
Detecting and Characterizing Bots that Commit Code
Tapajit Dey

Sara Mousavi

The University of Tennessee

Knoxville, TN, USA

tdey2@vols.utk.edu

mousavi@vols.utk.edu

Eduardo Ponce

Tanner Fry

The University of Tennessee

Knoxville, TN, USA

eponcemo@utk.edu

tfry2@vols.utk.edu

Bogdan Vasilescu

Carnegie Mellon University

Pittsburgh, PA, USA

vasilescu@cmu.edu

Anna Filippova

Github

San Francisco, CA, USA

annafil@github.com

Audris Mockus

The University of Tennessee

Knoxville, TN, USA

audris@utk.edu

ABSTRACT
Background: Some developer activity traditionally performed man-

ually, such as making code commits, opening, managing, or closing

issues is increasingly subject to automation in many OSS projects.

Specifically, such activity is often performed by tools that react to

events or run at specific times. We refer to such automation tools as

bots and, in many software mining scenarios related to developer

productivity or code quality, it is desirable to identify bots in order

to separate their actions from actions of individuals. Aim: Find an

automated way of identifying bots and code committed by these

bots, and to characterize the types of bots based on their activity

patterns. Method and Result: We propose BIMAN, a systematic

approach to detect bots using author names, commit messages, files

modified by the commit, and projects associated with the commits.

For our test data, the value for AUC-ROC was 0.9. We also charac-

terized these bots based on the time patterns of their code commits

and the types of files modified, and found that they primarily work

with documentation files and web pages, and these files are most

prevalent in HTML and JavaScript ecosystems. We have compiled a

shareable dataset containing detailed information about 461 bots we

found (all of which have more than 1000 commits) and 13,762,430

commits they created.

KEYWORDS
bots, automated commits, random forest, ensemble model, social

coding platforms, software engineering

ACM Reference Format:
Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan Vasilescu,

Anna Filippova, and Audris Mockus. 2020. Detecting and Characterizing

Bots that Commit Code. In 17th International Conference on Mining Software
Repositories (MSR ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3379597.3387478

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00

https://doi.org/10.1145/3379597.3387478

1 INTRODUCTION
Bot is a classification assigned to a software application that per-

forms automated tasks based on a predefined set of instructions,

and it either runs continuously or is triggered by events associated

with events, time conditions, or manual execution. Examples of

applications that can function as bots are automated scripts, ac-

tivity loggers [?], web crawlers [?], and chat bots [? ?]. A large

number of software developers, teams, and companies use bots to

do various, often repetitive, tasks, because bots can perform those

tasks more efficiently than human users [9, 13?].
In social coding platforms [6?] such as GitHub and BitBucket

a number of bots regularly create code commits, issues, and pull

requests. However, detecting a bot is a challenging task because

on the surface there is no apparent difference between the activity

of a bot and that of a human. Moreover, the message structure,

message content, and linguistic style of a code commit created by a

bot can look very similar to a commit created by a human author.

While there are a number of well-known and active bots, such as

Dependabot
1
and Greenkeeper,

2
not all bots are as popular and

easily recognizable, as we disclose in this work.

Our review of the existing literature did not reveal any systematic

approach for determining whether a given author in a social coding

platform is a bot. Therefore, in this work, we propose BIMAN
— Bot Identification by commit Message, commit Association, and
author Name — a novel technique to detect bots that commit code.

BIMAN is comprised of three methods that consider independent

aspects of the commits made by a particular author: 1) Commit
Message: Identify if commit messages are being generated from

templates; 2) Commit Association: Predict if an author is a bot using

a random forest model, with features related to files and projects

associated with the commits as predictors; and 3) Author Name:
Match author’s name and email to common bot patterns. The code

for BIMAN is available at our GitHub repository.
3

We applied BIMAN to theWorld of Code dataset [15], which has

a collection of more than 34 million authors who have committed

code to a GitHub repository, along with detailed information for

approximately 1.6 billion commitsmade by these authors. Adataset
was compiled with information about 461 bots, detected byBIMAN

1
https://dependabot.com

2
https://greenkeeper.io

3
https://github.com/ssc-oscar/BIMAN_bot_detection [?]

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea T. Dey et al.

and manually verified as bots, each with more than 1,000 commits,

along with detailed information about 13,762,430 commits made by

these bots. This dataset is available at DOIDOI 10.5281/zenodo.361020510.5281/zenodo.3610205 [?].
We also aim to characterize the bots found using BIMAN based

on their activity, that is, the type of files modified and the commit

timestamp, which can provide insights into the type of work they

perform and the programming languages they work with. We dis-

covered four different classes of bots based on the pattern of their

activity over the 24 hours of a day and identified the type of files

commonly edited by bots.

In summary, we make the following contributions in this paper:

1) BIMAN, a generalizable technique combining three different

methods for identifying if a given author is a bot; 2) Characteri-
zation of bots based on their activity patterns; and 3) A labeled

dataset comprised of 461 bots with 13,762,430 commits. We expect

our efforts will be useful in enabling further research in software

development requiring either the inclusion or exclusion of bots.

The rest of the paper is organized as follows: We discuss the mo-

tivation for our work and the specific research questions addressed

in this paper in Section 2. In Section 3, we discuss related works in

the topic. Section 4 focuses on the proposed methods for detecting

and characterizing bots that commit code. In Section 5, we describe

the results we found pertaining to our research questions. Finally,

we discuss the limitations of the current version of our work and

the possible future works in Section 6 and conclude the paper in

Section 7.

2 MOTIVATION AND RESEARCH QUESTIONS
The main motivation behind our bot detection effort is twofold: 1)

Data cleaning: the automated nature of bots can significantly affect

the estimates of team size, the amount of activity, and developer

productivity, which can threaten the validity of such measures and

any decision based on such measures; and 2) Research: enabling

further research into bots.

Many software researchers look at the activity of software devel-

opers for understanding their cultural behavior [3, 7? ? ? ?], esti-
mating team size [?], measuring productivity [?], and studying de-
veloper interaction such as knowledge flowwithin a project [12, 16]

and prediction of build failures [?]. While conducting such studies,

it is important to account for developers that are bots because bots

typically have different activity patterns than humans. For example,

bots may generate physically impossible metrics of activity and

productivity, or could at least significantly bias these estimates.

Furthermore, the desire to stand out can lead to creation of ex-

treme numbers of files or commits via automation (e.g., GitHub

author one-million-repo4 has 1,102,551 commits and the repository

biggest-repo-ever 5
has 9,960,000 commits).

6

However, the first step in adopting a data cleaning scheme to

mitigate the effects of bots in software engineering research is to

find the bots and, as mentioned earlier, we found no systematic

approach for that. Therefore, the first research question we address

in this paper is:

RQ1:How canwe determine if a particular author is a bot?

