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Dynamic Life Cycle Economic and Environmental Assessment of Residential Solar

Photovoltaic Systems

1. Introduction

Over the last decade, solar PV energy generation in the US has increased substantially, primarily driven by
cost reduction (Verlinden et al., 2013) as well as concerns related to greenhouse gas and air pollutant
emissions (Azzopardi and Mutale, 2010). Around 92.6 TWh of solar PV energy was generated across the
US in 2018, representing 2.2% of the nation’s total electricity generation and 12.5% of the total renewable
energy generation (EIA, 2019a, 2019b). Specifically, around 32% of this energy was generated by small-
scale distributed solar PV systems that are commonly found on residential and commercial rooftops (EIA,
2019b), while the remaining was generated at utility scale facilities. Cost reduction has been one of the
major drivers for the increased adoption of distributed solar PV systems. It has been estimated that a 63%
drop in the residential PV manufacturing and installation cost has taken place since 2010, with an average
cost of $2.70 per Watt DC in 2018 (Fu et al., 2018). The cost of solar PV systems is often positively related
to the system capacity or size (Fu et al., 2018). Larger systems are likely to have higher upfront costs, and
hence impose a greater financial burden on individual households (Nelson et al., 2006). Yet such systems
may create a higher environmental benefit when the generated solar energy can be fully utilized by the
household or sold to the grid (Kaundinya et al., 2009). Therefore, it is imperative to understand the

economic and environmental tradeoffs of the distributed solar PV systems to inform their co-optimization.

The economic performance of solar PV systems is often assessed through life cycle cost assessment
(LCCA), which accounts for all costs and savings that incur during the life span of the PV systems (Rebitzer
et al., 2004), utilizing indicators such as levelized cost of electricity (LCOE) (e.g., Allouhi et al., 2019,
2016; Burns and Kang, 2012; Jones et al., 2018; Kazem et al., 2017; Lai and McCulloch, 2017; Zhang et

al., 2016), investment payback time (IPBT) (e.g., Berwal et al., 2017; Chandel et al., 2014; Lee et al., 2018;
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Poullikkas, 2013), and life cycle cost (e.g., Adriana et al., 2012; Akinyele and Rayudu, 2016a, 2016b;
Bortolini et al., 2014; De Souza et al., 2017; Giirtiirk, 2019; Uddin et al., 2017). Meanwhile, their
environmental performances are often examined through life cycle assessment (LCA), which is a
methodological framework that assesses environmental impacts attributable to the entire life cycle of a
product (Rebitzer et al., 2004). The common types of environmental impacts that have been studied via
previous solar PV LCAs include carbon footprint (e.g., Akinyele et al., 2017; Akinyele and Rayudu, 2016a,
2016b, Allouhi et al., 2019, 2016; Jones et al., 2018; Rawat et al., 2018; Xu et al., 2018) and cumulative
energy demand (CED) (e.g., Gerbinet et al., 2014; M. Raugei, 2015; Peng et al., 2013; Rawat et al., 2018;
Tsang et al., 2016; Wu et al., 2017). Not many studies have evaluated solar PV systems from both economic
and environmental perspectives to allow understandings of their tradeoffs. Indeed, tradeoffs in solar PV
systems’ economic and environmental performances exist when comparing different types of PV system
designs for a particular application (Allouhi et al., 2019, 2016; Jones et al., 2018) and integrating solar PVs
into grids with different energy mixes (Bernal-Agustin and Dufo-Lopez, 2006). However, such tradeoffs
have not been fully investigated for different solar PV and battery sizing scenarios under both the grid-

connected (GC) and standalone (SA) contexts.

Furthermore, many of the previous solar PV LCCAs and LCAs have limited consideration of the dynamic
diurnal or seasonal patterns of solar power generation and demand (Adriana et al., 2012; Chandel et al.,
2014; De Souza et al., 2017; Rawat et al., 2018). Such dynamic patterns, however, are important in
informing management actions as well as regulatory incentives, including battery dispatch strategies, time-
of-use rates, net metering, and energy and water conservation practices. Studies utilizing static or averaged
solar energy generation or demand data were limited in their transferability to different spatial and temporal
conditions. Of the studies that did include dynamic solar power generation and/or demand patterns, Kazem
et al. (2017) estimated the generation potential of a grid-connected 1-MW power plant in Adam, Oman in
offsetting peak load using local hourly solar radiation, humidity, temperature, and wind speed data (Kazem
etal., 2017). Lee et al. (2018) used hourly solar radiation and building energy consumption data to estimate

2
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the economic potential of grid-connected rooftop PV systems for each building in Seoul, South Korea (Lee
et al., 2018). Uddin et al. (2017) examined the influence of battery degradation on the technical and
economic performances of solar PV systems, using a residential mid-sized family house in the UK as a case
study. While these studies provided important insights into the influence of dynamic solar generation and
demand patterns on the PV systems’ economic performances, the environmental performances of solar PV
systems were excluded. Very few studies have included the dynamic solar energy generation and
consumption patterns in assessing the life cycle environmental outcomes of the solar PVs. Akinyele et al.
(2016a, 2016b) combined a process-based load demand model with LCCA and LCA to evaluate the
technical, economic, and environmental (i.e., carbon emissions) performances of SA PV systems in off-
grid communities in Nigeria. They found the proposed PV systems could meet as much as 99.56% of the
demand, while performing better both economically and environmentally than conventional diesel power
plants. Jones et al. (2018) developed a spreadsheet model to simulate hourly electricity flows into and from
a non-domestic building in UK under three system configurations: no solar PV installed, solar PV alone,
and solar PV combined with battery storage. The model was then combined with LCA and discounted cash-
flow analysis to assess the carbon emissions and the net present values associated the three system
configurations. Neither of these studies, however, investigated the influence of panel and battery sizing on
PV systems’ performances. Additionally, HOMER (Hybrid Optimization of Multiple Energy Resources) is
a popular tool that can be used to assess both the technical-economic and environmental performances of
solar PV systems. However, the environmental impacts assessed through HOMER are limited to the use

phase of the solar PV systems.

