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Abstract: There is an increasing need for monitoring and controlling uncertainties brought by distributed energy resources in
distribution grids. For such goal, accurate multi-phase topology is the basis for correlating measurements in unbalanced
distribution networks. Unfortunately, such topology knowledge is often unavailable due to limited investment. Also, the bus
phase labeling information is inaccurate due to human errors or outdated records. For this challenge, this paper utilizes smart
meter data for an information-theoretic approach to learn the topology of distribution grids. Specifically, multi-phase unbalanced
systems are converted into symmetrical components, namely positive, negative, and zero sequences. Then, this paper proves
that the Chow-Liu algorithm finds the topology by utilizing power flow equations and the conditional independence relationships
implied by the radial multi-phase structure of distribution grids with the presence of incorrect bus phase labels. At last, by
utilizing Carson's equation, this paper proves that the bus phase connection can be correctly identified using voltage
measurements. For validation, IEEE systems are simulated using three real data sets. The simulation results demonstrate that
the algorithm is highly accurate for finding multi-phase topology even with strong load unbalancing condition and DERs. This

ensures close monitoring and controlling DERSs in distribution grids.

1 Introduction

The power distribution system is currently undergoing a dramatic
transformation in both forms and functions. Large-scale
deployments of technologies such as rooftop solar, electric vehicles
(EVs), and smart home management systems have the potential to
offer cheaper, cleaner, and more controllable energy to the
customers. On the other hand, the integration of these resources has
been proven to be non-trivial, largely because of their inherent
uncertainty and distributed nature.

For example, even a small scale of distributed energy resources
(DERSs) can affect the stability of distribution grids [1]. Such a
problem will be aggravated by the unbalance situation in
distribution grids especially when uneven DER deployment
happens. Furthermore, the more frequent bi-directional power
flows easily leave the existing monitoring system with passive
protective devices insufficient for robust grid operations. In
addition to the static connectivity, mobile components such as EVs
can further jeopardise the grid stability due to their frequent plug-in
[2]. Therefore, the multi-phase grid monitoring tools need to be
carefully designed for islanding and line work hazards in system
operation with deep and uneven DER penetrations. For such
monitoring, grid topology information is a prerequisite.

For topology estimation, the transmission grid assumes a priori
knowledge of grids, which needs limited error correction. Also, it
is assumed that infrequent reconfiguration happens, identifiable by
generalised state estimation [3—5]. Unfortunately such assumptions
do not hold in medium- and low-voltage distribution grids, where
topology can change relatively more frequently with limited
sensing devices. Furthermore, many urban distribution lines have
been underground for decades, making prior knowledge of
topology suspicious and expensive to verify [6].

For distribution grid topology identification, many methods
have been proposed in recent years. For example, in [7], the correct
topology is searched from a set of possible radial networks. Given
the line parameters, Cavraro et al. [8] and Sharon et al. [9] propose
maximum-likelihood methods to select the operational distribution
grid topology. Bolognani et al. [10], Peppanen et al. [11], and Liao
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et al. [12] utilise the statistical correlation of single-phase voltages
collected from smart meters to estimate distribution grid topology.
Unfortunately, all of these methods focus on the balanced or single-
phase systems. For utility practise, distribution grids for buildings
and residential areas are usually unbalanced and multi-phase
systems. One reason is that the loads connected at different phases
are unbalanced due to the uneven growth in each feeder territory
[13, 14]. For example, surveyed by the American National
Standards Institute (ANSI), 2% of distribution grids in the USA
have a significant undesirable degree of unbalance [15, 16]. With
the growth of renewable penetration, the load unbalance problem
will become more frequent in future distribution grids. For
example, the unbalance of the multi-phase system appears more
often because the installations and operations of many DER
devices are not fully controlled by utilities. This fact makes the
requirement of balanced grids in previous works invalid in field
applications.

To find the topology of unbalanced multi-phase distribution
grids, Yuan et al. [17] and its follow-up work [18] formulate multi-
phase measurements as vectors and apply the single-phase
approach to estimate grid topology. In [19], the multi-phase power
flow equations are linearised and the topology estimation is
formulated as a statistical learning problem. For all these
approaches, a prerequisite is installations of phase measurement
units (PMUs), which have not been widely available in distribution
grids. In addition, these methods assume bus phase labellings are
correct at each bus. For many utilities, as high as 10% phase
labellings are incorrect or unknown because of human errors or
outdated records. This high error rate (ER) makes identifying new
topology based on existing methods not sound anymore.

For resolving these problems above, this paper proposes a data-
driven method that utilises the smart meter data in different phases
to estimate the topology of multi-phase distribution grid systems.
Building on our previous works on the probabilistic graphical
model formulation of distribution grids [20], first, this paper
expands the method from the single-phase representation to multi-
phase balanced systems with incorrect bus phase labels. In such
model, a node represents the multi-phase bus voltages and an edge
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between nodes indicates the statistical dependency among multi-
phase bus voltage measurements.

Subsequently, the system of three unbalanced phasors is
converted to three symmetrical components, namely the positive,
negative, and zero sequences. Then, the Chow—Liu algorithm is
proved to be optimal for identifying the multi-phase topology by
utilising power flow equations and the conditional independence
relationships implied by the radial multi-phase structure of
distribution grids. As a highlight, the proposed method does not
require PMUs and is robust to incorrect phase labels, which is a
critical problem in distribution grid operations. This feature is due
to the label-invariant property of mutual information. Another
major contribution is bus phase correction and identification.
Specifically, a data-driven approach is proposed to identify true bus
phase connections by utilising Carson's equation [21], which is
employed for deriving the primitive phase impedances of different
lines.

The performance of the proposed method is verified by
simulations on the IEEE 37-bus, 123-bus, and 8500-bus
distribution test cases [22]. Three different data sets are used for
simulation: North CA PG&E residential household data sets,
ADRES project data set [23, 24] that contains 30 houses load
profiles in Upper-Austria, and Pecan Street data set, which contains
load data of 345 houses with photovoltaic (PV) panels in Austin,
TX. Simulations are conducted via GridLAB-D, an open source
distribution grid simulator [25] for multi-phase systems.
Simulation results show that, provided with hourly measurements,
the proposed algorithm perfectly estimates the topology of multi-
phase distribution grids with noiseless measurements.

The rest of this paper is organised as follows: Section 2
introduces the modelling of the multi-phase distribution system and
the problem of data-driven topology estimation. Section 3, first,
proves the topology estimation problem of a multi-phase
distribution grid can be solved as a mutual information
maximisation problem and proposes an algorithm to solve such a
maximisation problem in multi-phase setup. Also, a method is
proposed to identify the bus phase connection. In Section 4, to
address the unbalance in distribution grids, an unbalanced
distribution grid is transformed to a symmetric system using
sequence component frame and prove that the mutual information
approach can still apply to grid topology estimation and phase
identification. Section 5 evaluates the performance of our method
using IEEE test cases and real data collected from different
regions. Section 6 concludes this paper.

2 Multi-phase distribution grid modelling and
problem formulation

A distribution grid is modelled by a graph & = (M, &), where the
vertex set /4 = {0, 1, 2, ..., M} represent the set of buses and the
unidirectional edge set & = {(i, k), i, k € /#} represent the
branches. The branch between two buses is not necessary to be
multi-phase. In the distribution grid, bus 0 is the substation with a
fixed voltage and is the root of the tree graph. " denotes the set
of buses excluding the substation, i.e. 4" = #~{0}. If bus i and
bus £ are connected, i.e. (i, k) € &, and bus i is closer to the root
(substation) than bus £, bus i is the parent of bus k, and bus £ is the
child of i. Let pa(i) denote the parent bus of bus i. The root has no
parent and all other buses in " have exactly one parent. Let € (i)
denote the set of child buses of bus i and use (i) = G (pa())\{i} to
denote the set of sibling buses of bus i.