4
https://github.com/one-million-repo

5
https://github.com/one-million-repo/biggest-repo-ever

6
https://bitbucket.org/swsc/overview/src/master/fun

A logical follow-up to this research question is characterizing

the bots found. Previous methodologies proposed for bot character-

ization are to examine the design and construction of bots [8] and

their intrinsic properties and interaction patterns [14], while we

strive to characterize bots based on activity patterns, for example,

type of files modified and commit timestamp.

In contrast to the existing taxonomy for bots, which is gener-

ated using a theoretical setting, (e.g., Erlenhov et. al. used faceted

analysis [8] and Lebeuf [14] used the taxonomy generation method

proposed by [?]), we select a data intensive technique to character-
ize bots using BIMAN because of the limited information available

other than what can be obtained from their commit activity.

The general assumption about bots is that they primarily per-

form tedious tasks, and we want to investigate the veracity of this

conjecture. In addition, we want to estimate the prevalence of bots

in relation to programming languages, which can highlight the type

of work they perform and the areas with scope for bot adoption.

Therefore, we pose our second research question as:

RQ2: What type of work do bots perform and which pro-
gramming languages do they work with?

3 RELATEDWORKS
The idea of “bots”, or software applications that can imitate human

activity, dates back to 1950 with Alan Turing asking the question

“Can machines think?” [2]. Recent advancements in artificial intelli-

gence, especially natural language processing and machine learning

have led to a proliferation of bots across domains, such as in vir-

tual assistants (Apple’s Siri [22] and Google’s Assistant [18], and

Amazon’s Alexa
7
), education [4, 11], e-commerce [20], customer

service [10], and social media platforms [1].

Open-source software (OSS) communities, and software engi-

neering in general, primarily use bots to reduce the workload of

repetitive tasks. Wessel et. al. [21] studied 351 GitHub projects

with more than 2,500 stars and found that 26% of them use bots,

with bot usage rising since 2013. Bots also support communication

and decision making [17, 19], automate deployment and evalua-

tion of software [5], and automate tasks that would require human

interaction in collaborative software development platforms [13].

However, while these studies highlight how bots are used and

how prevalent bot adoption is in popular OSS projects, they do

not present any generalizable method to detect the bots that are

already present. Wessel et. al. [21] inspected the GitHub account

of a suspected bot and checked if it is tagged as a bot. They also

examined pull request messages, in search of obvious messages, for

instance: “This is an automated pull request to...”. Erlenhov et. al. [8]

and Lebeuf [14] analyzed 11 and 3 well-known bots, respectively,

and neither suggested a formal method of detecting if a given author

is a bot.

In terms of bot characterization, Lebeuf [14] proposed charac-

terizing bots by analyzing 22 facets organized into 3 dimensions:

Environmental (where the bot operates), Intrinsic (internal bot prop-

erties), and Interaction (how the bot interacts with its environment).

Erlenhov et. al. [8] focused on the “DevBots”, i.e., bots that sup-

port software development, and proposed a taxonomy comprising

4 facets: Purpose (general or specialized), Initiation (triggered by

7
https://developer.amazon.com/en-US/alexa

Detecting and Characterizing Bots that Commit Code MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

users and/or system), Communication (how the bot communicates

with other users), and Intelligence (adaptive or static). Dey et. al. [?
] used the dataset shared with this work to categorize bot commits

by the type of file operations (add, delete, or modify), find the dis-

tribution of file types changed, and identify the file types that tend

to get updated together.

4 METHODOLOGY
In this section, we describe the data used for analysis, present

our proposed approach for detecting bots, and describe how we

characterized the bots found.

4.1 Data
The data used for this study was obtained from the World of Code

(WoC) [15] dataset. Specifically, version P which was collected

between May 15, 2019 and June 5, 2019 based on updates/new

repositories identified on May 15, 2019. The data contained infor-

mation on 73,314,320 unique non-forked Git repositories, 34,424,362

unique author IDs, and 1,685,985,529 commits. The author IDs were

represented by a combination of the authors name and email ad-

dress: first-name last-name<email-address>. As an example,

for an author with first name “John”, last name “Doe”, and email

address “myemail@me.com”, the corresponding author ID in the

WoC dataset would be: “John Doe<myemail@me.com>”.
The data is stored in the form of mappings between various Git

objects. For our study we used the mappings between the commit

authors and commits (a2c), commits and filenames (including the

file path) changed by that commit (c2f), commits and the GitHub

projects that commit is associated with (c2p), and commits and

the contents of the commits comprising the commit timestamp,

timezone, and commit message (c2cc).
Our method of extracting information about the authors con-

sisted of the following steps:

(1) Obtaining a list of all authors from the WoC dataset.

(2) Identifying all commits for the authors using the a2c map.

(3) Extracting the list of files modified by a commit, the list

of projects the commit is associated with, and the commit

content for each of the commits for every author using the

c2f, c2p, and c2cc maps, respectively.

4.2 Bot Detection
BIMAN, our proposed technique for detecting bots, comprises

threemethods, 1) Bot Identification byName (BIN), 2) Bot Identifica-

tion by commit Message (BIM), and 3) Bot Identification by Commit

Association (BICA), each relying on distinct data attributes. We dis-

cuss these methods separately rather than as a single model because

they can be used independently and not all of the required data for

each method is available or easily obtainable, and researchers with

access to partial data can still use a subset of BIMAN. An overview

of the BIMAN approach is illustrated in Figure 1.

4.2.1 Identifying bots by name (BIN). Webegan devising a possible

method for detecting bots by comparing names of known bots.

Erlenhov et. al. [8] studied 11 bots, which we took as a starting point

in our investigation. However, since the author IDs in our dataset

consist of name-email combinations, we had to search through the

list of authors for identifying the possible author IDs that could be

related to one of these 11 bots. We did not found an entry matching

3 of the 11 bots: “First-timers”, “Marbot”, and “CssRooster”, and

found a total of 57 author IDs that could be associated with one of

the other bots. We noticed that 25 (37%) of these author IDs had

the substring “bot”. We further searched for other known bots (e.g.,

Travis CI and Jenkins bots) in our dataset and noticed that many of

the author IDs we suspected as bots also had the substring “bot” in

their name or email.

Based on these observations, regular expressions were used to

identify if an author is a bot by checking if the author name or

email has the substring “bot”. However, to avoid including false

positives like “Abbot” or “Botha”, the regular expression searched

for “bot” preceded and followed by non-alpha characters.We further

excluded author IDs that had the word “bot” only in the domain

name of their email addresses (e.g., hr@future-bot.ai), since we

are not convinced that these are always bots. Although matching

regular expressions does not detect all bots, nor is it able to filter

authors trying to disguise themselves as bots, it is a straightforward

solution that does not requires any other data, and can be regarded

as a good starting point.

