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ABSTRACT

The data collected from open source projects provide means to
model large software ecosystems, but often suffer from data quality
issues, specifically, multiple author identification strings in code
commits might actually be associated with one developer. While
many methods have been proposed for addressing this problem,
they are either heuristics requiring manual tweaking, or require
too much calculation time to do pairwise comparisons for 38M
author IDs in, for example, the World of Code collection. In this
paper, we propose a method that finds all author IDs belonging
to a single developer in this entire dataset, and share the list of
all author IDs that were found to have aliases. To do this, we first
create blocks of potentially connected author IDs and then use
a machine learning model to predict which of these potentially
related IDs belong to the same developer. We processed around
38 million author IDs and found around 14.8 million IDs to have
an alias, which belong to 5.4 million different developers, with the
median number of aliases being 2 per developer. This dataset can
be used to create more accurate models of developer behaviour at
the entire OSS ecosystem level and can be used to provide a service
to rapidly resolve new author IDs.
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1 INTRODUCTION

The studies of open source software ecosystems often rely on in-
vestigating the digital traces left by the software developers, for
the reconstruction and quantification of the behavior of an individ-
ual [1, 4], a team [13], or an organization [10, 12]. However, the data
obtained directly by mining software repositories often suffer from
quality issues. In this paper, we focus on the challenge of identifying
authorship of code changes (commits) based on the information
that can be obtained from the multitude of open source repositories,
which is a deceptively hard problem to address. Software devel-
opers often use multiple email addresses, different variations of
their names, or aliases while creating commits, and being able to
identify the different IDs used by an author is crucial for improving
the quality of the data obtained through mining different software
repositories.

A number of ways to address this problem are available in the
literature, but they are either based on very simple heuristics with
little room for tweaking, e.g. from simple name matching with
manual inspection [7], to very complex techniques that require full
pairwise comparisons [2]. In our case of 38M author IDs obtained
from the World of Code [11] dataset, the full pairwise comparison
involves 10'* computationally expensive comparisons, which is
beyond the reach of the fastest super computers. In this paper,
we are proposing an approach for author identity resolution that
requires nothing more than the first name, last name, and email
address of a commit author, but is trained with a Random Forest
model for improved accuracy. We start by first dividing al the author
IDs into blocks of authors IDs using a combination of heuristic
methods to ensure a high probability of in-block linkage and a
low probability of out-of-block linkage between the IDs. To make
the computation possible, we assume that author IDs belonging
to different blocks are not linked, and use pairwise comparison
followed by transitive closure to identify the author IDs belonging
to a block that are linked with each other.

We applied our approach on 38,362,013 author IDs collected
from the World of Code data [11]. Using a combination of three
heuristics, we found 15,177,184 author IDs in 5,508,119 blocks of
two or more IDs per block, with the remaining author IDs being
in blocks of size 1. Finally, after applying pairwise comparison,
followed by transitive closure, we found that 14,861,538 IDs had an
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alias, which were found to be associated with 5,427,024 different
developers. We tested the accuracy of our method by enlisting the
help of 44 developers, who identified 207 different IDs that belonged
to them. In terms of identifying pairs of author IDs linked together,
our method achieved in a precision of 0.99 and a recall of 0.84 using
this test data.

We created a dataset with all the author IDs that were found to
have an alias (alternate ID), which is a compressed CSV file with ;'
as the separator. If an author was found to have 2 different IDs: I1,
I2, then it is recorded in the file in 2 separate lines, with the lines
being I1;I1 and I1;1I2,i.e. the first column is the group identifier,
which is one of the IDs in a group, and the second column contains
the different author IDs in separate lines. The data is available at:
https://zenodo.org/record/3653283.

We are sharing the dataset with the author blocks, along with
the block id, frequency of the first name (number of times it appears
in the 38M WoC version Q author IDs), frequency of the last name,
full name, email, and the Author ID. This is the result of the first
stage of processing, and can be used by the community for using
different types of pairwise comparisons for further refining the
final result. It is available in https://zenodo.org/record/3648702.

We also share the model used to predict if the two IDs are iden-
tical as well as the additional blocking of author IDs using a combi-
nation of three heuristics. Anyone using the source code we have
provided can run the model on these larger blocks, thus potentially
increasing the accuracy of the result. The scripts and the model are
available in https://zenodo.org/record/3653069.

The rest of the paper is organized as follows: In Section 2, we
describe the data source. Our approach for linking author identities
is described in Section 3. We describe our plans to further refine our
method in Section 4. The limitations to the approach is described
in Section 5, and we conclude the paper in Section 6.

2 DATA SOURCE: WORLD OF CODE

The World of Code [11](WoC) infrastructure prototype was cre-
ated to support the development of theoretical, computational, and
statistical frameworks that discover, collect, and process FLOSS
operational data and construct FLOSS supply chains (SC), identify
and quantify its risks, and discover and construct effective risk
mitigation practices and tools. That prototype stores the huge and
rapidly growing amount of data in the entire FLOSS ecosystem
and provides basic capabilities to efficiently extract and analyze
the data at that scale. WoC’s primary focus is on types of analy-
ses that require global reach across FLOSS projects. In a nutshell,
WoC is a software analysis pipeline starting from the discovery
and retrieval of data, data storage and regular updates, and enable-
ment of the transformations and data augmentations necessary for
analytic tasks downstream. In addition to storing objects from all
git repositories, WoC also provides relationships among them. For
the purpose of this analysis, we only use a single list of author IDs
extracted from almost 2B commits in WoC.

