23
24
25
26
27
28
29

39
40
41
42
43
44

A Dataset and an Approach for Identity Resolution of 38 Million
Author IDs extracted from 2B Git Commits

Tanner Fry
tfry2@vols.utk.edu
Electrical Engineering and Computer Science
The University of Tennessee
Knoxville, TN, USA

Andrey Karnauch
akarnauc@vols.utk.edu
Electrical Engineering and Computer Science
The University of Tennessee
Knoxville, TN, USA

ABSTRACT

The data collected from open source projects provide means to
model large software ecosystems, but often suffer from data quality
issues, specifically, multiple author identification strings in code
commits might actually be associated with one developer. While
many methods have been proposed for addressing this problem,
they are either heuristics requiring manual tweaking, or require
too much calculation time to do pairwise comparisons for 38M
author IDs in, for example, the World of Code collection. In this
paper, we propose a method that finds all author IDs belonging
to a single developer in this entire dataset, and share the list of
all author IDs that were found to have aliases. To do this, we first
create blocks of potentially connected author IDs and then use
a machine learning model to predict which of these potentially
related IDs belong to the same developer. We processed around
38 million author IDs and found around 14.8 million IDs to have
an alias, which belong to 5.4 million different developers, with the
median number of aliases being 2 per developer. This dataset can
be used to create more accurate models of developer behaviour at
the entire OSS ecosystem level and can be used to provide a service
to rapidly resolve new author IDs.

KEYWORDS

Identity Resolution, Git Commits, Heuristics, Machine Learning,
Data Sharing

ACM Reference Format:

Tanner Fry, Tapajit Dey, Andrey Karnauch, and Audris Mockus. 2020. A
Dataset and an Approach for Identity Resolution of 38 Million Author
IDs extracted from 2B Git Commits. In Proceedings of MSR °20: Mining
Software Repositories (MSR 20). ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR 20, June 03-05, 2020, Seul, Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Tapajit Dey
tdey2@vols.utk.edu
Electrical Engineering and Computer Science
The University of Tennessee
Knoxville, TN, USA

Audris Mockus
audris@mockus.org
Electrical Engineering and Computer Science
The University of Tennessee
Knoxville, TN, USA

1 INTRODUCTION

The studies of open source software ecosystems often rely on in-
vestigating the digital traces left by the software developers, for
the reconstruction and quantification of the behavior of an individ-
ual [1, 4], a team [13], or an organization [10, 12]. However, the data
obtained directly by mining software repositories often suffer from
quality issues. In this paper, we focus on the challenge of identifying
authorship of code changes (commits) based on the information
that can be obtained from the multitude of open source repositories,
which is a deceptively hard problem to address. Software devel-
opers often use multiple email addresses, different variations of
their names, or aliases while creating commits, and being able to
identify the different IDs used by an author is crucial for improving
the quality of the data obtained through mining different software
repositories.

A number of ways to address this problem are available in the
literature, but they are either based on very simple heuristics with
little room for tweaking, e.g. from simple name matching with
manual inspection [7], to very complex techniques that require full
pairwise comparisons [2]. In our case of 38M author IDs obtained
from the World of Code [11] dataset, the full pairwise comparison
involves 10'* computationally expensive comparisons, which is
beyond the reach of the fastest super computers. In this paper,
we are proposing an approach for author identity resolution that
requires nothing more than the first name, last name, and email
address of a commit author, but is trained with a Random Forest
model for improved accuracy. We start by first dividing al the author
IDs into blocks of authors IDs using a combination of heuristic
methods to ensure a high probability of in-block linkage and a
low probability of out-of-block linkage between the IDs. To make
the computation possible, we assume that author IDs belonging
to different blocks are not linked, and use pairwise comparison
followed by transitive closure to identify the author IDs belonging
to a block that are linked with each other.

