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We propose an experimentally realizable quantum spin model that exhibits fast scrambling, based on
nonlocal interactions that couple sites whose separation is a power of 2. By controlling the relative strengths of
deterministic, nonrandom couplings, we can continuously tune from the linear geometry of a nearest-neighbor
spin chain to an ultrametric geometry in which the effective distance between spins is governed by their
positions on a tree graph. The transition in geometry can be observed in quench dynamics, and is furthermore
manifest in calculations of the entanglement entropy. Between the linear and treelike regimes, we find a peak in
entanglement and exponentially fast spreading of quantum information across the system. Our proposed
implementation, harnessing photon-mediated interactions among cold atoms in an optical cavity, offers a test
case for experimentally observing the emergent geometry of a quantum many-body system.
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The fast scrambling conjecture—inspired by studies of
the black-hole information problem—predicts a lower
bound on the time for information to spread from one to
all degrees of freedom of an N-body quantum system,
scalingas 7, o log(N) [1,2]. Fast scrambling is conceptually
important as a putative signature of the quantum physics of
black holes [3]. It is also of practical importance because a
fast scrambler is an efficient quantum encoder, capable of
quickly entangling quantum information across many
physical qubits [4]. While information scrambling has been
probed in several pioneering experiments [5—8], observing
fast scrambling remains an outstanding challenge.

In typical quantum systems found in nature, fast scram-
bling is precluded by the locality of interactions. In the
presence of only short-range interactions, information propa-
gation is bounded by a linear “light cone” [9-12] [Fig. 1(a)],
such that the scrambling time is at least 7, o« N. Even with
long-range power-law interactions [13-15], the time for
quantum correlations to propagate scales polynomially with
distance [14,15] and not logarithmically. Potential work-
arounds include engineering interactions among spatially
overlapped modes [16-18] or using light to mediate effec-
tively nonlocal interactions [19,20]. Proposals to date have
focused on emulating solvable models for fast scrambling
featuring random all-to-all couplings [16-18,20].

In this Letter, we propose an experimentally realizable
quantum spin model featuring a sparse, deterministic graph
of nonlocal interactions that enables fast scrambling.
A modest generalization of the simplest model provides a
smooth interpolation between two radically different
notions of geometry: linear or treelike, as shown in Fig. 1(b).
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Our simplest model is, in a certain sense, exactly between
these two limits. Instead of exhibiting extended spatial
geometry, it is fully characterized by a coupling graph
whose diameter grows logarithmically with the number of
sites, resulting in exponentially fast spreading of perturba-
tions that decreases to power-law spreading as we tune away
from the original model. Thus, loosely speaking, we see the
exponential spread of perturbations as a form of criticality
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FIG. 1. Nonlocal spin models with cold atoms. (a) Linear light
cone vs fast scrambling. (b) Spins (green) coupled locally along a
chain of length N = 8 or nonlocally according to a tree of depth
n =1log,(N). Green cube shows full pattern of couplings
specified in Eq. (2). (c) Scheme for controlling the graph of
interactions mediated by a cavity via the spectrum of a drive field
and the gradient of a magnetic field B. Depending whether short-
range (blue) or long-range (orange) couplings dominate, the
graph resembles either the linear chain (i) or the tree (ii).
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encountered between two incompatible geometric notions
of locality [Fig. 1(b)].

In studying this transition in geometry, we are also
motivated by holography, in particular the recently pro-
posed p-adic version [21,22] of the anti-de Sitter—con-
formal field theory correspondence (AdS-CFT). Here, the
role of the gravitational bulk is played by the Bruhat-Tits
tree, which is an infinite regular tree with p + 1 edges
leading into each vertex, similar to Fig. 1(b) for p = 2. Past
works have suggested that diffusion on the Bruhat-Tits tree
can be used to understand aspects of fast scrambling near
black hole horizons [23,24].

The models we consider here are inspired by an elegant
proposal [25] for engineering translation-invariant long-
range interactions by encoding spins in cold atoms coupled
to light in a waveguide or cavity [26—37]. This scheme can
generate Hamiltonians of the form

1
_ P + —
H—ﬁ;](l 7)S; Sj’ (1)

where i, j = 1, ..., N, and S; is a spin-S operator represent-
ing either an individual atom or the collective spin of a
small atomic ensemble at site i. We consider a sparse graph
of couplings between sites separated by powers of two,

J2%5 when |i—j|=27,£=0,12.3,...

0 otherwise,

si-={ @)
where by tuning the exponent s from —oo to o0 we
interpolate between the linear and treelike limits. The
simplest choice s = 0, where all nonzero couplings are
equal, permits a perturbation to spread exponentially
because the number of pairwise interactions required to
get from site i to site j is bounded above by the number of
binary digits in i and j that differ.

