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Abstract—We propose a surface meshing approach for 

computational electromagnetics (CEM) based on discrete surface 
Ricci flow (DSRF) with iterative adaptive refinement in the 
parametric domain for the automated generation of high-quality 
surface meshes of arbitrary element type, order, and count. 
Surfaces are conformally mapped by DSRF to a canonical 
parametric domain, allowing a canonical seed mesh to be mapped 
back to an approximation of the original surface. The new DSRF-
based meshing technique provides a framework for generation of 
meshes with high element quality, aimed to greatly enhance the 
accuracy, conditioning properties, stability, robustness, and 
efficiency of surface integral equation CEM solutions. We 
demonstrate the ability of the proposed DSRF technique to 
produce meshes with near-optimal element corner angles for 
complicated, highly-varied surfaces such as the NASA almond 
and a fighter jet model, using triangular, quadrilateral, and 
discontinuous quadrilateral elements. Other element types are 
also discussed. Where high-fidelity meshing is desired, the 
technique can capture fine-scale detail using very few high order 
elements. Where low-fidelity meshing is desired, DSRF with 
adaptive refinement can accurately recreate course-scale detail 
using standard first-order elements (e.g., flat triangular patches).   
 

Index Terms—automated surface meshing; computational 
electromagnetics; Ricci flow; higher-order methods; large-
domain modeling; mesh refinement; iterative adaptive 
refinement; method of moments; surface integral equation 
techniques; quadrilateral elements; triangular elements. 

I. INTRODUCTION 
ESH generation is a critical, yet largely neglected, aspect 
of research in computational electromagnetics (CEM). 

Surface discretization quality impacts the numerical solution 
of electromagnetics problems substantially, yet new surface 
integral equation (SIE) techniques seem to mostly defer this 
aspect due to its difficulty. New simulation techniques emerge 
and problem sizes grow, but a relatively static pool of surface 
meshing approaches must contend with an ever-increasing 
variety of surface mesh types, each with unique benefits but 
added geometric constraints. These constraints define an 

appropriate mesh quality for a specific application. Here, we 
use corner angle uniformity and the resolution of important 
surface features. Many promising MoM-SIE innovations 
simply cannot rely on existing meshing approaches to produce 
the required discretizations at any usable quality, limiting the 
applicability of new research and relegating practitioners to 
heavily-involved semi-manual meshing. SIE-based CEM 
methods also increasingly rely on numerical error estimate-
based adaptive refinement techniques to efficiently and 
dynamically modify problem discretizations during 
computation [1], necessitating the integration of complicated 
surface meshing algorithms with existing CEM software. As 
such, meshing approaches tailored toward CEM applications 
are of growing importance. 

Several existing surface mesh generation approaches are 
available to CEM researchers, but, to our knowledge, none 
allow for the automatic generation of meshes with user-
defined element type, count, and order. Moreover, first-order 
triangular mesh generation is well understood and often 
simple due to desirable topological properties of triangles as a 
2-simplex. For instance, see [2] for surface triangulation from 
arbitrary point clouds or [3] for improving existing triangular 
surface meshes. Triangular meshes can also be generated from 
arbitrary polygonal meshes by subdivision of any polygon [4] 
and are ubiquitous in SIE numerical methods, for instance, see 
[5]. First-order triangular surface meshing in CEM has relied 
largely on Delaunay triangulation-based meshing approaches 
due to their simplicity and robustness [6, 7, 8]. Unfortunately, 
applying the Delaunay triangulation directly limits its 
applicability strictly to 2D (plate) structures or 2D domains. 
Prior triangular surface meshing work in CEM has focused on 
refining and improving an existing triangle mesh using various 
implementations of node addition with local mesh 
rearrangement [9, 10, 11]; quad-tri conversion [12]; and 
iterative refinement beginning from manual vertex labels [13].  

Also common in CEM are first-order quadrilateral 
elements, but less so than first-order triangular, see for 
instance [14]. First-order quadrilateral mesh generation is 
more difficult, as approaches typically rely on direct tri-quad 
conversion [15, 16], patch-based methods [17, 18], Voronoi-
based methods [19], or parametrization-based methods [20, 
21, 22]. See [23] for a recent overview of the state of the art in 
quadrilateral mesh generation. Our proposed method, applied 
to quadrilateral meshing, is parametrization-based but 
maintains generality to other surface mesh types. 
Discontinuous quadrilateral meshes, in which adjacent 

Discrete Surface Ricci Flow for General Surface 
Meshing in Computational Electromagnetics 

using Iterative Adaptive Refinement 
Cam Key, Student Member, IEEE, Jake Harmon, Student Member, IEEE, and Branislav M. 

Notaroš, Fellow, IEEE 

M 

Manuscript received June 26, 2019, revised December 12, 2019; second 
revision February 1, 2020; third revision April 3, 2020; accepted June 3, 
2020. This work was supported in part by the National Science Foundation 
under grant ECCS-1810492 and by the US Air Force Research Laboratory, 
CREATE SENTRi, Riverside Research Institute, under contract FA8650-14-
D-1725(6F1957).   

Cam Key, Jake Harmon, and Branislav M. Notaroš are with Department 
of Electrical and Computer Engineering, Colorado State University, Fort 
Collins, CO 80523-1373 USA (e-mail: camkey@rams.colostate.edu, 
j.harmon@colostate.edu, notaros@colostate.edu).   