We applied our approach on 38,362,013 author IDs collected
from the World of Code data [11]. Using a combination of three
heuristics, we found 15,177,184 author IDs in 5,508,119 blocks of
two or more IDs per block, with the remaining author IDs being
in blocks of size 1. Finally, after applying pairwise comparison,
followed by transitive closure, we found that 14,861,538 IDs had an

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144

146
147
148

150

160
161
162
163
164
165
166
167
168
169

170

172
173

174

MSR 20, June 03-05, 2020, Seul, Korea

alias, which were found to be associated with 5,427,024 different
developers. We tested the accuracy of our method by enlisting the
help of 44 developers, who identified 207 different IDs that belonged
to them. In terms of identifying pairs of author IDs linked together,
our method achieved in a precision of 0.99 and a recall of 0.84 using
this test data.

We created a dataset with all the author IDs that were found to
have an alias (alternate ID), which is a compressed CSV file with ;'
as the separator. If an author was found to have 2 different IDs: I1,
I2, then it is recorded in the file in 2 separate lines, with the lines
being I1;I1 and I1;1I2,i.e. the first column is the group identifier,
which is one of the IDs in a group, and the second column contains
the different author IDs in separate lines. The data is available at:
https://zenodo.org/record/3653283.

We are sharing the dataset with the author blocks, along with
the block id, frequency of the first name (number of times it appears
in the 38M WoC version Q author IDs), frequency of the last name,
full name, email, and the Author ID. This is the result of the first
stage of processing, and can be used by the community for using
different types of pairwise comparisons for further refining the
final result. It is available in https://zenodo.org/record/3648702.

We also share the model used to predict if the two IDs are iden-
tical as well as the additional blocking of author IDs using a combi-
nation of three heuristics. Anyone using the source code we have
provided can run the model on these larger blocks, thus potentially
increasing the accuracy of the result. The scripts and the model are
available in https://zenodo.org/record/3653069.

The rest of the paper is organized as follows: In Section 2, we
describe the data source. Our approach for linking author identities
is described in Section 3. We describe our plans to further refine our
method in Section 4. The limitations to the approach is described
in Section 5, and we conclude the paper in Section 6.

2 DATA SOURCE: WORLD OF CODE

The World of Code [11](WoC) infrastructure prototype was cre-
ated to support the development of theoretical, computational, and
statistical frameworks that discover, collect, and process FLOSS
operational data and construct FLOSS supply chains (SC), identify
and quantify its risks, and discover and construct effective risk
mitigation practices and tools. That prototype stores the huge and
rapidly growing amount of data in the entire FLOSS ecosystem
and provides basic capabilities to efficiently extract and analyze
the data at that scale. WoC’s primary focus is on types of analy-
ses that require global reach across FLOSS projects. In a nutshell,
WoC is a software analysis pipeline starting from the discovery
and retrieval of data, data storage and regular updates, and enable-
ment of the transformations and data augmentations necessary for
analytic tasks downstream. In addition to storing objects from all
git repositories, WoC also provides relationships among them. For
the purpose of this analysis, we only use a single list of author IDs
extracted from almost 2B commits in WoC.

WoC data is versioned, with the latest version labeled as Q,
containing 7.2 billion blobs, 1.8 billion commits, 7.6 billion trees,
16 million tags, 116 million projects (distinct repositories), and 38
million distinct author IDs. WoC has collected that data during

Tanner Fry, Tapajit Dey, Andrey Karnauch, and Audris Mockus

November and December of 2019. For more information please
consult the WoC website 1.

We used all the author IDs extracted from WoC for this analy-
sis,which were extracted from the commits, and are represented by
a combination of the authors’ names and email addresses, in the
following format: first-name last-name<email-address>.E.g.
for an author whose first name is “John”, last name is “Doe”, and
email address is “john@me.com”, the corresponding author id in
the WoC dataset would be: “John Doe <john@me.com>". In actual
commits the format may not be exactly preserved, and some ex-
treme examples commits contain Author IDs that may be gigabytes
long.

