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Abstract We present multilayer observations and numerical simulations of gravity waves (GWs)
generated by a series of Mesoscale Convective Systems over the midwestern United States. Strong
semiconcentric GWs were observed and modeled, which couple from their tropospheric sources to the
thermosphere, displaying strong nonlinearity indicated by instability, breaking, and formation of turbulent
vortices. GWs in the stratosphere display a large range of horizontal scales from 34–400 km; however, the
smaller wavelength waves break rapidly in the mesosphere and lower thermosphere. Larger-scale
(≥150 km) waves dominate in the thermosphere and display northwestward propagation at 200–300 km
altitude, opposing the mean winds. Despite strong molecular viscosity and thermal conductivity in the
thermosphere, steepened wave fronts, which may indicate nonlinearity, is identified in 630 nm airglow
imagers. The agreement between model and data suggests new opportunities for data-constrained
simulations that span multilayer observables, including mesosphere and lower thermosphere-region
airglow not captured for this event.

1. Introduction
Gravity waves (GWs) and, more generally, acoustic-gravity waves (which include the full spectrum of GWs
along with those for which compressibility may be important to their propagation) play an important
role in defining the wind, temperature, and circulation of the Earth's atmosphere (Fritts & Alexander,
2003). They represent one of the dominant mechanisms for transporting energy and momentum from
the lower atmosphere to the middle and upper atmosphere (e.g., Garcia & Solomon, 1985; Holton, 1982;
Holton & Alexander, 2000; Lindzen, 1981). Deep convection, for example, thunderstorms, Mesoscale Con-
vective Complexes, and Mesoscale Convective Systems (MCSs), represents important sources of GWs,
especially at tropical and midlatitudes during local summer (Gong et al., 2015; Hoffmann & Alexander, 2010;
Perwitasari et al., 2016; Tsuda et al., 2000). Convectively generated GWs contribute to the summer branch
of the Brewer-Dobson Circulation (Alexander & Rosenlof, 2003; Stephan et al., 2016) and drive the
Quasi-Biennial Oscillation (Alexander & Holton, 1997; Piani et al., 2000), and the Semi-Annual Oscilla-
tion (Ern et al., 2015; Garcia et al., 1997). In the mesosphere and lower thermosphere (MLT), convectively
generated GWs can be subject to significant breaking leading to secondary wave generation (Horinouchi
et al., 2002; Snively & Pasko, 2003; Vincent et al., 2013) and have significant impacts on mean winds and
temperature structure (Vadas & Liu, 2013; Vadas et al., 2014).

Observations of GWs generated by convective sources are numerous and are often confirmed by their con-
centric or semiconcentric patterns in ground-based and satellite imagery (Gong et al., 2015; Hoffmann &
Alexander, 2010; Hoffmann et al., 2013; Miller et al., 2015; Perwitasari et al., 2016; Randall et al., 2017;
Sentman et al., 2003; Suzuki et al., 2007; Yue et al., 2009). However, single-instrument observations are
often confined to a single layer or profile, thus providing limited spatial and temporal coverage of the wave
field and its evolution (Kalisch et al., 2016; Trinh et al., 2016). Several studies have leveraged networks of
instruments to observe larger fields of view or multiple layers to study the coupling of waves across ver-
tically separated regions of the atmosphere (Azeem et al., 2015; Mundra et al., 2013; Suzuki et al., 2013;
Yue et al., 2014; Xu et al., 2015; Wen et al., 2018). However, considerable complementary opportunities
remain via numerical modeling, to elucidate the spatial and temporal domains that present observations
cannot capture.
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There has been a long history of modeling GWs in order to understand their generation mechanisms
(Fovell et al., 1992; Lane et al., 2001; Pfister et al., 1993; Pandya & Alexander, 1999; Song et al., 2003),
spectra and characteristics (Alexander & Holton, 1997; Beres et al., 2004; Choi & Chun, 2011; Holton &
Alexander, 1999; Lane & Moncrieff, 2008; Lane & Sharman, 2008; Piani et al., 2000), and influences of
winds on their propagation and effects of the atmospheric structure (Alexander & Holton, 2004; Beres
et al., 2002; Vadas et al., 2009; Walterscheid et al., 2001). Convective GWs have been studied using idealized
sources (Alexander & Holton, 2004; Snively & Pasko, 2003), cloud-resolving models based upon soundings
(Horinouchi et al., 2002; Lane & Moncrieff, 2008; Vincent et al., 2013), full-physics mesoscale models
(Costantino et al., 2015), and in general circulation models via parameterization (e.g., Beres et al., 2002,
2004; Richter et al., 2010) and direct simulation (Liu et al., 2014; Stephan et al., 2019a, 2019b). How-
ever, high-resolution observations of middle-atmospheric GWs cannot yet be reproduced efficiently in
cloud-resolving models, using simple sources initialized from soundings, nor GW-resolving numerical
weather prediction and general circulation models. As a simpler strategy, Grimsdell et al. (2010), Stephan
and Alexander (2015), and Stephan et al. (2016) used Doppler radar observations of precipitation rates to
infer latent heating rates that drive their simulations. This has been shown advantageous in being able to
replicate observations at lower computational expense. However, these studies have to date been confined
to the stratosphere and below.