Creating the Golden Dataset for BIM and BICA: There is no
publicly available golden dataset of bots in social-coding platforms

for training machine learning models. However, we noticed that

the name based bot identification method was very precise, i.e., it

had few false positives. Therefore, we used BIN to create a golden
dataset. Two of this paper’s authors independently analyzed the

author IDs and descriptions, and commit and pull request messages,

when available, to manually verify the authors identified as bots

by BIN and remove the ambiguous cases (less than 1%) based on

consensus. We found a total of 13,150 bot authors via this process.

We also needed to include a set of human authors to complete a

training dataset. We randomly selected 13,150 authors, and again

manually ensured that no bots were in this list. This was our golden
dataset, consisting of 26,300 authors, used for training and testing

the BIM and BICA methods of BIMAN.
Comparing the commit activities of humans and bots: Our

initial assumption was that bots are very active agents and produce

a significantly greater number of commits than humans, therefore,

we could detect bots by evaluating the number of commits. However,

upon investigating the 13,150 bots in the golden dataset, we found
that assumption to be incorrect. While the maximum number of

bot commits was admittedly huge (2, 463, 758), the median number

was only 2, and the first and third quantile values were 1 and 16,

respectively. In contrast, themedian number of human commits was

4, and the first and third quantile values were 2 and 17, respectively.

These observations indicated that the number of commits between

humans and bots is not significantly different.

We hypothesize that the reason behind why many bots have

few commits relates to any of the following reasons: (1) Given that

author IDs consist of a name-email combination, slight variations in

either appear as different authors, when they are not. For example,

a “dotnet-bot” has three name variations that appear as different

authors: beep boop, Beep boop, and Beep Boop, though it has the

same email address: dotnet-bot@microsoft.com. We need to em-

ploy anti-aliasing methods [?] to address this issue. (2) Bots might

have been implemented as an experiment or coursework, and never

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea T. Dey et al.

Figure 1: BIMAN workflow: Commit data pertaining to authors is used for message template detection, activity pattern based
predictions using a random forest model, and name pattern matching. Scores from each method are used by an ensemble
model (another random forest model) that classifies the given author as a bot or not a bot.

used afterwards. For example, we found a bot named “learn.chat.bot”

that most likely belongs in this category. (3) Bots might have been

designed for a project, but were never fully adopted.

4.2.2 Detecting bots by commit messages (BIM). Characteristics
of commit messages can be used to identify an author as a bot. One

approach is to assume that many bots routinely use template mes-

sages as the starting point for the commit message. Consequently,

detecting if the commit messages by an author originate from a

template can be used to identify such bots. Although humans can

also generate commit messages with similar and consistent pat-

terns (e.g., follow a set of software development guidelines), the

key assumption BIM follows is that for a large number of commit

messages, the variability of messages’ content generated by bots is

lower than those generated by humans.

BIM utilizes the document template score algorithm presented in

Alg. 1. Given a set of documents (commit messages), the algorithm

compares document pairs and uses a similarity measure to group

documents. The Similarity procedure represents a method that

computes a “similarity” measure that is of interest [? ? ? ?], with
the percent identity of the aligned commit messages being used for

BIM. A group represents documents that are suspected to conform

to a similar base document, and each group has a single template
document assigned to it and this is the document always used for

comparisons. A new group is created when a document’s similarity

with any template document does not reach the similarity threshold,

kb , and this document is set as the template document for that group.
After all documents are compared, a score is calculated based on

the ratio of the number of template documents and the number of

documents: 1 −
∥T ∥
∥D ∥ , where T is the set of template documents and

D is the set of documents.

In BIM, commit messages were aligned and scored using a

combination of global (Needleman-Wunsch [?]) and local (Smith-

Waterman [?]) sequence alignment algorithms available via the

Python alignment8 library. The similarity threshold, kb , was set
to 40% after testing the accuracy of Alg. 1 on the golden data using

thresholds of 40, 50, 60, and 70%.

8
https://pypi.org/project/alignment

Algorithm 1 Document template score

Inputs: set of documents D and similarity threshold kb
Output: 1 - ratio of number of templates to documents

1: T ← ∅ ▷ set of template documents

2: G ← {∅} ▷ template groups,Gi is associated to template i
3: for d ∈ D do
4: for t ∈ T and d < G do
5: if Similarity(d , t) > kb then
6: Add d toGt
7: end if
8: end for
9: if d < G then
10: Add d to T
11: Add d toGd
12: end if
13: end for
14: return 1 −

∥T ∥
∥D ∥

4.2.3 Detecting bots by files changed and projects associated with
commits (BICA). We calculated 20 metrics using the files changed

by each commit, the projects that commit is associated with, and

the timestamp and timezone of the commits, based on our initial

assumptions about how bots and humans might be different, and

empirical validation of the assumption by observing the differences

in distribution of those variables for bots and humans.

For predicting whether an author is a bot using the numerical

features, we tested several modeling approaches: linear and logistic

regression, generalized additive models, support vector machines,

and random forest. The random forest model performed better than

the other approaches, so we decided to use that approach. We used

the random forest implementation available in the “randomForest”

package in R, with these 20 variables as predictors, to predict if the

author of those commits is a bot. After iteratively selecting and

removing predictors based on their importance in the model, and

measuring the AUC-ROC every time, we found that a model with

only 6 predictors was the best model. The list of predictors is given

in Table 1, along with the description of each variable. We found

Detecting and Characterizing Bots that Commit Code MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

that the timestamp of a commit and any time related measure (e.g.,

how long a bot has been active and at what times of the day it

makes commits) are not important predictors.

In order to tune the random forest model, we used the “train”

function from the caret package in R for performing a grid search

(using a 10 fold cross-validation) on the training data to find the

best values of the model parameters that resulted with the highest

accuracy: “ntree" (number of trees to grow) and “mtry" (number

of variables randomly sampled as candidates at each split). The

optimum values for “ntree” and “mtry” were 100 and 2, respectively.

Table 1: Predictors used in the random forest model

Variable Name Variable Description

Tot.FilesChanged Number of files changed by author

across commits (includes duplicates)

Uniq.File.Exten Number of unique file extensions in

all the author’s commits

Std.File.pCommit Std. dev. of number of files per commit

Avg.File.pCommit Mean number of files per commit

Tot.uniq.Projects Number of unique projects commits

have been associated with

Median.Project.

pCommit

Median number of projects the com-

mits have been associated with (in-

cludes duplicates); We took the me-

dian value, because the distribution of

projects per commit was very skewed,

and the mean was heavily influenced

by the maximum value.

4.2.4 Ensemble model: Based on the fact thatBIN,BIM, andBICA
methods consider different aspects of the authors and commits, we

decided to use an ensemble model, implemented as another random

forest model. The ensemble model in BIMAN utilizes the outputs

of the three methods as predictors to make a final judgement as to

whether an author is a bot or not. The output from BIN is a binary

value (1→ bot, 0→ human), stating if the author ID matches the

regular expressions we checked against; the output from BIM is a

score, with higher values corresponding to a higher probability of

the author being a bot; and the output from BICA is the probability

that an author is a bot.

