
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Complete Set of Related Git Repositories Identified via
Community Detection Approaches Based on Shared Commits

Audris Mockus
The University of Tennessee

Knoxville, Tennessee
audris@mockus.org

Diomidis Spinellis
Athens University of Economics and Business

Athens, Greece
dds@aueb.gr

Zoe Kotti
Athens University of Economics and Business

Athens, Greece
zoekotti@hotmail.com

Gabriel John Dusing
The University of Tennessee

Knoxville, Tennessee
gdusing@vols.utk.edu

ABSTRACT
In order to understand the state and evolution of the entirety of
open source software we need to get a handle on the set of distinct
software projects. Most of open source projects presently utilize Git,
which is a distributed version control system allowing easy creation
of clones and resulting in numerous repositories that are almost
entirely based on some parent repository from which they were
cloned. Git commits are unlikely to get produce and represent a way
to group cloned repositories. We use World of Code infrastructure
containing approximately 2B commits and 100M repositories to
create and share such a map. We discover that the largest group
contains almost 14M repositories most of which are unrelated to
each other. As it turns out, the developers can push git object to an
arbitrary repository or pull objects from unrelated repositories, thus
linking unrelated repositories. To address this, we apply Louvain
community detection algorithm to this very large graph consisting
of links between commits and projects. The approach successfully
reduces the size of the megacluster with the largest group of highly
interconnected projects containing under 400K repositories. We
expect that the resulting map of related projects as well as tools and
methods to handle the very large graph will serve as a reference
set for mining software projects and other applications. Further
work is needed to determine different types of relationships among
projects induced by shared commits and other relationships, for
example, by shared source code or similar filenames.

KEYWORDS
forks and clones

ACM Reference Format:
Audris Mockus, Diomidis Spinellis, Zoe Kotti, and Gabriel John Dusing.
2020. A Complete Set of Related Git Repositories Identified via Community
Detection Approaches Based on Shared Commits. In Proceedings of MSR ’20:

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR 20, June 03–05, 2020, Seul, Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Mining Software Repositories (MSR 20). ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
While study of individual software projects has been ongoing for
some time, relatively less effort has been spent on studying groups
of projects even though numerous benefits of understanding groups
of projects exist. Extensive motivation for investigating groups of
projects was stated in, for example [12, 13]. Furthermore, several
attempts at creating an infrastructure for such studies have been
reported [8–11]. Here we focus on an aspect of apparently simple,
but very hard to address challenge of identifying related repositories.
By related repositories we mean repositories that are “developed for
the same project/component.” Unrelated repositories are, thus, are
not intending to merge their code to a single project. For example,
while most GitHub forks are not meant to be independent projects,
but some are. Once we go beyond GitHub, often no information
about relatedness is available. For, example, searching for relevant
code or looking for a project to join, the massive number of the
repositories would waste time and cause confusion.

Simply stated, if we obtain data from two distinct git repositories,
should we treat it as belonging to a single project or as belonging to
two unrelated projects. This is an important question since many
projects have tens of thousands of forks that often contain no or
very little original content as the fork was created just to submit
a pull request and may not have even been used for that purpose.
Some relief can be found for projects on GitHub, where forked
projects can be identified via GitHub API. No such information
is available for other projects and projects that were not forked
via GitHub API will be missed. Having a reference list of related
projects can provide a massive help to Mining Software Repos-
itories community by providing a common basis that everyone
can use to count, identify, sample from, or analyze projects. Our
operational definition of a set of repositories representing an in-
dependent project is that all these repositories share the objective
to work on the same project. For example, a fork created to sub-
mit a pull request or to fix a bug that, for all practical purposes,
is expected to be eventually fixed upstream can be illustrated by
the repositories Debian distribution uses to keep track of upstream
packages. They are used to ensure that everything compiles and
can be installed together for the distribution, but are not intended
to maintain the upstream project. This also includes cases where

2020-02-07 06:52. Page 1 of 1–5.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MSR 20, June 03–05, 2020, Seul, Korea Audris Mockus, Diomidis Spinellis, Zoe Kotti, and Gabriel John Dusing

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

a project may maintain another project within its own repository,
but not with the purpose of developing it, just to avoid potential
incompatibilities that may occur due to differences in development
schedule. Hard forks, on the other hand, would indicate a desire
to develop the project independently and should be considered as
separate projects.