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAP.2020.3008657

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

mailto:camkey@rams.colostate.edu


 2 

quadrilaterals need not share entire edges, are simple to 
generate at high quality from existing continuous quadrilateral 
surface meshes by merging or subdividing chosen 
quadrilaterals [23]; see [24] for the advantages of 
discontinuous methods. We therefore first focus on continuous 
quadrilateral mesh generation but generalize to the 
discontinuous case by this property. Direct tri-quad conversion 
typically leads to poor mesh quality for most CEM 
applications (highly irregular elements with varied corner 
angles). Voronoi-based approaches can lead to quad-dominant 
meshes in which many triangles remain, raising issues for SIE 
solvers unable to handle both quadrilateral and triangular 
elements simultaneously. Patch-based methods, meanwhile, 
are not guaranteed to generate a complete mesh and can fail 
during the generation process [23]. So, they are unreliable for 
quintessential surfaces in CEM such as vehicles, antennas, or 
building environments. Parameterization-based approaches are 
typically the most robust, but little work has been done to 
optimize them or apply them for CEM applications except for 
parameter sweeping on 2D surface meshes [25]. Other CEM-
specific first-order quad meshing work has typically 
concerned iterative partitioning by sets of node placement 
rules [26, 27]. More recently, much first-order quad meshing 
research in CEM has relied on approaches that, although 
robust, are limited to mixed quad-tri meshes and therefore not 
applicable for methods relying on meshes of a single element 
type [28, 29, 30, 31].  

Beyond the well-known first-order techniques, higher-order 
methods are of growing interest in CEM. Such techniques 
have shown great promise reducing the system dimension for 
comparable or higher accuracy in MoM-SIE solvers, thereby 
reducing the computation time and/or increasing accuracy 
substantially [32, 33], but the complexity of generating the 
needed higher-order quadrilateral or triangular meshes has 
limited the promised applicability for true large-domain 
modeling. Generating such meshes is often left out of scope 
[34], semi-manual, or, at best, unable to effectively generate 
large-domain elements, typically relying on the combination 
of several existing elements into larger high-order elements 
[32]. This can only be done on highly-structured meshes, with 
most others lacking the topology for merging elements to 
satisfy common geometric interpolation techniques. No robust 
meshing process has been developed for this application, and 
existing parametrization-based techniques, optimized for first-
order elements, are not well-suited to the task. Prior attempts 
to produce robust and broadly applicable higher-order 
quadrilateral and triangular surface meshing techniques have 
used existing high quality first-order meshes of the desired 
type and subsequently interpolated them [35, 36]. This 
approach is excellent where such meshes are available but 
cannot be used when such meshes are unavailable or difficult 
to produce at high quality, for instance when large-domain 
quadrilateral meshes are desired. Meshing, potentially the 
most challenging and restrictive component of higher order 
CEM, is a highly relevant open problem. 

This paper proposes an efficient and robust surface meshing 
technique applicable to any of the discussed mesh types and 
extensible easily to others. Able to seamlessly handle higher 
order and very high order elements, our technique can 
surmount the major barrier to widespread use of otherwise 

highly-efficient higher order methods. Due to its generality, 
our technique also constitutes a competitive low-order 
meshing approach useful for first-order triangular (flat 
triangles) and first-order quadrilateral mesh generation at high 
quality. By producing meshes with high corner angle 
uniformity, the technique can maintain high local regularity of 
surface Jacobians and high basis function orthogonality, 
preventing degeneration of the basis functions and associated 
increases in condition number. A parametrization-based 
approach, our technique leverages the discrete surface Ricci 
flow (DSRF) to map between an arbitrary triangulated mesh 
and an appropriate canonical parametric domain dependent on 
the underlying geometry of the original surface and desired 
mesh properties. A uniform seed mesh, known in the 
parametric domain, is then taken by this mapping to the 
original surface, on which a refinement indicator, defined for 
the choice of mesh type, is computed. The seed mesh is then 
refined in the parametric domain based on this indicator and 
the process is repeated until a stop criterion is met, for 
instance maximum element size or element count. Although 
we begin here with a triangular mesh of the original surface, in 
general we can begin with an arbitrary surface representation, 
which must be converted to a high-quality triangulation by 
sampling, subdivision, or surface reconstruction as appropriate 
to the type of surface representation, for instance using 
techniques from [2] or [4].  

We believe our approach to be the first demonstration of a 
surface meshing technique able to seamlessly handle arbitrary 
(low and high) geometric order and element type. 
Furthermore, this appears to be the first technique able to 
generate high-quality very high order quadrilateral elements; 
the lack of such a technique previously constituting the main 
shortcoming of large-domain methods [32, 34]. We 
demonstrate our technique for a variety of common mesh 
types used for low-order and higher order MoM-SIE methods 
including triangular, quadrilateral, and discontinuous 
quadrilateral, and offer suggestions for simple extension to 
other, less common element types. For each of these types, we 
maintain generality in element order and show typical results 
for first-order (lowest-order), e.g., flat triangular patches, as 
well as higher-order elements. For the latter, we demonstrate 
meshes using both Lagrange interpolation and cubic spline 
interpolation, again offering suggestions for extension to other 
interpolation methods. We focus here on the application of 
this technique to MoM-SIE in CEM but do not limit its 
usefulness to only this application. Some preliminaries of this 
work are presented in a summary form in [37, 38, 39].  

We note a few limitations of the proposed method. Firstly, 
the method as presented does not enforce continuity for multi-
part objects. To work for such cases in practice, the method 
therefore requires either a discontinuous Galerkin solver or 
special treatment at part interfaces to enforce continuity. The 
adaptive refinement we present here also does not guarantee 
perfect sampling of the original surface on non-differentiable 
features (i.e., sharp edges). The error due to imperfect 
sampling of sharp features drops asymptotically to zero with 
increased iteration but may be unacceptable where perfect 
preservation of sharp features at otherwise low mesh fidelity is 
required. Although all refinement methods we present scale as 
 (     ) with the number of iterations, the time complexity 
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of the DSRF with the number of triangles remains formally 
unknown and is likely the asymptotically dominant factor. We 
are aware of no study of DSRF scaling with respect to the 
triangle count, and we consider such a derivation involved 
enough to warrant its own, separate study. With respect to 
multiple parameters, DSRF scales formally as  (      ), 
where    is the number of triangles in the original mesh,    is 
the average number of iterations required to solve the Hessian 
system to a chosen tolerance, and    is the number of Newton 
method iterations required to meet a tolerance on the curvature 
error. The open problem is relating    and    to   . We hope 
to address these limitations and perform a rigorous study of 
DSRF scaling in future work. 