Creating the TrainingDataset for the ensemblemodel: Recall
the golden dataset was generated using the BIN method, so we did

not used it for training the ensemble model. Instead, we created

a new training dataset partly consisting of 67 bots from which

57 author IDs were associated with 8 bots described in [8] (as

mentioned in Section 4.2.1) and 10 author IDs associated with 3

other known bots that were not in the golden dataset: Scala Steward,
codacy-badger, and fossabot. Also, 67 human authors were included

via random selection and manual validation. The final training data

for the ensemble model had only 134 observations, however, given

that we had 3 predictors, we were reasonably satisfied with it.

4.3 Bot Characterization
Instead of trying to design a taxonomy of bots, as was done in

previous studies [8, 14], we aim to classify bots by their activity

patterns, specifically, by the files modified and the timestamps

of commits, due to the limited information available of the bots.

This characterization was applied to the 13,150 bots in the golden
dataset. We looked at how the number of commits made by a bot

are distributed over the 24 hours of a day, which gives an indication

of what type of work a bot performs.

4.3.1 Characterization of bots by activity hours: By observing the

distribution of commits created by a bot over the 24 hours of a day

using time-of-day histograms for a randomly selected sample of

50 bots identified by BIMAN, and employing a qualitative analysis

technique similar to card sorting, we identified three distinct pat-

terns: 1) Bots were active almost uniformly over the 24 hours of a

day, or, in some cases, they had no activity for a few contiguous

hours and almost uniform activity during the rest of the day; 2)

Bots’ activity patterns resembled the typical activity patterns of

humans very closely, i.e., they were more active during “working

hours”, with a few contiguous peak activity hours, and they had

limited activity over the rest of the day; 3) Bots were active only

for a few specific hours and had almost no activity during the rest

of the day. We named the three types of bot patterns, respectively,

as: “Continuous Activity Bots”, “Synchronous Activity Bots” (their

activity seems to be synchronized with typical human activity), and

“Spike Activity Bots”. There were some bots with activity patterns

that did follow any of the three patterns described, we classified

these bots as “Other Bots”.

We applied this characterization only on the “active” bots, be-

cause bots with very few commits would almost always follow the

“Spike Activity Bots” or “Other Bots” pattern. Moreover, we were

more interested in the “active” bots because they have a greater

influence over the projects and ecosystems they are active in, as

they have more code contribution than the rest. We designated

the bots with more than 1,000 commits as “active” bots, and we

found 454 (3%) bots in the golden dataset matching that criteria. For

the characterization process, we had three of this paper’s authors

independently classify the bots based on their commits’ distribution

over the hours of day and a fourth author compile the results into

a final classification, taking into account the rating stated by the

others and using her own judgement for the ambiguous cases.

4.3.2 Identifying files modified by bots: We also investigated which

programming languages bots worked with and what types of files

they modified. We extracted the file extensions from the files modi-

fied by each commit from the bots in the golden dataset, and used

the linguist 9
tool to obtain an estimated language classification

based on a common open-source model. This information was used

to infer which programming languages a bot worked with.

5 RESULTS
5.1 Qualitative Validation of BIMAN
Before going into the detailed performance evaluation of BIMAN,
we wanted to test how it performs in detecting a few known bots.

9
https://github.com/github/linguist

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea T. Dey et al.

Table 2: Performance of the models in detecting 8 known bots from [8] and 3 other known bots outside the golden dataset

Bot No. of author IDs associ-
ated with the bot

No. of IDs identified as
bot by BIN

No. of IDs identified as
bot by BICA

No. of IDs identified as
bot by BIM

No. of IDs identified as
bot by BIMAN

Dependabot 4 4 4 2 4

Greenkeeper 15 10 13 11 13

Spotbot 1 0 1 1 1

Imgbot 5 1 4 3 4

Deploybot 29 9 20 17 23

Repairnator 1 0 0 1 1

Mary-Poppins 1 0 1 1 1

Typot 1 1 0 1 1

Scala Steward 6 0 6 6 6

codacy-badger 2 0 2 2 2

fossabot 2 0 2 2 2

Total 67 25 (37%) 53 (79%) 47 (70%) 58 (87%)

As mentioned in Section 4.2.1, we obtained a set of 57 author IDs

associated with 8 of the bots described in [8]. In addition, we ex-

amined 10 author IDs associated with 3 well-known bots, Scala
Steward, codacy-badger, and fossabot, that were not in the golden
dataset. The performance of bot detection of BIMAN and each of

its constituent methods is shown in Table 2.

We found that BIMAN identified 58 (87%) out of 67 author IDs

as bots, and 6 out of 9 other IDs could be identified as not actually

being a bot via manual investigation, they were either spoofing

the name or simply using the same name. The 3 other IDs, 2 of

which were associated with “Deploybot”
10 11

, and the other with

“Imgbot”
12
, had 1 commit each, making any decision about them

being bots difficult to make even via manual investigation.

5.2 Performance Evaluation of BIMAN
In this section, we discuss the performance of BIMAN, our pro-
posed approach for bot detection. As mentioned in Section 4.2,

BIMAN is comprised of three independent methods, each looking

at a different aspect of the commit authors and the commits, and an

ensemble model that combines the results from the three methods

for estimating the final prediction. We decided to evaluate the per-

formance of each method and discuss what we learned with each

one in detecting bots that commit code.

5.2.1 Performance of BIN:. We did not use the golden dataset to
validate the accuracy of BIN because this method was used to

construct that dataset (see Section 4.2.1). However, during creation

of the golden dataset, BIN obtained a precision close to 99%, which

indicates that any author considered to be a bot using this method

has a very high probability of being a bot. In general, humans do not

try to disguise themselves as bots. The recall measure is not high,

because BIN missed a lot of cases where the bots do not explicitly

have the substring “bot” in their name. As mentioned in Section 5.1,

we observed an estimated recall of 37% on the set of 67 bot IDs we

manually investigated.

5.2.2 Performance of BIM:. Our proposed method for detecting

whether an author is a bot by applying the document template score

10
deploybot-lm <45803032+deploybot-lm@users.noreply.github.com>

11
DeployBot <deploybot@imqs.co.za>

12
imgbot<imgbothelp@gmail.com>

algorithm, Alg. 1, solely relied on the commit messages. Figures 2a-b

present the ratio of the number of probable templates to the number

of commit messages for the bots and humans in the golden dataset.
Note that bots tend to have a lower ratio than humans. The reason

for both plots having a high template ratio is that if an author has

a single commit message, the ratio is bound to be 1. Over 25% of

the bots in the golden dataset have only 1 commit.

