
Water Waves
https://doi.org/10.1007/s42286-020-00042-w

ORIG INAL ART ICLE

The Generalized Carrier–Greenspan Transform for the
ShallowWater Systemwith Arbitrary Initial and Boundary
Conditions

Alexei Rybkin1 · Dmitry Nicolsky2 · Efim Pelinovsky3,4,5 ·Maxwell Buckel1

Received: 4 January 2020 / Accepted: 21 July 2020
© Springer Nature Switzerland AG 2020

Abstract
Weput forward a solution to the initial boundary value (IBV) problem for the nonlinear
shallow water system in inclined channels of arbitrary cross section by means of
the generalized Carrier–Greenspan hodograph transform (Rybkin et al. in J Fluid
Mech, 748:416–432, 2014). Since the Carrier–Greenspan transform, while linearizing
the shallow water system, seriously entangles the IBV in the hodograph plane, all
previous solutions required some restrictive assumptions on the IBV conditions, e.g.,
zero initial velocity, smallness of boundary conditions. For arbitrary non-breaking
initial conditions in the physical space, we present an explicit formula for equivalent
IBV conditions in the hodograph plane, which can readily be treated by conventional
methods. Our procedure, which we call the method of data projection, is based on the
Taylor formula and allows us to reduce the transformed IBV data given on curves in
the hodograph plane to the equivalent data on lines. Our method works equally well
for any inclined bathymetry (not only plane beaches) and, moreover, is fully analytical
for U-shaped bays. Numerical simulations show that our method is very robust and
can be used to give express forecasting of tsunami wave inundation in narrow bays
and fjords.
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1 Introduction

Walter Craig made an outstanding contribution towards the development of nonlin-
ear theories of the long-wave dynamics in fluids of the variable depths [9–14]. Here
we present a new solution of the nonlinear shallow-water equations for long waves,
tsunamis, in the inclined channels of variable depth. As a motion of viscous fluid,
tsunami waves are described by the Navier–Stokes equations, a highly nonlinear 3+1
(three spatial and one temporal derivatives) system, which is notoriously hard to ana-
lyze even numerically. However, in many important cases some extra assumptions
lead to considerable simplifications. For instance, assuming that depth/wavelength,
wave height/depth are small and truncating the Taylor expansions of nonlinear terms
produce a whole zoo of approximations commonly called shallow water equations
(e.g. Korteweg–de Vries, Boussinesq, Saint–Venant, to name just three). Further
assumptions that the vertical velocity is small and no vorticity effectively reduce the
Navier–Stokes equations to the (2 + 1) shallow water-wave equations (SWE) which
provide an accurate model for predicting tsunami wave behavior [26,27,31,37,38].
Still, for general bathymetries, this model allows us to analyze tsunami wave run-
ups (our main concern) only numerically (for an analytical solution for a specific
bathymetry, see [39]). For a complete analysis of tsunami hydrodynamics, modeling,
and forecasting, we refer the reader to Kanoglu et al. [27], Pelinovsky [32], Madsen et
al. [29], and Synolakis and Bernard [38]. Mathematically rigorous treatment of SWE
including the well-posedness and exact solutions can be found in Dobrokhotov and
Tirozzi [19], Dobrokhotov et al. [17,18], Alekseenko et al. [1] and references therein.
It is worth mentioning that IVP for SWE have been treated in Chugunov et al. [7,8]
using a perturbation approach.

We make five additional assumptions: the wave is long (i.e. the height/length ratio
is small), friction and dispersion are both negligible, the bathymetry (see Fig. 1a) has
the main axis located along x and is uniformly inclined. The SWE then reduce further
to the 1+ 1 system (also called shallow water) [28,35], which in dimension units and
standard notation reads

{
∂t S + ∂x (Su) = 0 (continuity equation)
∂t u + u∂xu + g∂xη = 0 (momentum equation)

, (1)

where

• η (x, t) is the water elevation over unperturbed water level z = 0. It need not be
sign definite (can be positive or negative).

• u (x, t) is the flow velocity averaged over the cross section. Since the positive
x-axis is directed off-shore, u < 0 and u > 0 corresponds, respectively, to an
in-coming wave (i.e. moving towards the shore) and out-going wave (i.e. moving
from the shore).

• S(x, t) is the cross-sectional area corresponding to the total water depth H(x, t) =
h (x)+η (x, t) along themain axis x (seeFig. 1b).Hereh(x) is the distancebetween
the hard bottom given by z = −h (x) (along the main axis x) and the unperturbed
water level z = 0. Note that h (x) < 0 if x < 0, and the shoreline location xs at
the head of the bay is defined by H(xs, t) = h(xs) + η(xs, t) = 0.
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Fig. 1 a An xz cross section along the main axis of the bay. Both the unperturbed h(x) (dashed black) and
perturbed H(x, t) (solid blue) water levels are displayed. b yz cross section of a generic bay. Both H(x, t)
(dashed blue) and the cross-sectional area S(H) (shaded area) are displayed. c A 3-D view of the uniformly
sloping bay, which cross section is displayed in plot b (Color figure online)

We have assumed that our bathymetry (bay for short) is inclined. We agree to call
a bay inclined if

h (x) = αx, α > 0, S(x, t) = S (H(x, t)) , dS/dH > 0. (2)

In other words, it has a constant slope and S(x, t) depends on (x, t) only via
H(x, t). This is the case when the equation for the bottom is given by

z (x, y) = −αx + f (y) (3)
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with some f ≥ 0. Clearly, for a bay with one main axis f (y) = 0 if and only if
y = 0. The unperturbed shoreline along the bay is given by f (y) − αx = 0.

• g is the acceleration due to gravity.

Note that while our bay is seemingly 3-D, its geometry is described by only one
single variable function S (H) (or f (y)). That is why the system (1) for two unknown
functions η and u is essentially 1+1.

In this paper, we are concerned with the initial boundary value problem (IBVP) for
(1), that is, both η and u are specified at the initial instant of time:

η(x, 0) = η0(x), u(x, 0) = u0(x). (4)

We will refer to such initial conditions (IC) as standard IC. Such IC naturally occur,
among others, in the study of tsunami waves generated by landslides and near shore
earthquakes. As a boundary condition (BC), we take

η(l, t) = ηb(t), u(l, t) = ub(t), (5)

where l is a fixed point l > 0. Such BC appear, e.g. in the study of finite bathymetries
and piece-wise inclined bays (see below). Typically, ηb(t) and ub(t) cannot be set up
independently.As amatter of fact, it is already the case for subcritical flows (u2 < gH ).
We refer the interested reader toAntuono andBrocchini [3,4] for extensive discussions
on how to set up “correct” BC in this case and algorithms for solving IBVP for (1)
based on perturbation technics. Note that the assumption that the flow is subcritical is
hard to enforce at the dry/wet boundary. Our considerations, on the other hand, do not
need this assumption. The price to pay is that we need both ηb(t) and ub(t). However,
this setup is not unrealistic as it would correspond, e.g., to the problem of computing
the wave in a bay by measuring (in real time) the water displacement and velocity flow
at a fixed point x = b.