3 METHODS OF LINKING AUTHOR
IDENTITIES

Studies of online activities such as collaboration in software de-
velopment made identity resolution techniques important in the
field of empirical software engineering research [3, 7, 8]. They help
disambiguate identities of people in a software projects and ecosys-
tems. Data mined from version control systems can be used for
many purposes: [14] builds social diversity dataset, others mea-
sure output [9] and match developer identity across Open Source
Software [16], and/or link it to mailing lists [15]. Knowing the ac-
tual number of developers who contribute to or use a project can
also influence the calculations of the number of defects 5], or the
popularity of the project [6].

The most accurate methods for identifying connected author
IDs, like ALFAA [2], require pairwise comparison of all author IDs,
which is infeasible to apply on millions of author IDs. Therefore,
we subdivide the problem by first creating blocks of author IDs that
are likely to be connected, and then apply the pairwise comparison
method for identifying all author IDs that are actually linked. The
workflow used to generate this data is shown in Figure 1.

As mentioned earlier, we started the process with all 38M differ-
ent author IDs. The idea behind creating the blocks is to maximize
the chance that author IDs belonging to the same group could
actually belong to one developer, while author IDs belonging to
different groups are unlikely to belong to the same developer. We
constructed 3 different types of maps for creating the blocks:

e Author Email to Author ID map: We created a map by
linking the author IDs that have the same email address, after
checking if the email address is valid using several heuristics.
These heuristics are essential because git commits do not
enforce any strict email field policy, allowing users or their
system to use any arbitrary string as their “email”. This re-
sults in millions of author ids that contain very common and
uninformative emails, such as John<john@example.com>.
Including emails of this type would result in groups that
do not actually represent one developer. Therefore, to avoid
including such email addresses, we use frequency analysis
to determine the top “junk” emails that exist in the author
IDs dataset and remove them. We filter these emails further
through other heuristics such as email length and regular
expression matching (the details are in the provided source
code). The map is then generated by sweeping through this

Uhttps://bitbucket.org/swsc/overview/src/master/

177
178
179
180
181
182
183

184

186
187
188
189
190
191
192
193

194

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

https://zenodo.org/record/3653283
https://zenodo.org/record/3648702
https://zenodo.org/record/3653069
https://bitbucket.org/swsc/overview/src/master/

Dataset for Identity Resolution MSR 20, June 03-05, 2020, Seul, Korea

233 5.5M Blocks of 291
. Author IDs of .

235 293

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

Creating

size 2 or more

Using Pairwise

Disconnected (———

Blocks of Authors

38M
Author IDs

,/Connecting Author
IDs by Email

Blocks of
Author 1Ds

Connecting Author

| Author ID IDs by Name

likely to be
connected

Connecting Author
IDs by GitHub Id

.

— ¥

All Linked
Author IDs

comparison to identify
connected Author IDs

Find all connected
Author IDs using
Transitive Closure

Identify Author ID s
pairs from a Block ':

Predict if Pairs are
connected using
Random Forest

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

252 ‘ model 310
253 . Tl . .. _ - 311
.7 e 312
23 Figure 1: Workflow showing the steps taken for linking author IDs 33
256 314
257 cleaner set of author IDs and grouping all of the IDs that to construct a map between author IDs and the GitHub han- 315
258 share the same exact email field. The mapping is presented in dles of the authors, where available, using information from 316
259 the form of email;author_ID1;author_ID2;... The idea GHTorrent 2. 317
260 is that author Il?s that share the exact same valid email ad- Finally, we used transitive closure on the first and last maps, 318
261 dress are more likely to belong together. along with the map for the uncommon author names to create 319

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290

e Author Name to Author ID map: We created another map
by linking the author IDs based on author names, using a
similar approach to the author emails. This approach looks
only at the first and last names of the author ID. Similar to
the email field, the name field has just as much flexibility,
allowing users to assign whatever they choose as their first
and last name. As a result, a set of heuristics is applied on
the name field to filter out short and uninformative names.
However, we are much more strict with these heuristics
because names are much more difficult to tell apart than
emails (e.g. “John Doe” vs. “Johnathan Doe”). For example,
after filtering out certain names, we also grouped together
similar names and only included them in the final mapping
if their group size was at most 12 author IDs (discussed in-
depth below). This ensured that valid names that passed the
original filter, such as “John Smith”, were ultimately thrown
out to avoid one developer being responsible for all author
IDs containing a common name. Similar to the approach
above, the idea of this mapping is that author IDs that share
the exact same, uncommon name are more likely to belong
together.