Let a, b, and c denote the three phases of the distribution grid.

The vector V2 = [VZ, VP, V§]T € C’ denotes the nodal voltages at
bus i, where V,«¢ denotes the line-to-ground complex voltage on
phase ¢ and T is the transpose operator. Similarly,
=1 1° 1" e C® and $ =[S P, S51T € C* denote the
vectors of current injections and injected complex powers at bus i,

respectively. If a bus is only connected with one or two phases, the
quantities of the missing phase are zeros. For example, if bus i does

not have phase ¢, Vi =0, I} = 0, and S; = 0. For convenience, V;,
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I;, and S; are used as the general notation of multi-phase quantities
at bus 7.

If bus i and bus k are connected, i.e. (i, k) € &, the relationship
between their nodal voltages and currents can be expressed as
follows [26, 27]:

[ I; Yie + 5Bi shunt =Y v,
= , (1)
1 ] 1 v ]
¢ —Yy Yie + 5B shunt £
where Y € C** denotes the admittance submatrix between bus i

and bus & and B; g, € C ™ denotes the shunt capacitance at bus i.
In a multi-phase system, Y; is not diagonal. The voltages at
different phases are coupled. As shown in Section 5, this coupling
property in multi-phase systems leads the existing single-phase
methods to have poor performance in unbalanced multi-phase
systems. Since B; gy 1S relatively small in distribution grids [21],
B; ¢hunt 1s assumed to be zeros, i.e. 0. In the formulation above, the
effect of the neural wire is merged into the multi-phase wires by
applying Kron's reduction [27]. If bus i and bus k are not
connected, Y, = 0.

For bus i, the voltage measurement at time »n is
viln] = fnl, vflnl, vilall",  where  v[n] = [v/[n]]exp(j6n])
denotes the complex voltage measurement on phase ¢ at time n
and j = 4/—1. The magnitude |v,¢[n]| € R is in volt and the phase

angle Qf[n] € R is in degree. All measurements are assumed to be
noiseless at first. In Section 5, the proposed algorithm will be
validated with noisy measurements. In the following section, the
upper-case letter denotes the symbol and the lower-case letter
denotes the snapshot of symbol measurement. For example, V
denotes the voltage symbol and v[n] denotes the voltage
measurement at time z.

With the modelling above, the multi-phase distribution grid
topology estimation and bus phase identification problem is
defined as:

* Problem: Data-driven multi-phase distribution grid topology and
bus phase estimation using voltage measurements.

* Given: Time-series voltage measurements with unknown bus
phase labels vi[n],n=1, ..., N, i € M".

* Find: Unknown grid topology & and bus phase ¢.

3 Multi-phase distribution grid
estimation and bus phase identification

topology

This section first extends our previous work [20] to estimate the
topology of multi-phase system with incorrect phase labels. Then, a
novel method is proposed to identify the true bus phase labels by
utilising the statistical relationship between voltage measurements.
The method proposed in this section focuses on balanced
distribution systems. When a distribution system is unbalanced, a
modified algorithm is proposed in Section 4. Fig. 1 summarises the
criteria for the topology estimation method selection.

The end-user measurements are time-series data. One way to
represent these data is using a probability distribution. If the nodal
multi-phase voltage vector V; is modelled as a random vector, the
joint distribution of voltage measurement P(V ,+) is
P(V)P(V,|V)---P(Vy|V,, ..., Viy_,). Bus 0 is omitted because it
is the slack bus with a fixed voltage.

Many previous works of distribution grid topology estimation
[7, 10, 20, 28] only require the single-phase voltages. However,
with the presence of false or unknown phase labels, all three phases
voltage measurements are needed for topology estimation. The
latter part of this section will show that our method is invariant to
phase label accuracy, and therefore can estimate topology with
false or unknown phase labels.

In many medium- and low-voltage distribution grids, the
probability distribution of voltage is irregular. To better formulate
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Is the distribution system

balanced?
YES NO
Does the distribution Algorithm 3
system have bus phase
labels information?
YES NO
Single-phase Does the distribution
topology estimation [21] system have voltage
phase angle data?
YES NO
Algorithm 1 Algorithm 2

Fig. 1 Flowchart of topology estimation method selection
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Fig. 2 Mutual information of pairwise current injection increment AI and
power injection increment AS of PG&E data sets in the IEEE 123-bus
system

IEEE 123-bus system

Autocorrelation

Fig. 3 Average auto-correlation of current injection increment Al of
PG&E data sets in the IEEE 123-bus system. The error bar is one standard
deviation

the topology estimation problem, the incremental change of
measurements is adopted in this paper [12, 29, 30]. At bus i, the
incremental change of voltage is Av;[n] = vi*[n] — vi*[n — 1] for
n > 2. When n =1, Ayj[1] = 0. By using the incremental change
AV, the joint probability is

P(AV 4+) = P(AV))P(AV,|AV))

@)
= X P(AVy|AV,, .., AVy ).

Since the nodal voltages are modelled as random vectors, the graph
€ becomes a probabilistic graphical model with a tree structure. In
a graphical model, the vertex represents a random vector (e.g. AV;)
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and the edge between two vertices indicates the statistical
dependency between bus voltages. Therefore, estimating
distribution grid topology is equivalent to recovering the radial
structure of the graphical model .

In a single-phase distribution grid, the nodal voltages only have
statistical dependency with the nodal voltages of their parent bus
[20]. In the next section, such dependency will be extended from
single-phase systems to approximate multi-phase systems’ joint
probability P(AV ,+) as

M
P(AV.44) = [ PAVi| AV ?3)

i=1

If (3) holds, finding the structure of & is equivalent to finding the
parent of each bus. The next section uses a two-stage approach to
prove the approximation in (3) holds with equality. In the first
stage, bus voltages are proved to be conditionally independent,
given their parents, grandparents, and siblings, i.e.

P(AV‘/%“') = HfW: lP(A‘/l| AV[pa(i), pa(pa(i)), 09(,)}) Then, inspiring by
the real data observation, (3) is shown to hold with equality.

Before starting the first stage proof, two assumptions are
proposed and justified using real data.

Assumption 1: In a multi-phase distribution gird:

* incremental change of the current injection Al at each non-slack
bus is independent, i.e. AILLAI for all i # k and

 incremental changes of the current injection Al and bus voltage
AV at each bus follow Gaussian distribution with zero means
and non-zero covariances.

Fig. 2 shows the pairwise mutual information of the incremental
changes of bus current injection using the real data from PG&E.
The mutual information /(X, Y) is a measure of the statistical
dependence between two random vectors X and Y. When the
mutual information is zero, these two random vectors are
independent, i.e. XLY [31]. In Fig. 2, most pairs of Al have small
values. Thus, the current injections are assumed to be independent
with some approximation errors. This assumption has also been
adopted in other works, e.g. [7, 10, 19]. To further validate the
independence of AI, Fig. 3 plots the average auto-correlation of
current injection increment of PG&E data in the IEEE 123-bus
system. The error bar is one standard deviation. In Fig. 3, the auto-
correlation of Al drops significantly as the lag increases. This
observation justifies that the current injection increments are
approximately independent over time.

Both injected power increment independence and injected
current increment independence are adopted in the existing works
of distribution grid topology estimation. Liao ef al. [12] use the real
data to show that these two assumptions are equivalent in
distribution grids. Fig. 2 illustrates the mutual information of
pairwise power injection increment AS and pairwise current
injection increment AI. Both histograms are similar. In this paper,
the assumption of current injection independence is preferred
because it simplifies the proof of following theorems and lemmas.