WoC data is versioned, with the latest version labeled as Q,
containing 7.2 billion blobs, 1.8 billion commits, 7.6 billion trees,
16 million tags, 116 million projects (distinct repositories), and 38
million distinct author IDs. WoC has collected that data during
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November and December of 2019. For more information please
consult the WoC website 1.

We used all the author IDs extracted from WoC for this analy-
sis,which were extracted from the commits, and are represented by
a combination of the authors’ names and email addresses, in the
following format: first-name last-name<email-address>.E.g.
for an author whose first name is “John”, last name is “Doe”, and
email address is “john@me.com”, the corresponding author id in
the WoC dataset would be: “John Doe <john@me.com>". In actual
commits the format may not be exactly preserved, and some ex-
treme examples commits contain Author IDs that may be gigabytes
long.

3 METHODS OF LINKING AUTHOR
IDENTITIES

Studies of online activities such as collaboration in software de-
velopment made identity resolution techniques important in the
field of empirical software engineering research [3, 7, 8]. They help
disambiguate identities of people in a software projects and ecosys-
tems. Data mined from version control systems can be used for
many purposes: [14] builds social diversity dataset, others mea-
sure output [9] and match developer identity across Open Source
Software [16], and/or link it to mailing lists [15]. Knowing the ac-
tual number of developers who contribute to or use a project can
also influence the calculations of the number of defects 5], or the
popularity of the project [6].

The most accurate methods for identifying connected author
IDs, like ALFAA [2], require pairwise comparison of all author IDs,
which is infeasible to apply on millions of author IDs. Therefore,
we subdivide the problem by first creating blocks of author IDs that
are likely to be connected, and then apply the pairwise comparison
method for identifying all author IDs that are actually linked. The
workflow used to generate this data is shown in Figure 1.

As mentioned earlier, we started the process with all 38M differ-
ent author IDs. The idea behind creating the blocks is to maximize
the chance that author IDs belonging to the same group could
actually belong to one developer, while author IDs belonging to
different groups are unlikely to belong to the same developer. We
constructed 3 different types of maps for creating the blocks:

e Author Email to Author ID map: We created a map by
linking the author IDs that have the same email address, after
checking if the email address is valid using several heuristics.
These heuristics are essential because git commits do not
enforce any strict email field policy, allowing users or their
system to use any arbitrary string as their “email”. This re-
sults in millions of author ids that contain very common and
uninformative emails, such as John<john@example.com>.
Including emails of this type would result in groups that
do not actually represent one developer. Therefore, to avoid
including such email addresses, we use frequency analysis
to determine the top “junk” emails that exist in the author
IDs dataset and remove them. We filter these emails further
through other heuristics such as email length and regular
expression matching (the details are in the provided source
code). The map is then generated by sweeping through this

Uhttps://bitbucket.org/swsc/overview/src/master/
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e Author Name to Author ID map: We created another map
by linking the author IDs based on author names, using a
similar approach to the author emails. This approach looks
only at the first and last names of the author ID. Similar to
the email field, the name field has just as much flexibility,
allowing users to assign whatever they choose as their first
and last name. As a result, a set of heuristics is applied on
the name field to filter out short and uninformative names.
However, we are much more strict with these heuristics
because names are much more difficult to tell apart than
emails (e.g. “John Doe” vs. “Johnathan Doe”). For example,
after filtering out certain names, we also grouped together
similar names and only included them in the final mapping
if their group size was at most 12 author IDs (discussed in-
depth below). This ensured that valid names that passed the
original filter, such as “John Smith”, were ultimately thrown
out to avoid one developer being responsible for all author
IDs containing a common name. Similar to the approach
above, the idea of this mapping is that author IDs that share
the exact same, uncommon name are more likely to belong
together.

e Author’s GitHub handle to Author ID map: Although
the WoC data has author IDs connected to all git repositories,
a large portion of authors use GitHub. Therefore, we decided

blocks of author IDs. We provide the script to generate the blocks
for all the three map combinations, and the data with the author
blocks we generated, with the author IDs and the frequency of the
first and last names, and we leave it to the community to decide if
it is appropriate to run the second step (name based mapping) of
the algorithm on all names for identity resolution. At the end of
the process, we were left with 5,508,119 blocks of size 2 or more,
containing 15,177,184 author IDs in total, with the maximum block
size being 42.

After creating these blocks, we used pairwise comparison to
identify which author IDs are actually linked together. In this way,
we reduced the number of required pairwise comparison from
38M * 38M ~ 1.4 % 10"° to maximum 5.5M = 42 x 42 ~ 9 * 10°.
Moreover, since these blocks are independent by assumption, we
can run these tasks in parallel, further reducing the computation
time.