e Author’s GitHub handle to Author ID map: Although
the WoC data has author IDs connected to all git repositories,
a large portion of authors use GitHub. Therefore, we decided

blocks of author IDs. We provide the script to generate the blocks
for all the three map combinations, and the data with the author
blocks we generated, with the author IDs and the frequency of the
first and last names, and we leave it to the community to decide if
it is appropriate to run the second step (name based mapping) of
the algorithm on all names for identity resolution. At the end of
the process, we were left with 5,508,119 blocks of size 2 or more,
containing 15,177,184 author IDs in total, with the maximum block
size being 42.

After creating these blocks, we used pairwise comparison to
identify which author IDs are actually linked together. In this way,
we reduced the number of required pairwise comparison from
38M * 38M ~ 1.4 % 10"° to maximum 5.5M = 42 x 42 ~ 9 * 10°.
Moreover, since these blocks are independent by assumption, we
can run these tasks in parallel, further reducing the computation
time.

For the pairwise comparison, we first created the author ID pairs
by comparing the Jaro-Winkler distance between the authors’ first
names, last names, full names, usernames (from username@domain
of email address), and the complete email address. For the model
comparing the names, we also used a switched version of first and
last name, since sometimes the authors might write their last name
before their first name. Following this step, we used a Random
Forest model that was used in the implementation of ALFAA [2],
and was trained using the OpenStack data shared in that work. If
all the author IDs in a block are predicted to be connected, then we

Zhttp://ghtorrent.org/

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

http://ghtorrent.org/

349

350

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

394

396
397
398
399
400
401
402
403
404
405

406

MSR 20, June 03-05, 2020, Seul, Korea

simply use that whole block as a group of IDs that belong to one
developer; otherwise, we identify the pairs that are identified to be
connected, and use transitive closure to create the final group(s) of
author IDs that belong to individual developer(s) within the block.

By using the above-mentioned process, we were able to identify
that 14,861,538 author IDs, out of the initial 15,177,184 IDs in all
the blocks, were linked to at least one other author ID, and we
found that these 14,861,538 author IDs belong to 5,427,024 different
developers, with the median number of aliases used by an individual
developer being 2.

To evaluate the performance of our method, we enlisted the help
of 44 different developers, who identified all the different author
IDs that belong to them, and they identified a total of 207 different
author IDs that belong to them. We ran our method on these 207
author IDs and checked if our method was able to identify each
pair of connected author IDs. Our method resulted in a precision
of 0.99 and a recall of 0.84 using this test data.

3.1 A Few Problematic Cases:

We have faced a number of challenges while working on this prob-
lem, and we are highlighting a few of them here:

e In a number of cases, the authors didn’t have a first and last
name, but had an alias instead, which meant either the first
or the last name was empty for those authors, which made
the task of matching them more challenging. In the same
vane, a number of authors had non-English language names,
and we are not sure how well our method, especially the
Jaro-Winkler distance measurement, would work for those
cases.

o A number of authors had blank names, email addresses, or
both, which makes the our method ineffective for identity
resolution of those authors.

e There are a number of author IDs that are shared between

multiple people, e.g. organizational IDs or admin IDs, which

makes identity resolution extremely difficult in those cases.

A few author names are very common, which means there

could be multiple people with the same name, and the task

of identity resolution is very difficult for those authors.

3.2 Description of the Shared Data:

We created a dataset with all the 14,861,538 author IDs that were
found to have an alias, which is a CSV file with ;" as the separator.
If an author was found to have 2 different IDs: I1, 12, then it is
recorded in the file in 2 separate lines, with the lines being I1;I1
and I1;12,i.e. the first column is the group identifier, which is one
of the IDs in a group, and the second column contains the different
author IDs in separate lines. The data is available in the link shared
in Section 1. For privacy issues, we replace the @ sign in the email
addresses we shared with # sign and the csv file is compressed using
gzip compression.

