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Abstract—We propose a surface meshing approach for
computational electromagnetics (CEM) based on discrete surface
Ricci flow (DSRF) with iterative adaptive refinement in the
parametric domain for the automated generation of high-quality
surface meshes of arbitrary element type, order, and count.
Surfaces are conformally mapped by DSRF to a canonical
parametric domain, allowing a canonical seed mesh to be mapped
back to an approximation of the original surface. The new DSRF-
based meshing technique provides a framework for generation of
meshes with high element quality, aimed to greatly enhance the
accuracy, conditioning properties, stability, robustness, and
efficiency of surface integral equation CEM solutions. We
demonstrate the ability of the proposed DSRF technique to
produce meshes with near-optimal element corner angles for
complicated, highly-varied surfaces such as the NASA almond
and a fighter jet model, using triangular, quadrilateral, and
discontinuous quadrilateral elements. Other element types are
also discussed. Where high-fidelity meshing is desired, the
technique can capture fine-scale detail using very few high order
elements. Where low-fidelity meshing is desired, DSRF with
adaptive refinement can accurately recreate course-scale detail
using standard first-order elements (e.g., flat triangular patches).

Index Terms—automated surface meshing; computational
electromagnetics; Ricci flow; higher-order methods; large-
domain modeling; mesh refinement; iterative adaptive
refinement; method of moments; surface integral equation
techniques; quadrilateral elements; triangular elements.

I. INTRODUCTION

MESH generation is a critical, yet largely neglected, aspect
of research in computational electromagnetics (CEM).
Surface discretization quality impacts the numerical solution
of electromagnetics problems substantially, yet new surface
integral equation (SIE) techniques seem to mostly defer this
aspect due to its difficulty. New simulation techniques emerge
and problem sizes grow, but a relatively static pool of surface
meshing approaches must contend with an ever-increasing
variety of surface mesh types, each with unique benefits but
added geometric constraints. These constraints define an
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appropriate mesh quality for a specific application. Here, we
use corner angle uniformity and the resolution of important
surface features. Many promising MoM-SIE innovations
simply cannot rely on existing meshing approaches to produce
the required discretizations at any usable quality, limiting the
applicability of new research and relegating practitioners to
heavily-involved semi-manual meshing. SIE-based CEM
methods also increasingly rely on numerical error estimate-
based adaptive refinement techniques to efficiently and
dynamically modify problem discretizations during
computation [1], necessitating the integration of complicated
surface meshing algorithms with existing CEM software. As
such, meshing approaches tailored toward CEM applications
are of growing importance.

Several existing surface mesh generation approaches are
available to CEM researchers, but, to our knowledge, none
allow for the automatic generation of meshes with user-
defined element type, count, and order. Moreover, first-order
triangular mesh generation is well understood and often
simple due to desirable topological properties of triangles as a
2-simplex. For instance, see [2] for surface triangulation from
arbitrary point clouds or [3] for improving existing triangular
surface meshes. Triangular meshes can also be generated from
arbitrary polygonal meshes by subdivision of any polygon [4]
and are ubiquitous in SIE numerical methods, for instance, see
[5]. First-order triangular surface meshing in CEM has relied
largely on Delaunay triangulation-based meshing approaches
due to their simplicity and robustness [6, 7, 8]. Unfortunately,
applying the Delaunay triangulation directly limits its
applicability strictly to 2D (plate) structures or 2D domains.
Prior triangular surface meshing work in CEM has focused on
refining and improving an existing triangle mesh using various
implementations of node addition with local mesh
rearrangement [9, 10, 11]; quad-tri conversion [12]; and
iterative refinement beginning from manual vertex labels [13].

Also common in CEM are first-order quadrilateral
elements, but less so than first-order triangular, see for
instance [14]. First-order quadrilateral mesh generation is
more difficult, as approaches typically rely on direct tri-quad
conversion [15, 16], patch-based methods [17, 18], Voronoi-
based methods [19], or parametrization-based methods [20,
21, 22]. See [23] for a recent overview of the state of the art in
quadrilateral mesh generation. Our proposed method, applied
to quadrilateral meshing, is parametrization-based but
maintains  generality to other surface mesh types.
Discontinuous quadrilateral meshes, in which adjacent
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quadrilaterals need not share entire edges, are simple to
generate at high quality from existing continuous quadrilateral
surface meshes by merging or subdividing chosen
quadrilaterals [23]; see [24] for the advantages of
discontinuous methods. We therefore first focus on continuous
quadrilateral mesh generation but generalize to the
discontinuous case by this property. Direct tri-quad conversion
typically leads to poor mesh quality for most CEM
applications (highly irregular elements with varied corner
angles). Voronoi-based approaches can lead to quad-dominant
meshes in which many triangles remain, raising issues for SIE
solvers unable to handle both quadrilateral and triangular
elements simultaneously. Patch-based methods, meanwhile,
are not guaranteed to generate a complete mesh and can fail
during the generation process [23]. So, they are unreliable for
quintessential surfaces in CEM such as vehicles, antennas, or
building environments. Parameterization-based approaches are
typically the most robust, but little work has been done to
optimize them or apply them for CEM applications except for
parameter sweeping on 2D surface meshes [25]. Other CEM-
specific first-order quad meshing work has typically
concerned iterative partitioning by sets of node placement
rules [26, 27]. More recently, much first-order quad meshing
research in CEM has relied on approaches that, although
robust, are limited to mixed quad-tri meshes and therefore not
applicable for methods relying on meshes of a single element
type [28, 29, 30, 31].