We begin by summarizing our method and recapitulating 
the mathematics of DSRF, tailored specifically to be 
understandable and useful to the CEM community. We 
encourage readers interested in a more-formal, in-depth 
theoretical discussion with additional implementation details 
to review [40]. We use the same notation where possible. We 
then describe iterative adaptive refinement and offer specific 
implementations for common mesh types. Then, we present a 
variety of meshes produced by the method as well as statistics 
on mesh corner angle uniformity, a common measure of 
quality. For the examples given in the present manuscript, we 
focus on the common, important case where our surface is 
simply connected, closed, and has one symmetry plane, 
allowing us to reduce to the Euclidean case by cutting the 
surface along the plane of symmetry. This simplifies both 
computation and presentation of the DSRF. In future work, we 
plan to similarly demonstrate the method for surfaces 
requiring spherical or hyperbolic DSRF. We apply the method 
to the NASA almond, an established CEM benchmarking 
shape usually used to demonstrate difficulty of surface 
modeling given its one sharp end. We also show meshing 
results for a far more-complicated, and therefore challenging, 
fighter-jet model. For each of these models, we show 
continuous triangular, continuous quadrilateral, and 
discontinuous quadrilateral surface meshes of both low and 
high geometric order. We conclude with a discussion of the 
potential of the new DSRF meshing technique with adaptive 
refinement. 

II. SUMMARY OF THE METHOD AND COMPUTING THE DSRF 
Popularized by its role in Perelman’s 2006 proof of the 

Poincaré conjecture [41], Ricci flow offers a mathematical 
framework for diffusing irregularities in the metric of a 
Riemannian manifold. In the context of this work, surface 
Ricci flow, by the discrete formulation described in [42], 
allows the generation of a conformal (angle-preserving) 
mapping between a surface of choice, and a homeomorphic 
(or non-homeomorphic, given a suitable cut graph) surface of 
prescribed Gaussian curvature, here constituting a parametric 
domain for the mesh and referred to as the prescribed surface. 
For instance, this allows the NASA almond to be mapped to 
the unit sphere or, as we demonstrate in this paper, cut and 
mapped to the plane. Information on the prescribed surface 
can then be conformally mapped back to the original surface. 
In our application, this information comprises element 
vertices, and in our higher order cases, element sample points.   

 Since much of the material covered in this paper is likely 
unfamiliar to CEM audiences, we begin with a high-level 
summary of the method before presenting the theory in more 
detail. As a concrete example, we demonstrate each step for a 
simple ellipsoid cut along a plane of symmetry for which we 
want to produce a structured quadrilateral mesh. The basic 
steps of the method are as follows.  

 
1. If it is not already, convert the surface into a triangle mesh, 

shown in Fig. 1(a) for the cut ellipsoid 
2. Obtain a mapping between the original surface and a 

simple prescribed surface by DSRF. The cut ellipsoid 
triangle mesh mapped to a rectangular prescribed surface 
is shown in Fig. 1(b). 

a. Choose a simple surface in which we can easily 
manipulate mesh topology (e.g. a flat rectangle) 

b. Assign a target curvature to each point in the 
original triangle mesh consistent with the prescribed 
surface 

c. Perform the DSRF to compute locations of vertices 
from the triangle mesh when flattened to the 
prescribed surface 

3. Apply the mapping to resample the original surface 
adaptively, manipulating mesh topology in the parametric 
domain. A uniform quadrilateral sampling is shown 
overlaid on Fig. 1(b) and an adaptive sampling is shown 
overlaid in Fig. 1(c). 

a. Define a simple seed mesh that covers the prescribed 
surface 

b. Define a refinement indicator and refinement 
method appropriate for the target mesh type and 
quality measure 

c. Compute the refinement indicator for the seed mesh 
d. Refine the seed mesh using the refinement method, 

based on computed values of the refinement 
indicator 

e. Iterate steps d and e until some stop criterion is met 
(number of steps, maximum element size threshold, 
etc.) 

 

 

         
Fig. 1. Original triangle mesh for a cut ellipsoid (a), triangle mesh in the 
parametric domain with uniform structured quadrilateral sampling (b), and 
adaptive structured quadrilateral sampling (c) overlaid. Vertices in red are 
assigned   ⁄  curvature. All other vertices are assigned zero curvature. 
 

(a) 

(b) (c) 
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Step 1 is simple for almost all surface descriptions, so we 
consider it outside the scope of this paper.  

Step 2 is described in the remainder of this section in detail, 
but we offer key considerations here: The surface of 
prescribed curvature can be arbitrary but should be a surface 
on which it is simple to manipulate mesh topology. We use the 
simple and broadly-applicable example of a flat Euclidean 
rectangle for this paper.  

Step 3 is described in section III in detail, but to summarize: 
The mapping produced by DSRF does not preserve relative 
area. This can cause details from the original surface to be 
missed when a uniform sampling of the parametric domain is 
used. The goal of adaptive refinement (AR) is to distribute 
mesh sample points to mitigate this. 

Figure 2 compares quadrilateral surface meshes obtained for 
the example ellipsoid using a nonconformal versus conformal 
mapping. Figure 3, meanwhile, shows angle histograms for the 
three meshes in Fig. 1, demonstrating the desirability of a 
conformal approach. 

 

 

 

 
Fig. 2. 20×20 structured quadrilateral meshes mapped to an ellipsoid using (a) 
a nonconformal mapping; (b) a conformal mapping by DSRF, parametric 
domain sampling shown Fig. 1(b); and (c) a conformal mapping using DSRF 
with adaptive refinement, parametric domain sampling shown Fig. 1(c),  to 
capture more detail in regions of high curvature. 

 

 
Fig. 3. Corner angle histograms for 20×20 structured quadrilateral meshes 
show in Fig 2. Nonconformal mesh has a poor corner angle distribution while 
meshes obtained using DSRF have distributions concentrated closely around 
90 degrees. 