We also shared the source code we used for creating the dataset,
including the scripts, the pre-trained Random Forest model we used,
and a README file describing how to use the scripts, in the link
shared in Section 1. These models can be loaded into R language
and used in the provided workflow.

Tanner Fry, Tapajit Dey, Andrey Karnauch, and Audris Mockus

The last part of data we share is the blocking done using all three
heuristics and is in ghtNE2aQ.forMLF2.gz file which is gzipped
semicolon separated text file containing block id, frequency of the
first name (number of times it appears in the 38M WoC version
Q author IDs), frequency of the last name, full name, email, and
Author ID. The largest block contains 993 Author IDs. Once again,
the @ sign in the email addresses are replaced with # sign in the
shared data for privacy concerns. It is available in the link shared
in Section 1.

4 FUTURE WORK

We plan to (or hope someone from the MSR community would)
further refine our heuristics to create the author ID blocks, and
potentially increase the block sizes to ensure no potential matches
are in different blocks.

We hope to improve upon the models we have now in three ways.
First, train them on the larger training sample. Second, add infor-
mation about name frequencies (see blocking description above) as
there were found to be important in prior work [2] and other so
called “behavioural fingerprints”. Finally, we would like to address
the issue of homonyms, i.e., Author IDs used by multiple developers
by assigning authorship at the commit level.

5 LIMITATIONS

We utilize WoC data collection with all associated limitations of
using that repository and described there [11].

Our primary assumption while applying this method is that
author IDs in different blocks do not match, which is not always true,
but we sacrifice a little accuracy for heavily improved performance
by using this method.

The task of identity resolution solely based on name and email
ID is very difficult for the problematic cases, as described earlier.
Looking at the activity of those authors can be helpful for identity
resolution for such cases.

The accuracy of our approach is not easy to establish, since there
is no sizeable Golden dataset that we can use for reference. We tried
to circumvent this problem by enlisting the help of 44 developers
who identified 207 IDs belonging to them. Still, the size of this test
sample is very small, and might not be representative of the whole
population.

6 CONCLUSION

We expect this dataset to spur research that relies on accurate author
identities by eliminating the painstaking manual verification that
is not even possible for large collections. We also expect to update
the data as the information from more projects is collected and as
larger training datasets and more accurate blocking and matching
models are established.

REFERENCES

[1] Sadika Amreen, Bogdan Bichescu, Randy Bradley, Tapajit Dey, Yuxing Ma, Audris
Mockus, Sara Mousavi, and Russell Zaretzki. 2019. A Methodology for Measuring
FLOSS Ecosystems. In Towards Engineering Free/Libre Open Source Software
(FLOSS) Ecosystems for Impact and Sustainability. Springer, Singapore, 1-29.

[2] Sadika Amreen, Audris Mockus, Russell Zaretzki, Christopher Bogart, and Yuxia
Zhang. 2019. ALFAA: Active Learning Fingerprint based Anti-Aliasing for cor-
recting developer identity errors in version control systems. Empirical Software
Engineering (2019), 1-32.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

423

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

446

460
461
462
463

464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

Dataset for Identity Resolution

[10

Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swami-
nathan. 2006. Mining Email Social Networks (MSR 06). ACM, New York, NY,
USA, 137-143. https://doi.org/10.1145/1137983.1138016

Tapajit Dey, Yuxing Ma, and Audris Mockus. 2019. Patterns of effort contribu-
tion and demand and user classification based on participation patterns in npm
ecosystem. In Proceedings of the Fifteenth International Conference on Predictive
Models and Data Analytics in Software Engineering. ACM, 36-45.

Tapajit Dey and Audris Mockus. 2018. Are software dependency supply chain
metrics useful in predicting change of popularity of npm packages?. In Proceedings
of the 14th International Conference on Predictive Models and Data Analytics in
Software Engineering. ACM, 66-69.

