on to explain the effect and workings

of each part of the design, and how they match our problem

under consideration; in Section IV we detail the numerical

experiments to verify the proposed scheme's achieved ben­

efits, with a comparison to the existing algorithms, and we

summarize our findings in the the final section.

Notes on mathematical notations: calligraphic letters (N)

denote sets while lower-case letters denote single variables.

Bold-face letters are used to stress that a variable is a vector

or matrix, and the notation f(x; 0) means that the function f

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 03:16:17 UTC from IEEE Xplore. Restrictions apply.

where ai,.i and bi are the logarithm of the channel and power

control magnitude, and we call the former effective channel

strength.

We use Shannon's information theoretic formula to calculate

the achievable rate per unit of spectrum resource for a node

pair:

(4)

L
State

L
State

) eu l) dl+1

{XI, x2, .., XN } {Yl. y" ..,/ YM}
Input sequence Output sequence

link information) (link set prediction)

\.....
H ~

U \..... U

rn

p(ylx) = IIp(YiIYi-I'''',YI,x) ~f(x;()*), (6)
i=l

Fig. 2: Sequence Processing. Both the encoder and the decoder

are made up of multiple layers of artificial neurons which

are non-linear functions. The layers are connected by linear

transformations. RNN has its state as an input to change with

the incoming new inputs.

are all contained in the effective channel strength vectors, so if

a meaningful mapping relationship could be learned, it applies

to many network states.

Processing such sequential type of data is implemented

with the recurrent neural network (RNN) structures widely

used in machine translation tasks [9]. The idea of using

RNNs is to give an approximate measure of the conditional

probability distribution of the output sequence given the input

sequence. Specifically, consider that each entry in a dataset is

an input and output pair (x, y), and the input is a sequence of

vectors x = (Xl' X2, ... , x n), where all x.;'s vectors of a fixed
dimension, and the output is another sequence of potentially

different length Y = (YI'Y2,"',Yrn)' where y,/s can have a
different dimension than that of xi'

In this setting the neural network finds the probability

through the tuning of its parameter set 9:

and the achievable rate vector r = (r I' r2, ... , rl£j) is defined

as the all the rates from the node pairs.

The design goal is to maximize the system utility,

which is the long-term average of the instant utility r T:
limHoo t 'E} _ U(r

T
)· The function U is assumed to be

. T-I
concave and non-decreasing for each component in the input.

This assumption ensures that when this measure is maximized,

all the components must already be as large as possible;

it also has the good property that when the solution space

is convex, the optimum exists and is unique. The input of

the problem consists of all the effective channel strength

x = {{al,l' ... , al£I,I}, {a l ,2, ... , al£I,2}, {a1,l£1' ... , al£I,I£I} },
and the schedule policy IT(x) returns a series of link subsets

to transmit. We defer the power allocation to a later step by

setting all bi to zero, the optimum scheduling within a time

horizon T is formulated as a network utility maximization

(NUM) problem in the most general form:

1 T

maximize7r TL U (rT)
T=l

S.t. r
T
E J(7r(x) \:IT (5)

, where J(7r(x) is the space of the achievable rates given the

link information x under a scheduling policy IT. After solving
this problem, the system power can be further lowered by

solving for optimum power allocation vectors, but it is outside

the scope of this paper.

III. MACHINE-LEARNING BASED SCHEDULING

Encode Decode

The separation of scheduling and power allocation provides

a good entry point for the introduction of machine learning

techniques: in recent works [7], it has been show that the

scheduling decisions often uses a limited number of link

subsets. We note that the search for suitable subsets in an ex­

ponentially large search space bears remarkable similarity with

the recent successful application of reinforcement learning in

the field of gaming control [8]. Multi-layer neural networks

can be universal approximators given the right amount of data

and proper training method; this property could be leveraged

for adapting to the traffic pattern in the search of good subsets.

A. Sequence Data Prediction with RNN

In our problem model, all the information needed for

scheduling is contained in the effective channel strength be­

tween all links. And the scheduling decisions can be conve­

niently expressed by a vector Y that represents the subset of

links to be scheduled. This mapping relationship should be

stable against different network configurations: the physical

locations of the communication nodes and the channel states

where f(-; 9) is a neural network and the first equality derives
from the Bayesian chain rule.