 The result of Step 1, we denote our original triangle mesh 
Σ = (V, E, F) where V, E, and F are the sets of vertices, edges, 
and faces composing the mesh, respectively. Here we assume 
our mesh represents the boundary of a realizable three-
dimensional (3D) object, i.e., the surface does not intersect 
itself, is continuous, and is finite. We refer to this as the initial 
surface. The initial surface may either be closed or have a 
boundary (a one-dimensional curve in 3D space) ∂Σ, as in our 
cut example case. By Step 2, we wish to deform this original 
surface to a much simpler, prescribed surface on which we can 
easily define and manipulate mesh topology. We denote the 
mapping of this surface to the parametric domain  ̅   
 ( ̅  ̅  ̅), and an associated map    ̅    from the 
parametric domain to the initial surface. The discrete Gaussian 
curvature of a surface is given by 
 

 ( )  {
    ∑   

  
            

   ∑   
  

                
,                                      (1)                                                                                                                       

 
where   refers to a given vertex and  ∑   

  
   denotes the sum 

of all triangle corner angles of which v is a part. Here   
denotes the index of  , and   

   denotes the corner angle 
formed by vertex     and two adjacent (connected by an edge) 
vertices with indices   and  . We define the Euler 
characteristic as, 
 
              .                                                            (2)                                                      
 
Here NV, NE, and NF represent the number of vertices, edges, 
and faces of the surface, respectively. With this, the Gauss-
Bonnet theorem asserts,  
 
∑  ( )         ,                                                          (3)                                     
 
with A denoting the total surface area of the mesh and the 
scheme coefficient term   determined by the chosen 
background geometry, taking a value of 0 for the Euclidean 
case.   takes a value of 1 for the case of a simply-connected 
half surface. For examples given in this paper, we consider 
only the Euclidean background geometry and simply-
connected half surface, but plan to give more-complicated 
examples for spherical and hyperbolic background geometry 
in future work. 

 Once a prescribed surface is selected, a target curvature 
 ̅( ) is chosen constrained by (2). For instance, using 
Euclidean background geometry on an open surface (produced 
by cutting a closed surface along its symmetry plane) and 
mapping to the Euclidean plane, the total curvature of    can 
be allocated to four boundary vertices (highlighted red in Fig. 
1), assigning each curvature   ⁄ . These vertices will then 
become the vertices of a rectangular image of the original 
surface in the Euclidean plane after mapping, shown Fig. 1(b-
c). Here, we chose these four vertices to be evenly-spaced on 
the boundary of the cut surface. By assigning zero curvature to 
the non-boundary vertices, we enforce that they fall on a flat 
plane shared by neighboring vertices. Similarly, by assigning 
all other boundary vertices zero curvature, we enforce that 
they fall on a straight line shared by neighboring boundary 

(a) 

(b) 

(c) 
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vertices. Once the target curvature is selected, the discrete 
surface Ricci flow semi-discrete system 
 
   ( )

  
    ̅    ( )                                                               (4)                                                        

 
can be solved by any number of standard numerical methods 
to obtain the final conformal mapping between surfaces. The 
above semi-discrete form retains continuous time,  , which in 
practice is discretized into a finite set of iterations. A nonlinear 
equation, (4) must be solved iteratively. For a thorough 
background on computing the Hessian of the Ricci energy for 
this system and applying it through Newton’s method to 
obtain the final mapping, see [40]. We give a brief overview 
here. 
 To compute and solve the DSRF system, we must define 
several discrete parameters and structures over Σ. We first 
define a circle packing metric. We associate with each vertex 
     nonnegative radius    corresponding to a circle 
centered on   . We also define a real-valued discrete 
conformal structure coefficient on E denoted  . Together with 
the scheme coefficient from (3), our circle packing metric is 
then defined by the tuple (       ), from which we can then 
determine any edge length        between vertices        
 . Defining the discrete conformal factor    for the Euclidean 
case, 
 
        ,                                                                             (5)                   
 
we can compute      by  
 
   
       

         
       

                                            (6) 
 
The   coefficients and range of the conformal structure 
coefficient for several common circle packing schemes [40] 
are defined in Table I. We use inversive distance circle 
packing for the results presented in this paper. 
 
Table I. Range of conformal structure coefficient and   coefficient values for 
common circle packing schemes.  

Scheme           
Thurston’s [0,1] +1 +1 
Tangential +1 +1 +1 
Virtual radius > 0 -1 -1 
Inversive Distance > 0 +1 +1 

 
With a circle packing scheme defined and chosen, we can 

now solve the DSRF system (4) iteratively as follows. At 
every iteration we begin by computing all circle radii    from 
the discrete conformal factor (5). Following this, we use   and 
  values to compute all edge lengths by application of (6). 
From the edge lengths, we compute the corner angles   

   from 
the cosine law appropriate to Euclidean background geometry,  
 
  
    

    
             ,                                                   (7)   

 
and subsequently the vertex curvature K from the angle deficit 
(1). We then compute the Hessian matrix, H, from the local 
(face) Hessian matrices:  

 
 (        )

 (        )
  

 

  
                                                            (8)                                                                           

 
where  
 

  [

 (  )   
  (  )  

   (  )

]                                                     (9)                                                        

 
        (  ) (  )                                                             (10)                                                   
 
and  
 

   [

  (     )  (     )
 (     )   (     )
 (     )  (     )  

]                                 (11)                                                      

 
Although we maintain consistency with [40] here, for the 
Euclidean case we have simply that 
 
 ( )                                                                                  (12) 
 
and 
 

 (     )  
  
      

      
 

 
                                                      (13) 

 
Finally, we solve the linear system 
 
      ̅                                                                        (14)                                                
 
for   , updating the discrete conformal factor to be used in the 
next iteration as 
 
  

 
←        .                                                                    (15)                                                       

 
This process is iterated until a convergence criterion is met, 
most simply until the maximum difference between the 
current and target discrete curvature falls below some 
threshold, i.e., until 
 
    | ̅    |                                                           (16)                                                         
  
From the final  ,  ,  , and   values, we can compute the final 
vertex locations in the target domain by flattening from a seed 
face as in [42]. For additional discussion of convergence rate, 
stability, and modifications to improve the robustness of the 
above approach, see [40, 43, 44]. 

