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Spatial Iterative Learning Control
for Multi-material Three-
Dimensional Structures
Iterative learning control (ILC) is a powerful technique to regulate repetitive systems. Addi-
tive manufacturing falls into this category by nature of its repetitive action in building three-
dimensional structures in a layer-by-layer manner. In literature, spatial ILC (SILC) has
been used in conjunction with additive processes to regulate single-layer structures with
only one class of material. However, SILC has the unexplored potential to regulate additive
manufacturing structures with multiple build materials in a three-dimensional fashion. Esti-
mating the appropriate feedforward signal in these structures can be challenging due to
iteration varying initial conditions, system parameters, and surface interaction dynamics
in different layers of multi-material structures. In this paper, SILC is used as a recursive
control strategy to iteratively construct the feedforward signal to improve part quality of
3D structures that consist of at least two materials in a layer-by-layer manner. The
system dynamics are approximated by discrete 2D spatial convolution using kernels that
incorporate in-layer and layer-to-layer variations. We leverage the existing SILC models
in literature and extend them to account for the iteration varying uncertainties in the
plant model to capture a more reliable representation of the multi-material additive
process. The feasibility of the proposed diagonal framework was demonstrated using simu-
lation results of an electrohydrodynamic jet printing (e-jet) printing process.
[DOI: 10.1115/1.4046576]
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1 Introduction
Iterative learning control (ILC) is a powerful technique that has

been widely used in systems with repetitive characteristics, even
those that lack real-time feedback signals, in order to achieve
(near) perfect output tracking of a reference trajectory over a
short number of iterations [1]. Temporal ILC uses past information
in the time domain in order to build an appropriate feedforward
control signal with the aim of ensuring convergence of the tracking
error from iteration to iteration. Previous studies [2–4] have consid-
ered ILC architectures that address bounded iteration varying model
parameters and provide convergence guarantees to a bounded
neighborhood of a nominal system over finite iterations [3,4].
However, these methods have primarily been considered for tempo-
ral rather than spatial dynamics.
Recent work in the literature has focused on extending temporal

ILC to the spatial domain such that the system parameters are all
defined based on spatial coordinates [5]. In these systems, the
ILC algorithm aims to decrease the spatial tracking error e(x, y)
from iteration to iteration. Spatial ILC (SILC) has been demon-
strated for topography control in additive manufacturing (AM)
[5]. Through AM, a 3D structure can be generated by the sequential
addition of materials on the surface [6]. Due to the wide range of
materials that can be used in AM processes, AM-fabricated
devices have been made in diverse applications including flexible
electronics [7], biological sensors [8], and optical filters [9].
These devices can be fabricated layer-by-layer, depositing
uniform layers of multiple materials as shown in Fig. 1.
Importantly, the performance of such devices depends on the uni-

formity and consistency of the layers; as such, the fabrication process
must be able to provide strict adherence to the desired design require-
ments through robust control of the process. However, the lack of

real-time monitoring devices that can capture in situ measurements
has been a challenge for most AM systems, and in particular
(μ-AM) systems [10], making online measurement of the output
signal difficult in real-time. The output and subsequent error mea-
surement are only available after the material is placed on the sub-
strate using distributed sensing devices. Due to the challenges in
real-time monitoring and control, SILC provides an appealing
option for recursive control during the additive process.
In recent years, the SILC framework has been extended to con-

sider iteration varying dynamics as well as model uncertainties
[11]. The proposed iteration varying system in Ref. [11] enables
robust monotonic convergence for a 2D, run-to-run e-jet printing
process based on Lyapunov stability criteria. Despite the progress
in the area of spatial dynamics, current SILC algorithms do not con-
sider multiple sets of spatial dynamics due to multi-materials nor
surface variations in multi-layer structures. Multiple layers lead to
initial condition variability due to previous layer dynamics.

Fig. 1 Demonstrative multi-material 3D structure fabricated by
AM. n1 and n2 are two arbitrary build materials.
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Furthermore, in multi-material structures, the change in spatial
dynamics dues to the different materials requires a MIMO SILC
approach.
This work presents a new spatial learning control framework for

multi-material 3D constructs that incorporate model uncertainties
and spatially varying dynamics for multiple plant models. We
propose a MIMO configuration that incorporates vertical learning
through consideration of previous layer spatial dynamics [12] and
horizontal learning from part to part to derive a diagonal SILC
framework. Simulation results using a model of an electrohydrody-
namic jet (e-jet) printing process is used to demonstrate the feasibil-
ity of the proposed diagonal SILC framework.