The couplings in Eq. (2) can be generated by a pair of
Raman processes wherein one atom flips its spin by
virtually scattering a photon from a control field into a
cavity, and a second atom rescatters this photon such that its
spin flops [31]. In a magnetic field gradient [25], the energy
cost of a flip-flop is proportional to the distance d =i — j
between spins. Thus, inducing resonant flip-flops at dis-
tance |d| = 27 requires modulating the control field at a
frequency w, o d. More generally, weakly modulating the
control field at multiple frequencies w, for 7 =
0,1,2,3, ... produces a set of sidebands whose amplitudes
dictate the hopping amplitudes J(d) (Fig. 1).

Below, we take N a power of 2 and assume periodic
boundary conditions unless otherwise stated, letting |x|

denote the minimum value of y/(x + gN)? over all integers
q. We normalize the couplings in Eq. (2) such that the
largest is always a constant J, letting J;, = J, for s < 0 and
Jg =Jo(N/2)~* for s > 0.

The key features of our spin model are evident already in
the spreading of a single initially localized spin excitation

FIG. 2. Dynamics in the single-magnon sector. (a) Occupation
(n;(1)) for N = 128 sites initialized with a single excitation on
site N/2 with (i) s = =2, (ii) s = 0, or (iii) s = 2; dashed red
lines show fits to slowest-growing occupations. (iv) Occupation
(n;(t)) at s = 0 for N = 1024, vs graph distance r;; from initial
site i. (v) Reemergence of light cone at s = 2 after rearranging
N = 128 sites according to Monna map M. (b) Magnon
dispersion relation for N = 128 sites arranged according to
either (i) physical location or (ii) Monna-mapped order for s =
—2 (blue), s =0 (black), and s =2 (red). (c) Breakdown of
polynomial light cone: polynomial exponent b (red) and loga-
rithmic exponent ¢’ (blue) vs s.

[Fig. 2(a)], which is governed by the magnon dispersion
relation [Fig. 2(b)]

log,(N/2)
E(k)=2J, Y 2%cos(2’k), (3)
=0

where k € [0,27x) is the wave number. Intriguingly, as N
increases, the dispersion relation shows fractal behavior
converging to a Weierstrass function for 0 < s < 1 [38].
For arbitrary s, Eq. (3) allows us to analytically compute the
single-magnon dynamics as shown in Fig. 2(a), where we
introduce a single excitation on site i = N/2 and plot the
mean occupation (n;(t)) as a function of site number j and
time .

The single-particle dynamics reveals the geometry of the
interaction graph and its dependence on the exponent s.
When s is large and negative, the excitation spreads
ballistically, as expected for a nearest-neighbor spin chain,
producing the linear light cone in Fig. 2(a)(i). By contrast,
for s > 0, where interactions grow with physical distance,
the excitation jumps discontinuously between distant sites
[Fig. 2(a)(iii)]. Rather than interpreting the apparent
absence of a light cone for s > 0 as the absence of locality,
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we argue that a new version of locality emerges based on
the 2-adic norm |x|, =270, where 2"™) is the largest
power of 2 that divides x. The distance |i — j|, between
sites 7 and j is called ultrametric because the distance of the
sum of two steps is never greater than the larger of the two
steps’ distance; by contrast the usual distance |i — j| is
called Archimedean because many small steps can be
combined into a large jump.

We can understand the 2-adic norm as a tree-like
measure of distance because |i — j|, = 2%=(11)/2 /N, where
dyee (i, j) is the number of edges between sites i and j along
the regular tree in Fig. 1(b) [40]. The leaves are numbered
in order of increasing M (i), where the discrete Monna map
M reverses the bit order in the site number. For example,
for N = 8 sites, M (1) = 4 because in binary, M (001,) =
100,. Noting that Nk/2z is an integer, we may likewise
define a Monna-mapped wave number k,, by

k km k

2n’ =M ( 271) “)
For large positive s, we rearrange the spins according to
the Monna map and find that a light cone reappears
[Fig. 2(a)(v)] and the dispersion relation is smoothed out
[Fig. 2(b)], corroborating the transformation to the treelike
geometry defined by the 2-adic norm.

The radical difference between Archimedean and ultra-
metric geometry raises the question of what happens near
s = 0, where short- and long-range couplings are equally
strong. Here, it is useful to think of the sites as arranged on
a hypercube [41], where each site number in binary
specifies a corner. The coupling graph consists of the
edges of the hypercube plus some diagonals, as shown in
Fig. 1(b) for N = 8 sites. For any N, the graph distance r;;
counts the minimum number of edges required to connect
sites i and j, and is at most [ $1og,(N)], where [x] denotes
the smallest integer greater than or equal to x.