We wanted to find an optimal threshold for the template ratio, so

that the authors, for whom the ratio is lower than the threshold, can

be regarded as bots (the output from the BIM method is (1−ratio),

so a lower value is more likely to be human and vice versa). This

information would be useful for researchers who might only use

this technique to detect whether a given author is a bot, and this

also helps us calculate the performance of this method. The optimal

threshold was found using the “closest.topleft” optimality criterion

(calculated as:min((1 − sensitivities)2 + (1 − speci f icities)2)) us-
ing the pROC package in R. The AUC-ROC value using the ratio

values as predicted probabilities was 0.70, and the optimal values

for the threshold, sensitivity, and specificity were found to be 0.51,

0.67, and 0.63, respectively. We plotted the sensitivity and the speci-

ficity measures in Figure 2c, and highlighted the optimal threshold,

sensitivity, and specificity values for that threshold.

True Positive: The cases where this model could correctly identify

bots were cases where the bots actually used templates or repeated

the same commit message, e.g., a bot named “Autobuild bot on

Travis-CI” used the same commit message “update html,” for
all of the 739 commits it made, and a bot named “Common Work-

flow Language project bot” created 1,373 commits that used the

form: “$USER-CODE: $SOFTWARE configuration files updated.
Change performed by $NAME”. BIM could identify these messages

as coming from the same template message and classify these au-

thors as bots.

False Negative: The cases where this model could not correctly

identify bots were mostly cases where the bots reviewed code

added by humans and created a commit message that added a

few words with the commit message written by a human, e.g., a

bot named “Auto Roll Bot” created commit messages in the form

of: “$COMMIT-SEQUENCE-NUMBER: $LONG-HUMAN-COMMIT-TEXT
$PATTERN”, with one specific example being “3602: Fix errors
in the Newspeak Mac installer genrators. Fix a slip in
platforms/Cross/vm/

Detecting and Characterizing Bots that Commit Code MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

(a) (b) (c)

Figure 2: (a) Ratio of number of detected templates and the number of commit messages for the 13,150 bots in the golden
dataset; (b) Ratio of number of detected templates and the number of commit messages for the 13,150 humans (non-bots) in
the golden dataset; (c) Plot of sensitivity, specificity, and cutoff (threshold), when predicting if an author is a bot using the ratio
of number of detected templates to the number of commit messages.

sqCogStackAlignment.h for the ARM’s getsp. Eliminate
non-spur and stack VMs from the ARM builds (it builds
veerry slowly) Include 64-bit and Mac Pharo VMs in
archives and uploads.-------------------------------”,
with the length of “$LONG-HUMAN-COMMIT-TEXT” typically

ranging between 20 and 50 words. BIM failed to identify this tem-

plate and misclassified this author as a human.

True Negative: The human authors correctly identified had some

variation in the text, with the usual descriptions of change. Some

examples are: “Added a count down controller” and “Enabling
multiport deployments. By mapping ports a little bit
more specific we get all the servers listed in the
server browser”.
False Positive: In contrast, humans who were misclassified as bots

usually had short commit messages that were not descriptive, and

they reused the same commit message multiple times. Example of

typical messages are: “Initial Commit”, “Added File by Upload”,
and “Updated $FILE”.

Our observations support thatBIM is useful in detecting “typical”

bots that modify small parts of a message in every commit, and

“typical” humans who write descriptive commit messages. However,

we can also conclude that it is very hard to identify if an author is

a bot using just one signal.

5.2.3 Performance of BICA:. As mentioned in Section 4.2.3, the

BICA approach uses a random forest model with the measures

listed in Table 1 as predictors for identifying bots. We used the

golden dataset generated using the BIN method (Section 4.2.1) for

training the model and testing its performance. 70% of the data,

selected randomly, was used for training the model and the rest

30% was used for testing it, and the procedure was repeated 100

times with different random seeds.

The model showed good performance, with an AUC-ROC value

of 0.89. The variable importance plot (Figure 3) indicates that the

total number of unique file extensions and the total number of

files changed in all the commits made by an author are the most

important variables.

To understand what each of the predictors tell us about how

the behavior of the bots differ from that of humans, we looked at

Figure 3: Variable importance plot for the random forest
model used to identify bots

their partial dependence plots, see Figure 4. The greater values in

the vertical axis of each plot correspond to a higher probability

of an author being a bot, and the values in the horizontal axis are

the possible predictors’ values. These plots illustrate an empirical

understanding about how the behavior of the bots is different from

humans. We notice that bots tend to have fewer number of unique

file extensions and their commits are associated with fewer number

of different projects, i.e., they tend to operate in one ecosystem.

However, their commits tend to be associated with a greater num-

ber of projects per commit, the projects they commit to are more

popular. Bots typically make larger commits, as we notice that they

tend to have more files per commit on average and a greater number

of total files changed. They are also more consistent in terms of

commit size because the variation in the number of files per commit

is lower. These observations fall in line with our idea of typical bots,

which keep updating a consistent set of files and typically partake

in popular projects.

5.2.4 Performance of the ensemble model: We combined the results

of BIN, BIM, and BICA using an ensemble model, implemented

as a random forest model. The dataset used for training and testing

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea T. Dey et al.

Figure 4: Partial dependence plot for all the predictors in the
random forest model

the performance of this model had only 134 observations, because

of reasons described in Section 4.2.4. We used 80% of the data for

training, and 20% for testing, and repeated the process 100 times

with different random seeds. The performance of this model had

variation because of the small size of the training data. The value

of the AUC-ROC measure varied between 0.89 and 0.95, with a

median of 0.90.�

�

	
To address RQ1, we devised BIMAN, a systematic approach
for detecting bots using information about their names, commit
messages, files modified by the commit, and projects associated
with the commits.

5.3 Estimating the Number of Commit Bots
While we can easily obtain the number and activity of author IDs

that contain the substring “bot”, it is much more difficult to de-

termine the total number of author IDs that, from their string

representation, can not be inferred to be bots. Yet, even a rough

gauge on the prevalence of bots and code committed by bots would

be helpful to have a handle on the fraction of code commit activity

that is automated. To do that we randomly selected a sample of

10,000 authors IDs outside of our datasets used so far (none had the

substring “bot” in their names). BIMAN predicted 1,167 authors

IDs to be bots, and we randomly sampled 100 authors IDs among

those. A subjective assessment conducted by two authors of this

paper discovered at least 9 of these author IDs likely to produce

mostly automated commits. From this, we can obtain a rough es-

timate that approximately 11.67% × 9% ≈ 1% of all authors IDs

who commit code are bots. Therefore, from the total population

of approximately 40 million authors in open-source Git commits,

approximately 400,000 authors are bots. The 9 author IDs that we

identified as bots were found to have created between 10 and 1,500

times more commits than the remaining author IDs. Such high dis-

crepancy strengthens our concerns described in Section 2 that the

empirical analyses relying on measures of developer productivity

can be strongly biased even if the actual bot population represents

a modest 1% of all developer author IDs.