2 Preliminaries
In this section, preliminary notations and definitions that will be

used in the upcoming sections will be defined.
The finite set of Zn for an odd and positive integer n with Z1 ≜

{0} is defined as
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A generic scalar function p(x, y) sampled at discrete values
(x, y) ∈ ZM × ZN can be combined in the following matrix form,
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A vectorization operator ν(.) can be applied to a matrix P ∈ Rm×n

to convert the matrix into a column vector form P ∈ Rmn×1 given as

P ≜ ν(P) = vec(PT )

where vec(.) is the conventional column-wise vectorization
operator.
The notation ≼ and ≽ are element-wise inequalities such that

A ≼ B =⇒ [A]ij ≤ [B]ij ∀ i, j

The Frobenius norm of a matrix A ∈ RM×N is defined as

‖A‖ =
��������������∑M
i=1

∑N
j=1

|aij|2
√√√√

3 General Iteration Varying Systems
Models describing the sequence of material addition and height-

map evolution (illustrated in Fig. 2) have been introduced in Refs.
[5,13]. In these models, the printed topography at layer l, gl(x, y) is
the sum of previous layer topography gl−1(x, y) and newly added
material Δgl. It is assumed that the added material will spread on
the previous layer to a finite extent [14]. The simplified system
model can be described using the following 2D convolution format,

gl(x, y) = gl−1(x, y)

+
∑
m∈ZM
n∈ZN

h(x,y)l−1 (x − m, y − n) ∗ fl(m, n) (1)

where fl is the input signal, hx,yl−1(m, n) is the response of the build
material to an impulse applied at coordinate (x, y) ∈ ZM × ZN and
layer l− 1. It is assumed that hl is an uncertain, spatially varying

interval parameter, bounded by invariant upper and lower bounds
such that h(x,y)l ∈ [hl, hl]. It should be mentioned that the model
described in Eq. (1) does not capture drop coalescence effects.
The system defined in Eq. (1) can be transferred into the lifted
form Eq. (2) through the use of a vectorization operator defined
in Sec. 2. A full description of the lifted domain conversion can
be found in Ref. [12]. For brevity, we present the lifted form of
Eq. (1) in the following equation,

gl = gl−1 +H(gl−1)f l (2)

with f l ≜ ν(fl(x, y)) ∈ RMN×1, gl ≜ ν(gl(x, y)) ∈ RMN×1, andH(gl−1)
∈ RMN×MN are the spatially varying plant matrix associated with the
impulse response h(x,y)l−1 , which is also a member of the following
matrix set:

HI = {H ∈ RMN×MN |H ≼ H ≼ H}

H and H are invariant lower and upper bounds associated with
H(gl−1), respectively. We will use Hl−1 instead of H(gl−1) for
brevity. The following assumptions are considered for the
system spatial dynamics described in Eq. (2).

A1: The spreading behavior on a flat surface is different from
that on a non-flat surface [12].

A2: The plant spatial dynamics are causal in the temporal and
noncausal in the spatial domain, meaning that the applied
input at a given position will affect the output in the
advanced layers and surrounding coordinates [5,12].

A3: The plant matrix is considered bounded input, bounded
output stable, meaning that there exist positive finite
scalars α and β such that given a bounded input, ‖fl(x, y)‖
< α, the resulted output will always be bounded, ‖gl(x, y)‖
< β, ∀(x, y) ∈ RM×N .

Assumptions A1 and A2 denote that the spatial dynamics of
a given plant (Hl−1) are a function of previous layer topography
(gl−1) and the surrounding environment. Assumption A3 holds for
the additive system described in Eq. (2), given that material addition
to the substrate is bounded by a pre-defined volume of available
material. Furthermore, because of actuator constraints, the input
in Eq. (2) is limited by an upper bound α [11]. Given the interval
plant (positive and bounded), Hl−1, and bounded input, the output
will be always bounded.
For a general additive manufacturing process, we are interested in

controlling the heightmap increment with respect to the previous
layer described as

Δgl ≜ gl − gl−1 =Hl−1f l, Hl−1 ∈ HI (3)

where H I is the interval set associated with Hl−1.