Tapajit Dey and Audris Mockus. 2018. Modeling Relationship between Post-
Release Faults and Usage in Mobile Software. In Proceedings of the 14th Interna-
tional Conference on Predictive Models and Data Analytics in Software Engineering.
ACM, 56-65.

Daniel German and Audris Mockus. 2003. Automating the measurement of
open source projects. In Proceedings of the 3rd workshop on open source software
engineering. University College Cork Cork Ireland, 63-67.

Daniel M German. 2004. Mining CVS repositories, the softChange experience. In
1st international workshop on mining software repositories. Citeseer, 17-21.
Mohammad Gharehyazie, Daryl Posnett, Bogdan Vasilescu, and Vladimir Filkov.
2015. Developer initiation and social interactions in OSS: A case study of the
Apache Software Foundation. Empirical Software Engineering 20, 5 (01 Oct 2015),
1318-1353. https://doi.org/10.1007/s10664-014-9332-x

Randy L. Hackbarth, Audris Mockus, John Douglas Palframan, and David M.
Weiss. 2010. Assessing the state of software in a large enterprise. Empiri-
cal Software Engineering 15, 3 (01 Jun 2010), 219-249. https://doi.org/10.1007/

[11

[12

[13

[14

[16

MSR 20, June 03-05, 2020, Seul, Korea

510664-009-9120-1

Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
2019. World of Code: An Infrastructure for Mining the Universe of Open Source
VCS Data. In IEEE Working Conference on Mining Software Repositories. papers/
WoC.pdf

Audris Mockus. 2010. Organizational Volatility and Its Effects on Software
Defects (FSE @AZ10). Association for Computing Machinery, New York, NY, USA,
117a4A$126. https:/doi.org/10.1145/1882291.1882311

Audris Mockus, Roy T. Fielding, and James Herbsleb. 2000. A Case Study of Open
Source Software Development: The Apache Server (ICSE ¢AZ00). Association
for Computing Machinery, New York, NY, USA, 263aA$272. https://doi.org/10.
1145/337180.337209

Bogdan Vasilescu, Alexander Serebrenik, and Vladimir Filkov. 2015. A Data
Set for Social Diversity Studies of GitHub Teams. In Proceedings of the 12th
Working Conference on Mining Software Repositories. ACM, 514-517. https:
//dl.acm.org/citation.cfm?id=2820601

L. S. Wiese, J. T. d. Silva, I. Steinmacher, C. Treude, and M. A. Gerosa. 2016. Who
is Who in the Mailing List? Comparing Six Disambiguation Heuristics to Identify
Multiple Addresses of a Participant. In 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 345-355. https://doi.org/10.1109/
ICSME.2016.13

Yunxiang Xiong, Zhangyuan Meng, Beijun Shen, and Wei Yin. 2017. Mining
Developer Behavior Across GitHub and StackOverflow. In The 29th International
Conference on Software Engineering and Knowledge Engineering. 578-583. https:
//doi.org/10.18293/SEKE2017-062

https://doi.org/10.1145/1137983.1138016
https://doi.org/10.1007/s10664-014-9332-x
https://doi.org/10.1007/s10664-009-9120-1
https://doi.org/10.1007/s10664-009-9120-1
papers/WoC.pdf
papers/WoC.pdf
https://doi.org/10.1145/1882291.1882311
https://doi.org/10.1145/337180.337209
https://doi.org/10.1145/337180.337209
https://dl.acm.org/citation.cfm?id=2820601
https://dl.acm.org/citation.cfm?id=2820601
https://doi.org/10.1109/ICSME.2016.13
https://doi.org/10.1109/ICSME.2016.13
https://doi.org/10.18293/SEKE2017-062
https://doi.org/10.18293/SEKE2017-062

	Abstract
	1 Introduction
	2 Data Source: World of Code
	3 Methods of linking author identities
	3.1 A Few Problematic Cases:
	3.2 Description of the Shared Data:

	4 Future Work
	5 Limitations
	6 Conclusion
	References