5.4 Shared Dataset of Bot Commits
We have compiled the information about the commits made by

461 bots detected using BIMAN, each of whom have created more

than 1,000 commits, into a single dataset and made it available for

researchers interested in conducting studies on such data, which

includes information about 13, 762, 430 commits made by these

bots. We decided to focus on the more active bots since these bots

would have a much greater effect on any estimate of developer

productivity, team size, etc. and they are the ones that should be

accounted for during any data cleaning process.

The data is stored in a delimited text file (semicolon as the

separator) with the following format in each line: “author_id”;

“commit-sha”; “time-of-the-commit”; “timezone”; “files-modified-by-

the-commit”; “projects-the-commit-is-associated-with”; “commit-

message”. In the case of having multiple projects and files for a

given commit, they are separated by ’,’. The data is available at

Zenodo, through the link provided in Section 1. Additional data

about other authors, along with the likelihood of each being a bot

will be provided upon requests.

5.5 Bot Characterization
5.5.1 Characterizing the bots based on their activity during the day:
As mentioned in Section 4.3, we classified the bots into 3 particular

categories, and an “others” category for bots that do not fall in any

of the previous ones. After going through the categorization process

for the 454 bots with more than 1,000 commits, as mentioned in

Section 4.3, we found 100 (22%) “continuous activity pattern bots”,

162 (36%) “synchronous activity pattern bots”, 128 (28%) “spike

activity pattern bots”, and 64 (14%) bots classified as “others”.

Here we give one typical example from each category, and de-

scribe what type of work they do. This would help in understanding

why these bots have the observed activity pattern, and would en-

able inferring what type of the work a bot does if it falls in one of

the observed categories. We also show how their commit activity

over the 24 hours of a day are distributed using radial activity plots,

where we show what is the relative amount of activity of the bot

in a given hour over its lifetime. The hours between 8 a.m. and 4

p.m. are highlighted in each plot, since these hours are known to

be the typical working hours. The plots in Figure 5 are all examples

of radial activity plots.

1. Continuous Activity Bots: A continuous activity bot shows

almost uniform activity over the 24 hours of a day. A representative

example of this class is the “Currency bot”,
13

which collects up-to-

date exchange rate data every hour and distributes it for free. The

radial activity plot for this bot is shown in Figure 5a. This bot has a

very uniform distribution of activity because it is active throughout

the day. Other bots in this category also perform tasks that require

them to be similarly active throughout the day.

2. Sync Activity Bots: These bots typically work in response to

the activity of a human, which means their activity during the day

closely resembles that of a human. A typical example of the Sync

bot class is the “Pure bot”
14
, which enables automated pull request

workflows, reacting to input from web-hooks, and performing ac-

tions as configured. The radial activity pattern for this bot, as shown

13
https://github.com/currencybot

14
https://github.com/syndesisio/pure-bot

Detecting and Characterizing Bots that Commit Code MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

(a) (b) (c) (d)

Figure 5: Classes of bots identified via activity patterns: (a) The Currency Bot - A Continuous Activity Bot, (b) The Pure Bot -
A Sync Activity Bot, (c) The Paper.js Bot - A Spike Activity Bot, (d) Nur a Bot - An Other Bot

in Figure 5b, is similar to the typical activity pattern of humans

because it reacts in response to humans creating pull requests.

3. Spike Activity Bots: These bots perform actions at a fixed

time of the day or at regular intervals. The type of work they

perform primarily falls into two categories, backup data and update

websites. A prime example of such a bot is the “Paper.js Bot”
15
,

which automatically regenerates the Paper.js website once per day,

and its radial activity plot is shown in Figure 5c.

4. Other Bots: There are a number of bots whose activity pat-

tern do not match any of the categories previously described. A

particular example is the “Nur a Bot”
16
, which is responsible for

updating the NUR repository based on community updates and

NIX repository updates. Nix is a powerful package manager for

Linux and other Unix systems that makes package management re-

liable and reproducible, and NUR is a community repository where

anyone can submit software to be added in. Seeing as this bot does

two different types of work, its activity does not follows a regular

pattern, as can be observed by its radial activity plot in Figure 5d.

Our effort of categorizing bots code sheds light on which specific

activities they do, thus it covers the “Initiation” facet described

in [8]. Broadly speaking, we can infer that the bots that show

continuous activity or spike-like activity are the “active” bots, which

are activated by the system running it. In contrast, the “Synchronous

Activity Bots” are “reactive”, i.e., they work in response to the

activity of a human or another bot. We can not infer anything

specific about the “Other” bots with the information we have.

5.5.2 What types of files do bots modify? Understanding the types

of files these bots work with can give us more insight into the

type of work they perform and which programming languages

they work with. Following the characterization steps as described

in Section 4.3, we discovered the types of files modified by the

13,150 bots in the golden dataset. The type of files modified most

frequently by bots are shown in Figure 6. The frequency values

in the vertical axis of the plots represent the number of bots that

have modified a specific type of file. We notice that bots mostly

work with configuration and documentation related files, along

with HTML and JavaScript files.

15
https://github.com/paperjs-bot

16
https://github.com/nur-bot

Figure 6: The types of files most frequentlymodified by bots

Figure 7: The programming languages bots contribute to

We also tried to investigate which programming languages bots

most frequently work with, so we took the list of languages exam-

ined byWessel et. al. [21] andmeasured howmany of the 13,150 bots

have contributed to one of them. The distribution of bots in different

languages is shown in Figure 7, with the number of bots working

with a particular language shown in the vertical axis. We notice

that, similar to what we observed earlier, HTML and JavaScript

are the languages bots are most active in, which corroborates the

findings of [21].

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea T. Dey et al.�

�

	

Regarding RQ2, we identified four different types of bots based
on their commit activity during the day and found that bots pri-
marily work with configuration and documentation files, with
HTML and JavaScript being the most common programming
languages they contribute to.

6 LIMITATIONS AND FUTUREWORK
Our approach of detecting bots is a first step towards a challenging

task, and there are a number of limitations to our approach and

possible scope for improvement.

6.1 Internal Validity
The biggest problem we faced during designing BIMAN was the

lack of a golden dataset. We only knew about a handful of bots,

which was not enough to design an accurate machine learning

model. We tackled this problem by creating a dataset with one

of the methods we proposed (BIN), and manually validating it.

However, the bots found by BIN can have different characteristics

than the rest of the bots, specifically, ones that may be trying to

hide the fact that they are bots, and our method is not be able to

detect them.