3.1 Multi-plant System Dynamics. Equation (3) can be
extended to combine multi-plant dynamics into a single MIMO

Fig. 2 Schematic of AM spatial dynamics described in Eq. (1)
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architecture. As an example, we will consider the fabrication of a
two-material construct, n1 and n2, with repeated topology (see
Fig. 3). It is assumed that the devices in Fig. 3 are printed on a
thin pad of n2 material to maintain consistency in the two spatial
systems n1 on n2 and n2 on n1. Although we assume that the
spatial dynamics for a given material are invariant to the layer
index, we must still apply the noncausality assumption of A2 to
guarantee that the spatial dynamics of a given layer are a function
of previous layer topography and build material. As a result, we
consider two plant matrix Hn1 ,n2

l−1,j and Hn2 ,n1
l−1,j that describe spreading

of the n1 and n2 materials on the corresponding previous layer
topographies for the bi-material structure in Fig. 3.
Similar to Eq. (3), the spatial dynamics for the bi-material struc-

ture described in Fig. 3 can be expressed as

Δgn1l,j
Δgn2l,j

[ ]
=

Hn1,n2
l−1,j 0

0 Hn2 ,n1
l−1,j

[ ]
fn1l,j
fn2l,j

[ ]
Hn1,n2

l,j ∈ HIn1 ,n2

Hn2,n1
l,j ∈ HIn2 ,n1

(4)

with Δgil,j and f il,j denoting heightmap increment and the control
input of the build material i∈ [n1, n2], in an layer l and iteration
(device) j. It is assumed that the total number of layers and iterations
are limited such that l= 1, 2, …, L and j= 1, 2, …, J. In addition,
HIn1 ,n2 and HIn2 ,n1 are the interval sets corresponding to Hn1,n2

l,j and
Hn2 ,n1

l,j .
To aid in analysis and learning filter derivation, we define a

nominal system plant matrix for each build material. These matrices
are constructed from the impulse response of the desired topogra-
phy at a given layer l,

Hn1,n2
0 =Hn1 ,n2 (gn2dl ) Hn2 ,n1

0 =Hn2,n1 (gn1dl ) (5)

where gidl is the desired topography of the build material i∈ [n1,
n2] at layer l. If gidl is a flat topography, then the nominal matrices
are BCCB [5]. The BCCB property of a matrix makes fast
Fourier transforms (FFT) possible which has been shown to be
computationally less expensive in calculating matrix products
and norms [5].
In multi-material and multi-layer structures, the following

assumption holds for the plant matrix along with the assumptions
described in A1−A3.

A4: Plant spatial dynamics (e.g.,Hn1,n2
l−1,j ) is a function of the print-

ing material (e.g., n1), the build material of the previous
layer (e.g., n2), and previous layer topography (gn2l−1,j).

Assumption A4 ensures that the surface energy of different
materials is captured through the spatial dynamics that describe
the spreading of a sessile drop as a function of the interactions
induced by a particular material combination and orientation.

To consider an arbitrary number of build materials, Eq. (4) can be
extended to a general multi-material model,

Δgl,j ≜ Hl−1,jf l,j

Δgl,j ≜

Δgn11,j
Δgn22,j
..
.

Δgnll,j

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ f l,j ≜

fn11,j
fn22,j

..

.

fnll,j

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

(6)

where nl is the build material of layer l andHl−1,j is a block-diagonal
plant matrix describing the spreading of the nl material on the pre-
vious layer topography (gnl−1l,j ) through the diagonal elements
Hnl ,nl−1

l−1,j .

4 Diagonal SILC Design for Multi-Material Structures
Consider the multi-layer structure shown in Fig. 3 with two dif-

ferent spatial plant dynamics. The components of the SILC frame-
work can be found below. For this example, we assume that all
devices in the same layer (and hence same material) have the
same desired heightmap increment, Δgdl .