Beyond the well-known first-order techniques, higher-order
methods are of growing interest in CEM. Such techniques
have shown great promise reducing the system dimension for
comparable or higher accuracy in MoM-SIE solvers, thereby
reducing the computation time and/or increasing accuracy
substantially [32, 33], but the complexity of generating the
needed higher-order quadrilateral or triangular meshes has
limited the promised applicability for true large-domain
modeling. Generating such meshes is often left out of scope
[34], semi-manual, or, at best, unable to effectively generate
large-domain elements, typically relying on the combination
of several existing elements into larger high-order elements
[32]. This can only be done on highly-structured meshes, with
most others lacking the topology for merging elements to
satisfy common geometric interpolation techniques. No robust
meshing process has been developed for this application, and
existing parametrization-based techniques, optimized for first-
order elements, are not well-suited to the task. Prior attempts
to produce robust and broadly applicable higher-order
quadrilateral and triangular surface meshing techniques have
used existing high quality first-order meshes of the desired
type and subsequently interpolated them [35, 36]. This
approach is excellent where such meshes are available but
cannot be used when such meshes are unavailable or difficult
to produce at high quality, for instance when large-domain
quadrilateral meshes are desired. Meshing, potentially the
most challenging and restrictive component of higher order
CEM, is a highly relevant open problem.

This paper proposes an efficient and robust surface meshing
technique applicable to any of the discussed mesh types and
extensible easily to others. Able to seamlessly handle higher
order and very high order elements, our technique can
surmount the major barrier to widespread use of otherwise
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highly-efficient higher order methods. Due to its generality,
our technique also constitutes a competitive low-order
meshing approach useful for first-order triangular (flat
triangles) and first-order quadrilateral mesh generation at high
quality. By producing meshes with high corner angle
uniformity, the technique can maintain high local regularity of
surface Jacobians and high basis function orthogonality,
preventing degeneration of the basis functions and associated
increases in condition number. A parametrization-based
approach, our technique leverages the discrete surface Ricci
flow (DSRF) to map between an arbitrary triangulated mesh
and an appropriate canonical parametric domain dependent on
the underlying geometry of the original surface and desired
mesh properties. A uniform seed mesh, known in the
parametric domain, is then taken by this mapping to the
original surface, on which a refinement indicator, defined for
the choice of mesh type, is computed. The seed mesh is then
refined in the parametric domain based on this indicator and
the process is repeated until a stop criterion is met, for
instance maximum element size or element count. Although
we begin here with a triangular mesh of the original surface, in
general we can begin with an arbitrary surface representation,
which must be converted to a high-quality triangulation by
sampling, subdivision, or surface reconstruction as appropriate
to the type of surface representation, for instance using
techniques from [2] or [4].

We believe our approach to be the first demonstration of a
surface meshing technique able to seamlessly handle arbitrary
(low and high) geometric order and element type.
Furthermore, this appears to be the first technique able to
generate high-quality very high order quadrilateral elements;
the lack of such a technique previously constituting the main
shortcoming of large-domain methods [32, 34]. We
demonstrate our technique for a variety of common mesh
types used for low-order and higher order MoM-SIE methods
including triangular, quadrilateral, and discontinuous
quadrilateral, and offer suggestions for simple extension to
other, less common element types. For each of these types, we
maintain generality in element order and show typical results
for first-order (lowest-order), e.g., flat triangular patches, as
well as higher-order elements. For the latter, we demonstrate
meshes using both Lagrange interpolation and cubic spline
interpolation, again offering suggestions for extension to other
interpolation methods. We focus here on the application of
this technique to MoM-SIE in CEM but do not limit its
usefulness to only this application. Some preliminaries of this
work are presented in a summary form in [37, 38, 39].

We note a few limitations of the proposed method. Firstly,
the method as presented does not enforce continuity for multi-
part objects. To work for such cases in practice, the method
therefore requires either a discontinuous Galerkin solver or
special treatment at part interfaces to enforce continuity. The
adaptive refinement we present here also does not guarantee
perfect sampling of the original surface on non-differentiable
features (i.e., sharp edges). The error due to imperfect
sampling of sharp features drops asymptotically to zero with
increased iteration but may be unacceptable where perfect
preservation of sharp features at otherwise low mesh fidelity is
required. Although all refinement methods we present scale as
O(NlogN) with the number of iterations, the time complexity
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of the DSRF with the number of triangles remains formally
unknown and is likely the asymptotically dominant factor. We
are aware of no study of DSRF scaling with respect to the
triangle count, and we consider such a derivation involved
enough to warrant its own, separate study. With respect to
multiple parameters, DSRF scales formally as O(N.N,,N,),
where N; is the number of triangles in the original mesh, N, is
the average number of iterations required to solve the Hessian
system to a chosen tolerance, and N,, is the number of Newton
method iterations required to meet a tolerance on the curvature
error. The open problem is relating N,, and N,,, to N;. We hope
to address these limitations and perform a rigorous study of
DSREF scaling in future work.