It is convenient to go in (1) over to dimensionless units x̃, t̃, η̃, ũ defined from

x = (H0/α) x̃, t = √
H0/g t̃/α, η = H0η̃, u = √

H0g ũ, (6)

where H0 is a typical (characteristic) height. Substituting (6) into (1)–(4) and rewriting
the first equation in (1) using (2), we have (omitting the tilde)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tη + (1 + ∂xη) u + c2 (x + η) ∂xu = 0
∂t u + u∂xu + ∂xη = 0
η (x, 0) = η0 (x)
u (x, 0) = u0 (x)
η(l, t) = ηb(t)
u(l, t) = ub(t)

, (7)

where
c2 (x) := S (H0x) /H0S

′ (H0x) ≥ 0. (8)
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The classical example of such idealized bathymetry is the plane infinite beach (i.e.
extending along the y axis infinitely far). In this case, as one can easily see, (7) takes
the specifically simple form

{
∂tη + ∂x [(x + η) u] = 0
∂t u + u∂xu + ∂xη = 0.

(9)

The system (9) has a quadratic nonlinearity. What is remarkable about it is that the
substitution

ϕ (σ, τ ) = u (x, t) , ψ (σ, τ ) = η (x, t) + u2 (x, t) /2, new unknowns, (10a)

σ = x + η (x, t) , τ = t − u (x, t) , new variables, (10b)

turns it into {
∂τψ + σ∂σ ϕ + ϕ = 0
∂τϕ + ∂σ ψ = 0,

(11)

which is a linear hyperbolic system! This substitution (in a slightly different form) was
introduced in the seminal paper by Carrier and Greenspan [5] and is now referred to
as the Carrier–Greenspan (CG) transform. The form (10a)–(10b) is taken from Tuck
and Hwang [40]. The system is typically written as one equation

∂2τ ψ = σ∂2σ ψ + ∂σ ψ (or ∂2τ ϕ = σ∂2σ ϕ + 2∂σ ϕ), (12)

which is the wave equation with variable coefficients (also know in mathematical
physics as Klein–Gordon equation). Observe that (σ, τ ) can be viewed as a hodo-
graph plane and thus, conceptually, the CG transform is a hodograph type transform
(also called the Carrier–Greenspan hodograph) that turns the nonlinear SWE (7) into
the linear wave equation (12), which can, in turn, be explicitly solved by the Hankel
transform techniques for a variety of waveforms. This way both boundary value (e.g.
[3,4,36]) and initial value problems (IVP) (e.g. [6,24,25]) have been extensively ana-
lyzed. A tremendous amount of information about the SWE was learned this way (in
particular, the important nonlinear process of the run-up and run-down of long waves
on the coast).

Same approach can be applied to more complicated inclined bays S (H) [41]. For
f (y) ∼ y2 (parabolic bays) Eq. (12) is the standard (constant coefficient) 1+ 1 wave
equation and hence can be solved by the d’Alembert formula [15]. For an arbitrary
power bay ( f (y) ∼ |y|m , m > 0, which corresponds to S(H) ∼ H (m+1)/m ) there is
no d’Alembert solution but a similar to (12) equation takes place, which can be solved
by the very same techniques [20] as for the plane beach. Note that the plane beach
corresponds to m = ∞. The case m < 1 exhibits a new striking phenomenon: there
may be more than one run-up/run-down.

More recently, the CG transform was generalized to inclined bathymetries of
arbitrary cross section [34]. In Raz et al. [33], we finally show that the very same
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substitution (10a)–(10b) brings (1) to the linear system

{
∂τψ + c2 (σ ) ∂σ ϕ + ϕ = 0
∂τϕ + ∂σ ψ = 0

, (13)

where c(σ ) solely encodes the information about the shape of our bay. The system
(13) easily implies

∂2τ ψ = c2 (σ ) ∂2σ ψ + ∂σ ψ. (14)

Thus, surprisingly enough, the transformation (10a)–(10b) is universal for all inclined
bathymetries and on the hodograph plane (11) and (13) (or (12) and (14)) differ by
the speed of propagation c (σ ) only. For power-shaped bays S(H) ∼ H (m+1)/m , we

immediately have c2 (σ ) = m

m + 1
σ . In particular, if m = ∞ (plane beach) then

c2 (σ ) = σ and (14) turns into (12) as expected. Only for power bays can (14) be
solved in terms of special functions. For all other shapes (14) can effectively be solved
and analyzed numerically. See Harris et al. [21,22] and Raz et al. [33] where detailed
analysis is done for trapezoidal, L, W, and other shapes. We also refer to Anderson et
al. [2] for some extensions to piece-wise inclined power bays.

We emphasize that in the original SWE (7) the shoreline xs is moving and it is the
main problem with its analysis. On the hodograph plane that point corresponds to the
fixed point σ = 0. Note that c2 (0) = 0 and hence the differential operation on the
right-hand side of (14) is singular. It is not a real issue from the mathematical point of
view but rather a strong manifestation of nonlinear effects of run-up/run-down. This
is one of the main (if not the main) advantages of the CG transform.

The CG transform, however, has some serious drawbacks. For the reader’s conve-
nience, we explain in some detail what the issue is. Note first that the independent
variable (σ, τ ) defined by (10b) depend on the independent variable (ϕ, ψ) defined
by (10a). This circumstance would not be an issue if the system (10a) was linear. But
the second equation in (10a) has a quadratic nonlinearity and this is the real problem
(which, on the bright side, gives fodder for extensive research). The reason is that the
IC (4) on the hodograph plane is no longer standard. As Johnson [23] simply puts
it, “interchanging the dependent and independent variables simplifies the governing
equations, but complicates the boundary/initial conditions.” Indeed, under the trans-
formation (10b), the (horizontal) line t = 0 in the physical plane (x, t) becomes the
parametric curve	 = (x + η0(x),−u0(x)) in the (σ, τ ) plane. From the first equation
in (10b), one has x = γ (σ ), where γ is the inverse function of x + η0(x) (i.e. solves
the equation x + η0(x) = σ ). Thus,

	 =
(

σ

−u0|γ (σ )

)
, σ ≥ 0 (15)

is the curve in the hodograph plane where the IC are specified. From (10a), we imme-
diately have the transformed IC

(
ϕ

ψ

)∣∣∣∣
	

=
(
u0
η0 + u20/2

)∣∣∣∣
γ (σ )

, σ ≥ 0. (16)
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Similarly, the BC (5) transforms as follows. Let γb (τ ) be the inverse function of
τ (t) = t − ub (t) and

	b =
(
l + ηb|γb(τ )

τ

)
, γb (τ ) ≥ 0. (17)

Then the BC in the hodograph plane are

(
ϕ

ψ

)∣∣∣∣
	b

=
(
ub
ηb + u2b/2

)∣∣∣∣
γb(τ )

, γb (τ ) ≥ 0. (18)

We can now see from (15) that 	 is a horizontal line (σ, 0) if and only if the initial
velocity u0 = 0. While the latter is an important case, it is also quite restrictive, as we
cannot always assume that a tsunami wave is standing sill at the initial instant of time!
If u0 �= 0 then the IC (16) is no longer standard and the system (13) (and hence the
original SWE (7)) cannot be solved in closed form. Same issue of course takes place
with (17): 	b is a vertical line if and only if ηb (γb (τ )) = const. These issues were
already noticed in [5] and since then it has been a good open problem how to make
the CG transform run for general IVP. The main problem is that the curves 	 and 	b

also depend on IC (η0, u0) and BC (ηb, ub). This problem has drawn much attention
but still only partial answers under various assumptions of the relative smallness of
the IC (e.g. [3,4,6,25]) are available and only in the context of the plane beach. We
will discuss these papers in some detail in the main body of the text.