While there are many ways to identify related projects, here we
focus on a single approach: linking projects sharing at least one
commit. Git commits are based on Merkle Tree and no two commits
are likely to be produced independently. For example, the initial
commit to a repo creating an empty README.md file and done at
exactly the same time (up to a second) in the same timezone, by two
developers having identical credentials would result in an identical
commit. However, as a distributed VCS, git makes it easy to create
clones (via git clone or through GitHub fork button) and resulting in
numerous repositories that are intended to be distributed copies of
the code used in the same project. This feature of Git that enables
distributed collaboration also results in numerous clones of the
original repository. Furthermore, GitHub introduced single-click
way to fork (in essence to clone) a repository on GitHub and use it to
create patches (pull requests) for the origin of that fork. This further
increased the number repositories related to popular projects.

As noted above, it is virtually impossible to produce indepen-
dently identical commits in normal development (see a potential
example above), so it would appear that projects sharing a commit
are related. Here we do not consider other types of related projects
where the version history was not shared and only the source code
has been copied. Such projects can not be identified via shared com-
mits and are a subject of further work, for example by comparing
the blobs shared among the projects or the directory structure of
the source code [6, 7, 19].

To apply the approach we utilize the infrastructure provided by
the World of Code [14]. Specifically, we use version Q of the data
and obtain commit to project relationships. As described in WoC
tutorial [15], the data is stored in 32 databases containing a full
list of pairs between commits and projects in which these commits
were found (c2pFullQXX.s). This commit to project graph has a total
of 99,154,451,345 links between 116265607 projects and 1868632121
commits. We handle the scale of the problem as described in Sec-
tion 3, i.e., by solving a sequence of smaller problems and using the
results to solve the larger problem. The largest group of repositories
(we use words “project” and “repository” interchangeably here) has
almost 14M projects and not all of them appear to be closely related.

We, therefore identify some of the reasons for such outcome
(projects that fetch from or push to repositories of unrelated projects)
and propose and implement alternative operationalizations of re-
lated projects. These involve the attempt to identify and remove
problematic projects or commits, simplification of the problem by
reducing the number of projects by using explicit fork identification
in GitHub, and using Louvain community detection algorithm to
separate connected but unrelated projects.

Our results provide an operationalizaton of related projects for
open source projects utilizing git version control system obtained
fromWoC infrastructure. In addition to projects related by a shared
commit, we also provide the ultimate parent from forking rela-
tionships for GitHub forks and the groups defined by Louvain
community detection algorithm.

Te remainder of the paper describes data sources in Section 2, the
approach to link the projects in Section 3, the approach to eliminate
problematic projects and commits in Section 4, the community de-
tection approach described in Section 5, and summary in Section 9.

2 DATA SOURCE: WORLD OF CODE
The World of Code [14] infrastructure prototype was created to
support developing theoretical, computational, and statistical frame-
works that discover, collect, and process FLOSS operational data
and construct FLOSS supply chains (SC), identify and quantify its
risks, and discover and construct effective risk mitigation practices
and tools. That prototype stores the huge and rapidly growing
amount of data in the entire FLOSS ecosystem and provide basic
capabilities to efficiently extract and analyze that data at that scale.
WoC’s primary focus is on types of analyses that require global
reach across FLOSS projects.