In this paper, we present a comprehensive observational and modeling study, from the ground to the ther-
mosphere, of intense MCSs over the midwest United States on the 8 July 2016, the observations of which are
described in section 2. The thunderstorm systems are observed by the Next Generation Radar (NEXRAD)
network and later modeled using precipitation rate derived latent heat sources. The associated GWs are
observed by the Atmosphere Infrared Sounder (AIRS) 4.3 μm band in the stratosphere (30–40 km altitude)
(Aumann et al., 2003), in the ground-based Midlatitude Allsky-imaging Network for GeoSpace Observations
(MANGO) in the thermosphere (200–300 km altitude) (Mundra et al., 2013), and are simulated from the
ground to 250 km altitude.

2. Observations
Strong GWs were observed by AIRS at 08:30 UT and MANGO between 03:50 UT and 07:30 UT on the 8 July
2016 over the midwestern United States. The GWs are assumed to be generated by three separate MCSs,
which originate between 00:00 and 02:00 UT over Texas, eastern Colorado, and Kansas. These systems are
shown in the NEXRAD reflectivity maps at 04:15 and 05:15 UT in Figure 1a. The three systems last into the
evening local time and progress eastward following the winds. The Texas, Colorado, and Kansas systems
have approximate diameters of 126, 196, and 271 km, respectively, at 04:15 UT.

Figure 1b shows the 630 nm airglow intensity difference image at 04:15 and 05:15 UT taken by MANGO,
which is projected at 250 km altitude. Note that the difference images are created by subtracting two con-
secutive images with 4 min of exposure with 1 min in-between; thus, the difference image has an effective
10 min cadence. The 630 nm emission (atomic oxygen red line) arises between 200 and 300 km altitude
from O(1D) (Link & Cogger, 1988), resulting from charge exchange and dissociative chemical processes
(with O, O+, O2, O+

2 , and e−). The MANGO imager captures evolving strong, apparently steepened wave
fronts (suggesting nonlinearity) between 03:50 UT and 07:30 UT that propagate toward the northeast with
wavelengths ranging from 200 to 300 km and periods ranging from ∼13–45 mins (suggesting phase speeds
of 80–106 ms−1) (see supporting information for the MANGO movie).