In the current paper, we put forward a complete solution to this problem for arbitrary
inclined bays. Our approach goes as follows.1 By the recipes discussed above, reduce
the (nonlinear) SWE problem (7) to the linear system (13) with IC (16) and BC (18)
and write it in matrix form

⎧⎨
⎩

∂τ� + A(σ )∂σ � + B� = 0
�|	 = �0 (σ )

�|	b
= �0 (τ )

, (19)

where

A (σ ) =
(
0 1
c2 (σ ) 0

)
, B =

(
0 0
1 0

)
,

� =
(

ϕ

ψ

)
, �0 (σ ) =

(
ϕ0 (σ )

ψ0 (σ )

)
, �0 (τ ) =

(
ϕb (τ )

ψb (τ )

)
(20)

and

ϕ0 (σ ) := u0 (γ (σ )) , ψ0 (σ ) := η0 (γ (σ )) + ϕ2
0 (σ ) /2

ϕb (τ ) := ub (γb (τ )) , ψb (τ ) := ηb (γb (τ )) + ϕ2
b (τ ) /2

.

1 We outline the main results here in Introduction. The derivations are given in the main text.
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Given accuracy ε (could be arbitrarily small), we apply ourmethod of data projection,
put forward first in our recent Nicolsky et al. [30] to find new standard IC �|τ=0 =
�n (σ ) given explicitly by

�n = �0 +
n∑

k=1

1

k!ϕ
k
0

(
D−1�

)k
�0, (21)

where n is chosen to satisfy the accuracy ε, and (I is a 2 × 2 unit matrix)

D (σ ) = I + ϕ′
0 (σ ) A (σ ) , � = −A (σ )

d

dσ
− B. (22)

We call �n the nth projection of IC defined on a curve onto the real line. In a
similar fashion, we find �n , projections of BC on some vertical line (σ0, τ ), e.g.
σ0 = l + η0(l, 0) to be compatible with the IC. Note that n in the projections of IC
and BC need not be the same. One can now find the solution �̃ of the standard IVP

⎧⎨
⎩

∂τ� + A(σ )∂σ � + B� = 0
�|τ=0 = �n (σ )

�|σ=σ0 = �n (τ )

,

by any suitable method. Performing the inverse CG transform solves the original
problem (7) in the physical space. The latter is, in general, not explicit but can easily
be done numerically without affecting the total accuracy, which remains O (ε) . In
fact, we can call our method exact as the error it introduces can be made negligible
comparing with the one inherited by the shallow water approximation leading to the
very SWE (7).

Loosely speaking, the idea behind our method is to replace the IVPwe cannot solve
with an equivalent one we can. We however emphasize that our equivalent IC/BC
would be very hard to guess. The reader is invited to amuse him/herself with trying to
unzip (21) even for n = 1. It was the matrix form (19) that made our derivation quite
transparent.

Extensive numerical verification and simulations in Sect. 5 show that our method
is very robust and can be effectively used for rapid forecasting of characteristics of
the inundation zone. We will try to make our paper as self-contained as possible.

2 TheMethod of Data Projection

In this section, we introduce our method of data projection in independent terms and
most general situation (e.g. (x, t) is not as in SWE (1) but rather (σ, τ ), etc.). We
consider projections for IC and BC separately.
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2.1 Initial Value Problem

Consider the hyperbolic system

∂tU = A (x) ∂xU + B (x)U , (23)

whereU (x, t) is an m column of dependent variables and A (x) and B (x) are m ×m
matrices independent of t . The domain for (x, t) is inessential for our consideration.
Let U be specified on some curve

	 = {(x, τ (x))} (24)

in the (x, t) domain. Set up the following IVP

{
∂tU = A (x) ∂xU + B (x)U
U |	 = U0 (x)

, (25)

where U0(x) is a known function.
Note that we have not imposed any boundary conditions (BC) as we do not actually

intend to solve (25) in this section. Thus, we assume that (25) is supplemented by
suitable BC. Conditions on τ(x) and U0(x) will be given later.

If τ(x) = 0 then (25) becomes the standard IVP solvable by a variety of classical
techniques which all break down if τ(x) �= 0. Our idea is, given accuracy ε, find
standard IC U |t=0 = Ũ0 such that the solution Ũ to

{
∂tU = A∂xU + BU
U |t=0 = Ũ0 (x)

(26)

would be within O (ε) from the actual solution to (25) for all (x, t) in the domain of
interest, i.e. the IVP (25) and (26) are equivalent up to O (ε).

We call the mapU0 −→ Ũ0 the projection of the data U0 = U |	 onto the real line.
The reason why we can call it projection will be clear below from Fig. 2.

Remark 1 It is an important feature of our method of data projection, that by the very
construction both U and Ũ solve (exactly) the same Eq. (23) but satisfy different
(equivalent) IC conditions. Of course U and Ũ can be made as close as one wishes
(while U0 and Ũ0 need not be close at all).

To construct Ũ0, we start out with applying the Taylor formula in one variable t to
the solution (still unknown) U (x, t) of (23). For each fixed point (x, t), we then have

U (x, 0) =
n∑

k=0

1

k!∂
k
t U (x, t)(−t)k + En (x, t) (27)

with some error En , i.e., we fix (x, t) and apply the Taylor formula to the point (x, 0)
and not the other way around. Note that the right-hand side of (27) is independent of
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t (because t = 0 in left-hand side). Taking in (27) t = τ (x) yields

U |t=0 (x) =
n∑

k=0

(−τ(x))k

k! [∂kt U (x, t)]|	 + En|	.

Introduce

Un(x) :=
n∑

k=0

(−τ(x))k

k! [∂kt U (x, t)]|	, (28)

which we call the nth order projection of initial data U |	 onto the real line. We can
now claim that if we are able to compute all [∂kt U (x, t)]|	 viaU0 = U |	 and A, B then
Un produces a desirable standard IC Ũ0 from (26). Indeed, given error ε (no matter
how small), we take n so large as |En| < ε everywhere in the domain of interest for
(x, t) and hence

U |t=0 = Un + O (ε) .

Thus, the solution Ũ to (26) with Ũ0 = Un will coincide with the solution U of (25)
up to O (ε).

So, it remains to compute the Taylor coefficients in (28). The zeroth one is obvious

U0(x) = U (x, t)|	

and it is the data in (25). We call it the 0th order projection of the dataU0 = U |	 onto
the real line. All other Taylor coefficients in (28) can also be explicitly computed. Start
with the first one. Restricting (23) to 	, suppressing the variable, and introducing the
convenient short-hand notation

�U := (A∂x + B)U ,

we have
(∂tU )|	 = (�U )|	 = A (∂xU )|	 + BU |	 . (29)

Compute now (∂xU )|	 . To avoid possible confusion, note that (∂xU )|	 �= d
dx (U |	)

(indeed, (∂xU ) |	 = (∂xU ) |t=τ(x) whereas
d
dx (U |	) = d

dx U (x, τ (x))). By the chain
rule (prime denotes d/dx)

d

dx
(U |	) = d

dx
U (x, τ (x))

= (∂xU )|	 + (∂tU ) τ ′ (by the chain rule)

= (∂xU )|	 + {A(∂xU )|	 + BU |	} τ ′ (by (29))

= (
I + τ ′A

)
(∂xU ) |	 + τ ′BU |	

= D (∂xU ) |	 + τ ′BU |	,
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where I is the unit matrix and

D := I + τ ′A.