In a nutshell, WoC is a software analysis pipeline starting from
discovery and retrieval of data, storage and updates, and trans-
formations and data augmentation necessary for analytic tasks
downstream. In addition to storing objects from all git repositories
WoC also provides relationships among them. For the purpose of
this analysis we only use a single relationship fromWoC: commit to
project map that lists all commit project pairs. WoC has two inter-
faces: one optimized for random access and another for processing
the entirety of the collection. We chose the second due to need
to obtain the entirety of the commit to project links. WoC splits
each relationship into 32 databases. Specifically, the c2p (commit to
Project) database is split based on 5 bits of the first byte of commits
Sha1. Thus we naturally have 32 smaller datasets to analyze. Ran-
domness of Sha1 ensures that each of these databases represents
the entire collection.

WoC data is versioned with the latest version labeled as Q
and containing 7204111388 blobs 1868632121 commits, 7596825726
trees, 16172556 tags, 116265607 projects (distinct repositories), and
38142898 distinct author IDs. WoC has collected that data during
November and December of 2019. For more information please
consult WoC website [3]. The proposed grouping into the related
projects produced 66532614 such clusters with the largest cluster
containing 354920 repositories (miranagha/js).

We also use fork parent data obtained from GHTorrent [11] and,
for GitHub projects not present in GHTorrent, we retrieved using
GitHub GraphQL API [2]. Please note that that GitHub forks may
have their own forks. For each project we obtain the ultimate parent:
that is if the parent has a parent, we continue until the repository
is no longer fork.

3 LINKING PROJECTS BY SHARED COMMITS
As noted above, we distribute the computational load over the 32
databases listing commit/project pairs. Since data in these lists
are sorted we simply need to group projects that share the same
commit. Commits belonging to a single project can be ignored
as they will not provide a link among projects. The result of the
first pass over each of the 32 databases are a list of lines each
listing two or more projects linked by a commit (for more detail
pleease see README.md enclosed with the data upload). We then
encode each line representing a group of N projects as N − 1 links
linking the first project to the remaining ones. The resulting graph

2020-02-07 06:52. Page 2 of 1–5.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A Complete Set of Related Git Repositories Identified via Community Detection Approaches Based on Shared Commits MSR 20, June 03–05, 2020, Seul, Korea

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

is used to produce cliques (connected components) via C++ Boost
library [1]1. The resulting components from each of the 32 databases
are then combined into a single graph and the same library is used
to produce the overall components. The largest components are
shown in Table 1 Names of the clusters are chosen by selecting a

Member Count Name
13,912,612 grr
28,193 rh24/parrot-ruby
17,267 kvignali/arel-lab
16,181 hmagph/ui−
16,170 54/996İCU
10,541 mil/kb
10,218 bloomni/aa
9,911 f0/rkt

Table 1: The largest groups of related repositories

repository from the cluster that has the shortest name that and is
first in the alphanumeric order. This cluster name is provided as
the second column of the provided map, where the first column
lists all 116,265,607 projects and the linking produces 61,921,909
distinct clusters unconnected by commits.

The first mega-cluster exceeds the next one by almost three
magnitudes and is clearly undesirable as it packs more than 10% of
all projects and groups together what appear to be rather unrelated
projects.

4 REMOVING BAD PROJECTS AND COMMITS
Given less than ideal outcome obtained in Section 3, we have spent
some time investigating the reasons behind that outcome. Specifi-
cally we identified at least two kind of repositories that give rise to
such a mega-cluster. First, it appears that some projects are used
in what appears to be simply a backup storage. Since any devel-
oper who has a permission to write to a repository can push git
objects to it from any unrelated repository, this feature may have
been used by some developers to use cloud git version control
systems simply to back up their work. Examples of such repos-
itories include “docker-library/commit-warehouse” and “devilln-
side/AcerRecovery.” The second class of problematic repositories
appear to include repositories that contain version history frommul-
tiple independent projects that are used to build a single project, for
example, “bloomberg/chromium.bb” that contains commit history
from independent projects such as libdrm and FFmpeg. A simple
attempt to remove such projects manually did not give great results
as after one of such problematic projects was removed, there we
hundreds of other that remained leaving the size of the mega-cluster
stubbornly high. After eliminating a large set of potentially problem-
atic projects (listed in the code as an associative array bad Projects)
and also removing potentially problematic commits (commits that
span more than one thousand projects), we still had a formidable
mega-cluster containing 9,626,594 projects and 65,591,526 groups
of unrelated projects.