Building upon these previous modeling efforts, this study seeks to develop a comprehensive and
generalizable modeling framework to capture the dynamic life cycle economic and environmental
performances of solar PV systems. A system dynamics model (SDM) of distributed residential solar PV
systems was developed and combined with LCA and LCCA to evaluate the environmental and economic
tradeoffs of GC and SA solar PV systems under different panel and battery sizing scenarios. The SDM

3
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framework was selected based upon its capability to be adapted to various spatial and temporal conditions
as well as to visualize the detailed system processes. The modeling framework was demonstrated using a
prototype house in Boston, MA of the United States. This study aims to test the following two hypotheses:
1) environmental and economic tradeoffs exist when optimizing the panel and battery sizes for the SA solar
PV system, but not for the GC system; and 2) there are optimal panel and battery sizes that can

simultaneously optimize the percent demand met and the life cycle cost of the SA solar PV systems.

2. Methodology

The modeling framework developed in this study combines LCA and LCCA with SDM. SDM is a
computational approach applying linked differential equations to simulate the behavior of complex systems
over a certain time period. It has been recognized as a cogent tool to study interactions among system
components by capturing system feedback loops and delays (Forrester, 1997; Sterman, 2000). Life cycle
phases considered in this study include manufacturing, transportation, and use phases. The end-of-life phase
was neglected because of the low total amount, concentration and value of reclaimable material in collecting
and recycling solar cells (Spanos et al., 2015). The manufacturing and transportation phases of the solar PV
systems were assessed based upon unit costs and emission rates associated with individual solar PV
components through conventional LCCA and LCA. The use phase was modelled through SDM. Particularly,
SDM was used to dynamically simulate the solar energy generation, demand, and storage processes during
the use phase of solar PV systems. The modeling framework enables assessment of the net present value
(NPV), CED, carbon footprint, and water footprint of solar PV systems over their life span. Figure 1

illustrates the modeling framework developed in this study.
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Figure 1. Modeling framework for the dynamic life cycle assessment of solar PV systems

2.1 System description

This study focuses on polycrystalline silicon (poly-Si) solar PV systems based upon their popularity and
economic competitiveness (Fthenakis and Kim, 2011; Sharma et al., 2015). The system investigated in this
study consists of solar panels (composing PV array) (poly-Si), balance of system (BOS), and energy storage
(if any) (Parida et al., 2011). BOS includes inverters, electrical wiring, mountings, and meters. We assumed
that the size of the solar panels was not constrained by the roof size. Two system settings were examined:
GC and SA systems (Figure 2). GC system uses the grid as a supplement to the solar energy generated

onsite and allows users to sell surplus solar energy to the grid (Elhodeiby et al., 2011). SA system refers to

an off-grid solar PV system that does not allow selling of surplus energy (Abu-jasser, 2010).




111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

{ Solar panels \ / Solar panels \

User

Energy storage Energy storage

Figure 2. Sketch of the designs of the grid-connected (GC; left) and standalone (SA; right) solar PV

systems that were investigated in this study

Boston, MA was selected as a testbed in our study because of its high electricity price (EIA, 2017), strong
in-place solar incentive programs (Eid et al., 2014; Heeter et al., 2014), and its active pursue of renewable
energy (Burns and Kang, 2012). Currently, around 10.7% of the state’s electricity comes from solar energy
(EIA, 2019c). The solar energy capacity for power generation is projected to grow to 1,603 MW over the
next 5 years (SEIA, 2019). Boston has an average solar energy potential of around 4.48 kWh/m?/day (DOE,
n.d.), with July being the highest (5.86 kWh/m?*/day) and December being the lowest (1.60 kWh/m?/day)
(NREL, 2015). Boston has a continental climate with warm summers and cold and snowy winters (Kottek
et al., 2006). The annual average ambient temperature of Boston is around 10.5 °C, with the lowest
temperature of -21.14 °C in January and the highest of 36.02 °C in July (NREL, 2015). The annual average
wind speed in Boston is around 0.89 m/s, with the lowest wind speed of 0.01 m/s in July and the highest of

2.45 m/s in February (NREL, 2015).

A prototype low-rise multifamily house with five housing units based upon the US Department of Energy’s
House Simulation Protocol was used for model application (Wilson et al., 2014). An hourly energy demand
profile specific to the multifamily house in Boston, MA was obtained from the Open Energy Information
database (NREL, 2014) and each data point was then divided into equal halves to achieve 30-minute

simulation. Typical baseline SA and GC PV systems with 40 panels (1.63 m*/panel) and 40 batteries (1.02
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kWh,/battery) in each system was simulated on a 65 m? rooftop in the model. The 40-panel PV system’s
capacity was assumed to be sufficient enough to cover the peak load of demand in the selected house with
the consideration of future electrification applications like electric vehicles. The 40-battery storage was

calculated to cover the average daily demand of the house based on the energy demand profile.