Fig. 4 illustrates the histograms of bus voltage |AV]| in IEEE
123-bus system using PG&E data. Hence, the voltage data
approximately follow Gaussian distributions. With Assumption 1,

P(AV 4+) is proved to be [], PAAVI| AV pa. papac. s@))- For
connivance, let (i) denote all buses that are below bus i. For
example, in Fig. 5, €*(1) = {2, 3, 4, 5, 6, 7} and €*(2) = {4, 5}.

Lemma 1: 1f the incremental change of current injection at each
bus is approximately independent (i.e. AL LAI, for i # k), given
the incremental voltage changes of bus i’s parent (AVpup),
grandparent (AVpapaay), and siblings (AVs;), the incremental
voltage changes of bus i and the buses that are not below bus 7 are
conditionally independent, i.e. AViJ_AVk|AV,pa(,->, papady, S@; 10T

k & {pa(i), pa(pa(i)), S(i), €<(i)} and i # k.
559
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Fig. 4 Histograms of |AV| of four buses in IEEE 123-bus system using

PG&E data
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Fig. 5 Example of an 8-bus multi-phase system. A node represents a bus,
which can be single-phase or multi-phase. An edge represents a branch
between two buses. The branch is unnecessary to be multi-phase. Bus 0 is
the substation (root)
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Fig. 6 Mutual information of pairwise buses in IEEE 123-bus system
using PG&E data sets. The circle indicates the neighbours of bus i. The
crossing indicates the two-step neighbour of bus i. The square without
markers represents the bus pair that are more than two-step away

Here, a simple example demonstrates Lemma 1. A formal proof

is given in Appendix of Section 8.1. For the example system in
Fig. 5, the nodal admittance equation is Y 4,+AV ,+ = Al ,+, where

560

Y, Yo, Yy 0 0 0 O
Y21 Y22 0 Y24 Y25 0 0
Y31 0 Y33 0 0 Y36 Y37
Yyr=|0 Y, 0 Y, 0 0 0] 4
0 Y, 0 0 Ys; 0 0
0 0 Y; 0 0 Y4 O
0O 0 Y; 0 0 o0 Yy,
Yy=Yyand Y;= — Yi_o1.;¥i If Yy =0, there is no branch

between buses i and £.

For bus 4, pa(4) = 2, pa(pa(4)) = 1, and $(4) = {5}. Therefore,
given AV, = Ay, AV,= Ay, and AVs= Avs, there are the
following equations:

Al = Y, Av, 4+ Y, Av, + YAV, )
Al = Y, ,Av, + YAV, (6)
Al = YAV, + YAV, @)
AL = YAV, + YAV, ®)

Given AI lAI, according to (5) and (6), AV, and AV, are
conditionally independent given AV,, AV,, and AVs. In (5), AV,
can be rewritten as (Y13)'1(AII — Y, Av, — Y,Av,). Then, AV; is
substituted into (7). Since Al,, Al,, and Al are independent, A,
and Al — Y(Y,;) Al are independent. Therefore, AV, and AV
are conditionally independent. Similarly, AV, and AV, are
conditionally independent.

For a non-leaf bus, bus 2, given AV;= Ay, and AV, = Ay,
there are the following equations:

Al =Y, | Av, + Y ,AV, + Y ;Av;, 9
AIG = Y63AV3 + YGGAVG, (10)
AL = Y;Av, + YAV, (11)

Given Al and Al are independent, according to (9) and (10), AV,
and AV are conditionally independent. Similarly, AV, and AV are
conditionally independent given Al, and AI, are independent. Our
conclusion in Lemma 1 is similar to the results in [32].

Assumption 2: In a distribution grid, the mutual information
between AV; and its parent AV}, is much larger than the mutual
information between AV; and AVpapai) and AV,

Assumption 2 is inspired by the real data observations. Fig. 6
plots the mutual information of voltage increments between each
bus pair in IEEE 123-bus distribution system using the PG&E data.
The distribution grid configuration and simulation setup are
described in Section 5. In Fig. 6, the colour in a square represents
the mutual information of voltage increments between two buses.
If the voltage increments of two buses are independent, their
mutual information is zero [31] (dark colour). In Fig. 6, the circle
refers to the bus neighbours (e.g. parent bus) and the crossing
indicates the two-step neighbours (grandparent bus and sibling
buses). If a square does not have any marker, the corresponding
pair of buses is more than two-step away. In Fig. 6, the mutual
information between the voltages of two-step neighbours is higher
than the mutual information of other bus pairs, but it is still much
lower than the mutual information between two neighbours. The
diagonal bus pairs have the highest mutual information because it
is the self-information. With Assumption 2, P(AV 4,) can be
simplified to only depend on the voltages of parent buses. Section
5 uses numerical simulations to demonstrate that this
approximation does not degrade the performance of topology and
bus phase connectivity estimation.
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Require: Av;[n]forie MY, n=1,.---N
1: fori,k € MT do
2:  Compute empirical mutual information I (AV;; AV}) based
on Av;[n] and Avg[n] using (16) and (17).

3: end for

4: Sort all possible bus pair (z,k) into non-increasing order by
I(AV;; AVy). Let T denote the sorted set.

5: Let £ be the set of “nodal pair comprising the maximum weight
spanning tree. Set £ = 0.

6: for (i,k) € T do R

7. if cycle is detected in € U (¢, k) then

8

Continue
9: else
10: E+ EU(i,k)
11:  endif
12:  if|€] == M then
13: break
14:  endif
15:  return &
16: end for

Fig. 7 Algorithm 1: multi-phase distribution grid topology estimation

Lemma 2: Given the incremental voltage changes of bus i in a
multi-phase distribution grid, if the incremental change of current
injection at each bus is approximately independent, the incremental
voltage changes of every pair of bus i’s children are conditionally
independent, i.e. AV, LAV,|AV, fork, | € €(i) and k # L.

With Lemma 2, (3) holds with -equality, i.e.
P(AV 4+) = wa: P(AV;|AV,y). Thus, finding the distribution
grid topology is equivalent to finding the parent of each bus. In the
following sections, an information on theoretical approach is
proposed to estimate the multi-phase distribution grid topology
with incorrect bus phase labels.

3.1 Information theoretical approach to estimate multi-phase
distribution grid topology

One way to find the parent of each bus is minimising the
Kullback-Leibler (KL) divergence [31] of P(AV ,+) and

QAV 4 = [T P(AV,| AV, ice.

© = arg min D(P(AV.q) | Q(AV.4+: ©), (12)
oc.u*

where @ denotes the collection of parent bus index of every bus,
ie. @ = {pa(l), ..., pa(M)}, P denotes the joint distribution of all
voltages, and QO denotes the distribution of voltage vectors with tree
structure. When two distributions are identical, the KL divergence
is zero. Therefore, as shown in Lemma 2, if there exists a
distribution Q(AV 4+, @) that is identical to P(AV ,4+), O contains
the parent bus index of every bus i. The associated structure of
Pci(AV 4+) = Q(AV 4+; @) is the estimated topology of
distribution grid. Lemma 3 proves that (12) can be efficiently
solved by utilising the radial structure of distribution grids. In the
following context, @; and pa(i) are used interchangeably.

Lemma 3: In a radial distribution grid, finding the topology is
equivalent to solving the following optimisation problem:

. M

® = arg max Z
ec.ut i=1

I(AV;; AV), (13)

where I(AV;; AV¢g) denotes the mutual information.
The proof is in Appendix of Section 8.2. With Lemma 3, a
mutual information-based maximum weight spanning tree

algorithm, well known as Chow-Liu algorithm [33], could find )
and identify the multi-phase distribution grid topology. This
algorithm has been applied to single-phase system in [20].

IET Smart Grid, 2019, Vol. 2 Iss. 4, pp. 557-570

Theorem 1 proves that Chow—Liu algorithm can be extended to
multi-phase systems.