The basic structure for sequence processing is illustrated in

Fig. 2, with two parts: The encoder is an RNN which maintains

an internal state that changes as it takes an input Xi' As the en­

tire X is fed to it, its final internal state will contain information

derived from the whole sequence. The decoder neural network

takes the encoder state as the input, and sequentially produces

the conditional probabilities P(Yi IYi-I' ... , YI' x). The Y value
with the maximum probability at each step is taken as the

inferred item Yi'

B. Reinforcement Learning

Another component of our proposed scheme is reinforce­

ment learning [10]. It is an algorithmic framework for optimiz­

ing an agent's rewards in an Markov environment. Compared

with the supervised methods where the training is done with

existing best control action, we consider the RL approach to

have the following advantages in our problem setting: first of

all, the system is left on its own to discover a good policy with

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 03:16:17 UTC from IEEE Xplore. Restrictions apply.

performance feedback, and the training can potentially explore

better alternatives to known approaches; second, it reduces the

requirement of training cases to be provided with high quality

target solutions, which can be prohibitively infeasible in many

difficult network problems; third, with no preference for one

specific optimized target, RL frameworks can be tailored to

optimize different system metric.
In the RL terms, at each time slot t, an agent is an entity

able to perform actions a(t) in a system's environment. An

environment is assumed to have an internal states s(t), with
Markovian property: the next system state is a function of the

current state and action only, independent from the history

when conditioned on the current time information. The agent

receives a reward based on the environment state and action,

and his goal is to maximize his total rewards over time.

Since the agent does not know the exact relationship gov­

erning how much reward one can receive given a state and

an action, it is necessary to interact with the system for

multiple rounds in order to get an idea and improve his

policy 7f(a(t) Is(t)), defined as the probability distribution of

actions to take when given a certain system state observation

(the deterministic policy is a special case). The policy update

makes use of the state-value function given in Eq. (7), defined

as the sum of expected current and future rewards, either a

direct sum or a exponentially weighted sum when the systems

is at state S to encourage a trade-off between immediate and

long-term benefits. The state-action value function, or Q-value

function is defined with the action as an additional input, and

is connected with value functions through a summation over

actions.

the policy iteratively, performs a policy gradient descent to find

actions based on the critic's values. They are two different

neural networks with separate parameters, so in each iteration

there are two update operations.

The update of the parameters in the actor and critic networks

can be derived as the application of gradient descent and

temporal-difference learning:

T

e= e+ ex L \7e log 7fg(St, at)(L rt' - bt), (10)

t t'=t
where ex is the learning rate and bt is the value provided by

the critic as a reference.

The above two components form the data-driven scheme

to develop a link scheduling mechanism. The policy network

and the critic value network are both made up of RNN

sequence processing blocks described in Section III-A, but

parameterized differently with BA and Be. In the training

process, the state is defined as St = [x; U t], where u t E ZI£1 is

vector recording how many times each link has been scheduled

so far; the state has Markovian properties, since it depends only

on the current state and action. The action at is the vector of

link subsets, and the reward r t is the system utility U (rt). We

train the networks with a batched process: in each iteration,

we generate B cases, and for each case we run the network

for a fixed number of time slots, calculating the system utility

and update the coefficients as needed. Since the parts listed so

far are made from differentiable blocks, it can be trained with

gradient descent methods. The training algorithm is listed in

Algorithm 1.

The above model is a model-free one, meaning that the agent

assumes no prior knowledge of the environment or reward, and

does not use any special knowledge other than his observations

and rewards to devise a policy.
The solution quality of this framework depends on how well

the value functions or policy distribution can be learned. As a

result there are two approaches, one is to directly optimize the

policy itself, and the other is to estimate the Q-value function.

And with neural networks, these functions are parameterized,

and finding good function approximations is translated to

searching for the best coefficients for the network layers.

The current state-of-the-art RL techniques favor a mixture

of both, called actor-critic [11]. It consists of two parts: critic

network updates the value function parameters, usually in the

form of Q-value functions; and the actor network updates the

policy parameter according to the information from the critic.

In each iteration the critic network predicts the value of the

current policy, and is an estimation of the Q-value function for

the actor to choose actions from. The actor network improves

00

V1r (s) = [1r[L ,kRt+kls]
k=l
00

Q1r(s, a) = [1r[L ,kRt+kls, a]
k=l

V1r (s) = L [1rQ1r(s, a)7f(als)
a

(7)

(8)

(9)

Algorithm 1: Learning-Based Scheduler Training

Train (3, I, B) / / the training set, maximum

training iterations, the batch size

e f-Pretrain(3)
/* supervised training of the RNN in

(Section III-A) with gradient descent */

for i f-(l, ... ,1) do
sb rv GENERATECASE() Vb E {l, 2, ,B}
ab, r b rv RUNPOLlCy(sb) Vb E {I, 2, ,B}

f3b f-CRITIC(siIBe)
BA f-BA + ex13 ~:=l (rb - f3b)\70A 10gPo

A
(a.;Isi)