2.2 System dynamics modeling of the solar PV system

The system dynamics model was developed using the Vensim DSS® software. Vensim DSS® is a powerful
simulation tool for developing, analyzing, and visualizing dynamic feedback models (Ventana Systems,
2015). It has wide applications in management (Sterman, 2000) and environmental studies (Ford and Ford,
1999) to support decision-making. This model includes three main components: solar energy generation,
storage, and balance simulations (Figure 3). Details of each component are provided in the following sub-
sections. The simulation ran over one year with a thirty-minute time step, which is typical among previous

renewable energy system simulation efforts (Connolly et al., 2010).

o
Energy storage simulation ‘ ,
Energy consumption
from battery

discharging (Eas)

SZ Battery storage
Battery Iouss during Ess
charging and Actual battery
discharging (Ecss) storage
Battery charge  Battery discharge Charge to Batizry:ct:ci)rage
efficiency efficiency bz?z__t?ry pacity
b.
Solar energy generation simulation ‘
High turnover
PV derating Inverter ) solar energy
factor efficiency ——#=Solar ente; 9y storage(E) | Solar energy
Module ge“?gj on consumption (£;)
efficiency ™ ——— g
PV array output (P,,) o
Rated capacity of —— Sellto the grid (if ~ Dynamic
the PV array connect) electricity demand
Number of PV Incid | (E) (E,)
anels installed net e_nt_so Elr
2 radiation (0) Solar energy
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temperature (7)

Figure 3. A simplified structure of the system dynamics model of the solar PV systems
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2.2.1  Solar energy generation simulation

The output of PV array (P,,, kW) was simulated based upon Equation 1. Specifically, the 30-minute solar
radiation profile for the City of Boston was obtained from the National Solar Radiation Database (NREL,
2015) and used to calculate the incident solar radiation (D, kW/m?) at each time step. The average residential
panel size (S) and the PV module efficiency (f) indicate the rated capacity of a PV panel, which were
assumed to be 1.63 m? and 15% (NREL, 2017). The number of PV panels installed (7) was simulated. A
PV derating factor (f,,) of 95% was used (HOMER, 2017). An hourly degradation rate (fg) of the PV
system was calculated based upon the annual degradation rate of 0.5% obtained from Kontges et al. (2016).
The temperature coefficient of power («) indicates the influence of the PV cell temperature on the system
efficiency, which was assumed to be -0.48 %/°C (HOMER, 2018). The incident radiation at standard test
conditions (Dgrc) and the PV cell temperature under standard test conditions (Tsrc) were assumed to be 1

kW/m?and 25 °C respectively (HOMER, 2017).

Ppus = SBfyw (50) [1 + a(T; = Tere)] (1 = f)* -+ - Equation 1
Where,

P,y represents the actual output of the PV array in the current time step, kW;

t is a time step index, which goes from 0, 0.5, up to 8759.5;

S is the average residential panel size, 1.63 m? (length: 65 inches, width: 39 inches);

[ is the PV module efficiency, 15%;

n is the number of PV panels installed;

fpv 1s the PV derating factor, 95%;

Dy is the incident solar radiation on the PV array in the current time step, kW/m? (NREL, 2015);

Dgrc is the incident radiation at standard test conditions, 1 kW/m?;

« is the temperature coefficient of power, -0.48 %/°C;
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T; stands for the PV cell temperature in the current time step, °C;
Tsrc is the PV cell temperature under standard test conditions, 25 °C;

1s the hourly degradation rate of the PV system, 0.000057%.
fa y deg ystem,

The PV cell temperature (T, °C) was further calculated using Equation 2 (Duffie and Beckman, 1991;
HOMER, 2018). Ambient temperatures in Boston at 30-min intervals (T,, °C) were obtained from the
National Solar Radiation Database (NREL, 2015). In addition, the Sandia Module Temperature Model
(SNL, 2018) (Section 2 of the SI) and Faiman Module Temperature Model (Faiman, 2008) (Section 2 of

the SI) were used to validate results obtained from Equation 2.

D Nmp,stc(1 — aTsrc)
T, + (Tpv,NOCT - Ta,NOCT) (m) [1 — P Ta, ]

T = D )<
1+ (TPV'NOCT - Ta'NOCT) (GT NOCT) ( n;n‘z’sn)

------ Equation 2

Where,

T represents the PV cell temperature in the current time step, °C;

T, is the ambient temperature in the current time step, °C;

Ty nocr 1s the nominal operating cell temperature, 46.5 °C (HOMER, 2017);

Ty nocr 1s the ambient temperature at which the NOCT is defined, 20 °C (Garcia and Balenzategui, 2004;
Koehl et al., 2011);

D is the solar radiation striking the PV array in the current time step, kW/m? (NREL, 2015);

Gr nocr is the solar radiation at which the NOCT is defined, 0.8 kW/m? (Garcia and Balenzategui, 2004;
Koehl et al., 2011);

Nmp,stc 18 the maximum power point efficiency under standard test conditions, 13% (HOMER, 2017);
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« is the temperature coefficient of power, -0.48 %/°C (NREL, 2017);

Tsrc is the cell temperature under standard test conditions, 25 °C (Devices—Part, 1 AD; Mufioz-Garcia et
al., 2012);

7 is the solar transmittance of any cover over the PV array, 90% (Duffie and Beckman, 1991);

ay is the solar absorptance of the PV array, 90% (Duffie and Beckman, 1991).