Thus,

d

dx
(U |	) = D (∂xU ) |	 + τ ′BU |	

and hence, solving this equation for (∂xU ) |	 , we have

(∂xU ) |	 = D−1 (
(U |	)′ − τ ′BU |	

)
= D−1 (

I d/dx − τ ′B
)
U |	.

Substituting this equation into (29) yields

(∂tU ) |	 = AD−1 (
I d/dx − τ ′B

)
U |	 + BU |	

=
{
AD−1d/dx − τ ′AD−1B + B

}
U |	

=
{
AD−1d/dx +

(
I − τ ′A(I + τ ′A)−1

)
B

}
U |	

Here we have noticed that the matrices τ ′A and (I + τ ′A)−1 commute and hence

I − τ ′A(I + τ ′A)−1 = (I + τ ′A)−1 = D−1.

Since A and D also commute,

(∂tU ) |	 = D−1 (A d/dx + B)U |	 = D−1�U0

and thus for the first-order Taylor coefficient, we finally have

(∂tU ) |	 = D−1�(U |	) = D−1�U0. (30)

Our computation of higher order Taylor coefficients will be based on the following
observation. Since ∂t and A (x) commute, ∂tU is also a solution to ∂tU = �U , i.e.

∂t (∂tU ) = �(∂tU ) ,

and on the curve

(∂tU ) |	 = D−1�U0 ≡ U1 (by (30)).

Thus, ifU is the solution originated fromU0 then ∂tU is the solution originated from
the ICU1 = D−1�U0. By induction one concludes that ∂kt U is the solution originated
from Uk = D−1�Uk−1, k = 2, 3, 4, . . .
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Therefore, we get the following nice formula:

(
∂kt U

)
|	 = (D−1�)kU0, k = 0, 1, 2, . . .

Substituting this into (28), we finally arrive at

Un(x) =
n∑

k=0

1

k! (−τ(x))k(D−1�)kU0(x), (31)

where, if we recall,

D = I + τ ′(x)A(x) (32)

� = A(x) d/dx + B(x). (33)

Note that in (33) we have the full derivative as in (31) we have only one variable. We
indicate thatU0 (x), the original IC on the curve, is only the zero-order approximation
of ourUn (x), which suggests thatUn (x) is rather a projection than an approximation.

Explicit expanding (D−1�)k in (31) is extremely unwieldy but numerical imple-
mentation of (31) does not cause any problems. Similar to Nicolsky et al. [30], where
we have a bit more complicated formula for Un(x), the following recursion formula
for (31) could be obtained:

Un = Un−1 − 1

n
τD−1A(U ′

n−1 −U ′
n−2)

+ n − 1

n
τ ′D−1A(Un−1 −Un−2) − 1

n
τD−1B(Un−1 −Un−2).

It follows from (31) that the map U0 −→ Un is linear and well defined as long as
the matrix D is non-singular, i.e.

det
(
I + τ ′(x)A(x)

) �= 0, (34)

and the entries of A, B, and τ ′ are at least n times continuously differentiable. We
investigate these conditions for the power-shaped bays later in Sect. 4.2.

2.2 Boundary Value Problem

The considerations of the previous section can be easily adjusted to the BVP. Let U
be a column of dependent variables specified on a curve 	 = {( f (t), t)|t ≥ 0}, i.e.

U |	 = U0. (35)

Condition (35) can be viewed as a boundary condition at a variable point xb = f (t).
Such a situation occurswhenwe study the SWEon a finite interval xs ≤ x ≤ l = const
and map it to the hodograph plane using the CG transform. While the shoreline xs
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becomes fixed in the hodograph plane, the other end becomes a floating point. As
above we show that given accuracy ε, we can find a standard boundary condition at
some point x0 such that the IBVP problem

⎧⎨
⎩

∂tU = A∂xU + BU
U |x=x0 = Ũ0(t)
some IC

(36)

has the solution Ũ0(x, t) different from the solutionU (x, t) to (23)–(35) by not more
than ε.

Let x0 be a fixed point, e.g. we can take x0 = f (0). Then by Taylor’s formula we
have

U (x0, t) =
n∑

k=0

1

k!∂
k
xU (x, t)(x0 − x)k + En, (37)

where x is taken so that (x, t) ∈ 	 and En is the error term. Consequently, if we are
able to find ∂kxU (x, t) and demonstrate that |En| < ε then,

Ũ0(t) =
n∑

k=0

1

k!∂
k
xU (x, t)(x0 − x)k

will be the desired BC in (36). Thus, the problem boils down again to finding ∂kxU |	
in terms of U0 and 	. Below U |	 = U ( f (t), t) and of course d

dt U |	 �= (∂tU )|	 .
Differentiating U |	 = U0(t) by the chain rule

d

dt
(U |	) = ∂xU |	 · x ′(t) + ∂tU |	

= ∂xU |	 · f ′ + (A∂xU )|	 + (BU )|	
= (A|	 + f ′ I )∂xU |	 + B|	(U |	),

we find

∂xU |	 = (
A|	 + f ′ I

)−1
(
d

dt
(U |	) − B|	(U |	)

)
.

Thus, recalling that U |	 = U0, we have

∂xU |	 = D−1(U ′
0 − B|	U0), (38)

where D ≡ A|	 + f ′ I . At this point, we make a simplifying assumption pertinent to
our specific equation below. Suppose that A′ = const and B ′ = 0. In such a case, a
nice formula can be derived. Indeed, differentiating (23) with respect to x , we have

∂t (∂xU ) = A∂x (∂xU ) + (dA/dx + B) ∂xU .



A. Rybkin et al.

Thus, if U solves (23)–(35) then ∂xU solves

∂tU = A∂xU + (B + A′)U
U |	 = U1

, (39)

whereU1 = D−1
(
U ′
0 − BU0

)
. One can now see that the new problem (39) is different

from (23 )–(35) by the substitutions

B −→ B1 = B + A′, U0 −→ U1. (40)

This means that (38) applies with updated data B1 and U1:

∂2xU |	 = D−1(U ′
1 − B1U1)

= D−1
(
d

dt
− B1

)
U1

= D−1
(
d

dt
− B1

)
D−1

(
d

dt
− B

)
U0

and the following pattern emerges

∂kxU |	 = D−1
(
d

dt
− Bk−1

)
D−1

(
d

dt
− Bk−2

)
. . . D−1

(
d

dt
− B0

)
U0, (41)

where Bj = Bj−1 + A′, j = 1, 2, . . . , k with B0 = B.
Thus, problem (36) is completely solved. Indeed let A, B be subject to A′ = const,
B ′ = 0. By taking n large enough such that the solution U to

⎧⎨
⎩

∂tU = A∂xU + BU
U |	 = U0
some IC

, 	 = {( f (t), t)}

differs by not more than ε from Ũ which solves the standard IBVP

⎧⎨
⎩

∂tU = A∂xU + BU
U |x=L = Ũ0(t)
some IC

,

where

Ũ0(t) =
n∑

k=0

(x0 − f (t))k

k! ∂kxU (x, t)

∣∣∣∣∣
	

, (42)

and ∂kxU |	 is given by (41). The choice of x0 is at our disposal. It can be chosen to be
compatible with the IC.

We conclude this section by noting that the Carrier–Greenspan transform reduces
the SWE to a linear wave equation on a variable interval. Our method then makes
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this interval fixed and the transformed equation can then be effectively solved by any
applicable method.