Theorem 1: In a radial multi-phase distribution grid, the mutual
information-based maximum weight spanning tree algorithm
(Chow-Liu algorithm) estimates the best-fitted topology.

Proof: This proof shows that the mutual information between
connected buses is higher than those without a connection. If bus i
is the parent of bus k and bus / and k # [, by utilising the chain rule
property of the mutual information [31], the joint mutual
information is expressed as

I(AV;; AVy, AV)
=1(AV; AV = I(AV;, AV |AV), (14)
=1(AVj; AV) — I(AV}, AV,|AV).

Since AV|AV;LAV,|AV,, the conditional mutual information
I(AV,, AV,|AV;) is zero. Then

I(AV;; AVy) = I(AV,; AV) + I(AV,, AV |AV).  (15)

Owing to the fact that mutual information is always non-negative,
I(AVy;, AV)) > I(AVy; AV)). Therefore, the mutual information
between connected buses is larger than the mutual information
between not connected buses. Then, by using the mutual
information as the weight, the maximum weight spanning tree
algorithm (Chow-Liu algorithm) solves (13) and estimates the
distribution grid topology [20, 33]. o
The mutual information I(AV;; AV,) can be computed as

I(AV;; AV = HAV) + H(AV) — H(AV; AV)), (16)

where H(AV,) denotes the entropy of AV; and H(AV; AV))
denotes the cross-entropy of AV; and AV,. An advantage using
(16) is that many distributions have closed forms of entropy. In
Assumption 1, the incremental changes of voltages in distribution
grids are assumed to follow Gaussian distribution approximately.
Thus, the entropy of AV is

H(AV) = %log(2ﬂ exp(l)) + %log( det Cov(AV))), 17)

where » denotes the dimension of the random vector AV; and Cov
denotes the covariance matrix. In some systems, the bus may not
have all three phases. In this case, the disconnected phases are
excluded in the computation of entropy.

A practical issue that exists in many distribution grids,
especially the low-voltage distribution grids, is that the smart meter
phase connectivity information is inaccurate. In some countries,
about 10% phase labels in low-voltage distribution grids are false
or unknown. Also, bus phase labels can change over time when
new customers and DER devices are connected to grids [34]. As
the correct bus phase connectivity information is critical to
distribution grid plannings, the grid topology and phase connection
should be estimated at the same time. To identify true bus phase
labels, one may apply existing methods [34-36] to identify phase
connectivity before estimating topology. Fortunately, our topology
estimation method does not require this preprocessing step and is
invariant to false phase labels. Specifically, when voltage phases
are incorrectly labelled, the elements in random vector AV, are
permuted. This permutation does not affect the computation of
det Cov(AV)), thus, does not change the values of H(AV;) and
H(AV;; AV)). Therefore, the mutual information I(AV; AV)) is
the same even the bus labels are incorrect. Section 5.3 uses
numerical examples to show that our algorithm can recover the
topology perfectly with the presence incorrect phase labels.

The proposed algorithm for multi-phase distribution grid
topology estimation is summarised in Algorithm 1 (see Fig. 7). The
well known Kruskal's minimum weight spanning tree algorithm
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Require: |Avl[nl| foric Mt,n=1,---N
1: fori,k € M™ do
2:  Compute empirical mutual information I(|AV;|;|AV])
based on |Av;[n]| and |Av[n]| using (16) and (17).
3: end for
4: Sort all possible bus pair (z,k) into non-increasing order by
I(JAV,|;|AV]). Let T denote the sorted set.
5: Repeat Step 5 to Step 16 in Algorithm 1 (Fig. 7).

Fig. 9 Algorithm 2: multi-phase distribution grid topology estimation
using voltage magnitudes

[37, 38] can be applied to efficiently build the maximum weight
spanning tree (steps 6—16). The running time of the Kruskal's
algorithm is O(M log M) for a radial distribution network with M
buses.

3.2 Distribution grid topology estimation using voltage
magnitudes only

Voltage phase angles are hard to acquire in distribution grids today
because PMUs are not widely available. However, the proposed
method can be extended to find the distribution grid topology only
using voltage magnitudes |AV/|. As presented in Lemma 3, the key
step of the proposed method is computing the mutual information
of each bus voltage pair. Using chain rule, the mutual information
I(AV;; AV)) can be decomposed as

I(AV,, AVk) = 1(|AV,|, A0,, |AVk|, A0k)
= I(AV,], |AVi) + I(AV,], AG;| AV, (18)

term A term B

+I(|AVI|’ A0k| |AVk|, Aal) .

term C

(19)

Fig. 8 empirically plots the pairwise mutual information of terms
A, B, C using the IEEE 123-bus system and the real data from
PG&E. The mutual information computed in (19) is sorted by its
value. The x-axis of Fig. 8 is the index of the sorted mutual
information. The y-axis is the mutual information of each part in
(19). The values of term A is much larger than term B and term C
across all pairs of buses. The reason is that the changes of voltage
angles are relatively small in distribution grids, and thus contain
less information than voltage magnitudes. On the basis of our
empirical observation in Fig. 8, I(|AV;|; |AV,]) can be used to
approximately estimate distribution grid structures. Specifically,
the optimisation problem in Lemma 3 is approximated as

M
© =argmax Y. I(AV,|; |AVg)). (20)
oc.ut (=1
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Many smart meters deployed can measure the voltages of all three
phases. Therefore, the proposed algorithm can still apply only
when smart meter voltage magnitude measurements are available.
Algorithm 2 (see Fig. 9) summarises the process for estimating
topology using voltage magnitudes only.

3.3 Topology estimation of weakly mesh distribution grid

In the previous section, the multi-phase distribution grid topology
estimation method is proposed for the radial system. In practise,
with the increased penetration of DERs, more distribution grids
become mesh structure for robustness [8, 12, 39]. In mesh
structures, a bus has more than one parent. Assuming only one bus
has two parents, the joint distribution is rewritten as

P(AV 4+) = P(AVy | AVpaasy 1, AVpasy 2)

M-1
@1
x [ Pavi|AVi),

i=1

where pa(i), 1 and pa(i), 2 represent the first and second parents of
bus i. Following the same proof as Lemma 3, the KL distance
D(P(AV 4+) || O(AV 4+)) can be written as:

D(P(AV 4+) || Q(AV 4+))
= - ](AVM; AVpa(M), 1> AVpa(M), 2)
M—-1

- 2 I(AV;; AVpy) + constant .
i=1

(22)

Therefore, to find the topology for weakly meshed system (e.g.
maximum number of parents is <2), the optimisation problem in
Lemma 3 is approximated as

M-1

© =arg max I(AVys; AV, . AV, )+ Y. I(AV; AVp).
o c.u*t ’ ' =
(23)
Specifically, for each mutual information
I(AVy; AV, ,, AVg,, ) 24
IAVig: AVe,, . AVe, )+ D 1AV AVe) (25

is computed by performing the maximum weighted spanning tree
algorithm. Then, the one with the largest total mutual information
is chosen to estimate system topology. The computational
complexity is O(M(M — 1)log(M — 1)).

The method discussed above can be generalised to systems with
more buses that contain more parents. However, the computational
complexity also increases significantly. Therefore, for distributed
systems that contain multiple loops, we recommend to adopt
topology estimation methods that are designed for heavily mesh
grids such as [12, 32].

3.4 Bus phase identification and correction

The previous section demonstrates that even with false phase
labels, our method can correctly identify the multi-phase
distribution grid topology. In many field applications, accurate grid
topology is not sufficient. The correct information of bus phases is
also critical in grid plannings and operations. This section proposes
a data-driven method to identify bus phase information and correct
the false phase labels.