2.2.2  Energy storage simulation

Battery energy storage system was simulated based upon Equation 3. Generic Li-lon battery was modelled
with information obtained from (HOMER, 2017). The amount of energy available in the battery system
(E,t, kWh) was modeled as a stock, which is a time integral of differences between the rate of solar power
charged to the battery (E},, kW), the rate of battery discharges for end uses (E;;s, kW), and the rate of
battery loss during charging and discharging (Ej,ss, kW). The initial battery storage (E; ¢,) was assumed
to be zero. The rate of charging (E},) is determined by the PV array output (B,,,), the user’s energy demand,
as well as the vacant capacity of the battery system at a given time step. The rate of discharging (Ey;s) is
determined by the battery storage and the user demand. The rate of battery loss (Ej,ss) is determined by the
battery charge and discharge efficiency. Furthermore, both E}, and Ej;¢ are constrained by the maximum
rates which were calculated using the Kinetic Battery Model (HOMER, 2017; Manwell and McGowan,
1993) with consideration of the battery storage and charge current limitations. Details about the calculation

of the maximum charging and discharging rates are provided in the Section 2 of the SI.

t :
Ese = ftO(Eb — Egis — Ejpss) dt + Eg ¢ - Equation 3

Where,
E}, is the charge to the battery, kW;

E 45 s the discharge of electricity energy from the battery, kW;

10
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Ej,ss 1s the battery loss during charging and discharging, kW;

E, . and E +, are the energy storage in battery at time 7 and to, kWh.

The useful battery lifespan (T}, year) was calculated based on the total lifetime throughput of the battery
system and the annual actual charge-discharge throughput (Equation 4). The lifetime throughput of one
battery was assumed to be 2,430 kWh (HOMER, 2018), and total throughput was assumed to be linearly
related to the number of batteries in the system. The actual annual charge-discharge throughput of the

battery storage (C,) was calculated as a time integral of the charging rate (Spanos et al., 2015).

------ Equation 4

Where,

T, represents the actual useful lifespan of the battery storage, year;
C, is the lifetime throughput of one battery, 2,430 kWh;

m is the number of batteries installed in the battery system;

C, is the actual annual charge-discharge throughput of the battery storage, kWh/year.

2.2.3  Solar energy balance simulation
The dynamic energy balance between solar energy generation, battery storage, consumption, and selling to
the grid was simulated based upon Equation 5. A fictitious high turnover stock was simulated to allocate

the generated solar energy (E,) to the three outflows, E., Ep,, and E; (Equation 6).

t .
E, = fto(Eg —E,—E, —Es)dt +E,, - Equation 5

E, (inflow) = E; + E}, + E; (outflow) - - Equation 6

11
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Where,

E; and E¢, are the solar energy storage at time 7 and t,, kWh;
E, is the solar energy generation by the PV system, kW;

E. is the solar energy consumption to meet the demand, kW;
E,, is the solar energy for charging the battery storage, kW;

E; is the solar energy that feeds into the grid, kW.

The decision-making process for the solar energy generated to be allocated to the three outflows is
illustrated in Figure 4. Whenever solar energy is available, it is first used to meet the household energy
demand. The surplus solar energy is used to charge the battery if it is present and has not reached the
maximum capacity. After the battery is fully charged, the excess solar energy is sold to the grid through net

metering.

12
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Figure 4. Solar energy balance simulation decision flow (Ej is the solar energy generation by the PV
system, kW; E. is the solar energy consumption to meet the demand, kW; E}, is the solar energy for

charging the battery storage, kW; and, £, is the electricity demand in current time step, kW.)

2.3 Life cycle cost assessment

The life cycle cost of installing solar PV systems was determined by the capital cost of the PV systems,
savings from solar energy generation, tax credit and rebate, cost of labor and the annual operation and
maintenance (O&M) cost (Equation 7). A 20-year life cycle cost was calculated based upon the initial net
cost and annual net cost (i.e., annual O&M cost subtracts annual savings from solar energy generation)
accumulated to 20 years. All future costs were discounted to the year of 2018 applying a typical discount

rate of 5% (Jeong et al., 2019; Leckner and Zmeureanu, 2011; Shea et al., 2020). The capital cost of the PV

13
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system includes costs related to battery, panels and racking, inverters, permission, and installation. The cost
of battery storage was assumed to be $209 per kWh of storage capacity (kWh.) (Curry, 2017). Panels and
racking were assumed to cost $1 per Watt of generation capacity (McFarland, 2014; Reichelstein and
Yorston, 2013). Inverters were assumed to be $300 per piece (HOMER, 2018). Permission and installation
cost including meters were assumed to be $450 (NREL, 2017). Savings from solar energy generation were
calculated as a product of the cumulative amount of solar energy that is consumed and/or sold to the grid
and the electricity retail price. The electricity rate was assumed to be $0.16/kWh, which is the average flat
rate in New England area from 2016 to 2017 (NREL, 2017). A tax credit of 30% (Burns and Kang, 2012;
Service, 2019) of the capital cost was applied. In addition, a rebate of $0.25 per Watt of installed capacity
was applied to all solar systems (Association, 2015). The cost of labor is a tiered function of the system
capacity, which was obtained from (HomeAdvisor, 2019) (Figure S1 in the Section 2 of SI). The cost of
O&M includes the annual replacement cost of battery storage during the system life cycle. The
interconnection costs (e.g. application fees) of GC system were neglected (Eversource, 2018). Investment

Payback Time (IPBT) of the PV systems was calculated using a cash flow method using Equation 8.