Once the locations of all vertices are known in the 
parametric domain, any point within that domain can be 
mapped back to the initial surface using barycentric 
coordinates, defining a piecewise-linear approximation of M. 
A point p with parametric coordinate (u0, w0) in the parametric 
domain is found to lie in face f. If f has parametric vertices v1, 
v2, and v3, each with parametric coordinate of form (ui, wi) and 
nonparametric coordinate of form (xi, yi, zi), the image of p on 
the original surface, here denoted    with coordinate (x0, y0, 
z0), is given by  
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(        )  ∑   (        )

 
   ,                                          (17) 

 
where addition is understood component-wise and the 
Barycentric coordinates are given by 
 

   
|
          
          

|

 
                                                             (18a)                                                                 

   
|
          
          

|

 
                                                             (18b)                                                       

   
|
          
          

|

 
                                                            (18c)                                                      

 
with scaling factor  
 
  |

          
          

|                                                     (19)                                                          

III. ITERATIVE ADAPTIVE REFINEMENT 
By choosing a simple prescribed surface, we exert a high 

degree of control over the resultant re-mapping. However, the 
mapping produced by Ricci flow preserves only angles, not 
relative areas, so simply mapping a uniform grid of sample 
points from the prescribed surface to the surface of choice 
produces poor results for our application, leading to wide 
discrepancies in mesh fidelity between minimally-warped and 
highly-warped portions of the resulting surface mesh, as 
demonstrated in Fig. 2. Figure 4 motivates this from another 
perspective for the more-complicated cut fighter jet mesh. The 
parent jet mesh contained 115,967 triangles, and the DSRF 
took 14.3 seconds to compute on an i7 3770k at 3.50 GHz 
with a fully parallelized implementation. Fig. 4(a) shows the 
original triangle mesh, while Figs. 4(a) and (b) show the mesh 
mapped to the parametric domain and the degree of area 
warping, respectively. The induced area warping is highly 
concentrated and irregular.  

This is the motivation for beginning with an initial seed 
mesh and iteratively refining, an approach that allows the 
unknown degree of local warping to be compensated for 
adaptively. 

We describe here how to construct a mesh informed by 
some refinement indicator, in general motivated by either 
geometric error or numerical solution error estimates. 
Focusing on the geometric properties of the method, we offer 
specific examples of refinement indicators to reduce geometric 
error but maintain generality for easy application of the 
method to adaptive refinement (AR) based instead on solution 
error.  

Given    ̅   , we wish to construct a new surface mesh, 
 ̃   ( ̃  ̃  ̃), of arbitrary type. Beginning with a seed mesh 
 ̃  of the chosen mesh type in the parametric domain, we must 
define a refinement indicator,   ( ̃  ) and a refinement 
method  (    ̃ )    ̃   . We may then iterate Q on  ̃  N 
times, updating    at each iteration, to produce a final surface 
mesh  ̃    ̃ . N may be user-defined or may be a function of 
 ̃, e.g., some stop criterion like total element count or 
maximum element size. We give examples of such    and Q 
for a variety of common mesh types and offer suggestions to 
extend these to other mesh types. We also define the simplest 

seed mesh for each mesh type covered if Euclidean DSRF is 
used to map to a rectangle. Note that the refinement methods 
described here have linearithmic time complexity with the 
number of refinement iterations. 

 

 

 
 

Fig. 4. (a) Initial fighter jet surface. (b) Triangle mesh of fighter jet cut and 
conformally flattened to the plane with highly warped areas boxed in red. (c) 
Refinement indicator (normalized) for each quadrilateral element 
demonstrating high degree of warping at fighter jet fin, wing, and fuselage tip 
when uniform sampling is used.   

A. Continuous Structured Quadrilateral Meshes of Arbitrary 
Order 

Here we give an example of a refinement indicator and 
associated refinement method for the continuous quadrilateral 
case using Euclidean DSRF. For every edge    ̃, we find 
the Euclidean distance, d, between its endpoints, (x1, y1, z1) 
and (x2, y2, z2) in the nonparametric domain  
 
  √(     )

  (     )
  (     )

                      (20)                                                  
 
We assign such a distance to each    ̃, constituting 
  ( ̃  ) with domain  ̃. 

Starting from a seed mesh in the parametric domain 
consisting of one quadrilateral element aligned with the 
parametric coordinate axes as in Fig. 5(a), we find the row and 
column containing the edge with highest d for the vertical (w1 
= w2) and horizontal (u1 = u2) edges, respectively. We then 
subdivide the appropriate row and column in half in the 
parametric domain, taking one row to two rows and one 
column to two columns. This can be repeated N times and 

(c) 

(a) 

(b) 
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constitutes one possible  (    ̃ )    ̃   . Figures 5(b)-(c) 
show this subdivision process in the parametric domain for the 
fighter jet mesh from Fig. 4(a) for N = 2, N = 10, and N = 20 
iterations, respectively. 

Note that the example   given here constitutes only a 
simple and informative refinement method to produce a 
structured quadrilateral mesh. If unstructured meshes are 
permissible, any existing quadrilateral mesh refinement 
method could be used in the parametric domain, with the 
resulting mesh then mapped back to the original surface 
conformally. For instance, node-placement schemes like those 
in [26], [27], and [45] could be adapted to serve as the 
refinement method. 

If higher order elements are chosen, we may subsample  ̃  
in the parametric domain to produce the necessary 
interpolation nodes. For instance, if high order elements 
requiring a grid of k×k nodes per element are chosen, we may 
split each row and column of  ̃  k-2 times to obtain the 
necessary sample density. In this paper, to improve accuracy 
and maintain adaptivity for the given examples, we do this 
implicitly. If an L×L grid of higher order elements, each 
requiring k×k nodes, is chosen, we define N to be L(k-1)-1 to 
obtain the necessary sample points for all elements. For the 
given examples, we order higher order sample points for 
quadrilateral elements as defined in [32]. 
 