5 COMMUNITY DETECTION
Research on large graphs has produced a number of algorithms
that detect communities: groups that interact (have more links)
1Specifically connected_components function from
“boost/graph/connected_components.hpp”

among themselves than across groups. Such algorithms tend to be
much more time consuming than the arguably simplest connected
subset detection algorithm we used in Section 3. More importantly,
it is not clear how to combine the results from multiple runs of the
algorithm on different subsets of commits as we did in that section.
We, therefore, tried to simplify the problem in two ways. First,
we reduce the number of distinct projects by using information
obtained from GitHub fork API and substituting project name by
its ultimate parent. Second, we reduce the number of commits by
considering all commits touching the same subset of projects as a
single commit. That resulted in 141,53,282 groups (hyperlinks) of
projects representing a minimum of 13,82,233,820 links involving
two projects.

After this preparation the resulting graph was then analyzed
using iGraph package in R [16]. It was necessary to read and add
links to graph in chunks in order to avoid creating a long vector
(iGraph can not presently handle R’s long vector). Louvain’s al-
gorithm implementation in R was used, specifically, the function
“cluster_louvain” [5].

The resulting set of groups (we use groups, components, and
clusters interchangeably) appears to be much more reasonable
with the three largest groups representing what appear to be le-
gitimately related groups of projects involved in language tutori-
als (miranagha/js), github.io templates of creating a static github
website/personal CV (6101/-) programming assignments (ykgm/R),
datasharing templates (jkwonl/test), linux kernel for mobile mods
(aosp/oz), bootstrap (UCF/50), configuration files (rdp/a), and spring
framework (maiyy/-).

Member Count Name
354920 miranagha/js
333645 6101/-
241893 ykgm/R
211538 jkwonl/test
179315 aosp/oz
101988 UCF/50
94160 rdp/a
89602 maiyy/-

Table 2: The largest groups of related repositories using Lou-
vain community detection

6 DATA OVERVIEW
At we provide “ultimateMap2.s” where the first column is the
repo name transformed with the first ‘/’ replaced by ‘_’, and the
‘github.com/’ removed for GitHub repositories. The second column
is the result of community detection to assign a cluster name which
represents an independently developed project to all repositories in
World of Code. Third column is the name of the cluster produced
in 1.

We also provide ‘ghForks.gz’ which is produced by identifying,
for each forked repository, its ultimate parent. If a parent is a fork
itself, find its parent, and so on, until it is not a fork. In addtion,
related source code is also included.
7 EVALUATION
To measure the accuracy of the community detection algorithm
we rely on the incomplete list of ultimate parent repositories at

2020-02-07 06:52. Page 3 of 1–5.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MSR 20, June 03–05, 2020, Seul, Korea Audris Mockus, Diomidis Spinellis, Zoe Kotti, and Gabriel John Dusing

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

the time we performed the clustering calculation. Over theweeks
during which we were doing the clustering, we were also retrieve
information using GitHub API on whether or not the project was
a fork and, if so, what was the parent. Over 15M projects from
WoC could not be found in the ghTorrent extract we used. Due to
throtling of GitHub API the process of obtaining fork parents is
very slow. Over the period we did the computation, we were able to
retrieve fork parent information for only approximately one million
GitHub repositories. By the time of writing we have collected fork
information on 1,652,872 repositories that was not available for
the community detection analysis described in this section. We
used that information to determine if the community detection
approach was able to group these repositories to the corresponding
ultimate parents in this new extract. Of these, only 32,082 or 1.9%
were not placed in the more than one group (represented by the
ultimate parent). Of these incorrectly split, most (9,245) were in the
octocat/Spoon-Knife, which is a test repository for developers to
practice using git. Also, only a tiny percentage of repositories were
separated from the main group, for example only one repository
was split from spring-projects/spring-boot (see Table 3 As shown