For the pairwise comparison, we first created the author ID pairs
by comparing the Jaro-Winkler distance between the authors’ first
names, last names, full names, usernames (from username@domain
of email address), and the complete email address. For the model
comparing the names, we also used a switched version of first and
last name, since sometimes the authors might write their last name
before their first name. Following this step, we used a Random
Forest model that was used in the implementation of ALFAA [2],
and was trained using the OpenStack data shared in that work. If
all the author IDs in a block are predicted to be connected, then we

Zhttp://ghtorrent.org/
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simply use that whole block as a group of IDs that belong to one
developer; otherwise, we identify the pairs that are identified to be
connected, and use transitive closure to create the final group(s) of
author IDs that belong to individual developer(s) within the block.

By using the above-mentioned process, we were able to identify
that 14,861,538 author IDs, out of the initial 15,177,184 IDs in all
the blocks, were linked to at least one other author ID, and we
found that these 14,861,538 author IDs belong to 5,427,024 different
developers, with the median number of aliases used by an individual
developer being 2.

To evaluate the performance of our method, we enlisted the help
of 44 different developers, who identified all the different author
IDs that belong to them, and they identified a total of 207 different
author IDs that belong to them. We ran our method on these 207
author IDs and checked if our method was able to identify each
pair of connected author IDs. Our method resulted in a precision
of 0.99 and a recall of 0.84 using this test data.

3.1 A Few Problematic Cases:

We have faced a number of challenges while working on this prob-
lem, and we are highlighting a few of them here:

e In a number of cases, the authors didn’t have a first and last
name, but had an alias instead, which meant either the first
or the last name was empty for those authors, which made
the task of matching them more challenging. In the same
vane, a number of authors had non-English language names,
and we are not sure how well our method, especially the
Jaro-Winkler distance measurement, would work for those
cases.

o A number of authors had blank names, email addresses, or
both, which makes the our method ineffective for identity
resolution of those authors.

e There are a number of author IDs that are shared between

multiple people, e.g. organizational IDs or admin IDs, which

makes identity resolution extremely difficult in those cases.

A few author names are very common, which means there

could be multiple people with the same name, and the task

of identity resolution is very difficult for those authors.

3.2 Description of the Shared Data:

We created a dataset with all the 14,861,538 author IDs that were
found to have an alias, which is a CSV file with ;" as the separator.
If an author was found to have 2 different IDs: I1, 12, then it is
recorded in the file in 2 separate lines, with the lines being I1;I1
and I1;12,i.e. the first column is the group identifier, which is one
of the IDs in a group, and the second column contains the different
author IDs in separate lines. The data is available in the link shared
in Section 1. For privacy issues, we replace the @ sign in the email
addresses we shared with # sign and the csv file is compressed using
gzip compression.

We also shared the source code we used for creating the dataset,
including the scripts, the pre-trained Random Forest model we used,
and a README file describing how to use the scripts, in the link
shared in Section 1. These models can be loaded into R language
and used in the provided workflow.
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The last part of data we share is the blocking done using all three
heuristics and is in ghtNE2aQ.forMLF2.gz file which is gzipped
semicolon separated text file containing block id, frequency of the
first name (number of times it appears in the 38M WoC version
Q author IDs), frequency of the last name, full name, email, and
Author ID. The largest block contains 993 Author IDs. Once again,
the @ sign in the email addresses are replaced with # sign in the
shared data for privacy concerns. It is available in the link shared
in Section 1.

4 FUTURE WORK

We plan to (or hope someone from the MSR community would)
further refine our heuristics to create the author ID blocks, and
potentially increase the block sizes to ensure no potential matches
are in different blocks.

We hope to improve upon the models we have now in three ways.
First, train them on the larger training sample. Second, add infor-
mation about name frequencies (see blocking description above) as
there were found to be important in prior work [2] and other so
called “behavioural fingerprints”. Finally, we would like to address
the issue of homonyms, i.e., Author IDs used by multiple developers
by assigning authorship at the commit level.

5 LIMITATIONS

We utilize WoC data collection with all associated limitations of
using that repository and described there [11].

Our primary assumption while applying this method is that
author IDs in different blocks do not match, which is not always true,
but we sacrifice a little accuracy for heavily improved performance
by using this method.

The task of identity resolution solely based on name and email
ID is very difficult for the problematic cases, as described earlier.
Looking at the activity of those authors can be helpful for identity
resolution for such cases.

The accuracy of our approach is not easy to establish, since there
is no sizeable Golden dataset that we can use for reference. We tried
to circumvent this problem by enlisting the help of 44 developers
who identified 207 IDs belonging to them. Still, the size of this test
sample is very small, and might not be representative of the whole
population.

6 CONCLUSION

We expect this dataset to spur research that relies on accurate author
identities by eliminating the painstaking manual verification that
is not even possible for large collections. We also expect to update
the data as the information from more projects is collected and as
larger training datasets and more accurate blocking and matching
models are established.
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