 

  
 

Fig. 5. Iterative adaptive refinement in the parametric domain for a 
continuous curved quadrilateral mesh of a fighter jet in Fig. 4(a) to increase 
mesh quality intelligently, with more elements being allocated to high density 
areas in the parametric domain, leading to a more-uniform final jet mesh: (a) 
seed mesh with one element aligned with coordinate axes in parametric 
domain, (b) refined mesh with N = 2 iterations, (c) refined mesh with N = 20 
iterations  
 

B. Continuous Triangular Meshes of Arbitrary Order 
We now give a similar example for the continuous triangular 
case using Euclidean DSRF. For every edge    ̃, we again 

find the Euclidean distance, d, between its endpoints in the 
nonparametric domain (20). We assign such a distance to each 
   ̃, again constituting   ( ̃  ) with domain  ̃. For    ̃ 
with maximum   and parametric endpoints (u1, w1) and (u2, 
w2), we compute the parametric midpoint   as 
 
  (

     

 
 
     

 
) ,                                                             (21)                                                                                

 
and include it in the set of existing vertices in  ̃. We then 
update a Delaunay tessellation of this augmented  ̃ in the 
parametric domain to update  ̃ and  ̃ to include the added 
vertex. This can be repeated N times and constitutes a possible 
 (    ̃ )    ̃   . Figures 6(a)-(c) show similar parametric-
domain adaptive refinement results for N = 2, 50, and 100 
iterations, respectively. 
 

  
 

Fig. 6. Iterative adaptive refinement in the parametric domain for a 
continuous curved triangular mesh of a fighter jet in Fig. 4(a): (a) seed mesh 
with two elements in the parametric domain, (b) refined mesh with N = 50 
elements, and (c) refined mesh with N = 100 iterations.   
 

As in the continuous quadrilateral case, extension to higher 
order elements is simple, requiring only additional sampling of 
the mapping at interpolation nodes. For the examples given in 
this paper, we define higher order sample points for each 
triangle as in [32]. 
 

C. Discontinuous Quadrilateral Meshes of Arbitrary Order 
To define a suitable refinement indicator in the 

discontinuous quadrilateral case using Euclidean DSRF, we 
again compute (20) for all    ̃, beginning from the seed 
mesh defined for the continuous quadrilateral case and shown 
in Fig. 5(a). For e with maximum d, we split an adjacent face 
in the direction perpendicular to such e, introducing two new 
vertices and one new edge. Note that, although an edge may 
have two adjacent faces, it is in practice inconsequential which 

(a) 

(b) 

(a) 

(b) 

(c) 

(c) 
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face is split on a given iteration, as the unsplit face is 
guaranteed to be refined on a subsequent (typically the next) 
iteration, dependent on the number of edges with identical 
maximum d. Such face splitting constitutes a possible 
 (    ̃ )    ̃    and introduces one new face per iteration. 
Additional constraints could be imposed on which element to 
split at each iteration to satisfy potential requirements of 
specific discontinuous quadrilateral codes. For instance, if an 
implementation requires that one edge joins to at most two, 
conditions that would violate this if refined could be detected 
at each iteration, with e with the next highest d chosen instead. 
Figure 7 demonstrates this refinement method for various N on 
the jet fighter mesh with no such additional constraints. For 
extension to higher order, we sample on a quadrilateral-by-
quadrilateral basis and again use the sampling convention 
defined for higher order quadrilaterals in [32]. 

 

  
 

Fig. 7. Adaptive refinement for discontinuous quadrilaterals in the parametric 
domain: (a) N = 50 , (b) N = 100, and (c) N = 300 iterations.  
 

D. Continuous Unstructured Quadrilateral Meshes of 
Arbitrary Order 

Here we demonstrate how DSRF-AR can be used to convert 
an existing 2D meshing technique into a 3D surface meshing 
technique, in this case for continuous structured quadrilateral 
meshes. We begin with the 2D continuous quadrilateral 
subdivision method described in [45]. The method in [45] first 
refines elements uniformly by splitting each refined element 
into a 3×3 grid of quadrilaterals. A set of 4 irregular 
subdivision patterns is then applied to adjacent elements to 
repair any discontinuities introduced during refinement. To 
apply this method to 3D surfaces using our DSRF-AR 
approach, we again compute (20) for all    ̃. For e with 
maximum d, we split an adjacent face into a 3×3 grid of 
quadrilaterals. Any neighboring faces of the refined face are 
also refined uniformly if needed to maintain the criterion that 
no edge joins to more than 3. This is iterated until some stop 

criterion is met, after which the irregular subdivision templates 
from [45] are applied to repair all discontinuities. Note that no 
irregular element is ever subdivided, as this would lead to 
unbounded mesh quality deterioration. This constitutes 
another possible  (    ̃ )    ̃   . Figure 8 demonstrates 
this refinement method on the fighter jet mesh for several N. 
As in previous quadrilateral examples, extension to higher 
order constitutes quadrilateral-by-quadrilateral resampling 
using the convention defined in [32]. Note that, since [45] 
assumes square elements to maintain reasonable corner angles 
in the irregular subdivision templates, we use a different seed 
mesh here, splitting the rectangular parametric domain into 
approximately square elements (here 3). This can be 
automated by comparing the width and height of the 
rectangular parametric domain, subdividing it appropriately.  

 

  
 

Fig. 8. Adaptive refinement for continuous unstructured quadrilaterals in the 
parametric domain: (a) N = 5 (b) N = 10, and (c) N = 50 iterations.  
 

E. Generalization to Mesh Types Not Covered  
Although we have covered three common mesh types, we 

by no means wish to limit the applicability of DSRF with 
adaptive refinement to production of only continuous 
quadrilateral, continuous triangular, and discontinuous 
quadrilateral meshes. We hope the given examples offer clear 
guidance for generalizing to other mesh types, but we 
additionally give recommendations for generalization by 
offering the following guidance: it is crucial to choose 
  ( ̃  ) and especially  (    ̃ )    ̃   . to prevent the 
creation of malformed elements during refinement in the 
parametric domain. “Malformed” depends on the mesh type 
and user application, but typically is related to the regularity of 
corner angles and local Jacobian within and between elements. 
As  ( )     is conformal, malformed elements in the 
parametric domain become malformed elements in the final 
surface mesh.  