3 Method of Data Projection for the SWE

In this section, we apply our method to the study of the SWE (1) for inclined bays
with arbitrary IC. The application of the data projection method for the arbitrary BC
will be discussed in the following section in the context of power-shaped inclined
bays, because of certain restrictions on the matrices. As we have seen, projections
of IC and BC do not affect the equation itself and, therefore, we can do IC and BC
separately, which is of course technically much easier. After that one can merely put
them together by superposition.

3.1 Conditions on the IC for the Data ProjectionMethod

With all formulas prepared in the previous section we only need to show that our
machinery to solve (7) runs smoothly unless the gradient catastrophe (wave breaking)
occurs. The latter happens when invertibility of the CG transform (10b) or its inverse
fails (see [34]), i.e. when

det
∂ (σ, τ )

∂ (x, t)
= 0 or det

∂ (x, t)

∂ (σ, τ )
= 0. (43)

The Jacobian in (43) on the left has a nice formula

det
∂ (σ, τ )

∂ (x, t)
= det

(
∂xσ ∂xτ

∂tσ ∂tτ

)
= ∂xσ∂tτ − ∂tσ∂xτ

= det

(
1 + ∂xη −∂xu
∂tη 1 − ∂t u

)
(by (10b)

= (1 + ∂xη)2 − (c(x + η)∂xu)2 (by (7)).

Hence, at t = 0

det
∂ (σ, τ )

∂ (x, t)

∣∣∣∣
t=0

= (
1 + η′

0

)2 − (
c(x + η0)u

′
0

)2 (in x variable)

= (
1 + η′

0|γ (σ )

)2 − (
c(σ )u′

0|γ (σ )

)2 (in σ variable).

Consequently, the condition for the CG transform invertibility reads (recall γ (σ ) is
the solution to σ = x + η0(x))

(
(1 + ∂xη)2 − c2(x + η) (∂xu)2

)±1 �= 0 (for all (x, t) ), (44)
((
1 + η′

0

)2 − (
c(x + η0)u

′
0

)2)±1 �= 0 (for t = 0), (45)
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((
1 + η′

0|γ (σ )

)2 − (
c(σ )u′

0|γ (σ )

)2)±1 �= 0 (for all σ ≥ 0). (46)

Recall that (7) in matrix form in (σ, τ ) is

⎧⎪⎪⎨
⎪⎪⎩

∂τ

(
ϕ

ψ

)
+

(
0 1
c2 (σ ) 0

)
∂σ

(
ϕ

ψ

)
+

(
0 0
1 0

) (
ϕ

ψ

)
= 0(

ϕ

ψ

)∣∣∣∣
	

=
(
u0
η0 + u20/2

)∣∣∣∣
γ (σ )

. (47)

It follows from the previous section that (47) can be solved by our method of data
projection if the condition (34) holds. Rewriting (34) for our specific (47) yields

det D = det

(
1

(
u0|γ (σ )

)′

c2 (σ )
(
u0|γ (σ )

)′ 1

)
= 1 −

[
c (σ )

(
u0|γ (σ )

)′]2

= 1 −
[
c (σ )

u′
0|γ (σ )

1 + η′
0|γ (σ )

]2
=

(
1 + η′

0|γ (σ )

)2 − (
c (σ ) u′

0|γ (σ )

)2
(
1 + η′

0|γ (σ )

)2
= (

1 + η′
0|γ (σ )

)−2 det
∂ (σ, τ )

∂ (x, t)

∣∣∣∣
t=0

. (48)

Here we have used

(
u0|γ (σ )

)′ = u′
0|γ (σ )

1 + η′
0|γ (σ )

,

which follows merely from the chain rule
(
u0|γ (σ )

)′ = u′
0|γ (σ )γ

′ (σ ) and γ ′ (σ ) =(
1 + η′

0|γ (σ )

)−1.

It immediately follows from (48) that if the Jacobi matrix ∂(σ,τ )
∂(x,t)

∣∣∣
t=0

is nonsingular

then so is D. Thus, the condition (46) is sufficient for D to be nonsingular.

3.2 Algorithm of Solving SWEwith Arbitrary IC

For the reader’s convenience, we summarized here our main result putting together
all related formulas in one place.

Consider the IVP (7) (i.e. the BC are replaced with a natural condition that η and u
are both bounded) with non-breaking IC (i.e. subject to (45). Perform the generalized
CG transform

ϕ (σ, τ ) = u (x, t) , ψ (σ, τ ) = η (x, t) + u2 (x, t) /2,
σ = x + η (x, t) , τ = t − u (x, t) ,
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Fig. 2 Projection of components �|	 = (ϕ, ψ) onto the plane τ = 0 for the initial disturbance with the
non-zero water velocity

which reduces (7) to the linear IVP (but with IC on a curve)
⎧⎪⎪⎨
⎪⎪⎩

∂τψ + c2 (σ ) ∂σ ϕ + ϕ = 0
∂τϕ + ∂σ ψ = 0
ϕ (σ,−ϕ0 (σ )) = ϕ0 (σ )

ψ (σ,−ϕ0 (σ )) = ψ0 (σ )

, (49)

where γ (σ ) is the inverse function of σ = x + η0 (x) and

ϕ0 (σ ) = u0 (γ (σ )) , ψ0 (σ ) = η0 (γ (σ )) + ϕ2
0 (σ ) /2.

Given accuracy ε we replace (49) with the standard IVP

⎧⎪⎪⎨
⎪⎪⎩

∂τψ + c2 (σ ) ∂σ ϕ + ϕ = 0
∂τϕ + ∂σ ψ = 0
ϕ (σ, 0) = ϕn (σ )

ψ (σ, 0) = ψn (σ )

, (50)

where (
ϕn (σ )

ψn (σ )

)
=

(
ϕ0 (σ )

ψ0 (σ )

)
+

n∑
k=1

ϕk
0 (σ )

k!
(
D−1�

)k (
ϕ0 (σ )

ψ0 (σ )

)
, (51)

D =
(
1 ϕ′

0 (σ )

c2 (σ ) ϕ′
0 (σ ) 1

)
, � = −

(
0 1
c2 (σ ) 0

)
d

dσ
−

(
0 0
1 0

)
,

and n is chosen so that2

max
σ≥0

∥∥∥∥∥
ϕn+1
0 (σ )

(n + 1)!
(
D−1�

)n+1
(

ϕ0 (σ )

ψ0 (σ )

)∥∥∥∥∥ < ε.

2 ‖·‖ stands for the Euclidean norm.
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Solve (50) analytically or numerically for (ϕ (σ, τ ) , ψ (σ, τ )). This (ϕ, ψ) also solves
(49) up to error O (ε). Performing the inverse CG transform

u (x, t) = ϕ (σ, τ ) , η (x, t) = ψ (σ, τ) − u2 (x, t) /2,
x = σ − η (x, t) , t = τ + u (x, t) ,

gives us the solution (η (x, t) , u (x, t)) of (7) up to error O (ε). This solution remains
valid as long as the non-breaking condition (44) is satisfied. To obtain the solution
for given values of (x, t), Newton–Raphson iterations could be employed [24,36]. An
example of data projection is depicted in Fig. 2.

If the wave reaches a gradient catastrophe (i.e. it breaks) at some point, then our
SWE (1) is no longer valid and some other approximations of the Navier–Stokes
equations should be used (e.g. [23]).

4 Example of Power-Shaped Bays

In this section, we apply the algorithm from Sect. 3.2 to the case when f (y) ∼
|y|m , 0 < m ≤ ∞ (called a power-shaped bay). We then have explicitly c (σ ) =
ω

√
σ , where ω = √

m/(m + 1).