In split lrgst grp Parent fork
9245 9222 octocat/Spoon-Knife
2717 2684 rdpeng/ProgrammingAssignment2
1957 1936 rdpeng/ExData_Plotting1
1046 1045 spring-projects/spring-boot
Table 3: Split fork parents with most repositories

in the table the most repositories in forks that were split, occurred
in training repositories and with only a few repositories not in the
primary group.

We also compare our approach to the competing approach de-
scribed [18]. Specifically, the competing approach provides groups
for 10,649,348 repositories and the set of repositories that we could
match was 8157317. Assuming the competing approach as the gold
standard, our approach splits 100,300 of the 2,036,117 groups (5%) in
the competing approach. Conversly, assuming our approach as the
gold standard, the competing approach splits 44,357 out of 2,124,711
(2%) of the groups we detect using our algorithm.

Inspecting the largest discrepancies, our approach produces 629
groups for the torvalds/linux group of the competing approach
and competing approach splits aosp/oz group (kernel mobile mods)
produced by our algorithm into 1,245 groups. All data and code
needed to reproduce the results are in github.com/ssc-oscar/forks.

8 LIMITATIONS
It is important to note that we are not trying to solve the prob-
lem of identifying all related project, just ones that are related via
code commits. We are also not investigating finer types of relation-
ships, for example, light forks done for a single pull request vs hard
forks where projects evolve independently or all shades of grey
in between. Other approaches may be more suitable (or used in
combination with shared commit methods) for that. For example,
shared code, amount of independent evolution, etc.

We utilize WoC data collection with all associated limitations of
using that repository and described there [14].

The accuracy of our approach is not easy to establish. While
we rely on explicitly specified GitHub forks in the community

detection step, these may involve cases where the forked projects
are developed independently with no intention to merge. We were
able to reproduce the explicitly specified forks with high accuracy,
however.

Some of the projects in WoC may have been renamed and the
new project may have the name of the old project but an entirely
different content. Identifying and eliminating such projects would
help improve the accuracy of the community detection algorithms.

While our approach appears to provide sensible groups of projects,
it may be further improved by experimenting with different com-
munity detection algorithms and by weighting links in a different
manner.

While there is no particular reason to expect that modularity-
focused algorithms should work on a problem involving the dis-
crimination of forks and non-forks, it is not unreasonable to assume
that unusual patterns of using git such that objects from unrelated
projects are shared within a single repository, would appear as
anomalies and thus be eliminated as spurious links between groups
of legitimate forks.

9 SUMMARY
The main purpose of this work is to demonstrate the feasibility of
solving the problem of finding groups of repositories represent-
ing independent projects on a global scale with a high scale of
automation, and to share the resulting dataset with the research
community for further improvement. We also hope that the result-
ing map will be incorporated into WoC and other infrastructures
such as BoA [10] and SoftwareHeritage [9] to further simplify sam-
pling, counting, and statistical analysis of the open source projects.

Specifically, we discover that a direct application of commit-
sharing resulted in the largest group containing almost 14M reposi-
tories. This happened because the developers can push git objects
to an arbitrary repository and pull objects from unrelated reposito-
ries into their repository, thus linking unrelated repositories. We
attempted to eliminate such problematic reposiories with limited
success until we applied Louvain community detection algorithm.
The approach successfully reduces the size of the mega-cluster with
the two largest groups of highly interconnected projects contain-
ing approximately 100K repositories that all appear to be closely
related.

As future work, it might be worth considering ways to apply
time-series methods to observe graph behavior over time. In [17],
a prediction framework is presented for certain graph parameters,
e.g. modularity or average degree. Reducing the size of the graph
in question may also be helpful which [4] suggests how this might
be done. Underpinning this approach is that not all edges of the
graph are necessary to draw conclusions, and by embedding the
graph in a metric space, certain edges close together in some sense
can be treated as a single edge.