We begin by summarizing our method and recapitulating
the mathematics of DSRF, tailored specifically to be
understandable and useful to the CEM community. We
encourage readers interested in a more-formal, in-depth
theoretical discussion with additional implementation details
to review [40]. We use the same notation where possible. We
then describe iterative adaptive refinement and offer specific
implementations for common mesh types. Then, we present a
variety of meshes produced by the method as well as statistics
on mesh corner angle uniformity, a common measure of
quality. For the examples given in the present manuscript, we
focus on the common, important case where our surface is
simply connected, closed, and has one symmetry plane,
allowing us to reduce to the Euclidean case by cutting the
surface along the plane of symmetry. This simplifies both
computation and presentation of the DSRF. In future work, we
plan to similarly demonstrate the method for surfaces
requiring spherical or hyperbolic DSRF. We apply the method
to the NASA almond, an established CEM benchmarking
shape usually used to demonstrate difficulty of surface
modeling given its one sharp end. We also show meshing
results for a far more-complicated, and therefore challenging,
fighter-jet model. For each of these models, we show
continuous triangular, continuous quadrilateral, and
discontinuous quadrilateral surface meshes of both low and
high geometric order. We conclude with a discussion of the
potential of the new DSRF meshing technique with adaptive
refinement.

II. SUMMARY OF THE METHOD AND COMPUTING THE DSRF

Popularized by its role in Perelman’s 2006 proof of the
Poincaré conjecture [41], Ricci flow offers a mathematical
framework for diffusing irregularities in the metric of a
Riemannian manifold. In the context of this work, surface
Ricci flow, by the discrete formulation described in [42],
allows the generation of a conformal (angle-preserving)
mapping between a surface of choice, and a homeomorphic
(or non-homeomorphic, given a suitable cut graph) surface of
prescribed Gaussian curvature, here constituting a parametric
domain for the mesh and referred to as the prescribed surface.
For instance, this allows the NASA almond to be mapped to
the unit sphere or, as we demonstrate in this paper, cut and
mapped to the plane. Information on the prescribed surface
can then be conformally mapped back to the original surface.
In our application, this information comprises element
vertices, and in our higher order cases, element sample points.
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Since much of the material covered in this paper is likely
unfamiliar to CEM audiences, we begin with a high-level
summary of the method before presenting the theory in more
detail. As a concrete example, we demonstrate each step for a
simple ellipsoid cut along a plane of symmetry for which we
want to produce a structured quadrilateral mesh. The basic
steps of the method are as follows.

1. Ifitis not already, convert the surface into a triangle mesh,
shown in Fig. 1(a) for the cut ellipsoid

2. Obtain a mapping between the original surface and a
simple prescribed surface by DSRF. The cut ellipsoid
triangle mesh mapped to a rectangular prescribed surface
is shown in Fig. 1(b).

a. Choose a simple surface in which we can easily
manipulate mesh topology (e.g. a flat rectangle)

b. Assign a target curvature to each point in the
original triangle mesh consistent with the prescribed
surface

c. Perform the DSRF to compute locations of vertices
from the triangle mesh when flattened to the
prescribed surface

3. Apply the mapping to resample the original surface
adaptively, manipulating mesh topology in the parametric
domain. A uniform quadrilateral sampling is shown
overlaid on Fig. 1(b) and an adaptive sampling is shown
overlaid in Fig. 1(c).

a. Define a simple seed mesh that covers the prescribed
surface

b. Define a refinement indicator and refinement

method appropriate for the target mesh type and

quality measure

Compute the refinement indicator for the seed mesh

d. Refine the seed mesh using the refinement method,
based on computed values of the refinement

indicator

e. lterate steps d and e until some stop criterion is met

(number of steps, maximum element size threshold,
etc.)

134

Fig. 1. Original triangle mesh for a cut ellipsoid (a), triangle mesh in the
parametric domain with uniform structured quadrilateral sampling (b), and
adaptive structured quadrilateral sampling (c) overlaid. Vertices in red are
assigned 1t/2 curvature. All other vertices are assigned zero curvature.
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Step 1 is simple for almost all surface descriptions, so we
consider it outside the scope of this paper.

Step 2 is described in the remainder of this section in detail,
but we offer key considerations here: The surface of
prescribed curvature can be arbitrary but should be a surface
on which it is simple to manipulate mesh topology. We use the
simple and broadly-applicable example of a flat Euclidean
rectangle for this paper.

Step 3 is described in section III in detail, but to summarize:
The mapping produced by DSRF does not preserve relative
area. This can cause details from the original surface to be
missed when a uniform sampling of the parametric domain is
used. The goal of adaptive refinement (AR) is to distribute
mesh sample points to mitigate this.

Figure 2 compares quadrilateral surface meshes obtained for
the example ellipsoid using a nonconformal versus conformal
mapping. Figure 3, meanwhile, shows angle histograms for the
three meshes in Fig. 1, demonstrating the desirability of a
conformal approach.

(@)

Fig. 2. 20x20 structured quadrilateral meshes mapped to an ellipsoid using (a)
a nonconformal mapping; (b) a conformal mapping by DSRF, parametric
domain sampling shown Fig. 1(b); and (c) a conformal mapping using DSRF
with adaptive refinement, parametric domain sampling shown Fig. 1(c), to
capture more detail in regions of high curvature.
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Fig. 3. Corner angle histograms for 20%20 structured quadrilateral meshes
show in Fig 2. Nonconformal mesh has a poor corner angle distribution while
meshes obtained using DSRF have distributions concentrated closely around
90 degrees.
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The result of Step 1, we denote our original triangle mesh
Y =(V, E, F) where V, E, and F are the sets of vertices, edges,
and faces composing the mesh, respectively. Here we assume
our mesh represents the boundary of a realizable three-
dimensional (3D) object, i.c., the surface does not intersect
itself, is continuous, and is finite. We refer to this as the initial
surface. The initial surface may either be closed or have a
boundary (a one-dimensional curve in 3D space) 0Z, as in our
cut example case. By Step 2, we wish to deform this original
surface to a much simpler, prescribed surface on which we can
easily define and manipulate mesh topology. We denote the
mapping of this surface to the parametric domain I =
(V,E,F), and an associated map M:%X — X from the
parametric domain to the initial surface. The discrete Gaussian
curvature of a surface is given by