We did not have a ground truth to validate the golden data against
(nor are we aware of the possibility of compiling such data with

absolute certainty), so we had to come up with, what we judged

to be, a reasonable alternative. The golden dataset was manually

curated by two authors of this paper, and the ambiguous cases,

including the bots trying to disguise themselves as humans and

vice versa, were excluded from the golden dataset.
Using the dataset generated by BIN as a golden dataset also

means that we were not able to estimate the recall of BIN with

it. Instead, we had to use a much smaller dataset to estimate its

recall. Similarly, our final ensemble model was also trained with

this smaller dataset, which led to some variation in its performance

(AUC-ROC value varied between 0.89 and 0.95).

Another threat to the effectiveness of our method is that a num-

ber of developers use automated scripts to handle some of their

works, which uses their Git credentials while making commits. This

is a tricky challenge for our method, since the signal from those

authors appears mixed, and depending on what fraction of commits

made using that author’s ID is made by the bots, our method can

fail to detect such authors as bots. Similarly, a few organizational

IDs are sometimes used by bots as well as humans, and we have a

similar issue regarding those IDs as well. We did not address the

problem of multiple IDs belonging to the same author, however, we

are testing different approaches for addressing this issue [?], and,
as a future work, plan on extending BIMAN with this capability.

Provided that an estimated 1% of the commit authors were found

to be bots (Section 5.3), an author detected as a bot by a 90% accurate

model has only only 8.3% chance of actually being a bot (using

Bayes’ Theorem), i.e., we are bound to have false positives.

6.2 Construct Validity
The construct validity threats primarily apply to the BIM approach

we used, since it was designed with specific ideas about how a

bot might work. BIM focuses on identifying bots that authored all

the commit messages it is associated with, independent of whether

they were generated by a template-based approach or not. However,

many developers make use of bots for generating certain commit

messages (re-using the same author ID) and this hybrid classifica-

tion is not addressed in this work. The main factors that give rise to

limitations are the content of commit messages, number of commit

messages per author, and performance of similarity measure.

The performance of BIM depends primarily on the performance

of the similarity measure used to compare commit messages. Com-

mit messages tend to be concise, making it difficult to extract con-

tent characteristics (structural or semantic) that are useful for text

similarity metrics. Humans with consistent message styles become

difficult to differentiate from template-based bot messages. More-

over, if there are few commit messages or many unique messages,

the document template score will not be effective, thus, this ap-

proach works better when enough data is available to almost satu-

rate the document template score. We note that BIM’s performance

will also vary based on the language of the commit messages (e.g.,

Spanish andChinese), and does not supportmultilingual sets of com-

mit messages. BIM’s performance can be improved by using more

effective similarity measures based on natural language process-

ing [?], document embeddings, clustering, and machine learning

models [?].

6.3 External Validity
Our goal in this paper was to identify bots that make commits in

social coding platforms. To that effect, our method of detecting bots

could work for detecting other types of bots, such as pull-request

bots, and chat bots.

7 CONCLUSION
The automated nature of bots can inflate estimates of the amount

of productivity and team size in software projects. Such bias may

invalidate analyses and decisions based on these measures. Fur-

thermore, bot activity may bias the estimates of social networks

linking developers with bots or with other developers with whom

they are not in contact. Bots, therefore, should be excluded from

studies that focus on modeling the behavior of human developers

in OSS projects. In this work we presented a novel approach, BI-
MAN, to detect bots using information from code commits. Our

approach combines three independent models based on pattern

matching, document similarity, and random forest classification. A

significant portion of authors can be identified as bots using our

proposed method, which can make studies of developers based on

code commit data more accurate.

ACKNOWLEDGEMENT
Thework has been partially supported by the following NSF awards:

CNS-1925615, IIS-1633437, and IIS-1901102. Vasilescu has been sup-

ported in part by the NSF awards 1717415, 1901311.

REFERENCES
[1] Norah Abokhodair, Daisy Yoo, and David W McDonald. 2015. Dissecting a social

botnet: Growth, content and influence in Twitter. In Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work & Social Computing. ACM,

839–851.

Detecting and Characterizing Bots that Commit Code MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

[2] M Alan. 1950. Turing. Computing machinery and intelligence. Mind 59, 236 (1950),

433–460.

[3] Sadika Amreen, Bogdan Bichescu, Randy Bradley, Tapajit Dey, Yuxing Ma, Audris

Mockus, Sara Mousavi, and Russell Zaretzki. 2019. A methodology for measuring

FLOSS ecosystems. In Towards Engineering Free/Libre Open Source Software
(FLOSS) Ecosystems for Impact and Sustainability. Springer, Singapore, 1–29.

[] Sadika Amreen, Audris Mockus, Russell Zaretzki, Christopher Bogart, and Yuxia

Zhang. 2019. ALFAA: Active Learning Fingerprint based Anti-Aliasing for cor-

recting developer identity errors in version control systems. Empirical Software
Engineering (2019), 1–32.

[4] Luciana Benotti, María Cecilia Martínez, and Fernando Schapachnik. 2014. En-

gaging high school students using chatbots. In Proceedings of the 2014 conference
on Innovation & technology in computer science education. ACM, 63–68.

[5] Ivan Beschastnikh, Mircea F Lungu, and Yanyan Zhuang. 2017. Accelerating

software engineering research adoption with analysis bots. In 2017 IEEE/ACM
39th International Conference on Software Engineering: New Ideas and Emerging
Technologies Results Track (ICSE-NIER). IEEE, 35–38.

[] Tanmay Bhowmik, Nan Niu, Wentao Wang, Jing-Ru C Cheng, Ling Li, and

Xiongfei Cao. 2015. Optimal group size for software change tasks: A social

information foraging perspective. IEEE transactions on cybernetics 46, 8 (2015),
1784–1795.

[] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. 2018. BUb-

iNG: Massive crawling for the masses. ACM Transactions on the Web (TWEB) 12,
2 (2018), 1–26.

[] Nick Bradley, Thomas Fritz, and Reid Holmes. 2018. Context-aware conversa-

tional developer assistants. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE). IEEE, 993–1003.

[] David Buttler. 2004. A short survey of document structure similarity algorithms.
Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA

(United States).

[] Valerio Cosentino, Javier L Cánovas Izquierdo, and Jordi Cabot. 2017. A systematic

mapping study of software development with GitHub. IEEE Access 5 (2017), 7173–
7192.

[6] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding

in GitHub: Transparency and collaboration in an open software repository. In

Proceedings of the ACM 2012 conference on computer supported cooperative work.
ACM, 1277–1286.

[7] Tapajit Dey, Yuxing Ma, and Audris Mockus. 2019. Patterns of effort contribu-

tion and demand and user classification based on participation patterns in npm

ecosystem. In Proceedings of the Fifteenth International Conference on Predictive
Models and Data Analytics in Software Engineering. ACM, 36–45.

[] Tapajit Dey and Audris Mockus. 2018. Are software dependency supply chain

metrics useful in predicting change of popularity of npm packages?. In Proceedings
of the 14th International Conference on Predictive Models and Data Analytics in
Software Engineering. ACM, 66–69.