Life cycle cost =C. — R + yN Con _ vN Sn

=17y n=1{gpn Equation 7

IPBT =T, + > - - Equation §

Where,

C. is the capital cost of the PV systems, $;

R is the tax credit and rebate, $;

N is the life span of the solar PV systems, 20 years;
Co.n is the O&M cost in the year n, $;

i 1s the discount rate, 5%;
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Sp is the saving from solar energy generation in the year n, $;

T, is the number of years after the initial investment at which the last negative value of cumulative cash
flow occurs, year;

p is the net cash flow within the year when the first positive value of cumulative cash flow occurs, $/year;
v is the cumulative cash flow up to the year at which the last negative value of cumulative cash flow

occurs, $.

2.4 Life cycle environmental assessment

Three types of environmental impacts were simulated: CED, carbon footprint, and water footprint. The
system boundary includes manufacturing, transportation, installation, and use phases. The environmental
costs related to labor and administration during the use phase were neglected. However, the replacement of
batteries was included. Due to various disposal behavior of the PV users as well as no regulation on the
residential level for separating batteries from PV systems and disposing the systems, the battery disposal is
not included (Grinenko, 2018). SimaPro 8.3 was used for characterization of the environmental impacts.
Particularly, the cumulative energy demand V1.09 method was used for estimating CED. The IPCC 2013
GWP 20a was used for estimating carbon footprint. No significant difference was found in model output
applying the [IPCC 2013 GWP 20a or 100a. The Berger et al 2014 (Water Scarcity) method was used for
estimating water footprint (Boulay et al., 2018). Environmental savings from solar energy generation during
the use phase were calculated as a product of the cumulative amount of solar energy that is consumed and/or
sold to the grid and the environmental impacts units. Equation 9 is the governing equation of the solar PV
systems’ life cycle environmental performance. Energy, carbon, and water payback time were calculated

using Equation 10. Table 1 presents the unit costs and environmental impacts obtained from SimaPro 8.3.

t .
I=1,+1Is— ftO(PZW Fumie) dt - - Equation 9

15



321  Where,

322 I and Iy are the cumulative environmental costs at time ¢ and to;

323 [ is the environmental costs of the PV system (from cradle to gate without the solar generation savings);
324 B, is the actual output of the PV array in the current time step, kW;

325  funit 1s the environmental impacts unit, environmental impacts/kWh, Table 1.

326
327 PBT = ;:_% -+« -+ Equation 10
328

329  Where,

330  PBT represents the environmental payback time, which can be either energy, carbon, or water payback time,
331 year;

332 E, is the environmental cost to produce and manufacture the solar PV system;

333  E; is the environmental cost to transport materials used during the life cycle;

334 E, is the average annual environmental savings from electricity generation by the installed solar PV system;

335  E,, is the average annual environmental cost of O&M including the battery replacement.

336
337 Table 1. CED, carbon footprint, water footprint and cost unit of solar PV systems
Solar PV Carbon Water Cost
SimaPro entry CED unit
systems footprint unit  footprint unit unit
Photovoltaic panel, multi-Si wafer 202 kg CO2
PV panel 3480 MJ/m? 4360 L/m? s1/W
{GLO}| market for | Alloc Def, S eq/m?
Battery, Li-ion, rechargeable, prismatic 7.52 kg CO2 $209/
Battery 96.5 MJ/kg 101 L/kg
{GLO}| market for | Alloc Def, S eq/kg kWh,
Inverter, 2.5kW {GLO}| market for | 243 kg CO2 $300/
Inverter 2400 MJ/piece 1910 L/piece
Alloc Def, S eq/ piece piece
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358

Meter and

Not considered $450
wiring
Replaced grid 0.878 kg CO2 $0.16/
Electricity, at grid, US/US, kWh 10.9 MJ/kWh 44.1 L/kWh
electricity eq/kWh kWh

2.5 Sensitivity analysis

A sensitivity analysis was conducted to analyze the influence of discount rate and the local electricity grid
mix on the environmental and economic outcomes of the typical GC and SA PV systems with 40 panels
and 40-batteries. Each of these factors were varied by = 10, 30, 50, 70, 90, and 100% to assess its influence
on the NPV, CED, carbon footprint, and water footprint. A sensitivity index (S) was calculated for each

input change using Equation 11 (Song et al., 2019).

0i-0p
Op

li=Ip
Ip

S= -+ -~ Equation 11

Where 0O, is the output value after the input was changed; O, is the base output value; I; is the altered input

value; and I}, is the original input value. Inputs were considered “highly sensitive” if |S| >1.00.