4.1 Solution by Data Projection Techniques

In this section, we consider the case of IC. The linear system (50) then reads

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂τψ + ω2σ∂σ ϕ + ϕ = 0
∂τϕ + ∂σ ψ = 0
ϕ (σ, 0) = ϕn (σ )

ψ (σ, 0) = ψn (σ )

|ϕ (0, τ )| , |ψ (0, τ )| < ∞
ϕ (∞, τ ) , ψ (∞, τ ) = 0

, (52)

where we have merely supplemented the IVP with physically motivated BC.
Computeϕn,ψn in (52) by (51)withn sufficiently large to provide a negligible error.

The new equivalent problem admits an explicit solution in terms of Bessel functions.
One can merely do it by the Hankel transform. Instead, we, however, use the explicit
formulas readily available from our Anderson et al. [2]. For the reader’s convenience
we outline the derivation from Anderson et al. [2]. Reduce the system of PDEs in (52)
to the single linear PDE

∂2τ ψ = ω2σ ∂2σ ψ + ∂σ ψ. (53)

Note that the differential operation on the right-hand side of (53) has a regular singular
point at σ = 0. This means that (53) has a bounded and an unbounded solution at
σ = 0. The latter one is discarded by the boundedness condition at σ = 0. By the
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standard Hankel transform techniques then for the general solution to (53) we have

ψ(σ, τ) = σ− 1
2m

∫ ∞

0
{a(k) cos(ωkτ) + b(k) sin(ωkτ)} J1/m

(
2k

√
σ
)
dk, (54)

where Jν is the Bessel function of the first kind of order ν and a(k) and b(k) are
arbitrary functions determined by IC. It follows then from (52) and (54) that

ϕ(σ, τ ) = 1

ω
σ− 1

2m − 1
2

∫ ∞

0
{a(k) sin(ωkτ) − b(k) cos(ωkτ)} J1/m+1

(
2k

√
σ
)
dk.

(55)
We note that the apparent singularities at σ = 0 in (54) and (55) are actually removable
due to asymptotic properties of the Bessel function of the first kind around 0.

The functions a and b can now be found from the IC by applying the inverse Hankel
transform to (54) and (55):

a(k) = 2k
∫ ∞

0
ψn(s)s

1
2m J 1

m

(
2k

√
s
)
ds, (56a)

b(k) = −2ωk
∫ ∞

0
ϕn(s)s

1
2m + 1

2 J 1
m +1

(
2k

√
s
)
ds, (56b)

where ψn(s), ϕn (s) are computed by (51). Thus ψ and ϕ are completely determined
and (52) is explicitly solved.

In particular, for waves with zero initial velocity (i.e. u0 = 0 and hence ϕ0 = 0)
b(k) = 0 and

a(k) = 2k
∫ ∞

x0
[x + η0(x)]

1
2m J1/m

(
2k

√
x + η0(x)

) [
1 + η′

0(x)
]
η0(x) dx, (57)

where we have used a simple change of variables to return back to the physical space,
and x0 is the maximum run-up (i.e. x0 + η0(x0) = 0).

4.2 Finite Power-Shaped Bay

Here we consider a power-shaped bay f (y) ∼ |y|m , 0 < m ≤ ∞ of finite length l
and set up some boundary conditions at l, e.g. see [21]

η (l, t) = ηb (t) , u (l, t) = ub (t) .

Since B is a constant matrix and

A′ = d

dσ

(
0 1
ω2σ 0

)
=

(
0 0
ω2 0

)
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is also a constant matrix, the results of Sect. 2.2 apply. Recall that the constant ω =√
m/(m + 1). For the curve, we have

	b = {(σb (τ ) , τ ) |γb (τ ) ≥ 0} ,

where γb (τ ) is the inverse function of τ = t − ub (t) and

σb (τ ) = l + ηb|γb(τ ).

Equation (41) reads

∂kσ �|	b = D−1
(

d

dτ
+ Bk−1

)
D−1

(
d

dτ
+ Bk−2

)
· · · D−1

(
d

dτ
+ B0

)
�0,

where

D ≡
(

σ ′
b (τ ) −1

−ω2σb (τ ) σ ′
b (τ )

)
, Bk =

(
0 0
1 + kω2 0

)
.

Equation (42) for our case now yields

�̃0(τ ) =
n∑

k=0

(σ0 − σb (τ ))k

k! ∂kσ �|	b .

Thus, the problem with a floating boundary condition is reduced to a fixed one

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂τψ + ω2σ∂σ ϕ + ϕ = 0
∂τϕ + ∂σ ψ = 0
ϕ (σ, 0) = ϕn (σ )

ψ (σ, 0) = ψn (σ )

ϕ (σ0, τ ) = ϕ̃b (τ )

ψ (σ0, τ ) = ψ̃b (τ ) .

(58)

Here ϕ̃b (τ ) , ψ̃b (τ ) are components of the vector �̃0(τ ). The value of σ0 is chosen to
be compatible with the IC, or σ0 = l + η0(l, 0).

Note that an arbitrary boundary condition at l need not produce a bounded solution
to (58), i.e. we may have an infinite run-up (the energy will of course be finite). The
physical relevance of such solutions is debatable but they can be avoided by imposing
a compatibility condition for (ηb, ub). Such compatibility conditions are dictated by
the underlying physics (e.g. [3,4]).
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Assuming that ηb and ub are compatible, we can then handle

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2τ ψ = ω2σ ∂2σ ψ + ∂σ ψ

ψ (σ, 0) = ψn (σ )

ψτ (σ, 0) = −ω2σ∂σ ϕn(σ ) − ϕn(σ )

ψ (σ0, τ ) = ψ̃b (τ )

|ψ (0, τ ) | < ∞

(59)

by a Bessel–Fourier expansion as follows.
By introducing the change of variables ζ 2 = σ/σ0 and ψ(σ, τ) = ζ−γ θ(ζ, τ ) +

ψ̃b(τ ), where γ = 1/m, the wave equation is obtained

∂2τ θ = k2
(

∂2ζ θ + 1

ζ
∂ζ θ − γ 2

ζ 2 θ

)
− ζ γ ψ̃ ′′

b (τ ), (60)

which admits a solution in terms of the Bessel functions Jγ of order γ . Here, the
prime denotes a derivative with respect to τ , k2 = ω2/4σ0, and ζ ∈ [0, 1]. The
boundary condition at σ = σ0 is transformed to θ(1, τ ) = 0. Next, the Fourier–Bessel
decomposition is employed so that

θ(ζ, τ ) =
∞∑
n=1

cn(τ )Jγ ( jnζ ). (61)

To solve for the coefficients, we substitute (61) into (60) and use an orthogonality
property of Bessel functions to obtain a set of ordinary differential equations for each
coefficient cn :

c′′
n(τ ) + ( jnk)

2cn(τ ) = − 2

J 2γ+1( jn)
ψ̃ ′′
b (τ )

∫ 1

0
ζ 1+γ Jγ ( jnζ )dζ. (62)

The initial conditions in (59) could be cast to yield the initial conditions for cn such
that

cn(0) = 2

J 2γ+1( jn)

∫ 1

0
ζ 1+γ Jγ ( jnζ )

[
ψn(σ0ζ

2) − ψ̃b(0)
]
dζ,

c′
n(0) = − 2

J 2γ+1( jn)

∫ 1

0
ζ 1+γ Jγ ( jnζ )

[
1

2
ω2ζ∂ζ ϕn(σ0ζ

2) + ϕn(σ0ζ
2) + ψ̃ ′

b(0)

]
dζ.