Lemma 4: In a multi-phase distribution grid, if two terminal

buses of a branch are connected to the same phase, their phase
voltage correlation is the largest.
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Table 1 Voltage magnitude correlations between buses 64,
65, and 66

|AVE| |ave AV

|AV£1| 0.4956 0.9996 0.5332

|AVE 0.9526 0.5479 1.0000
Bus ¢ z%¢ Bus k&

AV Al S

Fig. 10 Example of the two-port three-phase circuit

Proof: Using the modified Carson's equation [21], the self-
impedance z** and mutual impedances z*® and z* of a multi-phase
power line can be computed as follows:

7% = ry + 0.095 + j0.121 x H% Q/miles, (26)
2% = 0.095 + j0.121 x HZ Q/miles, 27
7€ = 0.095 + j0.121 x H¢ Q/miles, (28)

where H3, HY, and HY are constants, and % is the resistance of
branch 7 - k£ in Q/miles. In a distribution grid, the resistance is
usually larger than reactance [40]. Therefore, z** ~ rj + 0.095 and
20 ~ 72~ (.095.

For bus i and bus £, the voltages and currents can be expressed

as
AVl |AVEl [z 2 z|[ar
AVP| = [AVR|+ |z Z* Z™|Ar), 29)
AVl |ave| |z Z* z||Ar

where Z™ = 7" x [ and [ is the line length. The equations above

can be simplified to

AVi=AVE+ C+ri X I X AL, (30)
AVP = AV2 4+ C+ ry X I X AI°, (31
AV = AVE + C+ ry X I X A, (32)

where C = 0.095 X [ x (AI* + AI’ + AI°). The phase voltages at
the two ends of a branch are in a linear relationship. Therefore,
their correlation is the largest. O

Table 1 shows the voltage magnitude corrections among buses
64, 65, and 66 in IEEE 123-bus system. There are no PMUs in the
system. Since PMUs can provide accurate phase measurements, the
bus phase label identification problem is trivial with the presence
of PMUs. In the 123-bus system, buses 64 and 65 are connected on
phase b. Bus 65 and 66 are connected on phase c. In Table 1, the
correlation between buses 64 and 65 on phase b is much larger than
other pairs. Similar observation holds for buses 65 and 66. Thus, to
identify bus phases in a distribution grid, the correlation check can
be applied from the substation of the radial network down to all
leaf buses. The reason is that the substation bus label information is
usually reliable. Then, the bus phase can be correctly identified,
following the paths of estimated grid topology. Note that, the
metering device installed at each bus can provide the number of
phases at each bus. Therefore, this method is eligible for all types
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of buses. The same approach can also be applied to diagnose the
correctness of the bus phase labels.

4 Unbalanced multi-phase distribution grid
topology estimation with incorrect phase labels

The results in the previous section illustrate the topology
estimation for balanced multi-phase systems with incorrect phase
labels. However, it is not directly expendable to unbalanced multi-
phase systems. As shown in Fig. 10, the voltages and currents are
coupled across different phases. Also, the unbalanced loads on
cach phase lead to the voltages angles are not separated by 27z/3.
To address these issues, the grid is transformed using sequence
component frameworks. The voltage phasor is decomposed into
three balanced phasors known as positive sequence, negative
sequence, and zero sequence. The multi-phase voltage AV; in
phase frame is decomposed as follows:

1 1 1)|avk
AV;=|r h 1||AV?| = HAVE™, (33)
h oW1 AV?

where h = exp(j2z/3), I’ = exp(—j2x/3), AVE, AVY, AV: denote
positive-sequence, negative-sequence, and zero-sequence voltages
on phase a. AVE™ is called the sequence voltage of phase a. Since
each sequence component system is balanced, the sequence
component voltages of phase b and phase ¢ are the phase shifts of
voltage on phase a, AVE™. Thus, the sequence components
voltages of phases b and c¢ are not required to compute. In the
following text, AVF"™ denotes the sequence voltage vector of bus i
on phase a. The sequence voltages can be computed as follows:

1

AVP = H'AV = 2

H"AV, (34)

where the operator A denotes the Hermitian transpose. The same
transformation can also be applied to the multi-phase current
phasors and admittance matrix, i.e.

AP = H'AIL, (35)
YR =H'Y;H. (36)

A highlight is that the transformation above is applied to the multi-
phase voltage phasors, current phasors, and admittance matrix at a
particular bus, not the entire system. Therefore, if two buses are not
connected, e.g. Yy =0, Y5 = 0. Therefore, finding topology in
phase frame is equivalent to finding topology in sequence
component frame. The proof of
PV = 1V P(aVP™ AV is required to apply the mutual
information-based maximum weight spanning tree algorithm
(Chow—Liu algorithm).

The transformation process in (34) does not require the correct
phase labels in the phase frame. The reason is that when the bus
phase labels are incorrect, the decomposition in (34) will become

either the sequence component frame AVE™ or AVE™, Since both

AVE™ or AVP™ are both balanced systems, the same method
proposed for AVE™ can be applied to estimate system topology.

Lemma 5: (data processing inequality): 1f random vectors
X,Y,Z forms a Markov Chain, ie. X->Y—>Z,
I(X;Y)>I1(X;Z). Also, for the function of Y, g(¥),
I(X; Y) 2 I(X; g(Y)).

Proof: see [31] for the proof.
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Require: Av;[n]fori € MY, n=1,---N

1: Compute voltage phasor AvY"*[n] using (32) for i € M,
n=1,-

2: for i, k € ./\/l+ do

3: Compute empirical mutual information I(AVY"*; AVP"™)

based on AvI"*[n] and AvP"*[n].

4: end for

5: Sort all possible bus pair (¢,k) into non-increasing order by
I(AVP™ AVEP™) Let T denote the sorted set.

6: Repeat Step 5 to Step 16 in Algorithm 1 (Fig. 7).

Fig. 11 Algorithm 3: unbalanced multi-phase distribution grid topology
estimation via sequence component frame

}

” be Estimated Estimated
Avii(n] Distribution Grid Topology . Phase Connectivity
"= 1 N Topology Estimation = Bus Phase ! ~

T & Om+

Fig. 12 [EEE 123-bus distribution test case

Lemma 6: Consider a multi-phase distribution grid and assume
that the current injection increment at each bus is approximately
independent, e.g. AILLAI, for i # k. Given the nodal bus voltage
increment of bus / in sequence component frame, the nodal bus
voltage increments of every pair of bus i’s children are
conditionally independent, i.e. AV LAVY™|AVP™ for k, I € B(i)
and k # [.

Proof: The first step of the proof is showing that the current
injection increment is independent in sequence component frame,
given the current injection increment at each bus is independent in
phase frame. There are multiple ways to prove it. Here, an
information theoretical approach is adopted.

When two random vectors are independent, their mutual
information is zero [31], e.g. I(Al; AI) =0 if AL LAI. Since

A = H'AIL is a linear transformation of AIL, these random

vectors form a Markov Chain, i.e. AI; - Al — AIY™. Applying
Lemma 5

I(AL; AIP™) < I(AL; AIL) = 0. (37)
Since the mutual information is non-negative, I(Al; AIL™) =

AL = HAIP™ is a function of AIP™. Thus, another Markov Chain
is formed: AI"™ — Al — AIY™. Applying Lemma 5 again

I(AIP AR < I(AI; ALY = (38)

I(AIP™; AIT™) is zero due to the mnon-negativity of mutual

information. Therefore, if the current injections are independent in
phase frame, they are also independent in sequence component
frame.