Figure 1c shows the AIRS 8.1 and 4.3 μm brightness temperature perturbations at 01:30 LT (08:30 UT over
Kansas). The 8.1 μm waveband shows the cloud top temperatures where values less than ∼200 K are indica-
tive of possible tropopause overshooting. The 4.3 μm waveband peaks at ∼30–40 km altitude and is sensitive
to GWs with vertical wavelengths greater than ∼15 km (Gong et al., 2015; Hoffmann & Alexander, 2010;
Hoffmann et al., 2013). The AIRS images show semiconcentric GWs propagating primarily eastward at a
range of scales, with smaller scales close to the source and larger scales further away. These range from
34–413 km, with spectral power peaks near 34, 58, 155, 256, and 413 km; however, it is noted that the hori-
zontal resolution is degraded at scan extremes (41 km) versus nadir (13.5 km); thus, smaller scales will not
be detected away from nadir. The mean winds in the upper stratosphere are directed almost due west and
will filter (via critical levels) westward propagating waves with phase speeds less than ∼60 m/s (hence, the
lack of westward propagating waves in the image). It is also noted that the AIRS instrument is sensitive to
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Figure 1. The (a) NEXRAD reflectivity map at 04:15 and 05:15 UT with three major storm systems in blue boxes, (b) the MANGO 630 nm difference image at
04:15 and 05:15 UT, and (c) the AIRS 8.1 and 4.3 μm brightness temperature perturbations at 08:30 UT over Kansas. The red box shows the model simulation
domain. Yellow bars indicate wave scales.

waves with larger vertical wavelengths (Hoffmann & Alexander, 2009). Waves that are propagating in the
direction of the wind will be refracted to smaller vertical wavelength and will have small perturbations in
the AIRS image as a result.

The times at which the data are displayed in Figure 1 are subject to constraints of data availability. AIRS
passes a given location twice a day (01:30 LT and 13:30 LT); thus, only one nighttime observation is available
for this event. The MANGO observation is displayed at 04:15 and 05:15 UT due to the coherence of the
waves at this time and its evolution into a steepened waveform. The NEXRAD data are shown at the same
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Figure 2. The (left) ambient zonal and meridional winds, (middle) temperature structure, and (right) blocking
diagram at z = 42, 87, 150, and 200 km altitude. The blocking diagram line contours shows the range of phase speeds
which are critical level filtered, along a given azimuth, below a given altitude.

time for comparison. Since waves pass through the stratosphere before they reach thermosphere, it would
to be preferable to have either MANGO and AIRS data that overlap in time or AIRS data that occurs before
the MANGO data, and then the AIRS and MANGO data could be shown at a times which correspond to
propagation times between the two layers.

3. Numerical Modeling
The MCS that originates over Kansas, and subsequent GW generation and propagation, is simulated using
the 3-D nonlinear, high-resolution, compressible numerical “MAGIC” Model for Acoustic-Gravity wave
Interactions and Coupling (Snively & Pasko, 2008; Snively, 2013; Zettergren & Snively, 2015). While there
are three major storms systems present in the NEXRAD data over the observation period, the Kansas is the
most prominent and has the most intense rainfall. The other two major storm system originate outside of
the extent of the model domain and will be included in a future more comprehensive study. The thunder-
storm forcing is approximated as a latent heating, derived from NEXRAD digital precipitation rates, and
applied to the Navier-Stokes energy equation. The Stephan and Alexander (2015) algorithm takes the pre-
cipitation rate (in units of mm/10 min) as input and outputs a latent heating profile for each x, y, and t using
a minimum convective threshold of 1 mm/10 min. The algorithm is a simple linear regression derived from
precipitation rates and heating profiles within a full-physics version of the Weather Forecasting Model at
4 × 4 m resolution and was validated against a number of real storms and satellite data. The regression
lines use the precipitation rate as the independent variable and the dependent variables are top, center, and
bottom of heating/cooling profile and heating/cooling amplitude. The MAGIC domain used in this simula-
tion is 1,200 × 1,200 × 250 km (x, y, and z), with resolutions of 2 × 2 × 1 km, respectively. The side and top
boundaries are open (a sponge layer is applied to the top 30 km of the domain), and the bottom boundary
is reflective. The model domain is indicated via the red box in Figure 1, and only thunderstorms which are
present within this domain are modeled. Therefore, we consider only a subset of sources that can generate
GWs that may be present in the image data sets.