2n— %0/, veos

K@) = ; ,
n— Y6/, veox

()

where v refers to a given vertex and Y. 9{ ¥ denotes the sum
of all triangle corner angles of which v is a part. Here i
denotes the index of v, and G{k denotes the corner angle
formed by vertex v and two adjacent (connected by an edge)
vertices with indices j and k. We define the Euler
characteristic as,

X = Ny— Ng+ Np. @)

Here Ny, Ng, and N represent the number of vertices, edges,
and faces of the surface, respectively. With this, the Gauss-
Bonnet theorem asserts,

Yv K@)+ €A = 2nX, 3)

with A denoting the total surface area of the mesh and the
scheme coefficient term € determined by the chosen
background geometry, taking a value of 0 for the Euclidean
case. X takes a value of 1 for the case of a simply-connected
half surface. For examples given in this paper, we consider
only the Euclidean background geometry and simply-
connected half surface, but plan to give more-complicated
examples for spherical and hyperbolic background geometry
in future work.

Once a prescribed surface is selected, a target curvature
K(v) is chosen constrained by (2). For instance, using
Euclidean background geometry on an open surface (produced
by cutting a closed surface along its symmetry plane) and
mapping to the Euclidean plane, the total curvature of 21 can
be allocated to four boundary vertices (highlighted red in Fig.
1), assigning each curvature /2. These vertices will then
become the vertices of a rectangular image of the original
surface in the Euclidean plane after mapping, shown Fig. 1(b-
c). Here, we chose these four vertices to be evenly-spaced on
the boundary of the cut surface. By assigning zero curvature to
the non-boundary vertices, we enforce that they fall on a flat
plane shared by neighboring vertices. Similarly, by assigning
all other boundary vertices zero curvature, we enforce that
they fall on a straight line shared by neighboring boundary
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vertices. Once the target curvature is selected, the discrete
surface Ricci flow semi-discrete system

—= =K — K “4)

can be solved by any number of standard numerical methods
to obtain the final conformal mapping between surfaces. The
above semi-discrete form retains continuous time, t, which in
practice is discretized into a finite set of iterations. A nonlinear
equation, (4) must be solved iteratively. For a thorough
background on computing the Hessian of the Ricci energy for
this system and applying it through Newton’s method to
obtain the final mapping, see [40]. We give a brief overview
here.

To compute and solve the DSRF system, we must define
several discrete parameters and structures over X. We first
define a circle packing metric. We associate with each vertex
v; €V nonnegative radius y; corresponding to a circle
centered on v;. We also define a real-valued discrete
conformal structure coefficient on £ denoted 7. Together with
the scheme coefficient from (3), our circle packing metric is
then defined by the tuple (Z,y,7, €), from which we can then
determine any edge length [;; € E between vertices v;, v; €
V. Defining the discrete conformal factor u; for the Euclidean
case,

u; = logy;, (5)
we can compute [;; by

17, = 2n;;%% + g0 4 g0V (6)
The € coefficients and range of the conformal structure
coefficient for several common circle packing schemes [40]
are defined in Table 1. We use inversive distance circle

packing for the results presented in this paper.

Table I. Range of conformal structure coefficient and € coefficient values for
common circle packing schemes.

Scheme Nij & &
Thurston’s [0,1] +1 +1
Tangential +1 +1 +1
Virtual radius >0 -1 -1
Inversive Distance > () +1 +1

With a circle packing scheme defined and chosen, we can
now solve the DSRF system (4) iteratively as follows. At
every iteration we begin by computing all circle radii y; from
the discrete conformal factor (5). Following this, we use n and
y values to compute all edge lengths by application of (6).
From the edge lengths, we compute the corner angles 9{ * from
the cosine law appropriate to Euclidean background geometry,

Iz = y? + v} — 2liljcos by, @)
and subsequently the vertex curvature K from the angle deficit

(1). We then compute the Hessian matrix, H, from the local
(face) Hessian matrices:
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5

a(ei,ej,ek) _ _i -1
a(ui,uj,uk) - ZALG)L D (8)
where

S(li) 0 0

0 0 s(ly)
A = sinb;s(l;)s(l) (10)
and
0 t(i,j, k) (i, k,J)

D= |7(,i,k) 0 (j, k, i) (11)

w(k,i,j) t(k,j,i) 0

Although we maintain consistency with [40] here, for the
Euclidean case we have simply that

s(x)=x (12)
and

Z+eiyi+erys
(i, j, k) = LTk (13)
Finally, we solve the linear system
HSu= K—-K (14)

for du, updating the discrete conformal factor to be used in the
next iteration as
u < u— otéu. (15)
This process is iterated until a convergence criterion is met,
most simply until the maximum difference between the
current and target discrete curvature falls below some
threshold, i.e., until

max;|K; — K;| < threshold (16)
From the final 1, ¥, u, and 8 values, we can compute the final
vertex locations in the target domain by flattening from a seed
face as in [42]. For additional discussion of convergence rate,
stability, and modifications to improve the robustness of the
above approach, see [40, 43, 44].