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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IV. RESULTS AND DISCUSSION 

A. Example Surface Meshes Produced by DSRF with 
Adaptive Refinement 

Here we demonstrate meshing by DSRF with adaptive 
refinement for the well-known NASA almond model and the 
complicated fighter jet model. Higher order elements were 
reconstructed using Lagrange interpolation as in [32] or cubic 
spline interpolation of the sample points on an element-by-
element basis. The same initial Σ used for all cases (one for 
the almond, one for the fighter jet). The DSRF was computed 
on these initial meshes and used to generate one   for each 
model. The parametric domain adaptive refinement methods 
described in Section III were then iterated through these 
mappings to produce a variety of surface meshes shown in 
Figs. 9-20. We show the robustness of the proposed technique 
to recreate complicated surfaces for arbitrary mesh types with 
arbitrary element counts and orders, for instance accurately 
representing the fighter jet model with as few as 32 elements. 
We are not aware of any other meshing technique that can 
reliably produce such large-domain meshes. 

Figure 9(a) shows a high-resolution higher order continuous 
quadrilateral surface mesh generated using DSRF with the 
refinement scheme outlined in Section III.A. Figure 9(b) 
shows the equivalent surface mesh instead using uniform 
sampling in the parametric domain. All parameters including 
element count, element order, Σ, and M were identical 
between Figs. 9(a) and 9(b). Spline interpolation was chosen 
in both cases. Extreme loss of fidelity can be seen around the 

fuselage tip and wing tips in the uniformly-sampled case, 
these details meanwhile excellently captured in the adaptive 
case. This shows not only the importance but also the 
effectiveness of the proposed adaptive sampling methods for 
accurately capturing detail in the desired model.  

Figure 10 shows the same mesh as Fig. 9(a) from an oblique 
angle, making the high fidelity with which the adaptive 
sampling technique captures fine detail in the initial surface 
apparent. A comparison between this higher order continuous 
quadrilateral mesh and the 1st-order triangular mesh (chosen 
for Σ and shown in Fig. 4(a)) shows the near perfection with 
which this instance of  ̃ recreates the original surface. A 
similar result is shown in Fig. 11 for the NASA almond, here 
using 32 16th-order continuous quadrilateral elements with 
Lagrange interpolation. The parent almond mesh contained 
2,023 triangles and the DSRF took 0.168 seconds to compute. 
Adaptive sampling was also used for Fig. 11 as outlined in 
Section III.A. Note that, for most practical use cases, such 
large, curved elements would be supported by extremely high-
order current expansions, most importantly to compensate for 
their large electrical size.  

Figures 12 and 13 show 1st-order discontinuous 
quadrilateral meshes generated using the technique outlined in 
Section III.C. Figure 12 shows the fighter jet model recreated 
using 6490 1st-order elements, while Fig. 13 shows the NASA 
almond featuring 2000 elements of the same type. In both 
cases, the original surface is well-reconstructed. 

Figures 14 and 15 show higher-order analogues of Figs. 12 
and 13, now using 300 30th-order and 300 10th-order 
  

 
 

 
Fig. 9. Comparing effects of adaptive iterative refinement vs. uniform sampling on mesh quality: (a) continuous quadrilateral mesh of a fighter jet in Fig. 4(a) 
with 32 64th-order elements using DSRF with iterative adaptive refinement outlined in Fig. 5 and (b) the same using uniform sampling.  
 

(a) (b) 
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discontinuous quadrilateral elements, respectively. Spline 
interpolation was used in both cases. Note that roughness 
present on the almond surface in Fig. 15 is not an artifact of 

the proposed meshing technique, but rather shows an accurate 
recreation of roughness due to 1st-order triangular facets in the 
original almond mesh chosen as Σ.  

 

 
Fig. 10. Fighter jet model featuring as few as 32 64th-order quadrilateral elements in Fig. 9(a) viewed from oblique angle. Note excellent curvature/detail 
modeling with hyper-large hyper-curved quadrilateral patches. 
 

 
Fig. 11. NASA almond model using adaptive refinement from Fig. 5 with only 32 16th-order continuous quadrilateral elements.  

 
Fig. 12. Fighter jet model constructed from 6490 1st-order discontinuous quadrilateral elements using iterative adaptive refinement from Fig. 7. 
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Fig. 13. NASA almond model featuring 2000 1st-order discontinuous quadrilateral elements obtained by the adaptive refinement technique from Fig. 7. 

 
Fig. 14. Fighter jet model composed of 300 30th-order discontinuous quadrilateral elements by the technique in Fig. 7. 

 
 

 
Fig. 15. NASA almond model using refinement from Fig. 7 with 300 10th-order discontinuous quadrilateral elements. 

 
Figure 16 shows a low-resolution meshing of the fighter jet 

model using 2898 first-order triangular elements. Adaptive 
sampling was used as outlined in Section III.B. Despite the 
low element count and lowest possible geometric order, the 
model is well represented at coarse-scale, showing that the 
proposed method works well even as a first-order triangular 
mesher.  

Figures 17 and 18 show higher order triangular meshes for 
the fighter jet and almond, respectively, using the technique 
outlined in Section III.B. The fighter jet was meshed using 
3702 10th-order elements interpolated by cubic spline, while 

the almond was meshed using 1098 10th-order elements 
interpolated using Lagrange polynomials. We see good 
fidelity in both cases. Note that roughness from facets in Σ can 
again be seen in Fig. 18, similar to Fig. 15. 

Figures 19 and 20 show first order quadrilateral meshes for 
the fighter jet and almond, respectively, using the technique 
from Section III.D. The fighter jet was meshed using 4562 
first order elements while the almond was meshed using 1544 
first order elements. Detail from the original surfaces is 
captured well in these continuous quadrilateral meshes despite 
their low element count and low order. 
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Fig. 16. Low-resolution fighter jet model using 2898 1st-order continuous triangular elements with adaptive refinement as in Fig. 6. 

 
Fig. 17. Fighter jet model featuring 3702 10th-order continuous triangular elements generated by the iterative adaptive refinement technique in Fig. 6. 