3.1. Ambient Atmosphere
The ambient atmosphere used for the simulation consisted of Modern-Era Retrospective analysis for
Research and Applications, Version 2 (Gelaro et al., 2017) for the winds between z = 0–60 km altitude, and
the Horizontal Wind Model 2007 (Drob et al., 2008) between z = 60–250 km. The background species density
and temperature profiles are generated using the 2001 U.S. Naval Research Laboratory Mass Spectrometer
and Incoherent Scatter Radar Exosphere (NRLMSISE-00) (Picone et al., 2002). The profiles were chosen at
a latitude of 38◦ N and a longitude of 267◦ E (corresponding to the location of the Kansas thunderstorm)
at 6:00 UT on 8 July 2016 and are homogeneous in latitude, longitude, and time. The profiles are displayed
in Figure 2, along with a “blocking diagram” to depict phase speeds that would be cumulatively filtered by
critical levels, as a function of azimuth at four different altitudes (42, 87, 150, and 200 km). For example,
the blue/red/black contour line indicates the minimum phase speed needed for a wave to propagate up to
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42/87/150 km altitude, respectively, and avoid being critical level filtered, along a given azimuth. Alterna-
tively stated, all waves with phase speeds that fall within the contour will be critical level filtered before
reaching the respective altitude. Figure 2c suggests significant blocking occurs for westward propagating
GWs; those propagating along a northeastern trajectory are least likely to be filtered by critical levels.

3.2. Simulation Results
The MAGIC model output data enable calculation of synthetic AIRS 4.3 μm images following the tech-
niques of Grimsdell et al. (2010) and Stephan and Alexander (2015). It also supports OH and OI airglow
chemistry (e.g., Snively et al., 2010, and references therein), calculated time dependently, with the ability to
output volume emission rate or brightness temperature perturbation “images” or “Keograms,” for compar-
ison with airglow imaging data at 87 and 95 km altitude, respectively. Note that direct comparison with the
630 nm MANGO data will require the use of a comprehensive ionospheric model; this will be performed
and reported later.

Figure 3 shows synthetic AIRS (stratosphere), OH(3,1) airglow (mesosphere), and z = 150 km
(thermosphere) temperature perturbations at t = 2, 3, and 4 UT. The AIRS results mimic the observations,
finding a range of scales that increase at greater distances from the source and showing predominately east-
ward propagation; the amplitudes are of the same order as the observations. There are two sources of GWs
that are distinct at 02:00 and 03:00 UT; however, the fronts are superposed by 04:00 UT. The simulated AIRS
signatures appear linear at this altitude. This is deduced because the wavefields are relatively sinusoidal,
have small amplitudes, and display no evidence of instability within the limits of their resolution. The dom-
inant horizontal wavelength is 40 km, and the period is 11.7 min (Cp = 56 m/s), compared with 34 km in
the observation.

The OH(3,1) temperature perturbation fields (Figure 3b, centered at z = 87 km) shows rapid breaking of GWs
propagating in the eastward direction, destroying the wave field and leaving the larger-scale (higher phase
speed) waves to become dominant by 04:00 UT. This is predominantly due to the large zonal shear in the MLT
(which reduces the GW vertical wavelength and Richardson number) and the large amplitudes that the GWs
attain. In the meridional direction, breaking is less prevalent since the wind shear (and amplitude) is not
as strong. Therefore, the dominant-scale sizes propagating meridionally are smaller than those propagating
zonally. The dominant zonally propagating waves are 170 and 200 km in scale with 27 and 50 min periods,
respectively (66–105 m/s phase speed), and the meridional waves have dominant-scale sizes and periods of
100 km and 21.8 min, respectively (Cp = 76 m/s). The smaller-scale (∼34–60 km), slower phase speed waves
that are dominant in the stratosphere are those that tend to break in the mesosphere.