/* gradient descent update. uses the critic

value and current reward */

Be f-Be+ex13~:=l \70JIf3b- r b(ab)11
2

/* gradient descent update for critic

network. uses the distance with reward */

end

return BA' Be

C. Data Ordering

An issue related to using RNN is that the result is dependent

on the data ordering; In the experiment we found that the input

link data ordering has a subtle effect on the final output. It

is due to the fact that the encoder itself is a highly-nonlinear

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 03:16:17 UTC from IEEE Xplore. Restrictions apply.

a(t)

Action

System state
5, -> 5'+1

r(t)

Reward

____________________________1

Art()r

f----------------------------,

L _

rritir

Fig. 3: Diagram of the reinforcement learning.

function, and compositions of them are usually not equivalent;

the final encoded state contains information on how the data is

ordered. This is useful for data where information order must

be differentiated, but undesirable in our case as it introduces

unnecessary order dependence and can potentially overfit.

To mitigate such an effect, an additional processing step

[12] can be added to mitigate this, with similar forms to the

attention mechanism. Instead of passing the new input and the

current state (which only contains parts of the input seen so

far) to a non-linear function, this step mixes all inputs at each

step:

W t = softmax(f(xi , e t)) Vi

et = let,L w[xil

where e t is the encoder's internal state, and function f is

a neural network with its own set of parameters, and this

function is applied for all Xi to get a vector of the same length

as x. And the final encoder state is obtained after repeating this

operation P times, which is part of the hyperparameters to be

determined before training. From the expression of e one can

see that it is invariant under the permutations of Xi because the

all the inputs are combined with a weight Wi' This effectively

removes the training dependence on the input data order.

IV. NUMERICAL RESULTS

We implement this system with the existing software frame­

work Tensorflow in Python, and conducted experiments to test

its system performance. We consider the testing network to

be located within a square area of 1000 meters sides, with

its illustration shown in Fig. 1 and the parameters listed in

Table 1. The communication nodes are randomly distributed

with a minimum separation of 0.5m to 30m. Although the links

are formed by randomly chosen pairs, there is a maximum cap

on the distance between the two nodes. This is to prevent the

cases where the effective link strength is too weak to make

feasible transmission.

We generate 500 configurations in this manner with the total

amount of nodes not exceeding 200, then randomly change the

Carrier Frequency 2.4 GHz

Bandwidth 10 MHz

Maximum Power 20 dbm

Receiver Noise Spectral Density -173 dBm/Hz

Encoder layers [256, 256, 256]

Batch size 64

Pair distance [0.5, 30]

Train, validation, test 18000, 1000, 1000

TABLE I: List of Parameters Used

link strength for more variations. The amount of training cases

total to 20000, and the system utility function is chosen to

be an unweighted sum of all link throughput. For comparison

purposes, we run two heuristic algorithms that are reported to

be efficient for such kind of problems. One is based on the

greedy approximation of independent set on conflict graphs

[2] to get a baseline comparison; the other is the link SINR

based FlashLinQ scheme [13]. The experiments are done on a

workstation with a moderate computational power, using Intel

i7-6700 processor and 16GB ~, and the model training

part is delegated on an Amazon Web Services p3.2xlarge GPU

compute instance.

When the data is used in the learning-based system, we

divide them into separate training, validation and test sets.

Care has been taken to ensure that only the training dataset is

used in the learning process for tweaking the parameters, and

the validation data is used for evaluating the training process

and hyperparameter setting, not in the learning process. The

final reported measures are based on the test data, which is

the part the system has never seen in the training, and is used

to check whether the system overfits.

In Fig. 4 we show how our algorithms achieve good system

throughput when we vary the number of system links in the

test cases and plot their average. A high overall throughput is

observed, and the gain over the greedy heuristic is consistent

across different number of system links, with close to 50010
increases in the large system regime. Compared with the

other scheme, the performance is on a similar level; the

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 03:16:17 UTC from IEEE Xplore. Restrictions apply.

~ 800
N

~ 700
~
III

:B 600

~ 500
c.
-§, 400
:::l

~ 300
£

I- 200
E
Q)

~ 100
>-
Vl a

_ proposed

_ FlashLinQ

_ IS-Greedy

50 100 200

Number of Links

300

V. SUMMARY

We propose a learning-based algorithmic framework for

generating the link scheduling policy in a D2D network­

ing scenario. The problem is modeled as a sequence data

prediction, and combined with the actor-critic reinforcement

learning to improve the robustness of the scheduling policy.

The findings suggest that it is feasible to discover complex

network optimization policies with comparable performance

to some existing approaches and low computation cost. The

algorithmic components of learning systems can find wide

application in network protocol designs, and we expect more

work to further improve their efficacy in the future.