 
Fig. 18. NASA almond model containing 1098 10th-order continuous triangular elements based on the adaptive refinement from Fig. 6. 

 
B. Corner Angle Measurements 

Here we demonstrate the conformality of the DSRF method with adaptive refinement for the almond and fighter jet models.   
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Fig. 19. Fighter jet model featuring 4562 1st-order continuous quadrilateral elements generated by the iterative adaptive refinement technique in Fig. 8. 

 

 
Fig. 20. NASA almond model containing 1544 1st-order continuous quadrilateral elements based on the adaptive refinement from Fig. 8. 

 

For the given examples, we sample both the jet and the 
almond in the parametric domain adaptively using the 
refinement indicator and refinement method given for the 
continuous quadrilateral case in Section III.A. Both meshes 
were sampled using N = 256 to obtain a dense sampling of the 
conformality of  ( ) for both models. Corner angles were 
computed for every vertex    ̃ in the resulting surface 
meshes, and histograms were produced from the resulting set 
of corner angles for each mesh and are shown in Fig. 21. Note 
that almost all corner angles are close or equal to 90°, 
indicating excellent conformality of the DSRF method. This is 
of utmost importance for many singularity-extraction 
techniques used in MoM that are not robust to poor corner 
angles, but otherwise offer excellent accuracy [32]. 
Additionally, the conformality of the method is critical to 
maintain high local orthogonality of the basis functions, 
thereby controlling system condition number.  

V. CONCLUSIONS 
This paper has addressed a crucial but largely under-

investigated aspect of modern computational electromagnetics 
research: surface mesh generation. We have introduced a 
robust surface meshing approach intended for use as a 
geometric discretization technique for MoM-SIE problems in 
electromagnetics but easily extensible to other applications. 
The proposed technique makes use of new mathematics that 
 

 
Fig. 21. Corner angle histograms for mappings generated using DSRF on 
continuous quadrilateral meshes. Mappings were sampled using a 256×256 
grid of sample points as in Fig. 5 for the fighter jet in Fig. 4(a) and the NASA 
almond, respectively. 

 
has, to our knowledge, not previously breached the field of 
CEM. The method uses the discrete surface Ricci flow to 
generate an accurate discrete conformal mapping from an 
input surface to a parametric domain in which a seed mesh is 
defined. Iterative adaptive refinement is then used to refine the 
seed mesh, from which the final surface mesh is produced by 
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an inversion of the mapping using barycentric interpolation. 
The novel proposed technique has been demonstrated capable 
of high-quality mesh generation for a variety of surface mesh 
types, given suitable refinement indicators and methods, 
including triangular, continuous quadrilateral, and 
discontinuous quadrilateral of both low and high order. We 
have defined example refinement indicators and methods for 
the studied mesh types and have offered guidelines for 
extension to mesh types not covered in this paper. 

The mesh generation results presented have shown that 
DSRF with adaptive refinement easily recreates even 
complicated initial surfaces using several mesh types over a 
large range of orders and fidelities. The ability of the new 
DSRF-based meshing technique to produce high quality 
meshes even for complicated, highly-varied surfaces has been 
demonstrated for the NASA almond and a fighter jet model. 
Where high-fidelity meshing is desired, the proposed DSRF 
technique has been able to capture fine-scale detail using very 
few high order elements, here demonstrated with as few as 32 
elements of up to 64th-order, unprecedented in the field of 
CEM. Where low-fidelity meshing is desired, DSRF with 
adaptive refinement has been able to accurately recreate 
course-scale detail using standard first-order elements. Corner 
angle measurements have shown that the generated discrete 
mappings are highly conformal, leading to excellent angle 
conservation between parametric and final surface meshes 
when inverse mapped, yielding meshes ideal of angle-
sensitive singularity extraction techniques used in MoM.  

While the DSRF method with adaptive refinement has been 
shown to be effective for the cases tested, we consider this the 
first publication in a relatively experimental line of research 
and appropriately, we have noted some drawbacks of the 
method as presented. The method is not applicable to 
complicated multi-part objects when continuity between 
meshes of individual parts is required. It is also not formally 
applicable to non-differentiable surfaces where perfect 
preservation of sharp (non-differentiable) features is required. 
The method can only asymptotically approach preservation of 
sharp features, so the error introduced may be unacceptable 
where sharp feature preservation on otherwise low-fidelity 
meshes is required. We therefore anticipate several areas for 
future work including improvement of refinement methods to 
include sharp-feature preference; extension to multi-part 
objects while maintaining mesh continuity between parts; 
improvements to the potentially poor computational scaling of 
the DSRF; and utilization with simulation-derived error data 
for adaptive refinement to mitigate not only geometric error 
during the meshing process, but also numerical error in CEM 
solvers. Additionally, we have only presented the method for 
the case of closed, simply connected surfaces with one 
symmetry plane using a cut and the Euclidean DSRF. We 
consider extending the present work, using the theory of [40] 
and more-complicated seed meshes, to arbitrary spherical and 
hyperbolic surfaces as a major component of future work 
toward broad applicability of the method. 

Overall, by leveraging the DSRF, we can provide a unified 
framework for generating low- or high-order surface meshes 
of arbitrary element type that integrates with any existing 
mesh reconstruction tool, to quickly remesh, refine, and 
optimize. Our DSRF-based technique facilitates the generation 

of high-quality discretizations, even for sub-optimal parent 
meshes, with demonstrations presented in this paper for the 
important quality measure of corner angle uniformity. The 
ability to automatically generate geometrically ultra-high 
order elements of high quality demonstrates significant 
advantages for practical application in CEM, both in reducing 
the number of unknowns and improving accuracy and 
robustness. Additionally, mesh refinement or full 
reconstruction (e.g., first-order triangle to ultra-high order 
quadrilateral and vice versa) is extremely inexpensive. A 
precomputed map from the parent surface and its 
parameterization enables this low-cost reconstruction and may 
assist many other common and desirable goals such as 
optimization. As such, DSRF meshes can be locally or 
globally refined efficiently motivated by geometric 
constraints, solution error constraints, or both.  
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