Δel,j ≜
Δen1l,j
Δen2l,j

[ ]
, Δgdl ≜

Δgn1dl
Δgn2dl

[ ]
, H0 =

Hn1 ,n2
0 0

0 Hn2,n1
0

[ ]

Δgl,j ≜
Δgn1l,j
Δgn2l,j

[ ]
, Hl−1,j =

Hn1 ,n2
l−1,j 0

0 Hn2,n1
l−1,j

[ ]
f l,j ≜

fn1l,j
fn2l,j

[ ]

with Δel,j ∈ R2MN×1, Δgdl ∈ R2MN×1, Δgl,j ∈ R2MN×1, f l,j ∈ R2MN×1,
and Hl−1,j ∈ R2MN×2MN .
Leveraging the compact form presented above, the error in

heightmap increment can be defined as

Δel,j ≜ Δgdl − Δgl,j = Δgdl −Hl−1,jf l,j (7)

where Δgl,j is replaced using the structure in Eq. (3).
Combining the feedforward signal and corresponding error illus-

trated in Fig. 4 yields a SILC update law of the form,

f l,j+1 = L fl,j f l,j + Lel,jΔel,j (8)

with L fl,j and Lel,j block diagonal matrices of the input and error
filters defined as

L fl,j =
Ln1

fl,j
0

0 Ln2
fl,j

[ ]
, Lel,j =

Ln1
el,j

0
0 Ln2

el,j

[ ]

Li
fl,j
and Li

el,j
are the input and error filters corresponding build mate-

rials i∈ [n1, n2]. Note that the update law in Eq. (8) is based on the
error in each layer, Δel,j, not the total error. Layer error was selected
as the desired goal to ensure layer repeatability and consistency,
which is often a design objective in additively manufacturing
constructs.
Substituting Eq. (7) into Eq. (8) yields the SILC algorithm that

will be used throughout the paper.

f l,j+1 = (L fl,j − Lel,jHl−1,j)f l,j + Lel,jΔgdl (9)

The term diagonal learning stems from the inclusion of information
from both previous iterations and previous layers within the update
law. This has been illustrated in Figs. 3 and 4.

4.1 Design of Learning Filters. There are many different
methods that can be employed from temporal ILC to design the
input and error filters in Eq. (9) such as proportional type ILC,
model inversion, and Q-filter design [15]. Here, we implement a
norm optimal-SILC (NO-SILC) algorithm [5] to design the L fl,j

Fig. 3 Diagonal SILC: learning occurs in the horizontal direction
from a previous device and vertical direction to incorporate
topography. l denotes layer index and j denotes iteration
(device) index.
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and Lel,j matrices. NO-SILC offers more controllability in terms of
the convergence behavior and final error. The quadratic cost func-
tion that is minimized to solve for the NO-SILC filters is defined as

J = ΔeTl,j+1
Qn1 0

0 Qn2

[ ]
Δel,j+1 + fTl,j+1

Sn1 0

0 Sn2

[ ]
f l,j+1

+ (f l,j+1 − f l,j)T
Rn1 0

0 Rn2

[ ]
(f l,j+1 − f l,j)

(10)

where Qn1 and Qn2 ∈ RMN×MN , Sn1 and Sn2 ∈ RMN×MN , Rn1 and
Rn2 ∈ RMN×MN are symmetric positive definite matrices that penal-
ize the layer error, input signal, and change in the input signal from
iteration to iteration, respectively. We will consider the same
weighting matrices for both systems such that Qn1 =Qn2 =Q,
Rn1 = Rn2 = R, and Sn1 = Sn2 = S. The weighting matrices are
defined here as identity matrices multiplied by positive scalars q,
s, and r such that Q= qI, S= sI, and R= rI.
Given the assumption of iteration invariant desired reference tra-

jectories, we can relate two successive errors (iteration to iteration)
within the same layer using the following equation

Δel,j+1 = Δel,j +Hl−1,jf l,j −Hl−1,j+1f l,j+1 (11)

Substituting Eq. (11) into Eq. (10) and setting the partial derivatives
of J with respect to fn1l,j+1 and f

n2
l,j+1 equal to zero, the following rela-

tionships can be obtained for the filters,

Ln1
fl,j
= ((S + R) +H

Tn1 ,n2
l−1,j+1QHn1,n2

l−1,j+1)
−1

× (R +H
Tn1 ,n2
l−1,j+1QHn1,n2

l−1,j )
(12a)

Ln1
el,j = ((S + R) +H

Tn1 ,n2
l−1,j+1QHn1,n2

l−1,j+1)
−1(H

Tn1 ,n2
l−1,j+1Q) (12b)

Ln2
fl,j
= ((S + R) +H

Tn2 ,n1
l−1,j+1QHn2 ,n1

l−1,j+1)
−1 × (R +H

Tn2 ,n1
l−1,j+1QHn2 ,n1

l−1,j )