The temperature perturbation field in the thermosphere at z = 150 km is shown in Figure 3c. Molecular
viscosity and thermal conductivity are significant at these altitudes, and the waves should experience sig-
nificant damping. Despite this, the GW field still displays strong nonlinearity, breaking, and generation
of vortices at ∼tens of km scales. This supports the MANGO results that display possible steepened wave
features, suggesting nonlinearity, where wave damping is significant. The waves propagate predominately
eastward with a dominant scale of 170 km and a 29 min period and a strong secondary mode with 75 km
scale and a 13.8 min period (phase speeds of 97 and 90 m/s, respectively). The eddy scales are much larger
at 150 km than those in the OH(3,1) at 87 km, due to the higher viscosity at 150 km precluding the evolu-
tion to smaller scales. The dominant wave scales and periods correspond to those in the OH(3,1), suggesting
that this is the same primary wave packet that propagates all the way up from the source (i.e., it is not the
result of wave breaking and secondary wave generation). This mode is also identified in the stratosphere but
at much weaker amplitude.

During the model evolution, acoustic oscillations are detectable in the simulated OH(3,1) layer perturba-
tions and the 150 km temperature (e.g., Snively, 2013; Zettergren & Snively, 2013). The acoustic waves
clearly exhibit nonlinearity at 150 km, due to nonlinear evolution following amplification as they propagate
upward through decreasing density, seen in the video provided as supporting information in frames after
2.25 UT. Examination of global positioning system ionospheric total electron content, following personal
communications with Pavel Inchin, identified acoustic waves that are approximately timed with the occur-
rence of strong acoustic waves in the simulation. This is consistent with prior reports during severe weather
(e.g., Nishioka et al., 2013). We caution that the amplitudes of simulated acoustic waves may be in excess of
those in reality, due to limitations on source resolution leading to more coherent source regions. This will
be investigated in future modeling, with ionospheric responses.
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Figure 3. The simulated (a) AIRS brightness temperature perturbations, (b) OH(3,1) temperature emission, and (c) z = 150 km model temperature
perturbation at t = 02:00, 03:00, and 04:00 UT.

4. Comparison of Observations and Simulated Results
Figure 4 shows a comparison of the stratospheric and thermospheric observation data and simulation results
at single times. The synthetic AIRS data, temperature perturbation at 150 km, and the MANGO data are all
displayed at approximately the same time (∼4:15 UT). The AIRS imagery, however, was captured later at
08:30 UT, which is beyond the duration of the present simulation; separate simulation results at lower reso-
lution, not shown here, show persistence of these stratospheric wave fields to at least 08:00 UT, in reasonable
agreement with AIRS.

For analysis, a single slice of the AIRS (and synthetic AIRS) data was taken along the red line for each
case, and a Morlet wavelet transform was performed along that red line using the method of Torrence and
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Figure 4. A comparison of the model and the observations at fixed times (left), along with corresponding wavelet
transforms (right). The top row shows the AIRS brightness temperature perturbation at 8:30 UT, the second row shows
the simulated AIRS brightness temperature at 4:00 UT, the third row shows the simulated temperature perturbation at
z = 150 km, at 4:00 UT, and the bottom row shows the MANGO data at 4:15 UT.

HEALE ET AL. 14,170



Geophysical Research Letters 10.1029/2019GL085934

Compo (1998). The slice was taken zonally in the stratosphere and in the northeast direction in the ther-
mosphere. The slices are taken so that they align with the dominant wave propagation direction at each
altitude. Despite the AIRS data being collected at a different time than our simulation results, the model
captures the prominent 34 km small-scale and 155–290 km modes but does not capture a distinct 56 km
mode or the 413 km large-scale mode. This may be due to the difference in timing and sources included in
the model versus those that are represented in the data. In the thermosphere, the model results at 150 km
altitude suggest a wave that is propagating zonally with dominant modes at 71 km, 156 km, and a broad,
weaker mode ranging from around 200–300 km.