The second step of the proof is showing that the conditional
independence of nodal voltages holds in sequence component
frame. The example in Fig. 5 is adopted to illustrate it. In the
sequence component frame, the nodal equation of the system in

Fig. 5is Y0 RAVY S = AIYS, where Y75 is

YR YRS YRS 0 0 0 0
YREOYRE 0 YR OYET 0 0
NI TS CON B S Ol (5
0 Y o0 YR 0 0 0| (39
0 Y 0 0 YE 0 0
0 0 YXE 0 0 YE 0
0 0 YX 0 0 0 Y
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Y = Y0F, and Y2 = — Yo ki YRS If YE© =0, there is no
branch between buses i and k. This equation is in the same format
as (4). Since AIM™ LAIY™ for all i # k, the same method used in the
proof of Lemmas 1 and 2 can show the conditional independence
of nodal voltages in sequence component frame. O

With Lemma 6, the conditional independence of current
injection is proved to hold in the sequence component frame as

well, e.g. P(AVY) = H P(AVP"Z|A Viai)- Since the sequence
component system is a balanced multi-phase system, the Chow—

Liu algorithm can estimate topology in the sequence component
frame.

Theorem 2: In an unbalanced radial distribution grid, the
topology can be estimated by solving the following problem:

N M
© = arg max z
ecut i=1

1AV, AVRD). (40)

Also, the mutual information-based maximum weight spanning
tree algorithm (Chow—-Liu algorithm) solves the problem above.

The proof of Theorem 2 is omitted here because it is similar to
the proofs of Lemma 3 and Theorem 1. The topology estimation
algorithm for wunbalanced multi-phase distribution grids is
summarised in Algorithm 3 (see Fig. 11).

The phase angles of AV are needed for performing the phase
frame transformation in (34). However, as discussed in Section 3.2,
PMUs have not been widely available in distribution grids. To only
use voltage magnitudes to address the unbalance problem, the
following approximation is proposed:

AV =H'|AV|. (41)

In this approximation, only the voltage magnitudes in phase frame
are used to compute voltages in sequence component frame. As
demonstrated in Section 5, this approximation does not introduce
significant errors to topology estimation. In addition, the grid
topology 1is identical in phase frame and sequence component
frame. Therefore, once the unbalanced grid topology is estimated,
Lemma 4 is applied to identify the phases of all buses.

5 Simulations and numerical results

In this section, the proposed algorithms for balanced and
unbalanced grid topology estimations are validated on IEEE 37-
bus, 123-bus (Fig. 12), and 8500-bus distribution networks [22, 41]
using data from USA (CA and TX) and Europe. Also, we validate
the proposed algorithms on systems with different levels of DER
penetration and the presence of incorrect phase labels.
Furthermore, sensitivity analysis is conducted on data lengths, data
accuracy, load patterns, and data resolutions.

The 37-bus, 123-bus, and 8500-bus systems are multi-phase. In
each network, the feeder or substation is selected as the slack bus
(bus 0). The historical data have been preprocessed by the
GridLAB-D [25], an open source simulator for distribution grid.
The load profile from PG&E is used to simulate the power system
behaviour in a practical pattern. This profile contains anonymised
and secure hourly smart meter readings over 110,000 PG&E
residential customers for a period of 1 year spanning from 2011 to
2012. Since both 37-bus and 123-bus systems are primary
distribution grids, the real power at each bus is an aggregation of
10-100 customers. The load buses in both systems are unnecessary
to be multi-phase. The details of bus and branch phases are given
n [22]. The voltage data at each bus are used for topology
estimation. Fig. 13 summarises the overall process of topology
estimation and bus phase identification.

The PG&E data set does not contain the reactive power. The

reactive power ¢/ #In] on phase ¢ of bus i at time n is computed
according to a random lagging power factor p ff [n], which follows

a uniform distribution, e.g. p ff/’[n] ~ Unif (0.8, 0.95). To obtain
voltage time-series, i.e. v;[n], the power flow analysis is run to
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Fig. 13 Flowchart of topology estimation and bus phase identification
process
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56 ‘Phase A .
%10 Holid ¢ \ i
& soo MR i . { [ i m““\w I

I
d\\un\‘m\hu il \M“ ™ JMA‘U‘WWMWW»‘U /WVM m i M M“WW“““““Hh‘” “ h“uﬂ“\h“ |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (Day)

1500 - T ‘Phase B‘ 1
=1000 - i
=
o 500 il ‘ ol

IARRAAAY — ; . WO T L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (Day)
Phase C

1500 - T
<1000
i 500 H‘u\u“‘m‘“\ B gl H\“m‘ \‘”‘“ il -

il el I
I ‘ 4l T YT "‘m‘u‘\”\u \“H‘MNM““‘
0 L I L L I}
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (Day)

Fig. 15 Hourly aggregated real powers on each phase in 123-bus system

generate the hourly states of the power system over a year.
N = 8760 measurements are obtained at each bus. Section 5.4.1
investigates the data length requirement for topology estimation.
The loads attached to each phase are unequal. Hence, the systems
are unbalanced. Figs. 14 and 15 show the hourly aggregated real
powers on each phase in 37-bus and 123-bus systems. Although
each phase has the similar pattern over time, the magnitudes of real
powers are different on each phase. Therefore, the testing systems
are unbalanced.

5.1 Distribution grid topology estimation error rate (ER)

This section discusses the performance on grid topology
estimation. The ER is employed as the performance evaluation
metric, which is defined as

IET Smart Grid, 2019, Vol. 2 Iss. 4, pp. 557-570

Table 2 Topology estimation ER without DERs

Proposed method Modified single-phase method

system  AyP= |AVP| AVPE |avP™
37bus  0.00%  0.00% 5.56% 8.33%
123bus  0.00%  0.00% 1.64% 1.64%

Table 3 Topology estimation computation time (s)

System Computation time Computation time Total time
of mutual of maximum
information weight spanning
tree
37 bus 0.476 0.499 0.975
123 bus 2.978 3.114 6.092
8500 bus 244.345 478.111 722.456
8500 bus 89.090 94.028 183.118
(parallel)

1
ER=@ Z

(i,ke®

false estimation

G hes) + Y (G hed)|e @
(i,k)ye &

missing

where & denotes the edge set estimates; |&] is the size of &; and
I(.) is the indicator function. The first and second terms represent
the number of falsely estimated branches and the number of
missing branches, respectively.

Table 2 summarises the topology estimation ERs of unbalanced
multi-phase 37- and 123-bus systems using noiseless data. When
phase angle data are available, our algorithm perfectly estimates
the grid topology. When only voltage magnitudes are available, our
algorithm can still estimate the grid topology perfectly. This result
also verifies that our approximation in (41) is sufficient for
topology estimation.

The proposed algorithm is also compared with a modified
single-phase topology estimation in [20]. Specifically, the single-
phase topology estimator is applied to each phase individually.
Then, the single-phase topology estimates are combined to produce
the multi-phase system topology. As shown in Table 2, the
modified single-phase method has worst performance than the
proposed algorithm. The key reason is that the modified single-
phase method does not consider the voltage coupling across
phases.

The proposed algorithm is compared with the method in [42],
which is also based on minimising the KL distance and searches
the correct operational topology from all possible topology
candidates. For 37-bus system, the ER of [42] is 5.6%. For 123-bus
system, the ER is 8.2%. The high ERs are due to the DC
approximation in [42]. For unbalanced distribution grids, the DC
approximation does not hold generally.

In addition, we validate our algorithm on IEEE 8500-node
distribution system [41], which contains both low-voltage and
medium-voltage buses. The ER that is using AVP™ is 15.7%. Most
incorrect identified branches are near the low-voltage grid feeders.
In many systems, the locations and connectives of the low-voltage
grid feeders are accurate. Therefore, with the prior knowledge of
low-voltage grid feeders, the ER is reduced to 3.8%.