3. Results and Discussion

3.1 Solar energy utilization and demand met by SA and GC PV systems

For the prototype house with 40 PV panels and 40 batteries, 42.6% of the solar energy generation is directly
consumed and 44.4% is stored for later consumption. Around 13.0% of the solar energy will either be
wasted in a SA system or sold to the grid in a GC system. Solar energy generated, stored, and sold/wasted
all present strong seasonal trends (Figure 5). Solar energy generation peaks between May and July, when
the monthly average energy demand of the prototype house is the lowest. Hence, a larger amount of solar
energy can be sold or stored during these months. Furthermore, grid demand is the highest during summer
months nationally (EIA, 2011). Utilities often use natural gas (71.5% in the New England region), hydro

and nuclear generation to meet the additional demand (ISO-NE, 2018). Installation of a GC PV system can
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hence alleviate local energy stress and replace fuels that have higher carbon emission factors. Nevertheless,
the opposite seasonal patterns of solar energy demand and generation will not be ideal for households
looking to install SA PV systems. More solar energy is likely to be wasted and a larger battery capacity

might be required to reduce waste. However, this will come with a higher initial investment and replacement

cost.
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Figure 5. (a) Annual electricity demand load profile of the selected house; (b) Dynamic generated solar

energy allocation of typical PV system from the model simulation

Figure 6 presents the percent demand met through solar energy for the prototype house when the panel and
battery numbers changed. Either the number of panels or the number of batteries could be a limiting factor
for further increase in percent demand met. The shaded numbers present where the PV array size serves as
a primary limiting factor, while the rest presents where the battery size serves as a primary limiting factor.
The borderline between the two sections represents the approximate optimized battery size to achieve the
highest possible percentage of demand met with a given array size. Achieving 100% demand met requires

large numbers of both panels (>200 units) and batteries (>160 units), which often accompanies a high cost.
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However, the size of 40 panels (1.63 m?/panel, 65.2 m? in total) already occupies the entire available roof
size of the prototype house (65 m?). Urban PV hosts are likely be more restricted by the land or space
available for further increasing demand met compared to rural or suburban PV hosts. An integration of
multiple decentralized energy supplies, such as PV and diesel generator, or PV and geothermal energy

might be desirable to improve demand met.

Number of Batteries
0 1 5 10 15 20 40 80 160 320

1 1.6% | 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6%

5 8.1% | 8.1% 8.1% 8.1% 8.1% 8.1% 8.1% 8.1% 8.1% 8.1%

10 15.8% | 16.1% | 16.1% 16.1% 16.1% 16.1% 16.1% | 16.1% | 16.1% 16.1%

15 21.2% | 22.0% | 23.5% | 23.7% | 23.7% | 23.7% | 23.7% | 23.7% | 23.7% | 23.7%

20 249% | 26.0% | 29.0% | 30.8% | 31.0% | 31.0% | 30.9% | 30.9% | 30.9% | 30.9%

25 27.6% | 28.9% | 32.7% 36.1% 37.7% | 38.0% 38.0% | 38.0% | 38.0% 38.0%

30 29.7% | 31.1% | 35.4% | 39.7% | 42.8% | 44.4% | 449% | 44.9% | 44.9% | 44.9%

35 31.2% | 32.8% | 37.7% 424% | 46.4% | 49.3% 514% | 51.7% | 51.7% 51.7%

40 32.5% | 34.1% | 39.4% 447% | 49.1% | 52.9% 56.2% | 57.1% | 57.6% 58.3%

Number of Panels

60 35.8% | 37.5% | 43.6% | 50.5% | 56.6% | 61.6% | 68.4% | 69.8% | 70.2% | 70.9%

80 37.8% | 39.5% | 45.9% | 53.4% | 60.4% | 66.6% | 75.4% | 77.8% | 78.8% | 79.5%

100 | 39.1% | 40.9% | 47.4% | 55.2% | 62.7% | 69.3% | 80.7% | 83.6% | 84.4% | 85.2%

150 | 41.0% | 42.8% | 49.6% | 57.7% | 65.7% | 72.9% | 87.2% | 92.2% | 93.3% | 94.1%

200 | 42.0% | 43.8% | 50.7% | 59.2% | 67.3% | 74.5% | 89.9% | 96.2% | 98.4% | 99.2%

300 | 432% | 45.1% | 52.0% | 60.5% | 69.1% | 76.5% | 92.5% | 98.7% | 99.9% | 99.9%

Figure 6. Percentage of demand met via solar PV systems

3.2 Life cycle cost assessment

The life cycle cost of the baseline SA system is -$754.9 in 2018 value with 18.5 years of IPBT, while the
baseline GC system presents a lower life cycle cost of -$1,739.4 with 16.8 years of IPBT. Our IPBTs found
in this study are within the IPBT range of 2.8-40.8 years reported by previous residential solar PV studies
(Muhammad-Sukki et al., 2014; Yang et al., 2015). Allowing selling of the surplus energy created about
$984.5 of additional savings over 20 years of life span. In our simulation, to further increase 1% of the
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percent demand met from baseline system would result in an additional $409.0 through the increase of array
size or $626.5 through the increase of battery size. Both are higher than the amount of economic savings

that can be achieved through the 1% demand met increase ($31.3).

Figure 7 presents the cost breakdowns of the baseline SA and GC PV systems. Primary costs for solar PV
systems come from panels and racking (31% of total cost), battery storage (27% of total cost), replacement
of battery (23% of total cost), and labor for installation (16% of total cost). Without system rebate and tax

credit, both systems are not able to be paid back within its life time.