Once the locations of all vertices are known in the
parametric domain, any point within that domain can be
mapped back to the initial surface using barycentric
coordinates, defining a piecewise-linear approximation of M.
A point p with parametric coordinate (i, W) in the parametric
domain is found to lie in face /. If /' has parametric vertices vy,
v,, and v3, each with parametric coordinate of form (u;, w;) and
nonparametric coordinate of form (x;, y;, z;), the image of p on
the original surface, here denoted p’ with coordinate (xo, yo,
2y), 1S given by
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(X0, Y0, 20) = Xi=1 ki (X0, 1, 20, (17)

where addition is understood component-wise and the
Barycentric coordinates are given by

|u3—uo V3—Vo
k __ lup—us
1=

V2~ P3 (18a)
ul—uos V1—Vg
k2 — u3—uls V3—V; (lgb)
Up—Ug vz—v0|
ky = e (18¢)
with scaling factor
U —Uz V3 — Dy
s= |u3_u1 173—1J1| (19)

III. ITERATIVE ADAPTIVE REFINEMENT

By choosing a simple prescribed surface, we exert a high
degree of control over the resultant re-mapping. However, the
mapping produced by Ricci flow preserves only angles, not
relative areas, so simply mapping a uniform grid of sample
points from the prescribed surface to the surface of choice
produces poor results for our application, leading to wide
discrepancies in mesh fidelity between minimally-warped and
highly-warped portions of the resulting surface mesh, as
demonstrated in Fig. 2. Figure 4 motivates this from another
perspective for the more-complicated cut fighter jet mesh. The
parent jet mesh contained 115,967 triangles, and the DSRF
took 14.3 seconds to compute on an i7 3770k at 3.50 GHz
with a fully parallelized implementation. Fig. 4(a) shows the
original triangle mesh, while Figs. 4(a) and (b) show the mesh
mapped to the parametric domain and the degree of area
warping, respectively. The induced area warping is highly
concentrated and irregular.

This is the motivation for beginning with an initial seed
mesh and iteratively refining, an approach that allows the
unknown degree of local warping to be compensated for
adaptively.

We describe here how to construct a mesh informed by
some refinement indicator, in general motivated by either
geometric error or numerical solution error estimates.
Focusing on the geometric properties of the method, we offer
specific examples of refinement indicators to reduce geometric
error but maintain generality for easy application of the
method to adaptive refinement (AR) based instead on solution
error.

Given M:¥ — Z, we wish to construct a new surface mesh,
£ = (V,E,F), of arbitrary type. Beginning with a seed mesh
£, of the chosen mesh type in the parametric domain, we must
define a refinement indicator, R, (£, M) and a refinement
method Q(Ry,£,) = £,41. We may then iterate O on £, N
times, updating R, at each iteration, to produce a final surface
mesh £ = £y. N may be user-defined or may be a function of
£, e.g., some stop criterion like total element count or
maximum element size. We give examples of such R,, and O
for a variety of common mesh types and offer suggestions to
extend these to other mesh types. We also define the simplest
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seed mesh for each mesh type covered if Euclidean DSRF is
used to map to a rectangle. Note that the refinement methods
described here have linearithmic time complexity with the
number of refinement iterations.

(@)

(b)

l i i L L L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fig. 4. (a) Initial fighter jet surface. (b) Triangle mesh of fighter jet cut and
conformally flattened to the plane with highly warped areas boxed in red. (c)
Refinement indicator (normalized) for each quadrilateral element
demonstrating high degree of warping at fighter jet fin, wing, and fuselage tip
when uniform sampling is used.

A. Continuous Structured Quadrilateral Meshes of Arbitrary
Order

Here we give an example of a refinement indicator and
associated refinement method for the continuous quadrilateral
case using Euclidean DSRF. For every edge e € E, we find
the Euclidean distance, d, between its endpoints, (x;, yi, z)
and (x, y», z;) in the nonparametric domain

d=(t; =)+ (1 = ¥2)% + (21 — 2,)? (20)
We assign such a distance to each e € E, constituting
R, (Z, M) with domain E.

Starting from a seed mesh in the parametric domain
consisting of one quadrilateral element aligned with the
parametric coordinate axes as in Fig. 5(a), we find the row and
column containing the edge with highest d for the vertical (w,
= w,) and horizontal (u; = u,) edges, respectively. We then
subdivide the appropriate row and column in half in the
parametric domain, taking one row to two rows and one
column to two columns. This can be repeated N times and
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constitutes one possible Q(R,,£,) = £,4,. Figures 5(b)-(c)
show this subdivision process in the parametric domain for the
fighter jet mesh from Fig. 4(a) for N =2, N=10, and N = 20
iterations, respectively.

Note that the example @ given here constitutes only a
simple and informative refinement method to produce a
structured quadrilateral mesh. If unstructured meshes are
permissible, any existing quadrilateral mesh refinement
method could be used in the parametric domain, with the
resulting mesh then mapped back to the original surface
conformally. For instance, node-placement schemes like those
in [26], [27], and [45] could be adapted to serve as the
refinement method.

If higher order elements are chosen, we may subsample £y
in the parametric domain to produce the necessary
interpolation nodes. For instance, if high order elements
requiring a grid of kxk nodes per element are chosen, we may
split each row and column of £, k-2 times to obtain the
necessary sample density. In this paper, to improve accuracy
and maintain adaptivity for the given examples, we do this
implicitly. If an LxL grid of higher order elements, each
requiring kxk nodes, is chosen, we define N to be L(k-1)-1 to
obtain the necessary sample points for all elements. For the
given examples, we order higher order sample points for
quadrilateral elements as defined in [32].