The MANGO data also show a distinctly northeastward propagating GW with scales between 220 and
290 km. These scales are similar to the broad, weaker modes seen in the simulation. However, there was a
large MCS in Texas (southwest of the observation), which fell outside of the model domain and may play
a role in the distinct northeastward propagating waves and scales observed. In addition, the MANGO data
are the result of an emission layer which spans 200–300 km and is complicated by integrated averaging and
line-of-sight cancelation effects; as well, the ionospheric responses depend on the state of the ionosphere
and the local geometry of the geomagnetic field. Most notably, ionospheric responses should be stronger for
northward waves than eastward waves, which may further enhance the observable anisotropy in a manner
consistent with these data (e.g., Nishioka et al., 2013; Zettergren & Snively, 2013).

5. Discussion and Conclusions
This paper presents a multilayer study of GWs generated by convective systems over the midwestern United
States on 8 July 2016. Three MCSs, originating over Colorado, Texas, and Kansas, were present throughout
the day and generated significant wave activity observed by the AIRS instrument in the stratosphere and by
a MANGO 630 nm airglow camera (situated in Iowa) in the thermosphere. Complementary modeling was
performed, where GWs were forced by time-dependent latent heating sources representative of the MCSs,
to provide synthetic AIRS and OH(3,1) images, as well as the temperature perturbation in the thermosphere
at z = 150 km to assess the waves exiting the MLT into the thermosphere.

The GWs propagated predominately toward the east, due to filtering by the strong westward stratospheric
winds, displaying an arc-like morphology. Interference is seen between waves generated by different indi-
vidual convective plumes within the MCSs, revealing a broad range of scales. The GW horizontal scales
in AIRS ranged from 34–413 km. Similar scales were found in the simulation with a dominant mode of
40 km and a period of 11.7 min. Rapid breaking occurred for the eastward propagating waves in the OH(3,1)
simulated images due to a large zonal shear in the MLT; the smaller scales that were dominant in the strato-
sphere break up into smaller structures, and larger scale ≥150 km GWs remain to dominate the spectrum.
In contrast, smaller-scale GWs avoid breaking in the meridional direction, due to a lack of strong wind
shear, and thus persist. The same larger ≥150 km waves become dominant in the thermosphere at 150 km
altitude. These waves exhibit large amplitude, nonlinearity, and instability at these altitudes, leading to rel-
atively larger-scale secondary structures than in the MLT due to the greater effects of molecular viscosity.
The waves observed in the 630 nm airglow images propagate to the northeast, against the mean wind over
the 150–200 km altitude region.

This study further highlights the importance of multilayer observations and modeling to investigate wave
coupling throughout the atmosphere. Here, GWs with scales between 155 and 290 km are present at all
observed altitudes and indicate primary wave coupling from the source to the thermosphere at considerable
amplitudes. Above mesopause, they have typical phase speeds of ∼90–110 m/s. Furthermore, despite the
fact that most GWs are assumed to be heavily damped in the thermosphere by viscosity, these GWs still
exhibit steepening and breaking in the model as they reach 150 km altitude. This interpretation is further
supported by the MANGO 630 nm difference images, which also provide compelling observational evidence
for the importance of nonlinearity.

We consider these results to be extremely encouraging and are developing further numerical experiments
to investigate this event in greater detail, albeit at much greater computational cost. Thus, we are now per-
forming larger-domain, higher-resolution case studies, over the full duration of the event extending to the
time of the AIRS observation. This case study will also incorporate other nearby sources and will extend
throughout the thermosphere to enable direct calculation of the ionospheric responses leading to signa-
tures in 630 nm airglow and vertically integrated total electron content (e.g., Zettergren & Snively, 2015),
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for the full relevant spectrum of AGW-GW. These studies form a crucial step toward understanding the
impacts of waves that are unresolved in large-scale models and provide specific demonstration of the fea-
sibility to include upper-atmospheric responses in deep-atmosphere mesoscale models using simplified,
data-constrained sources. This is the first study that looks at multilayer dynamics from diverse observa-
tional sources and simulations, which gives unprecedented insight into the regional processes that enable
momentum transfer via GWs
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