Finally, we express ψ and φ in terms of variables (σ, τ ) as

ψ(σ, τ) =
(σ0

σ

) 1
2m

∞∑
n=1

cn(τ )J 1
m
( jn

√
σ/σ0) + ψ̃b(τ ), (63)
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ϕ(σ, τ ) = 1

2σ0

(σ0

σ

) 1
2m + 1

2
∞∑
n=1

jndn(τ )J 1
m +1( jn

√
σ/σ0), (64)

where

dn(τ ) =
∫ τ

0
cn(λ)dλ.

Wecalculate run-up and rundown of theGaussianwave in aV-shaped bay (ω = 1/
√
2)

using equations (63)–(64) in Sect. 4.2.

4.3 Comparison to Previous Results

Aswehavementioned in Introduction, the problemof adjusting theCG transform tech-
niques to an arbitrary nonzero initial velocity has been approached by many authors.
Wewill not discuss the complete history of the problem and by the same token will not
give an attempt to review the extensive literature. Instead, we concentrate only on the
most important contributions where the interested reader can find further references.

The first significant result to this effect appeared in Carrier et al. [6]. It was then
improved inKanoglu [24] andKanoglu andSynolakis [25],where theGreen’s function
approached was employed. More specifically, for the plane beach (m = ∞) under the
assumption that σ = x a certain solution formula was derived. It can be shown (see
our [30] for the details) that this solution is exact only if ϕ′

0 (σ ) = 0. However, for near
shore waves with large initial velocities such solution may produce some artifacts. If
ϕ′
0 (σ ) = 0 then D = I and (51) simplifies to read

(
ϕn (σ )

ψn (σ )

)
=

n∑
k=0

ϕk
0 (σ )

k! �k
(

ϕ0 (σ )

η0|γ (σ ) + ϕ2
0 (σ ) /2

)

=
(

ϕ0 (σ )

η0|γ (σ ) + ϕ2
0 (σ ) /2

)
− ϕ0 (σ )

(
0(
η0|γ (σ )

)′ + ϕ0 (σ )

)

+ ϕ2
0 (σ )

2

(
0(
1 + c2 (σ )

) (
η0|γ (σ )

)′ + c2 (σ )
(
η0|γ (σ )

)′′
)

+ · · · (65)

It is a straightforward (but quite involved) exercise to show that combining (54)–(56b),
and (65) yields ψ (σ, τ) which considers with the solution in Kanoglu and Synolakis
[25] up to O

(
ϕ′
0 (σ )

)
. However, as numerical simulations in the next section show,

our scheme runs smoothly without the assumption that ϕ′
0 (σ ) is small. Incidentally,

(65) demonstrates the analytical complexity of our data projection method.
In very interesting papers [3,4], perturbation techniques are used to dealwith bound-

ary value problems. However, such techniques could also be adjusted to the IVP but
would require certain smallness of the BC and IC.

The IVP has also been considered in the context of parabolic bays where m = 2.
Didenkulova and Pelinovsky [15] derived an exact traveling wave solution of the
IVP in parabolic bays for waves with zero initial velocity. In parabolic bays where
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m = 2, using the identity J1/2(x) = √
2/(πx) sin(x) along with other trigonometric

identities, (54) and (57) reduce (again after quite involved computations) to

ψ(σ, τ)

= 1
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where �(ζ) = ζη0(γ (ζ )), θ is the Heaviside function, and γ (σ ), as before, is given
implicitly by x+η0(x) = σ . This solution is identical to the one given byDidenkulova
and Pelinovsky [15] under the change of variables σ = √

6s, λ = −τ , ϕ = φσ /σ and
ψ = φλ/3.

IBVP in the same context have also been treated by many authors, see (e.g. [2,
24,36]) and the literature cited therein, where floating points are fixed by assuming a
certain negligible difference between σ and x far away from the shore. Our approach
does not require such assumptions.

5 Numerical Verification of the Data ProjectionMethod

5.1 Verification for the Initial Value Problem

In this section, we numerically verify our data projection method for the initial value
problem (52) by considering run-up of the Gaussian wave

η0(x) = ae−b(x−x0)2 (66)

in a bay of the parabolic shape (m = 2). To do that we consider initial condition (η0, 0)
(i.e. with zero initial velocity) and run it by the standard CG to the maximum run-up
at t = tr . While modeling the run-up η(x, tr ), we record (η (x, t∗) , u (x, t∗)) at some
time t∗ < tr . We then set up a new IVP with IC (η (x, t∗) , u (x, t∗)) and run it by our
method. Both solutions (via the standard CG and the new IVP) are expected to show
an excellent agreement for tr≥t > t∗. Results of the comparison are provided below.

In particular, as in [25,30], we consider an initial Gaussian wave with a = 0.017,
b = 4.0 and centered at the distance of x0 = 1.69 from the shore. In this case, the
maximum run-up occurs at tr ≈ 2.908, and we choose t∗ = 2, when the wave is
approximately half the way to its maximum run-up on the shore (and where of course
u(x, t∗) �= 0). Figure 3a displays wave profile at the time of maximum run-up tr and at
the moment t∗. We launch our method forming the projected IC by (51) with various
degrees of approximation n = 0, 1, 2 and apply formulas (54–55) to model the wave
propagation until t = tr . We note that c2(σ ) = 2/3σ . To compute projections of the
IC and BC, we use recursive formulae and compute the first-order derivatives by the
finite differences of the second-order accuracy wherever possible.
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a b

c

Fig. 3 a Profiles of the water level η for the initial condition: a zero-velocity Gaussian wave given by (66)
with a = 0.017, b = 4.0 and x0 = 1.69 running up a parabolic bay (m = 2). Profile η(x, t∗) is used in the
proposed data projection method to solve a non-zero initial velocity problem. b Comparison of the water
level at t = tr for various approximations of�n . c Zoomed-in comparison of water level near the shoreline,
i.e. within the dashed rectangle is shown in plot b

Comparison of the water level profiles η(x, tr ) and {ηn=k(x, tr )}2k=0 at the moment
of maximum run-up is shown in Fig. 3b. Unlike to results by Nicolsky et al. [30],
where the zeroth approximation, n = 0, was adequate to capture the wave profile at
t = tr , here the zeroth approximation shows a visible deviation from η(x, tr ) due
to a larger initial velocity η(x, t∗) used in the data projection method. Notice that
for the high-order approximations, n = 1, 2, the match between the water profiles
at t = tr improves and becomes satisfactory. The convergence of approximations,
{ηn=k(x, tr )}2k=0, is demonstrated near the tip of the wave; an area within the dashed
rectangle in Fig. 3b is shown in Fig. 3c. One may notice that the zeroth approximation
ηn=0(x, tr ) undershoots the run-up, the first-order approximation ηn=1(x, tr ) over-
shoots and the second-order ηn=2(x, tr ) almost overlaps η(x, tr ). Other higher order
approximations (not shown for the sake of clarity) provide a nearly exact match to
η(x, tr ). This demonstrates an efficacy of the proposed method to project the solution
forward from the given initial conditions.