9.78 8.53
0.45 0.30
-35 -25 -15 -5 5 15 25 35
Component cost of the PV system, 2018 thousands $
m System rebate ® Tax credit
Cost of panels and racking Cost of battery
m Cost of labor = Permits and inspectin fees
u Cost of inverter u Cost of O&M
m Life cycel operational cost_ GC Life cycle operational cost_SA

Figure 7. Cost breakdown of baseline 40-panel 40-battery SA and GC PV systems

Figure 8 presents the life cycle cost under different array sizes for the prototype house. Results show that
when demand met is not a concern, life cycle economic savings are achievable under a range of panel and
battery sizes for both GC and SA systems. No battery installation is preferred for SA systems with relatively
small panel sizes (<25 panels). This indicates the saving from power generation cannot offset the battery
cost within this range of panel sizes. With further increase in array size, the optimum battery size increases.
Overall, the maximum life cycle economic saving can be achieved with 20 panels with no battery in this
prototype house. This optimum configuration could meet ~25% of total demand with NPV of -$4,616.7.

Compared with the baseline SA system, this optimized SA system increases the life cycle economic savings
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408 by 511.6%, yet decreases the demand met by 55.7%. Additional analyses were conducted to investigate the
409  tradeoffs between percent demand met and life cycle cost. The Pareto-optimal frontier between percent
410  demand met and life cycle cost was provided in Figure 9 (further analyses related to the tradeoffs between
411  the life cycle cost and demand met were provided in Figure S4 of the supporting information). We found
412  the optimal panel size ranges from 60-80 with 20-40 batteries, which can meet 66.6-68.4% of the demand

413  with alife cycle cost between -$3011.7 and -$887.5.
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415 Figure 8. Life cycle cost (2018%) of SA and GC PV systems under different array sizes
416
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Figure 9. The Pareto-optimal front of demand met percent and life cycle cost of SA PV systems. Dots

with red circles represent the preferred solutions for both objectives.

For GC systems, with a given array size, the life cycle cost increases with the increase of battery size. When
there is no limit on when and how much excess solar energy can be sold to the grid, batteries do not provide
extra benefit to the GC system owners. However, when policy constraints such as limitations/caps of grid
sell are in place, tradeoffs would present as whether or not to install batteries for excess energy storage. For
example, Pennsylvania Public Utility Commission attempted to cap the amount of surplus grid sell from
PV systems to no more than 200% of residential customers’ annual consumption over the 60 months before
they installed PV systems (Legere, 2016; Parrish, 2016). Under such a policy, the prototype house with the
baseline system would have a maximum grid sell of 39,080 kWh annually. With the decrease of the selling
cap, this could result in a larger optimal battery storage capacity. Potential future charges on distribution
and transmission services, overage tariffs, and a lower retail rate of solar energy can also influence the
optimal sizing of the panels and batteries of the GC PV systems. In these conditions, storing the surplus
solar energy for later household uses will result in a higher economic benefit than selling it directly back to
the grid. Hence, having certain battery storage capacities might become appealing even for GC PV system

owners. Different policies could alter the economic cost and benefit of GC systems through the change of
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economic gain from selling to the grid variously. Therefore, the optimal array size for maximum economic

saving is determined by specific policy. For example, the cap of grid sell restricts the optimum array size.

3.3 Life cycle environmental assessment

Both baseline GC and SA PV systems can result in reduced CED, carbon footprint, and water footprint
compared to the grid when installed in the prototype house. The GC system has higher life cycle
environmental benefits in terms of all three measures than the SA system (-2.1 TJ, -177.0 Mg CO» eq, and
-9.4 ML of water for the SA system and -2.3 TJ, -187.0 Mg CO, eq, and -9.9 ML of water for the GC
system). This shows that allowing selling of the excess energy rather than wasting it can slightly increase
the environmental benefits by 5.3~9.5% over 20 years of life span. The energy, carbon, and water payback
times are 2.15, 1.62, and 0.65 years for the baseline SA system, respectively; and 2.05, 1.54, and 0.62 years
for the baseline GC system, respectively. Previously reported energy, carbon, and water payback times are
0.8-4.7 years (Gerbinet et al., 2014; Grant and Hicks, 2020; Perez et al., 2012), 0.4-7.8 years (Grant and
Hicks, 2020), and 0.06-1.08 years (Fthenakis and Kim, 2010; Meldrum et al., 2013) respectively for the
solar PV systems. Our results are within the ranges of these previously reported environmental payback
times. Figure 10 presents the life cycle environmental performances of SA and GC systems under different
array sizes. Compared with life cycle enconomic savings, life cycle environmental savings are achievable

under a wider range of panel and battery sizes for both types of systems.

For SA systems, the optimized CED and carbon footprint outcomes were achieved when the panel size was
in the range of 150-200 units and the battery size was in the range of 80-320 units, while the optimized
water footprint outcome was achieved when the panel size was in the range of 150-300 units and the battery
size was in the range of 80-320 units when installed in the prototype house. The optimized CED, carbon
footprint, and water footprint are in the ranges of -3.02 and -2.85 TJ, -262.2 and -254.0 Mg CO eq, and -
15.4 and -14.7 ML of water, respectively. These optimized configurations increase the life cycle
environmental savings of the baseline SA system by up to 64.6%, but decrease the life cycle economic

23



461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

saving largely by up to 6,868.4%. The environmentally optimal SA system array and battery sizes are
significantly larger than the economically optimal array and battery sizes. This large preferred size is
potentially a result of the relatively low environmental emissions/impacts during the panel and battery
manufacturing phase compared with the potential environmental benefits resulted from preventing the use
of the grid during the use phase, although a large amount of solar energy will be wasted under the optimized
size (up to 69.3% of total solar energy generation wasted). This shows that an environmental and economic
tradeoff exists for the SA systems. However, with further reductions in the capital costs of the PV and
battery systems, such tradeoffs may be minimized, especially for regions with relatively high retail
electricity price. Potential future policies such as carbon pricing (Tierney, 2019) and increased water pricing
of the thermal power supply (EPA, 2019; USC, 1986) may also help promoting adoption of larger sized

solar PV and battery systems as well as minimizing the environmental and economic tradeoffs.