We expect the tools that the resulting map of related projects as
well as tools and methods to handle the very large graph will serve
as a reference set for mining software projects and other applica-
tions. Further work, however, will be required to determine the
different types of relationships among projects induced by shared
commits and other relationships, for example, by shared source
code or similar filenames.

2020-02-07 06:52. Page 4 of 1–5.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

A Complete Set of Related Git Repositories Identified via Community Detection Approaches Based on Shared Commits MSR 20, June 03–05, 2020, Seul, Korea

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

REFERENCES
[1] Boost: C++ libraries.
[2] Github graphql api.
[3] Oscar - open source supply chains and avoidance of risk.
[4] Faisal N. Abu-Khzam and Rana H. Mouawi. Concise fuzzy representation of big

graphs: a dimensionality reduction approach, 2018.
[5] J-L Blondel, R Lambiotte Guillaume, and E Lefebvre. Fast unfolding of

community hierarchies in large networks. Technical report, arXiv, 1010.
http://arxiv.org/abs/arXiv:0803.0476.

[6] Hung-Fu Chang and Audris Mockus. Constructing universal version history. In
ICSE’06 Workshop on Mining Software Repositories, pages 76–79, Shanghai, China,
May 22-23 2006.

[7] Hung-Fu Chang and Audris Mockus. Evaluation of source code copy detection
methods on FreeBSD. In 5th Working Conference on Mining Software Repositories.
ACM Press, May 10–11 2008.

[8] Jacek Czerwonka, Nachiappan Nagappan,Wolfram Schulte, and BrendanMurphy.
Codemine: Building a software development data analytics platform at microsoft.
IEEE software, 30(4):64–71, 2013.

[9] Roberto Di Cosmo and Stefano Zacchiroli. Software heritage: Whyandhowtopre-
servesoftwaresourcecode. ipres 2017, 2017.

[10] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A
language and infrastructure for analyzing ultra-large-scale software reposito-
ries. In Proceedings of the 35th International Conference on Software Engineering,

ICSE’13, pages 422–431, 2013.
[11] Georgios Gousios andDiomidis Spinellis. Ghtorrent: Github’s data from a firehose.

In Mining software repositories (msr), 2012 9th ieee working conference on, pages
12–21. IEEE, 2012.

[12] Randy Hackbarth, Audris Mockus, John Palframan, and David Weiss. Assess-
ing the state of software in a large enterprise. Journal of Empirical Software
Engineering, 10(3):219–249, 2010.

[13] Randy Hackbarth, Audris Mockus, John Palframan, and David Weiss. Assessing
the state of software in a large enterprise: A 12-year retrospective. In The Art
and Science of Analyzing Software Data, pages 411–451. Elsevier, 2016.

[14] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
World of code: An infrastructure for mining the universe of open source vcs data.
In IEEE Working Conference on Mining Software Repositories, May 26 2019.

[15] Audris Mockus. Woc tutorial, 2019.
[16] R Development Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN
3-900051-07-0.

[17] Sandipan Sikdar, Niloy Ganguly, and Animesh Mukherjee. Time series analysis
of temporal networks. The European Physical Journal B, 89(1), Jan 2016.

[18] Diomidis Spinellis, Zoe Kotti, and Audris Mockus. A dataset for github repository
deduplication. arXiv:2002.02314, 2020.

[19] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. The relationship between folder
use and the number of forks: A case study on github repositories. In ESEM,
Torino, Italy, September 2014.

2020-02-07 06:52. Page 5 of 1–5.

	Abstract
	1 Introduction
	2 Data Source: World of Code
	3 Linking projects by shared commits
	4 Removing bad projects and commits
	5 Community Detection
	6 Data Overview
	7 Evaluation
	8 Limitations
	9 Summary
	References