(12c)

Ln2
el,j

= ((S + R) +H
Tn2 ,n1
l−1,j+1QHn2,n1

l−1,j+1)
−1(H

Tn2 ,n1
l−1,j+1Q) (12d)

The learning filters in Eqs. (12a) to (12d ) are iteration varying
matrices that depend on previous layer topography as well as exist-
ing material combinations.
If the update law in Eq. (9) converges to some finite input value

and the iteration varying spatial dynamics converge to the nominal
model such that

lim
l�∞
j�∞

f l,j = f∞, lim
l�∞
j�∞

Hl,j =H0, lim
l�∞
j�∞

L fl,j =L f0 , lim
l�∞
j�∞

Lel,j =Le0

where L f0 and Le0 are based on the nominal plant model, the con-
verged input would tend toward,

f∞ = (I−L f0 +Le0H0)
−1Le0Δgdl (13)

Under these conditions, the performance of the system can be
obtained by substituting Eq. (13) into Eq. (7) as following

Δe∞ = (I−Hl
0[(H

lT
0 Q)−1S+Hl

0]
−1)Δgdl (14)

The convergence behavior and performance of NO-SILC can be
tuned by the weighting coefficients in the filters [5,11].
Extending the learning filters in Eqs. (12a)–(12d ) to the general

linear iterative model described in Eq. (6) results in

Lnl
fl,j
= ((S + R) +H

Tnl ,nl−1
l−1,j+1QHnl ,nl−1

l−1,j+1)
−1

× (R +H
Tnl ,nl−1
l−1,j+1QHnl ,nl−1

l−1,j )
(15a)

Lnl
el,j

= ((S + R) +H
Tnl ,nl−1
l−1,j+1QHnl ,nl−1

l−1,j+1)
−1(H

Tnl ,nl−1
l−1,j+1Q) (15b)

5 Simulation Setup
In this section, we investigate the proposed diagonal SILC frame-

work through a simulation study using a model of an electrohydro-
dynamic jet (e-jet) printing process. E-jet achieves material
deposition using an electrostatic field, allowing for superior resolu-
tion and build material diversity. Drop-on-demand e-jet is achieved
using synchronized substrate motion and high-voltage pulses
applied to either nozzle of a bi-material e-jet printer, with a sche-
matic shown in Fig. 5. Varying the rectangular wave pulsewidth
allows for variation in printed drop size.
This simulation assumes a known relationship between pulse-

width and drop size so that the control input can be taken as drop
size rather than pulsewidth. Controlled topography evolution
requires topography updates, so printing is performed in a cycle
of (1) printing an array of drops of varying sizes at discretized coor-
dinates, (2) curing (solidifying) the drops, and then (3) scanning the
solid surface to obtain a heightmap measurement of topography
[12]. This print-cure-scan cycle is depicted in Fig. 6(a).
For this simulation, the device structure has the topology of Fig. 1

with layer heights of 100 nm for n1 and 120 nm for n2. Each layer is
printed in a single printing pass, so the build material alternates
between n1 and n2 at each new layer.
For the first (bottom) layer in the simulation, composed of mate-

rial n1, the underlaying surface (l= 0) is assumed to be a pre-layer of
cured n2 so that first-layer surface interactions with other substrate
materials need not be considered.

Fig. 4 Diagonal SILC, each layer has its own SILC loop and each device is one iteration. l is the
layer index and j is the iteration (device) index.w is the iteration shift operator, fj+1=wfj, n1 and n2
are the build materials corresponding to layer l and l+1. The update filters are iteration varying.
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Output heightmaps are measured relative to the top of the flat
pre-layer, and the domain is 256 × 256 pixels. The pitch size is
considered 1 μm for both materials. The desired output, gdl at
layer l is uniform except for the four outer rings of pixels,
which are reduced by half to better represent material dropoff at
edges.
Heightmap evolution from layer to layer is simulated according

to Eq. (1), as depicted in Fig. 6. The gl dependence on the convolu-
tion kernel h(x,y)l−1 is modeled using the multivariate regression model
(method M2) of Ref. [13]. In this model, numerical simulations of
drop spreading to equilibrium on non-flat surfaces are pre-computed
for a given equilibrium contact angle of the build material. Subse-
quently, an ordinary least squares multivariate linear regression is
performed, taking the variation in the nine elements of each 3 × 3
pixel crop of the heightmap g as the predictor variables and nine ele-
ments of each measured 3 × 3 pixel impulse response h as the
response variables. The fitted regression model is used to evaluate
the spatially varying impulse response h(x,y)l−1 for the 3 × 3 pixel
crop of the heightmap gl centered at the pixel coordinates (x, y).
Note that the magnitude of gl does not affect the impulse response
h(x,y)l−1 ; only the local variation in gl about (x, y) affects h

(x,y)
l−1 .