5.2 Verification of the Boundary Value Problem

In this section, we numerically verify our data projection method for the boundary
value problem (59) by considering run-up of the Gaussian wave (66) in a V-shaped
bay (m = 1, c2(σ ) = (1/2) σ ). Similar to the previous numerical experiment, we
consider a zero-velocity initial condition (η0, 0) and run it by the standard CG to
compute the maximum run-up (t = tr ), rundown (t = td ) and the secondary run-up
t = ts . The secondary run-up of a Gaussian wave is a feature of the V-shaped bay
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a

b

c

Fig. 4 Comparison of the water level profiles η(x, t) and {ηn=k (x, t)}2k=0 at the moment of a maximum
run-up t = tr , b rundown t = td and c the secondary run-up t = ts in the V-shaped bay (m = 1)

as it was noted by Garayshin et al. [20], Nicolsky et al. [30]. Now, while modeling
the wave dynamics, we save the time history of η (x, t) and u (x, t) at some point
x = x∗ near the shore (e.g. x∗ = 0.15) for 0 ≤ t ≤ ts . Note that in the previous
section we recorded the snapshot of the wave dynamics to setup the IVP. Here, we
use the saved time history (η (x∗, t) , u (x∗, t)) to set up a new BVP and run it by our
method (assuming in the data projection algorithm that l = x∗, ηb(t) = η (x∗, t) and
ub(t) = u (x∗, t)). Both solutions via the standard CG and the new BVP are again to
show an excellent agreement for t < ts .

Similar to the previous experiment, we consider an initial Gaussian wave with the
same characteristics, but the amplitude is reduced (a = 0.017) to have a highest non-
breaking wave throughout the simulation. Comparisons between the two solutions at
the moments of maximum run-up, rundown and the secondary run-up are provided in
Fig. 4. The water level ηn=0 for the zeroth approximation shows a discrepancy with
η. However, results for the next order of approximation, i.e. n = 1, match the true
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a b

Fig. 5 Initial leading-depression N-waves with the geometries similar to Carrier et al. [6], Kanoglu [24]: a
a1 = 0.005, b1 = 3.5, x1 = 1.9625, a2 = −0.0025, b2 = 3.5, and x2 = 1.4. b a1 = 0.002, b1 = 0.4444,
x1 = 4.4709, a2 = −0.006, b2 = 4.0, and x2 = 1.9884

solution almost exactly at the two run-ups and rundown. Other higher orders rapidly
converge and provide nearly exact match.

5.3 Modeling Shore Dynamics for the Incident N-Wave

To illustrate efficacy of the proposed method for BVP (59), we also consider run-up
of N-shaped waves in the parabolic bay (m = 2)

η0(x) = a1e
−b1(x−x1)2 + a2e

−b2(x−x2)2 . (67)

In particular, we consider two leading-depressionN-shapedwaveswith the geometries
similar to those in [6]. Both waves have zero initial velocities and their profiles are
shown in Fig. 5. As in the previous section, we model the wave dynamics using the
standard CG and record the water level as well as the velocity at some point x = x∗
near the shore, e.g. at x∗ = 0.15. The recorded history of (η (x∗, t) , u (x∗, t)) is then
again used to set up a new BVP with l = x∗, ηb(t) = η (x∗, t) and ub(t) = u (x∗, t)
to model shoreline dynamics. Figure 6 shows a comparison between the shoreline
η̂ computed with the standard CG and those {η̂n=k} obtained from different order
approximations, i.e. k = 0, 1. Notice that even for the zeroth approximation, n = 0,
the match between the shorelines is rather good. However, some discrepancy exists at
the maximum run-up, the zeroth-order overestimates the maximum run-up. However,
the first-order approximation, n = 1, nearly exactly matches the true solution during
the run-up and rundown.
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a b

Fig. 6 Comparison of the shoreline dynamics η̂ for the leading-depression N-waves in the parabolic bay
(m = 2). Dynamics in a and b correspond to cases in Fig. 5

5.4 Contribution of theWaveVelocity to Run-Up

We conclude this section by illustrating a physical effect showing how the run-up
increases when initial velocity is present. When initial velocity is absent, the initial
wave splits and propagates in both directions from the source region, i.e. towards
shore and away from it. It was shown by Didenkulova and Pelinovsky [16] that in a
flat-bottom fjords with the power-shaped cross section, the wave propagates towards
the shore when the initial velocity satisfies

u0(x) = −2
√

(m + 1)/m
(√

η + h − √
h
)

. (68)

We use this approximation in the following numerical experiment. As before, we
consider the parabolic bay (m = 2) and take the same Gaussian wave with u0 = 0 and
with u0 given by (68) with h = x . In the former case, the run-up occurs tr ≈ 2.908,
whereas in the latter one the run-up happens tr ≈ 2.928, that is, the run-up occurs
almost at the same time; however, as one can see it in Fig. 7, the maximum run-up
is almost twice as large for the non-zero initial velocity. This result shows that long
waves can be greatly amplified in heads of narrow bays if the initial velocity nonzero.

6 Conclusions

Our method of data projection completely solves the problem of the effective lin-
earization of the shallow water equation (SWE) for any inclined bay with IC (in
arbitrary shaped bays) and BC (only in power-shaped bays) by means of the Carrier–
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a

b

Fig. 7 Comparison of the water level (a) and water velocity (b) at the time t = tr of maximum run-
up. Quantities marked with the symbol ˆ are computed in the case when the initial velocity u0(x) =
−2

√
(m + 1)/m

(√
η + h − √

h
)

Greenspan (CG) transform. Basing upon Taylor’s formula in “reverse”, given IC
η (x, 0) = η0 (x) , u (x, 0) = u0 (x) (with u0 �= 0) for the (7), we find an equivalent
IC ϕ (σ, 0) = ϕn (σ ) , ψ (σ, 0) = ψn (σ ) for the linear SWE (13) in the transformed
space (σ, τ ) (hodograph plane). The initial value problem (IVP) (50) can then be easily
solved analytically or numerically. Performing the inverse CG transform solves the
original IVP for the SWE (7) to any order of accuracy. As is well known, the main ben-
efits of (in fact, any) linearization are nearly instantaneous computations and explicit
analysis uncovering subtle properties of the system under consideration. This method
works for BC as well and hence for IC/BC combined. The BC case though requires
more attention than we were able to pay in this paper. In particular, our approach may
potentially be very useful in the study of more complicated than inclined bathymetries
treated in [36,37].

Our method, which becomes explicit for U-shaped bays, has potential applications
in tsunami wave modeling. Tsunami forecast models are extensively verified against
the analytical solutions of the SWEs [39], primarily for the case of a plane beach. This
solution allows further analytical verification of tsunami models, with the extension of
the solution to 2-D bathymetries, allowing verification of tsunami models in realistic
settings. As local near-shore bathymetry significantly effects the run-up of tsunami
waves, and narrow bays can greatly amplify tsunami waves, the verification of tsunami
models in narrow bays is critical for protecting coastal communities and infrastructure.
Furthermore, 1-D nonlinear shallow water theory has had significant developments in
the past few years, specifically in the context of narrow bays. In the realistic setting
of Alaskan fjords, 1-D theory has had similar run-up predictions to full 2-D tsunami
models with significantly less computation time [2,22]. 1-D theory can even present
valid predictions in splitting bays [33]. With such progress, it is possible for 1-D
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shallow water theory to be incorporated into global 2-D tsunami inundation models,
specifically in narrow bays and fjords. This will reduce computation and forecasting
time, potentially saving lives and resources.

Treating initial and boundary conditions for the SWE by means of the CG trans-
form opens new avenues in the analysis of much more realistic run-up problems for
tsunami waves. In particular, we hope to develop a method of stitching together dif-
ferent shallow water approximations describing different stages of the tsunami wave
propagation.
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