We expect the logarithmic diameter of the interaction
graph at s = 0 to enable a localized perturbation to spread
over the entire system in a logarithmic time 7 o log(N). Asa
first test, in Fig. 2(a) we examine single-magnon transport as
a function of both physical distance d = |i — j| and graph
distance r;;. We observe spin transport on a timescale that is
roughly hnear in graph distance [Fig. 2(a)(iv)], and thus at
most logarithmic in physical distance d and system size N.

To permit this logarithmic timescale, the polynomial
light cone in Fig. 2(a)(i) must break down as s approaches
0. To examine this breakdown, we evaluate the time ¢, for
the magnon occupation at a distance d from the initial site
to reach a threshold value (n; ;) = ¢ = 1/N?. For arbitrary
s, we may always bound 7, from below by a polynomial of
the form a[d)]” < 1, that depends on physical distance d
for s <0 or Monna distance d, = M(d) for s > 0, with
non-negative constants a, b. We determine the dependence
of the exponent b on s from a fit to the points of fastest

growth [42] in Fig. 2(a), finding a direct proportionality
b  |s| [red points in Fig. 2(c)]. The vanishing exponent b
at s =0 signifies the breakdown of the polynomial
light cone.

Furthermore, we verify that even the slowest-growing
occupations take only a logarithmic time to reach the
threshold €. For arbitrary s, the time 7, is bounded above
by t. < d'[d M)]b' log d M)}C', with non-negative constants
a', b', ¢’ [dashed red lines in Fig. 2(a)] [42]. Here, as s — 0
the polynomial exponent b’ again disappears, but the
logarithmic exponent ¢’ remains [blue points in Fig. 2(c)].
For both the fastest- and slowest-growing occupations
we observe an approximate symmetry about s = 0 that
suggests a duality between the Archimedean and non-
Archimedean regimes [39].

While the spin dynamics provides strong evidence for
the underlying geometry of the model as a function of s, the
structure of entanglement provides an even sharper proxy
for locality. We analyze the growth of entanglement for a
system initialized in a product state of spins polarized along
X. Figure 3(a) shows the entanglement entropy S, of a
subsystem A as a function of its size and time, with the
spins partitioned either according to their physical position
(top) or to their Monna-mapped ordering (bottom). In either
of the two limits where |s| is large, there is a natural way of
partitioning the system such that entanglement remains
low, as summarized in Fig. 3(b): for s < 0, the cut must be
between nearest neighbors in the linear chain (blue curve),
whereas for s > 0 the cut must be between branches of the
tree (red curve).

Near s = 0, however, entanglement is high no matter how
we cut the system. We verify this by plotting the minimum
entanglement entropy over all possible bipartitions, without
regard to locality. The resulting gray curves in Fig. 3(b),
for different partition sizes L, show a sharp peak in
entanglement at s = 0. Thus, at the crossover between the
Archimedean and 2-adic geometries, there is no good notion
of locality, and all spins are strongly coupled to one another.
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FIG. 3. Growth of entanglement after a quench, for an initial
product state of N = 16 sites with § = 1/2 oriented along X.
(a) Entanglement entropy S, vs partition size L and time ¢, for
Archimedean (top) or 2-adic (bottom) partitions. (b) Minimum
entanglement vs s over all possible partitions of size L = 1,2,4, 8
(light to dark solid curves), compared with entanglement for
Archimedean (blue dashed) and 2-adic (red dot-dashed) partitions.
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Our nonlocal spin models generically exhibit quantum
chaos. One indicator is that energy level spacings in the
s = 0 model at half filling (N/2 magnons for S =1/2)
exhibit random-matrix statistics [42,45,46]. But is the
highly connected model at s =0 a fast scrambler? To
probe this question, we consider the out-of-time-order
correlation function (OTOC) [19,47-50]

C(i. j: 1) = (IIS5(0). S;(D)/ 5, (5)

where % ; are local spin operators at sites 7, j, and Sj(t) =
'S5~ In a typical fast scrambler, C approaches its
saturation value on a timescale 7, o log(N)/A, where 4 > 0
is a Lyapunov exponent quantifying the system’s expo-
nential sensitivity to perturbations.

In systems with local interactions, fast scrambling is
precluded by the Lieb-Robinson bound [9,51], which
restricts C <e~@~") to exponentially small values at
distances d = |i — j| outside a light cone with Lieb-
Robinson velocity v, thereby preventing saturation of
OTOCs until a time ¢, o< N. By contrast, known models
for fast scrambling feature random all-to-all couplings
[52,53] and have no sense of spatial locality. Our model
at s = 0 offers an alternative route to fast scrambling:
despite its effective light cone vs graph distance r;;
[Fig. 2(a)(iv)], the early-time growth of OTOCsSs is permit-
ted to reach values C ~ e~ ("0 ~ 1/N% [51] due to the
logarithmic graph diameter ry,, ~1log,(N), where a is a
constant of order unity and v & Jylog(N) because each
spin has log(N) couplings. Subsequent Lyapunov growth
C ~ '/ N therefore allows OTOCS to reach saturation in a
time ¢, ~ alog(N)/A.