Since there are two material combinations (n1 printed on n2 and
n2 printed on n1), two regression models must be specified. For n1
printed on n2, an equilibrium contact angle of 10 deg is used in the
numerical simulations of drop spreading, whereas 5 deg is used for
n2 printed on n1.
The nominal models hn10 and hn20 , corresponding to the printing of

n1 and n2, are calculated using the regression models’ prediction of

spreading on reference topographies gd, denoted hn10 = h(gn2d ) and
hn20 = h(gn1d ), and shown in Fig. 7. In contrast, examples of
impulse responses predicted on non-flat surfaces are shown in
Fig. 8. The nominal plants in Eq. (5) can be calculated based on
the BCCB matrix construction. Following the model of Ref. [13],
we take a 2D array of cube roots of drop volumes to be the input
denoted fl,j.
Both the input f and output g are heightmaps, but only g repre-

sents a scanned topography. Choosing the same height units for
both f and g makes h, and thus the system, dimensionless.
In addition to the deterministic spatial variation in the system

described above, stochastic noise is added to the simulation.
For n1 printed on n2, the deterministic term is hn1 ,n2 (gn2l−1,j), and the

additive uncertainty ĥ
n1 is used, giving hn1 ,n2l,j = hn1 ,n2 (gn2l−1,j) + ĥ

n1 ,

and for printing n2 on n1: h
n2,n1
l,j = hn2,n1 (gn1l−1,j) + ĥ

n2 . The additive

uncertainty is normally distributed as ĥ
i
=N (0, σ2i )1(3, 3), where

σi is the standard deviation of the elements of the nominal model
hi0, 1(3, 3) is a 3 × 3 matrix of 1’s for i∈ [n1, n2].
From the impulse responses h, the plant matrices Hl,j in Eq. (4)

are calculated from the lifted domain conversion defined in
Sec. 3. The impulse response bounds are chosen such that hi = hi0 −
σi1(3, 3) and h

i
= hi0 + σi1(3, 3) for i∈ [n1, n2]. Similarly, the plant

matrix bounds H and H are calculated from hi and h
i
by the BCCB

construction method described in Ref. [5].

scanprint cure

substrate
path

convolution with unique 
kernel for each pixel

drop size array

solid surface solid surface

surface 
increment*

switch material

(a)

(b)

Fig. 6 Heightmap evolution system. (a) Controlled device fabri-
cation follows the print-cure-scan cycle, with a change in build
material at each new layer. Subscript k represents a layer and
material combination. (b) Evolution of the solid surface topogra-
phy as a heightmap signal is modeled as the integration of a con-
volution of input fwith kernel h. h is a function of local variation in
g for each pixel in g.

Fig. 7 Nominal model. At left is a 3×3 pixel crop of a layer’s ref-
erence topography signal away from the edges so that it is
uniform in height. At right is the model’s corresponding
impulse response for printing the alternate material on the flat
surface.

Fig. 5 Schematic of multi-material e-jet system. High-voltage
pulse actuation can be independently applied to either nozzle
to eject a drop ofmaterial with drop volume related to pulsewidth.

Fig. 8 Effect of non-flat surface. At left is a 3×3 pixel crop of a g
signal, indexed by material. The crop is taken near an edge to
show the effect of significant surface variation. At right is the
spatially varying impulse response local to a certain pixel (x, y)
for printing the alternate material at the location corresponding
to the crop at left.
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6 Simulation Results
In this section, the simulation results of the system described in

Sec. 3 with repeated topology such as Fig. 1 using diagonal
NO-SILC are investigated. A multi-layer structure with four
layers of the n1 material, and three layers of the n2 material is con-
sidered as shown in Fig. 1. For analysis and ease in the implemen-
tation, we consider the learning filters in Eqs. (12a)–(12d ) based on
the nominal dynamic model (L f0 and Le0 ), while the update law
Eq. (9) will still use the iteration varying plant dynamics Hl−1,j.
It is important to note that the inputs of the first iteration at layers