Table 3 summarises the average computational time of the
proposed algorithm on different systems over 1000 Monte Carlo
simulation iterations. For 37-bus and 123-bus systems, our
algorithm takes a few seconds to report the estimated topology,
which makes it suitable for real-time monitoring. For 8500-bus
system, the computational time of both mutual information and
maximum weight spanning tree grows up. Although the
computational time for a large system is high, some power system
properties can help to speed up the topology estimation process. As
mentioned above, the locations and connectives of low-voltage grid
feeders are accurate. Hence, for large-scale system that has both
low-voltage and medium-voltage systems, the topology estimation
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Fig. 17 ERs with different data lengths

problem can be performed in two steps: (i) only identify the
topology of low-voltage grids and (ii) only estimate the topology of
medium-voltage grids. Since each low-voltage grid operates
independently, the topology estimation process can run in parallel.
As indicated in Table 3, by decomposing a large-scale grid into
multiple small sub-grids, the computational time of topology
estimation is reduced by 75%. A highlight is that in the parallel
computation, the maximum computational time is bounded by the
largest low-voltage grid. If every low-voltage grid is small (e.g.
similar size as the 123-bus system), the computational time can be
much less. Another highlight is that the computational time is
invariant to the integration of DERs and data lengths.

5.2 Distribution grids with DER integration

The penetration of DERs has grown significantly during last
decade and will keep increasing in the future. As discussed earlier,
the high penetration of DER will lead to a deeply unbalanced
distribution grid. To evaluate the proposed algorithm with
integrated DERs, 20% of residents in the distribution networks are
selected to install rooftop PV systems. The profiles of hourly
power generation are obtained from National Renewable Energy
Laboratory (NREL) PVWatts calculator, an online simulator that
estimates the PV power generation based on weather history of
PG&E service zone and the physical parameters of a 5kW PV
panel in residential levels [43]. The power factor is fixed as 0.90
lagging, which satisfies the regulation of many US utilities [44]
and IEEE standard [45]. Similar to the simulations without DERs,
we use 1 year's data (8760 samples) to estimate topology.

The ERs of grid topology estimation with the rooftop PVs
integration are presented in Table 4 using noiseless measurements.
Our algorithm does not have any performance degradation with
DER integration. Also, the modified single-phase method still
performs worst than the proposed method. Compared to the

566

Table 4 Topology estimation ER with 20% PV penetrations
Proposed method Modified single-phase method

system  AyP= |AVP| AVP" NG
37bus  0.00%  0.00% 8.33% 1M1.11%
123bus  0.00%  0.00% 1.64% 1.64%

Table 5 ER with incorrect phase labels using |[AV™™]|

Percentage of bus with  ER average, %  ER standard
incorrect phase labels, % deviation, %
2 0 0
6 0 0
10 0 0
14 0 0
18 0 0
20 0 0

systems without DER, the modified single-phase method has
performance degradation.

To further validate the proposed algorithm, the DER penetration
level is progressively increased from 0 to 100%. For each
penetration level, Monte Carlo simulation is performed over 1000
iterations. Fig. 16 plots the ER with different levels of DER
penetration using the voltage magnitude [AVP™| only. Besides 60%
penetration of DERs, the ERs do not change with the growth of
DER installation rate, which highlights the reliability of the
proposed algorithm. About 12 iterations of Monte Carlo simulation
have errors when the DER penetration level is 60%. The incorrect
identified branches are bus 57-bus 58 and bus 58-bus 59. The
loads with PV integrations on these three buses are similar and the
line impedances are identical. This causes that the voltage profiles
of these buses are similar. Our algorithm is hard to identify the
correct connectivity. However, such an instance requires the same
impedance and same voltage profiles. This rarely happens in
practise. As the penetration level increases, this instance is not
observed again and the proposed algorithm can correctly identify
these two branches.

5.3 Distribution grids with incorrect phase labels

In some distribution grids, up to 10% of the phase labels are
incorrect or unknown. Therefore, this section validates our
algorithm on the 123-bus system with incorrect phase labels. To
simulate the incorrect phase labels, several buses are randomly
chosen and switch their phase a voltage measurements to data of
either phase b voltage or phase ¢ voltage.

Table 5 shows the ERs with different percentages of incorrect
phase labels using voltage magnitude only and highlights that our
algorithm is insensitive to incorrect bus phase label. As discussed
previously, the incorrect phase labels is a permutation of random
variables in |V!"™| and do not affect I(|VF"™|; | V{™). If the modified
single-phase approach is used, the ER increases significantly
because the mutual information is computed for incorrect bus pairs.
For the 123-bus system, the ER is 11.7% when 10% buses have
incorrect phase labels.

5.4 Sensitivity analysis

5.4.1 Sensitivity to data lengths: The proposed algorithm is
validated with different data lengths, ranging from 1 to 360 days.
Fig. 17 illustrates the ERs of the 123-bus system, with and without
DER, over different lengths of the PG&E data set. With 20 days’
measurements (24 x 20 = 480 data points), the proposed method
can achieve zero error. This result is better than the single-phase
system presented in [20], which requires 30 days’ observations.
The reason is that at time n, our proposed algorithm uses
measurements from three phases, which contain more information
than the single-phase system. The frequency of distribution grid
reconfiguration ranges from hours to weeks [46, 47]. Section 5.4.4

IET Smart Grid, 2019, Vol. 2 Iss. 4, pp. 557-570

This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



Table 6 ERs with different voltage noise levels in 123-bus
system
Noise level, %

ER average, % ER standard deviation, %

0.01 2.95 0.41
0.05 2.91 0.50
0.1 2.99 0.67
0.2 3.98 0.77
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demonstrates that the topology can still be estimated by increasing
the sampling frequency of smart meters.

5.4.2 Sensitivity to data accuracy: In particles, smart meter
measurements are noisy. Thus, it is important to validate our
algorithm under different levels of measurement noises. In the US,
ANSI C12.20 standard (Class 0.5) requires the smart meters to
have an error <+0.5% [48, 49]. Table 6 shows the ERs with
different noise levels over 20 iterations in the 123-bus system with
PG&E data. Compared to the estimation results using perfect
measurements, the ERs grow up as the increase in noise levels.
These newly introduced errors are around the feeders. For example,
buses 251 and 451 are both feeders and incorrectly connected in
the presence of noise. In real systems, the locations of feeder buses
are usually known. Therefore, a post-processing can be applied on
the topology estimate and remove these unnecessary branches from
topology estimate. The updated system is still a radial network.
After performing post-processing, the ER decreases to 1%. In
Table 6, the standard deviation of ER is very small, and therefore
our algorithm can provide reliable and consistent results with noisy
measurements.

5.4.3 Sensitivity to data patterns: The ‘ADRES-Concept’
Project load profile [23, 24] is employed to understand our
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algorithm's sensitivity to load patterns. This data set contains real
and reactive power profiles of 30 houses in Upper-Austria. The
data were sampled every second over 7 days in summer and 7 days
in winter. The voltage data are generated using the 37-bus system.
The load profiles are scaled to match the scale of power in the 37-
bus system. The resulting multi-phase system is unbalanced.

Fig. 18 compares the ERs using summer and winter load
profiles. When there is only one measurement, the proposed
algorithm has 200% ER due to poor estimation of mutual
information. The ER is above 100% because all estimated branches
are incorrect and none of the correct branch is found. As more
measurements become available, the ER reduces significantly.
Also, our algorithm has a consistent performance in winter and
summer. Compared to the results in [20], the proposed algorithm
perfectly estimates the grid topology with shortened time because
more information is observed at each time step.

Another validation of our algorithm is using data set from
Pecan Street, which contains hourly load measurements of 345
houses with PV integrations in Austin, TX. The measurements
include both power consumption and renewable generation. In
Fig. 19, our algorithm requires 16 h’ measurements to recover the
topology of the 37-bus system, which is similar to the ADRES data
set. This highlights the robustness of our algorithm.