A Lyapunov regime, however, is not guaranteed or even
expected in a finite-size system with small local Hilbert-
space dimension, e.g., at spin S =1/2 [54]. We thus
first analyze the s = 0 model semiclassically in the limit
where each site contains a spin S > 1, which is natural to
implement experimentally by letting each S; represent the
collective spin of an ensemble. We consider the averaged

sensitivity
1/ /dS5()\?
ctiin=w((5)) @

for a small initial rotation ¢, of spin i about the z axis,
whose correspondence to the OTOC can be observed by
replacing the commutator in Eq. (5) with a Poisson bracket
[55,56]. We calculate the average in Eq. (6) for an ensemble
in which each spin has a random initial orientation in the xy
plane, the classical limit of an infinite-temperature state at
half filling.

The growth in sensitivity C(¢) generically exhibits two
distinct regimes [20], visible in Fig. 4. The first is a rapid
power-law growth Cg (1) « (Jot)*"i for Jot < 1. A transition
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FIG. 4. Chaos and fast scrambling at s =0. (a) Average
semiclassical sensitivity Cy(#) for N = 4096. (i) C, vs time
for graph distances r;; =0, 1, ..., 6 (blue to red). (ii) Fixed-time
contours of C vs r;;, showing exponential decay of C vs r;; at
early times. Contours are for 0.2 < Jyt < 4 in increments of 0.2.
(b) Lyapunov exponent 1/J (i) and scrambling time Az, (ii) vs N
(blue circles) with fit Az, = alog(N) + f (red dashed). (c¢) MPS
calculations for N = 64, S = 1/2, and open boundary conditions.

to exponential growth occurs for Jyt = 1. Crucial to fast
scrambling is that, by the time the exponential growth begins,
the OTOCs have already reached values C, ~ 1/N*. We
expect the subsequent exponential growth Cy(¢) ~ e* /N* to
yield a value C(z,) ~ 1 at time ¢, ~ alog(N)/A. To verify
this behavior, we first fit the exponential growth for a range of
system sizes to obtain the dependence of the Lyapunov
exponent 4 on N, and then evaluate the time ¢, to reach
Cq(t,) = 1 in terms of A [Fig. 4(b)]. Fitting the dependence
of this semiclassical scrambling time on N yields At, =
alog(N) + p, with a = 1.1(1).

Our semiclassical analysis demonstrates that the corre-
lations developing at early times Jot < 1, before the onset
of exponential growth, are crucial for enabling fast scram-
bling: the weakest correlations should be only algebraically
small (C «x N~%) and not exponentially small in N. We now
apply this insight to investigate whether the quantum model
at $ = 1/2 can be a fast scrambler.

As the essence of fast scrambling is efficient spreading
of information across an exponentially large Hilbert space,
the process is intrinsically difficult to study numerically.
Nevertheless, we calculate the early-time dynamics for
N = 64 sites at half filling using matrix product state
(MPS) techniques [42,57-61], for a system at infinite
temperature with open boundary conditions. We see no
Lyapunov regime, which is not surprising since there is no
small parameter for S = 1/2 at finite N to prevent rapid
saturation of the OTOC [Fig. 4(c)]. However, Fig. 4(c)(ii)
indicates early-time correlations that fall off exponentially
with graph distance r;;, consistent with correlations across
all sites that are algebraically rather than exponentially
small in N—the aforementioned necessary condition for
fast scrambling.
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Our results indicate that fast scrambling is accessible in
sparsely coupled models without disorder, and might
generalize to a wider range of coupling patterns in which
the graph diameter grows logarithmically with system size.
Near-term cavity-QED experiments offer promise for
observing the logarithmic timescale for spin transport at
s =0, as well as the linear-to-treelike transition. In the
large-S regime, where each site contains an atomic ensem-
ble, experiments will benefit from a collective enhancement
in the coherence of interactions. Ultimately, implementa-
tions of the spin-1/2 model—for sufficiently strong atom-
light coupling [42,62]—could test for fast scrambling
[19,42,49,50] at large N ~ 103 in the quantum regime.

Complementarily, future theoretical work may investi-
gate whether a Lyapunov regime can emerge in the spin-
1/2 quantum model through a coarse-graining procedure
that exploits the self-similarity of the coupling pattern.
Measures of entanglement throughout the linear-to-treelike
transition also merit further study, and may enable a more
explicit connection to holography via entanglement wedges
or tensor networks [22,63-68]. Future work may also
explore prospects for harnessing the rapid and deterministic
generation of entanglement for quantum information
processing.
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