Fig. 5. Iterative adaptive refinement in the parametric domain for a
continuous curved quadrilateral mesh of a fighter jet in Fig. 4(a) to increase
mesh quality intelligently, with more elements being allocated to high density
areas in the parametric domain, leading to a more-uniform final jet mesh: (a)
seed mesh with one element aligned with coordinate axes in parametric
domain, (b) refined mesh with N = 2 iterations, (c) refined mesh with N = 20
iterations

B. Continuous Triangular Meshes of Arbitrary Order

We now give a similar example for the continuous triangular
case using Euclidean DSRF. For every edge e € E, we again
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find the Euclidean distance, d, between its endpoints in the
nonparametric domain (20). We assign such a distance to each
e € E, again constituting R,, (£, M) with domain E. For e € E
with maximum d and parametric endpoints (u;, w;) and (u,,
wy), we compute the parametric midpoint p as

21

_ (u1+u2 1;1+172)
2 2 ’

and include it in the set of existing vertices in £. We then
update a Delaunay tessellation of this augmented V in the
parametric domain to update £ and F to include the added
vertex. This can be repeated N times and constitutes a possible
Q(Rn Z,) = £,41. Figures 6(a)-(c) show similar parametric-
domain adaptive refinement results for N = 2, 50, and 100
iterations, respectively.

Fig. 6. Iterative adaptive refinement in the parametric domain for a
continuous curved triangular mesh of a fighter jet in Fig. 4(a): (a) seed mesh
with two elements in the parametric domain, (b) refined mesh with N = 50
elements, and (c) refined mesh with N = 100 iterations.

As in the continuous quadrilateral case, extension to higher
order elements is simple, requiring only additional sampling of
the mapping at interpolation nodes. For the examples given in
this paper, we define higher order sample points for each
triangle as in [32].

C. Discontinuous Quadrilateral Meshes of Arbitrary Order

To define a suitable refinement indicator in the
discontinuous quadrilateral case using Euclidean DSRF, we
again compute (20) for all e € E, beginning from the seed
mesh defined for the continuous quadrilateral case and shown
in Fig. 5(a). For e with maximum d, we split an adjacent face
in the direction perpendicular to such e, introducing two new
vertices and one new edge. Note that, although an edge may
have two adjacent faces, it is in practice inconsequential which
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face is split on a given iteration, as the unsplit face is
guaranteed to be refined on a subsequent (typically the next)
iteration, dependent on the number of edges with identical
maximum d. Such face splitting constitutes a possible
Q(Rn £,) = £,41 and introduces one new face per iteration.
Additional constraints could be imposed on which element to
split at each iteration to satisfy potential requirements of
specific discontinuous quadrilateral codes. For instance, if an
implementation requires that one edge joins to at most two,
conditions that would violate this if refined could be detected
at each iteration, with e with the next highest d chosen instead.
Figure 7 demonstrates this refinement method for various N on
the jet fighter mesh with no such additional constraints. For
extension to higher order, we sample on a quadrilateral-by-
quadrilateral basis and again use the sampling convention
defined for higher order quadrilaterals in [32].

Fig. 7. Adaptive refinement for discontinuous quadrilaterals in the parametric
domain: (a) N=50, (b) N= 100, and (c) N = 300 iterations.

D. Continuous Unstructured Quadrilateral Meshes of
Arbitrary Order

Here we demonstrate how DSRF-AR can be used to convert
an existing 2D meshing technique into a 3D surface meshing
technique, in this case for continuous structured quadrilateral
meshes. We begin with the 2D continuous quadrilateral
subdivision method described in [45]. The method in [45] first
refines elements uniformly by splitting each refined element
into a 3x3 grid of quadrilaterals. A set of 4 irregular
subdivision patterns is then applied to adjacent elements to
repair any discontinuities introduced during refinement. To
apply this method to 3D surfaces using our DSRF-AR
approach, we again compute (20) for all e € E. For e with
maximum d, we split an adjacent face into a 3%x3 grid of
quadrilaterals. Any neighboring faces of the refined face are
also refined uniformly if needed to maintain the criterion that
no edge joins to more than 3. This is iterated until some stop
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criterion is met, after which the irregular subdivision templates
from [45] are applied to repair all discontinuities. Note that no
irregular element is ever subdivided, as this would lead to
unbounded mesh quality deterioration. This constitutes
another possible Q(R,,£,) = £,,,. Figure 8 demonstrates
this refinement method on the fighter jet mesh for several N.
As in previous quadrilateral examples, extension to higher
order constitutes quadrilateral-by-quadrilateral resampling
using the convention defined in [32]. Note that, since [45]
assumes square elements to maintain reasonable corner angles
in the irregular subdivision templates, we use a different seed
mesh here, splitting the rectangular parametric domain into
approximately square elements (here 3). This can be
automated by comparing the width and height of the
rectangular parametric domain, subdividing it appropriately.

Fig. 8. Adaptive refinement for continuous unstructured quadrilaterals in the
parametric domain: (a) N=15 (b) N =10, and (c) N = 50 iterations.