[] Tapajit Dey and Audris Mockus. 2018. Modeling relationship between post-

release faults and usage in mobile software. In Proceedings of the 14th International
Conference on Predictive Models and Data Analytics in Software Engineering. ACM,

56–65.

[] Tapajit Dey and Audris Mockus. 2020. Deriving a usage-independent software

quality metric. Empirical Software Engineering 25, 2 (2020), 1596–1641.

[] Tapajit Dey and Audris Mockus. 2020. Which Pull Requests Get Accepted and

Why? A study of popular NPM Packages. arXiv preprint arXiv:2003.01153 (2020).
[] Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan Vasilescu, Anna

Filippova, and Audris Mockus. 2020. A dataset of Bot Commits. (Jan. 2020).

https://doi.org/10.5281/zenodo.3610205

[] Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan Vasilescu, Anna

Filippova, and Audris Mockus. 2020. tapjdey/BIMAN_bot_detection: Initial BI-

MAN model. (March 2020). https://doi.org/10.5281/zenodo.3711620

[] Tapajit Dey, Bogdan Vasilescu, and Audris Mockus. 2020. An Exploratory Study

of Bot Commits. arXiv preprint arXiv:2003.07961 (2020).
[] Phillip George Efthimion, Scott Payne, and Nicholas Proferes. 2018. Supervised

machine learning bot detection techniques to identify social Twitter bots. SMU
Data Science Review 1, 2 (2018), 5.

[8] Linda Erlenhov, Francisco Gomes de Oliveira Neto, Riccardo Scandariato, and

Philipp Leitner. 2019. Current and future bots in software development. In

Proceedings of the 1st International Workshop on Bots in Software Engineering.
IEEE Press, 7–11.

[9] Umer Farooq and Jonathan Grudin. 2016. Human-computer integration. interac-
tions 23, 6 (Oct. 2016), 26–32. https://doi.org/10.1145/3001896

[] Stéphane Frénot and Julien Ponge. 2012. LogOS: An automatic logging framework

for service-oriented architectures. In 2012 38th Euromicro Conference on Software
Engineering and Advanced Applications. IEEE, 224–227.

[] Tanner Fry, Tapajit Dey, Andrey Karnauch, and Audris Mockus. 2020. A Dataset

and an Approach for Identity Resolution of 38 Million Author IDs extracted from

2B Git Commits. arXiv preprint arXiv:2003.08349 (2020).
[] Steven Gianvecchio, Mengjun Xie, Zhengyu Wu, and Haining Wang. 2008. Mea-

surement and classification of humans and bots in Internet chat. In USENIX
security symposium. 155–170.

[] Emitza Guzman, David Azócar, and Yang Li. 2014. Sentiment analysis of commit

comments in GitHub: An empirical study. In Proceedings of the 11th Working
Conference on Mining Software Repositories. 352–355.

[] Sven Helmer. 2007. Measuring the structural similarity of semistructured docu-

ments using entropy. In Proceedings of the 33rd international conference on Very
large data bases. VLDB Endowment, 1022–1032.

[10] Mohit Jain, Ramachandra Kota, Pratyush Kumar, and Shwetak N Patel. 2018.

Convey: Exploring the use of a context view for chatbots. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. ACM, 468.

[] Andreas Karwath and Kristian Kersting. 2006. Relational sequence alignment.

MLG 2006 (2006), 149.
[11] Alice Kerry, Richard Ellis, and Susan Bull. 2008. Conversational agents in e-

learning. In International Conference on Innovative Techniques and Applications of
Artificial Intelligence. Springer, 169–182.

[12] Noureddine Kerzazi and Ikram El Asri. 2016. Knowledge flows within open source

software projects: A social network perspective. In International Symposium on
Ubiquitous Networking. Springer, 247–258.

[13] Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. 2017. Software

bots. IEEE Software 35, 1 (2017), 18–23.
[14] Carlene R Lebeuf. 2018. A taxonomy of software bots: Towards a deeper under-

standing of software bot characteristics. Ph.D. Dissertation.
[15] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.

2019. World of Code: An infrastructure for mining the universe of open source

VCS data. In IEEE Working Conference on Mining Software Repositories. papers/
WoC.pdf

[16] Audris Mockus. 2009. Succession: Measuring transfer of code and developer

productivity. In Proceedings of the 31st International Conference on Software Engi-
neering. IEEE Computer Society, 67–77.

[] Martin Monperrus. 2019. Explainable software bot contributions: Case study

of automated bug fixes. In 2019 IEEE/ACM 1st International Workshop on Bots in
Software Engineering (BotSE). IEEE, 12–15.

[] Saul B Needleman and Christian D Wunsch. 1970. A general method applicable

to the search for similarities in the amino acid sequence of two proteins. Journal
of molecular biology 48, 3 (1970), 443–453.

[] Christian Paul, Achim Rettinger, Aditya Mogadala, Craig A Knoblock, and Pedro

Szekely. 2016. Efficient graph-based document similarity. In European Semantic
Web Conference. Springer, 334–349.

[17] Sara Pérez-Soler, Esther Guerra, Juan de Lara, and Francisco Jurado. 2017. The

rise of the (modelling) bots: Towards assisted modelling via social networks. In

Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering. IEEE Press, 723–728.

[] Temple F Smith, Michael S Waterman, et al. 1981. Identification of common

molecular subsequences. Journal of molecular biology 147, 1 (1981), 195–197.

[18] Nick Statt. 2016. Why Google’s fancy new AI assistant is just called ‘GoogleâĂŹ.

Retrieved March 21 (2016), 2017.

[19] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting developer produc-

tivity one bot at a time. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 928–931.

[20] NT Thomas. 2016. An e-business chatbot using AIML and LSA. In 2016 Interna-
tional Conference on Advances in Computing, Communications and Informatics
(ICACCI). IEEE, 2740–2742.

[] Muhammad Usman, Ricardo Britto, Jürgen Börstler, and Emilia Mendes. 2017.

Taxonomies in software engineering: A systematic mapping study and a revised

taxonomy development method. Information and Software Technology 85 (2017),

43–59.

[21] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S Wiese, Ivanil-

ton Polato, Ana Paula Chaves, and Marco A Gerosa. 2018. The power of bots:

Characterizing and understanding bots in OSS projects. Proceedings of the ACM
on Human-Computer Interaction 2, CSCW (2018), 182.

[22] Norman Winarsky, Bill Mark, and Henry Kressel. 2012. The development of Siri

and the SRI Venture Creation Process. SRI International, Menlo Park, USA, Tech.
Rep (2012).

[] Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. 2009. Predict-

ing build failures using social network analysis on developer communication.

In Proceedings of the 31st International Conference on Software Engineering. IEEE
Computer Society, 1–11.

[] Minghui Zhou and Audris Mockus. 2010. Developer fluency: Achieving true

mastery in software projects. In Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software engineering. ACM, 137–146.