To better understanding the impacts of ZIP loads and high
applicants on the topology estimation, the applicant/device
simulation model [25] provided by GridLAB-D is adopted to
generate load data. This simulator is based on the thermal data and
device configurations. Therefore, compared to the real data
provided from PG&E, a detailed setup of load patterns is possible.
For each residential load, multiple devices and applicants (e.g.
heating, electric hot water heaters, washer and dryers, cooking,
electronic plugs, and lights) are installed with various
configurations and parameters. We run the simulation on IEEE
123-bus network with real temperature data from Palo Alto, CA.
The simulation is performed on an hourly basis for 1 year's
duration. By applying the proposed algorithm, the topology can
still be correctly estimated and the required data lengths are
consistent with the results in Section 5.4.1.

5.4.4 Sensitivity to data resolutions: Fig. 20 illustrates the
performance of the proposed algorithm under different sampling
frequencies using the ADRES data set. When the sampling period
is 1 min, about 6 h’ voltage profile are required to perfectly recover
the system. According to Dorostkar-Ghamsari et al. [47], some
distribution grids reconfigure as fast as every 3 h. Therefore, the
proposed algorithm is suitable for existing systems and real-time
operations. If the sampling period is 30 min, 35 data points
(35x30min =17.5h) to recover the system topology. This
estimation time is only half of the required time in [20].

6 Conclusions

This paper proposes a data-driven approach to estimate multi-phase
distribution grid topology by utilising smart meter measurements.
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Unlike existing approaches, our method does not require the
system to be balanced. Also, our method tolerates the errors of bus
phase labels. Specifically, the topology estimation problem is
formulated as a joint distribution (voltage phasors) approximation
problem under the probabilistic graphical model framework. Then,
the distribution grid topology estimation is proven to be equivalent
to the graphical model estimation problem and propose a mutual
information-based maximum weight spanning tree algorithm,
which is optimal and efficient. Moreover, our algorithm is extended
to the case where only voltage magnitude is available. In addition,
as bus phase labels are critical to distribution grid plannings and
operations, a simple approach is introduced to correct the error of
bus phase labels by utilising Carson's equations. Finally, the
proposed algorithm is validated on IEEE 37- and 123-bus systems
and compared with the existing single-phase method. Results show
that the proposed algorithm outperforms the single-phase method
and has robust performances when bus phase labels are incorrect.
Our algorithms are also validated under different penetration levels
of DERs and conduct the sensitivity analysis. The numerical results
are highly accurate and robust in various system configurations.
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8 Appendix

8.1 Proof of Lemma 1

Proof: Several cases illustrated in Fig. 21 are used to prove
Lemma 1. The first step is proving the leaf nodes. In Fig. 21a, for
bus 4, given AV, = Av,, AV sy = Avga, and AV, = Ay,

Al = Y,Av, + YAV, (43)
AIk = YlkAVI + YkkAVla Vk € 057(2) . (44)
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Since AL, LAIL, AV, and AV, are conditionally independent for
k € §(2). This results can be generalised to all leaf buses that share
with same grandparent bus (AV)).

In Fig. 215, for bus 4, given AV, = Av,, AV g, = Avgy, and
AV, = Ay,

AL = YAy, + YAV, (45)
AL = Y;Av, + Y AV, + Y3,AV,, (46)
kECB)
Alk = Y3kAV3 + YkkAVkv Vk S %(3) . (47)
Since Y= — Ypaii — DkewiYi and Yy =Y, combining (46)
and (47), the equation becomes
AL+ Y AL
kECG)
=Y Av, + YAV, + Y AV,
kECB)
+ D (Y4AV;s+ YAV
kETG) (48)
=Y Av, — (Y3AV; + Z Y AV;)
kETG)
+ D (YyAVi+ YAV, — YAV
kETB)
=Y;Av, - YAV,

Given ALL(AL + YiegsAl), AV, and AV; are conditionally
independent. Equation (48) can be rewritten as an equation of AV,
ie.

AV, = (YB)I(YBAVI - AL - Z AIk). (49)
kEBG)

Replacing AV; in (47) with the equations above, then, for k € €(3)

YAV + Yy Av, = AL + Y}k(Y13)71

AL+ ) Alk). (50)

ke €@3)

Given AL and AL + Yy(Y13) (AL + Y c % AL are independent
and Av, is a constant, AV, and AV, are conditionally independent
for k € €(3). When there are more child buses AVg, the same
induction method above can be applied to prove the conditional
independence. Thus, the proof of Fig. 215 can be generalised to
prove the conditional independence of a leaf bus and all other
buses that are under the same grandparent bus.

Next section proves the lemma for non-leaf buses. In Fig. 21c,
for bus 4, given AV, = Av,, AV sy, = Avgsy, and AV, = Ay,

Al = Y, ,Av, + YAV, + Y, AV, (51)
ke 64
AL = YAV, + Y AV, Vke €4), (52)
AL =Y, Av, + YAV, + YAV, (53)
me€ €()
AL, =Y;,,AV;+Y,,AV,, (54)

where [ € §(2) and m € €(I). Combining (51) and (52) yields

AL+ ). Al =YoAv, - YAV, (55)
ke 64

For every / in §(2), combining (53) and (54) yields the following
equation:
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Fig. 21 Proof of Lemma 1

(a)—(c) The example systems for the proof of Lemma 1

AL+ Z Al, =Y, Av,— Y, ,AV,. (56)
me ()

Applying the strategy in Fig. 215 to (55) and (56) could prove that
AV, and AV, are conditionally independent. Also, AV, and AV,
are proved to be conditionally independent for m € €(I) by
combining (54) and (56). The results in Fig. 21¢ can be generalised
to all non-leaf buses. Using the results in Fig. 21, Lemma 1 is
proved to hold. o

8.2 Proof of theorem 3

Proof: Recall the definition [31], the KL divergence is
expressed as
D(P(AV +) || Q(AV 4+ ©))

P(AV ;)
= Preva 98 Gy, o)

P(AV 4+
- [ravergay e

(57)
= / P(AV 4+)(log P(AV 4+) = log Q(AV 4+; ©))
= / P(AV 49)log P(AV 4+)
- / P(AV 4)log Q(AV 4+ ©).

Owing to Lemma 2, the radial structured probability density
function (PDF) Q(AV ,+; ®) can be expressed as a conditional

distribution [, P(AV;| AV¢). Then
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D(P(AV %) || Q(AV 4+ ©))

= f P(AV 4)log P(AV 4+)
M
- / P(AV%+)logil:[1P(AV,~|AV@[) )
= / P(AV ;9)log P(AV 4+)
M
- / P(AV/”+)iZI log P(AV;|AVe),

where P(AV,|AV,) = P(AV)) due to the fact that AV, is a constant.
By following the definition of conditional probability and adding
P(AV)) into the denominator, one can simplify the equation above
as:

D(P(AV 4) || Q(AV 4+ Q)

‘/P(AV%+)log P(AV 4+)

M P(AV;, AVg)
_/P(AV,-|AV®);1 log FAV)PGaVe)

M
- Z / P(AV)log P(AV))

i=1

(59

M M
— H(AV,4%) = Y I(AV; AVe)+ Y. H(AV)).

i=1 i=1

570

The last equality is due to the definitions of entropy, i.e.
H(AV) = — /P(AVi)log P(AV)), (60)

and mutual information, i.e.

I(AV;; AVg)

P(AV;, AVg) (61)
= /P(AV,, AV@,)logm

Thus, to minimise the KL divergence between P(AV ,+) and
Q(AV 4+, ©), one can choose the M —1 edges to maximise

S I(P(AV); P(AVg)). The entropy term
> HAV) — HAV.4) 62)

is irrelevant with the topology structure of distribution grid and is
excluded in the final optimisation problem. Therefore, minimising
D(P(AV 4+) || Q(AV 4+; ©)) is equivalent to solving the following

optimisation problem:

R M
© = arg max z
Ocut i=1

I(AV; AVe). O (63)
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