1 and 2 are zero, fn11,1 = 0 and fn22,1 = 0, implying that there is no prior
knowledge on the appropriate inputs for these materials. This results
in no material deposition during the first iteration of layers 1
and 2. However, the input of the first device (j= 1 at other layers,
l> 2, comes from the last device in the previous layer with the
same material, such that fl,1= fl−2,J, where J is the total number
of iterations per layer as shown in Fig. 3. A normally distributed
white noise signal has been added to the input signal, with the
mean and variance of 0.00 and 0.01 μm, to better represent the
experimental environment. The signal-to-noise ratio is approxi-
mately 12 for the n1 and 26 for the n2 material for the mean value
of the converged input. Furthermore, the input will be constrained
to positive definite values to ensure an additive process. The set
of simulations was run for 30 iterations (devices) using MATLAB

for different values of s and r. In all simulations, the parameter q
was set equal to one (q= 1).
The average height increment and the corresponding desired

height increment for each material class are presented in Fig. 9.
The outputs from the layers of a given material all converged to
roughly the same offset from the desired height increment where
better convergence is observed in higher layers. In additive manu-
facturing, the design goal often focuses on achieving consistent
layers with a repeatable thickness distribution, which is a highly
desirable characteristic in most sensory applications where unifor-
mity and periodicity of layers are of great importance.
The normalized surface roughness, Ra, at layer l is calculated

from the standard deviation of the total heightmap divided by the
average of the desired total heightmap at layer l. The surface rough-
ness, which is the representation of layer flatness, converges to its
final values as shown in Fig. 10. The upper layers of a single mate-
rial class exhibit lower surface roughness and are more uniform
across the layer. This uniformity results in smaller deviations
from the nominal plant convergence to a flat layer. Small deviations
from the nominal model combined with limited noise in the system
results in a SILC controller that converges to a finite state. For
example, in Fig. 9, the average height increment has reached to
its final value after three iterations.

To compare the effects of the tuning parameters, the performance
of the SILC system in Frobenius norm is demonstrated in Fig. 11
for different values of the penalty terms r and s in layer one with
n1 material as a representation of all other layers. The weighting
coefficients enable NO-SILC to control the rate of convergence,
the final converged error, and the converged output (Figs. 9 and
11). Increasing the value of the input penalty s would increase
the final error. On the other hand, increasing the value of r would
reduce the convergence speed. Due to the nature of the additive
process, it is also very important to use appropriate weighting coef-
ficients to avoid accumulation and propagation of errors in the suc-
cessive layers.

7 Conclusion
In this paper, we present a novel spatial ILC framework for non-

repetitive systems that have multiple spatial dynamics with appli-
cation to microscale additive manufacturing of multi-material 3D
structures. To address the combined challenges of multiple dynam-
ics due to multiple build materials and varying initial conditions
due to roughness of the previous layer surface, a new diagonal
SILC algorithm is proposed. Under the assumption of bounded
iteration varying uncertainty, diagonal SILC learns from layer to
layer and from device to device. To demonstrate the performance
of the proposed framework, a bi-material structure is considered in
simulation where the corresponding MIMO configuration involves

Fig. 10 The normalized surface roughness converges over the
iterations (devices) for all layers (r=0.2, s=0.001). Iteration j=
0 refers to the first device.

Fig. 11 SILC convergence for different values of the NO tuning
parameters for the first layer with n1 material. Iteration j=0 refers
to the first device.

Fig. 9 Average height increments for both materials approach a
nominal value over the iterations (devices). n1 and n2 are the
build materials in the odd and even layers, respectively (r=0.2,
s=0.001). Iteration j=0 refers to the first device.
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two subsystems with distinct SILC control loops that are internally
connected due to the layer-wise nature of the AM process. Simu-
lation results show that diagonal SILC can be successfully
employed to regulate the input of the iterative system to
improve the heightmap reference tracking and the corresponding
surface roughness. Future work will focus on extending the pro-
posed diagonal SILC strategy in this paper to estimate the
design boundaries for the convergence of the tracking error for
iteration varying systems with multi-plant dynamics. In addition,
future work is focused on the experimental validation of the diag-
onal SILC framework.
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