E. Generalization to Mesh Types Not Covered

Although we have covered three common mesh types, we
by no means wish to limit the applicability of DSRF with
adaptive refinement to production of only continuous
quadrilateral, continuous triangular, and discontinuous
quadrilateral meshes. We hope the given examples offer clear
guidance for generalizing to other mesh types, but we
additionally give recommendations for generalization by
offering the following guidance: it is crucial to choose
R,(Z,M) and especially Q(Rn, in) = £,,,. to prevent the
creation of malformed elements during refinement in the
parametric domain. “Malformed” depends on the mesh type
and user application, but typically is related to the regularity of
corner angles and local Jacobian within and between elements.
As M(p) =p' is conformal, malformed elements in the
parametric domain become malformed elements in the final
surface mesh.
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IV. RESULTS AND DISCUSSION

A. Example Surface Meshes Produced by DSRF with
Adaptive Refinement

Here we demonstrate meshing by DSRF with adaptive
refinement for the well-known NASA almond model and the
complicated fighter jet model. Higher order elements were
reconstructed using Lagrange interpolation as in [32] or cubic
spline interpolation of the sample points on an element-by-
element basis. The same initial X used for all cases (one for
the almond, one for the fighter jet). The DSRF was computed
on these initial meshes and used to generate one M for each
model. The parametric domain adaptive refinement methods
described in Section III were then iterated through these
mappings to produce a variety of surface meshes shown in
Figs. 9-20. We show the robustness of the proposed technique
to recreate complicated surfaces for arbitrary mesh types with
arbitrary element counts and orders, for instance accurately
representing the fighter jet model with as few as 32 elements.
We are not aware of any other meshing technique that can
reliably produce such large-domain meshes.

Figure 9(a) shows a high-resolution higher order continuous
quadrilateral surface mesh generated using DSRF with the
refinement scheme outlined in Section II.LA. Figure 9(b)
shows the equivalent surface mesh instead using uniform
sampling in the parametric domain. All parameters including
element count, element order, ¥, and M were identical
between Figs. 9(a) and 9(b). Spline interpolation was chosen
in both cases. Extreme loss of fidelity can be seen around the
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fuselage tip and wing tips in the uniformly-sampled case,
these details meanwhile excellently captured in the adaptive
case. This shows not only the importance but also the
effectiveness of the proposed adaptive sampling methods for
accurately capturing detail in the desired model.

Figure 10 shows the same mesh as Fig. 9(a) from an oblique
angle, making the high fidelity with which the adaptive
sampling technique captures fine detail in the initial surface
apparent. A comparison between this higher order continuous
quadrilateral mesh and the 1*-order triangular mesh (chosen
for £ and shown in Fig. 4(a)) shows the near perfection with
which this instance of ¥ recreates the original surface. A
similar result is shown in Fig. 11 for the NASA almond, here
using 32 16™-order continuous quadrilateral elements with
Lagrange interpolation. The parent almond mesh contained
2,023 triangles and the DSRF took 0.168 seconds to compute.
Adaptive sampling was also used for Fig. 11 as outlined in
Section III.A. Note that, for most practical use cases, such
large, curved elements would be supported by extremely high-
order current expansions, most importantly to compensate for
their large electrical size.

Figures 12 and 13 show 1%-order discontinuous
quadrilateral meshes generated using the technique outlined in
Section III.C. Figure 12 shows the fighter jet model recreated
using 6490 1¥-order elements, while Fig. 13 shows the NASA
almond featuring 2000 elements of the same type. In both
cases, the original surface is well-reconstructed.

Figures 14 and 15 show higher-order analogues of Figs. 12
and 13, now using 300 30™-order and 300 10™-order

Fig. 9. Comparing effects of adaptive iterative refinement vs. uniform sampling on mesh quality: (a) continuous quadrilateral mesh of a fighter jet in Fig. 4(a)
with 32 64"-order elements using DSRF with iterative adaptive refinement outlined in Fig. 5 and (b) the same using uniform sampling.
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discontinuous quadrilateral elements, respectively. Spline  the proposed meshing technique, but rather shows an accurate
interpolation was used in both cases. Note that roughness recreation of roughness due to 1%-order triangular facets in the
present on the almond surface in Fig. 15 is not an artifact of  original almond mesh chosen as X.

Fig. 10. Fighter jet model featuring as few as 32 64"-order quadrilateral elements in Fig. 9(a) viewed from oblique angle. Note excellent curvature/detail
modeling with hyper-large hyper-curved quadrilateral patches.

Fig. 11. NASA almond model using adaptive refinement from Fig. 5 with only 32 16™-order continuous quadrilateral elements.

Fig. 12. Fighter jet model constructed from 6490 1%-order discontinuous quadrilateral elements using iterative adaptive refinement from Fig. 7.
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Fig. 14. Fighter jet model composed of 300 30™-order discontinuous quadrilateral elements by the technique in Fig. 7.

Fig. 15. NASA almond model using refinement from Fig. 7 with 300 10"-order discontinuous quadrilateral elements.

Figure 16 shows a low-resolution meshing of the fighter jet
model using 2898 first-order triangular elements. Adaptive
sampling was used as outlined in Section III.B. Despite the
low element count and lowest possible geometric order, the
model is well represented at coarse-scale, showing that the
proposed method works well even as a first-order triangular
mesher.

Figures 17 and 18 show higher order triangular meshes for
the fighter jet and almond, respectively, using the technique
outlined in Section III.B. The fighter jet was meshed using
3702 10™-order elements interpolated by cubic spline, while

the almond was meshed using 1098 10"-order elements
interpolated using Lagrange polynomials. We see good
fidelity in both cases. Note that roughness from facets in X can
again be seen in Fig. 18, similar to Fig. 15.

Figures 19 and 20 show first order quadrilateral meshes for
the fighter jet and almond, respectively, using the technique
from Section III.D. The fighter jet was meshed using 4562
first order elements while the almond was meshed using 1544
first order elements. Detail from the original surfaces is
captured well in these continuous quadrilateral meshes despite
their low element count and low order.
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Fig. 18. NASA almond model containing 1098 10™-order continuous triangular elements based on the adaptive refinement from Fig. 6.