For GC systems, environmental benefits are the highest when no battery is installed, and the benefits
increase with the increase of panel size. However, the increase of array size is restricted by the amount of
rooftop area or land availablibility. When the panel size is restricted to the rooftop area, the lowest life cycle
environmental costs in CED, carbon footprint, and water footprint are -2.5 TJ, -209.2 Mg CO> eq, and -
10.9 ML respectively. This optimized configuration increases the environmental and economic savings by
8.7~11.9% and 843.7% respectively compared with the baseline GC system over 20 years. No outstanding

economic and environmental tradeoffs were found for the GC system under the modelled conditions.
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Life cycle environmental costs of SA and GC PV systems under different array sizes

3.4 Sensitivity analysis

Figure 11 shows the changes of the life cycle cost in response to decreases or increases of the discount rate

as well as the changes of the life cycle environmental outcomes in response to the changes in the grid energy,

carbon, and water intensities. Life cycle cost of the baseline PV system is highly sensitive to the changes

of the discount rate under the investigated range. Increasing discount rate is associated with lower life cycle

economic savings from installing solar panels. The discount rate of 5.6% (12% increase from the default

value) and 6.3% (26% increase from the default value) are the tipping points where a SA and GC baseline

system starts to lose money, respectively. Life cycle environmental outcomes of the solar PV system change

linearly with the change of the grid energy, carbon, and water intensities. Carbon footprint has the highest
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sensitivity to the changes in the grid, followed by water footprint, and the CED is the least sensitive to the
grid changes. Additionally, the GC system is slightly more sensitive to changes in the grid than the SA

system from an environmental perspective.
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Figure 11. Life cycle costs and environmental impacts of the baseline SA (dashed lines) and GC (solid
lines) PV system under changes in discount rate (left figure) and the unit environmental impact of the grid

(right figure).

4. Conclusion

A dynamic life cycle economic and environmental assessment that combines system dynamics modeling
with the conventional LCA and LCCA was conducted for residential solar PV systems. Two PV system
designs were investigated: the GC and the SA systems. A prototype house located in Boston, MA was used
as a testbed for the modeling framework developed in this study. When installed with 40 PV panels (roughly
the size of the entire roof) and 40 batteries, the prototype house will directly use 42.6% of the solar energy
generated, store 44.4% of the energy for later consumption, and sell or waste round 13.0% of the solar
energy depending on whether it is a GC or a SA system. Solar energy generated, stored, and sold/wasted
all present strong seasonal trends. The prototype house has the lowest monthly demand during summer,

while the solar energy generation is the highest during the period. Hence, a larger amount of solar energy
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can be sold or stored during these months. Achieving 100% demand met requires large numbers of both
panels (>200 units) and batteries (>160 units) for the prototype house, which can be unrealistic for
households with land or roof area availabilities. The 40-panel 40-battery SA system has a life cycle cost
saving of $754.9 in 2018 value with 18.5 years of IPBT and a life cycle reduction of 2.1 TJ of CED, 177.0
Mg CO» eq, and 9.4 ML of water. The corresponding GC system presents a slightly higher life cycle cost
saving of $1,739.4 with 16.8 years of IPBT and a slightly higher life cycle environmental benefit (reduction
of 2.3 TJ CED, 187.0 Mg CO- eq, and 9.9 ML of water). This study also found the tradeoffs between
demand met and life cycle cost in the SA systems can be best balanced when the panel size is between 60-
80 units and the battery size is between 20-40 units, which can meet 66.6-68.4% of the demand with a life

cycle cost between -$3011.7 and -$887.5.

When examining the influence of panel and battery sizes on the outcome, we found life cycle economic
savings are achievable under a range of panel and battery sizes for both GC and SA systems when demand
met is not a concern. For the SA systems, the maximum life cycle economic saving can be achieved with
20 panels with no battery in the prototype house, which increases the life cycle economic savings of the
baseline system by 511.6%, yet decreases the demand met by 55.7%. However, the optimized
environmental performance is achieved with significantly larger panel (up to 300 units) and battery (up to
320 units) sizes. These optimized configurations increase the life cycle environmental savings of the
baseline SA system by up to 64.6%, but decrease the life cycle economic saving largely by up to 6,868.4%.
There is a clear environmental and economic tradeoff when selecting the size of the SA systems. For GC
systems, when there is no limit on when and how much excess solar energy can be sold to the grid, batteries
do not provide extra benefit to the GC system owners. Hence, both the economic and environmental benefits
are the highest when no battery is installed, and the benefits increase with the increase of panel size.
However, when policy constraints such as limitations/caps of grid sell are in place, tradeoffs would present

as whether or not to install batteries for excess energy storage. The modeling framework that is developed
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in this study can be further generalized for future investigations in varied PV system designs under different

policy scenarios in different spatial and temporal contexts.
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