1 2 3 4 5

Case Computation Time (5)

Fig. 4: The average system throughput with the error bar

showing the range.

Fig. 5: The cumulative distribution function for the system

throughput, compared with existing heuristics based schemes.

Graph more to the left is better.

gain in performance is not pronounced, possibly due to its

performance close to optimal in the test cases. Despite this,

the findings indicate that the machine learning-based scheme

could learn a reasonably good strategy. However, the downside

is reflected on the vertical bar representing the error range.

The solution variance of obtained with the proposed scheme

can be significant. This has been an observed issue in many

reinforcement learning based methods and it needs to be

addressed with additional variance reduction methods in future

work.

Next we show a summary of the cumulative distribution

function of the average running time to achieve such a per­

formance in Fig. 5. For the proposed learning method we

measure the time of making model inference, that is, the step

for the trained model to make decisions, and the other methods

are measured when the main iteration starts to exclude the

effects of data loading, Thanks to the fact that the inference

task can be massively parallelized onto GPU devices, the

learning-based scheme generally works very fast. The results

suggest that there is a clear advantage of computation time,

with a median computation time reduced by 57.3% and 41.6%

respectively.

This work was supported in part by the NSF of USA

under Grants CNS-1816908, ECCS-1610874 and the National

Natural Science Foundation of China under Grant 61573103.

REFERENCES

[1] H. Li, Y. Cheng, C. Zhou, and P. Wan, "Multi-dimensional Conflict

Graph Based Computing for Optimal Capacity in MR-MC Wireless

Networks," in 2010 IEEE 30th International Conference on Distributed
Computing Systems, Jun, 2010, pp. 774-783,

[2] L. Liu, X. Cao, Y. Cheng, L. Du, W Song, and Y. Wang, "Energy­

efficient capacity optimization in wireless networks," in INFOCOM,
2014 Proceedings IEEE, lEEE, 2014, pp. 1384-1392.

[3] L. Liu, Y. Cheng, X. Cao, S. Zhou, and Z. Niu, "Joint Opti­

mization of Scheduling and Power Control in Wireless Network:

Multi-Dimensional Modeling and Decomposition," arXiv preprint
arXiv:I70I.06502,2017.

[4] W Wang, Y. Wang, X,-Y. Li, W-Z, Song, and 0, Frieder, "Effi­

cient interference-aware TDMA link scheduling for static wireless

networks," in Proceedings of the 12th Annual International Conference
on Mobile Computing and Networking, ser. MobiCom '06, New York,

NY, USA: ACM, 2006, pp. 262-273.
[5] B. Hajek and G. Sasaki, "Link scheduling in polynomial time," 1EEE

Transactions on 1nformation Theory, vol. 34, no,S, pp, 910-917, Sep,
1988.

[6] X, Wu, R. Srikant, and J. R, Perkins, "Scheduling efficiency of

distributed greedy scheduling algorithms in wireless networks," 1EEE
Transactions on Mobile Computing, vol. 6, no. 6, pp. 595-605, Jun.
2007.

[7] L. Liu, B. Yin, S. Zhang, X. Cao, and Y. Cheng, "Deep learning

meets wireless network optimization: Identify critical links," 1EEE
Transactions on Network Science and Engineering, pp. 1-1,2018.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.

Wierstra, and M. Riedmiller, "Playing atari with deep reinforcement

learning," p, 9,

[9] I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to sequence learning

with neural networks," p. 9,

[10] Y. Li, "Deep reinforcement learning: An overview," Jan. 25, 2017,
[II] J. Peters and S. Schaal, "Natural actor-critic," Neurocomputing,

Progress in Modeling, Theory, and Application of Computational

Intelligenc, vol. 71, no, 7, pp. 1180-1190, Mar. 1,2008.
[12] O. Vinyals, M. Fortunato, and N. Jaitly, "Pointer networks,"

arXiv:1506,03134 rcs, stat], Jun. 9, 2015. arXiv: 1506.03134.
[13] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia,

and A. Jovicic, "FlashLinQ: A synchronous distributed scheduler for

peer-to-peer ad hoc networks," 1EEE/ACM Transactions on Networking,
vol. 21, no. 4, pp. 1215-1228, Aug. 2013.

ACKNOWLEDGMENT

If f~~ !--'-,.,,.,.

I ;
i

I !
I !

I .
I i proposed _-

I I --- FlashLinQ(j},.. IS-Greedy
r -0.0

0.2

1.0

>-
~ 0.6
:c
co
.0

~ 0.4
a.

0.8

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 03:16:17 UTC from IEEE Xplore. Restrictions apply.