B. Corner Angle Measurements

Here we demonstrate the conformality of the DSRF method with adaptive refinement for the almond and fighter jet models.
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Fig. 19. Fighter jet model featuring 4562 1¥-order continuous quadrilateral elements generated by the iterative adaptive refinement technique in Fig. 8.

Fig. 20. NASA almond model containing 1544 1%-order continuous quadrilateral elements based on the adaptive refinement from Fig. 8.

For the given examples, we sample both the jet and the
almond in the parametric domain adaptively using the
refinement indicator and refinement method given for the
continuous quadrilateral case in Section III.A. Both meshes
were sampled using N = 256 to obtain a dense sampling of the
conformality of M(p) for both models. Corner angles were
computed for every vertex v € V in the resulting surface
meshes, and histograms were produced from the resulting set
of corner angles for each mesh and are shown in Fig. 21. Note
that almost all corner angles are close or equal to 90°,
indicating excellent conformality of the DSRF method. This is
of utmost importance for many singularity-extraction
techniques used in MoM that are not robust to poor corner
angles, but otherwise offer excellent accuracy [32].
Additionally, the conformality of the method is critical to
maintain high local orthogonality of the basis functions,
thereby controlling system condition number.

V. CONCLUSIONS

This paper has addressed a crucial but largely under-
investigated aspect of modern computational electromagnetics
research: surface mesh generation. We have introduced a
robust surface meshing approach intended for use as a
geometric discretization technique for MoM-SIE problems in
electromagnetics but easily extensible to other applications.
The proposed technique makes use of new mathematics that
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Fig. 21. Corner angle histograms for mappings generated using DSRF on
continuous quadrilateral meshes. Mappings were sampled using a 256x256
grid of sample points as in Fig. 5 for the fighter jet in Fig. 4(a) and the NASA
almond, respectively.

has, to our knowledge, not previously breached the field of
CEM. The method uses the discrete surface Ricci flow to
generate an accurate discrete conformal mapping from an
input surface to a parametric domain in which a seed mesh is
defined. Iterative adaptive refinement is then used to refine the
seed mesh, from which the final surface mesh is produced by
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an inversion of the mapping using barycentric interpolation.
The novel proposed technique has been demonstrated capable
of high-quality mesh generation for a variety of surface mesh
types, given suitable refinement indicators and methods,
including  triangular, continuous  quadrilateral, and
discontinuous quadrilateral of both low and high order. We
have defined example refinement indicators and methods for
the studied mesh types and have offered guidelines for
extension to mesh types not covered in this paper.

The mesh generation results presented have shown that
DSRF with adaptive refinement easily recreates even
complicated initial surfaces using several mesh types over a
large range of orders and fidelities. The ability of the new
DSRF-based meshing technique to produce high quality
meshes even for complicated, highly-varied surfaces has been
demonstrated for the NASA almond and a fighter jet model.
Where high-fidelity meshing is desired, the proposed DSRF
technique has been able to capture fine-scale detail using very
few high order elements, here demonstrated with as few as 32
elements of up to 64™-order, unprecedented in the field of
CEM. Where low-fidelity meshing is desired, DSRF with
adaptive refinement has been able to accurately recreate
course-scale detail using standard first-order elements. Corner
angle measurements have shown that the generated discrete
mappings are highly conformal, leading to excellent angle
conservation between parametric and final surface meshes
when inverse mapped, yielding meshes ideal of angle-
sensitive singularity extraction techniques used in MoM.

While the DSRF method with adaptive refinement has been
shown to be effective for the cases tested, we consider this the
first publication in a relatively experimental line of research
and appropriately, we have noted some drawbacks of the
method as presented. The method is not applicable to
complicated multi-part objects when continuity between
meshes of individual parts is required. It is also not formally
applicable to non-differentiable surfaces where perfect
preservation of sharp (non-differentiable) features is required.
The method can only asymptotically approach preservation of
sharp features, so the error introduced may be unacceptable
where sharp feature preservation on otherwise low-fidelity
meshes is required. We therefore anticipate several areas for
future work including improvement of refinement methods to
include sharp-feature preference; extension to multi-part
objects while maintaining mesh continuity between parts;
improvements to the potentially poor computational scaling of
the DSRF; and utilization with simulation-derived error data
for adaptive refinement to mitigate not only geometric error
during the meshing process, but also numerical error in CEM
solvers. Additionally, we have only presented the method for
the case of closed, simply connected surfaces with one
symmetry plane using a cut and the Euclidean DSRF. We
consider extending the present work, using the theory of [40]
and more-complicated seed meshes, to arbitrary spherical and
hyperbolic surfaces as a major component of future work
toward broad applicability of the method.

Overall, by leveraging the DSRF, we can provide a unified
framework for generating low- or high-order surface meshes
of arbitrary element type that integrates with any existing
mesh reconstruction tool, to quickly remesh, refine, and
optimize. Our DSRF-based technique facilitates the generation
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of high-quality discretizations, even for sub-optimal parent
meshes, with demonstrations presented in this paper for the
important quality measure of corner angle uniformity. The
ability to automatically generate geometrically ultra-high
order elements of high quality demonstrates significant
advantages for practical application in CEM, both in reducing
the number of unknowns and improving accuracy and
robustness.  Additionally, mesh refinement or full
reconstruction (e.g., first-order triangle to ultra-high order
quadrilateral and vice versa) is extremely inexpensive. A
precomputed map from the parent surface and its
parameterization enables this low-cost reconstruction and may
assist many other common and desirable goals such as
optimization. As such, DSRF meshes can be locally or
globally refined efficiently motivated by geometric
constraints, solution error constraints, or both.
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