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Abstract—In this letter, we propose and demonstrate a data-
driven machine learning-based approach to accelerate the finite
element method, method of moments, finite difference method,
and related variational methods while maintaining the attractive
properties that have allowed such methods to dominate
computational science and engineering fields like computational
electromagnetics. We use a neural network to predict a set of
macro basis functions for a given problem, using only the
solution to an extremely coarse description of the problem as
input. We then solve the problem using the predicted macro
basis. Unlike some existing methods, ours does not rely on direct
prediction of the solution. We show that our macro basis function
approach corrects errors in the raw prediction of the network,
achieving a far more accurate solution. Results are presented for
a class of finite element scattering problems, with error statistics
presented from 1000 validation examples and compared to
standard and naive approaches. These results suggest the
described macro basis function approach is superior to machine
learning approaches that directly predict the solution. Meanwhile
our method achieves comparable accuracy to the full solution
while requiring only a fraction of the degrees of freedom.

Index Terms—finite element method, method of moments,
machine learning, neural networks, macro basis functions,
variational methods, computational electromagnetics.

I. INTRODUCTION

ARIATIONAL techniques like finite element method

(FEM), method of moments (MoM), and finite difference

(FD) method are dominant for solving numerical physics
problems in computational electromagnetics (CEM) and
computational science/engineering (CSE) due to their
flexibility,  robustness, and  rigorous  mathematical
underpinnings. The principal shortcoming of these methods is
their poor scaling and high computational cost. We introduce a
broadly applicable method by which neural networks can be
applied to speed up variational methods without sacrificing
their desirable characteristics. Rather than predicting solutions
to these problems directly, we use neural networks to guess a
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highly simplified basis on which to solve the problem
rigorously using existing techniques.

Previous work seeking to use neural networks to make
predictions about the solutions to computational physics or
CSE problems has capitalized on the strong predictive power
of well-trained neural networks but has not addressed the
shortcomings of using such an inherently empirical approach
for real-world engineering problems. This has limited the real-
world usefulness of such results. Most previous work has
focused on predicting quantities derived from a numerical
solution given a description of the physical problem, typically
material parameters in the computational domain and
excitations for the problem [1]-[5]. There has been occasional
work that uses a neural network to predict the solution itself,
rather than a derived quantity [6]-[7]. In this way, such
research has sought to effectively replace variational methods
with neural networks as the numerical tool used to solve
computational physics problems.

In contrast, some of the biggest breakthroughs and
substantial applications of neural networks to perform
challenging tasks with the accuracy needed for industry use
have used existing, mathematically formal methods guided by
the intuitive predictive capability of neural networks to
achieve speedup and even improve accuracy [8]-[9]. We
believe this is critical to the application of machine learning in
most engineering contexts. We have found no existing
research that has coupled neural networks with variational
methods in a broadly-applicable, robust way. The closest we
have found is the use of neural networks to predict bulk
material parameters for faster multi-scale FEM simulations in
structural mechanics [10]-[15]. We consider this excellent
work and in line with the philosophy of using neural networks
to guide more-rigorous methods, but unfortunately the method
described is specific to structural mechanics problems.

Predicting basis functions directly, rather than trying to
predict solutions or derived quantities, we exploit the crucial
strength of neural networks: the ability to efficiently and
accurately learn low-dimensional representations  of
complicated, high-dimensional datasets to understand
underlying correlations. In the context of variational methods
for CSE, this means learning not only the fundamental
physical behavior of problems, but also larger emergent trends
that define the aggregate behavior of a physical structure
under simulation. By using predicted bases to rigorously solve
a given problem, we maintain the key strengths of variational
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methods: rigorous bounding of solution error, accurate error
estimation, and well-substantiated methods to improve
solution accuracy when solution error is found to be excessive
for the given application. These benefits are crucial for any
numerical method applied in an engineering context.
Meanwhile, the proposed method avoids the downsides
traditionally associated with empirical, data-driven predictors
like neural networks, namely their black box nature and
unpredictability when subject to inputs dissimilar to those
used for training.

II. THEORY

We consider in general a discretized linear (or linearized)
differential or integral equation-based problem with solution
S, set of basis functions F, and linear system of form [A]x =
b, where f; € F and x; denote the i™ basis function and
associated solution weight, respectively. This system may be
Galerkin-weighted but we do not impose this. The weak
solution to the problem with N basis functions in this notation
is given by

G =

i€[1.N]

*ifi = S (1)

Construction and solution of the linear system for large
problems is computationally time consuming and memory-
intensive. With N basis functions, solution of the system has
time complexity O(N?) for iterative methods or O(N?) for
direct methods [16]. Meanwhile, construction of the system,
typically dominated by performing the necessary integrations,
has complexity O(N?) for boundary integral methods due to
global coupling of the basis functions and O(N) for finite
element and finite difference methods due to local coupling.

Convolutional neural networks (CNNs) have seen an
explosion in popularity in recent years due to advances in
parallel computing power and network architecture that have,
together, enabled applicability of CNNs to a broad range of
complicated tasks from playing board games [8] to classifying
images with record accuracy [17]. For an excellent overview
of the theory and concept of modern CNN architectures, see
[18]. CNNs take advantage of spatial correlation in data to
efficiently learn complicated wunderlying trends more
effectively than classical fully-connected neural networks. If
our data have d discrete spatial dimensions, input to a CNN is
an array with d + 1 dimensions; the extra dimension of the
array corresponding to the number of input channels, c. We
denote by n;,i € [1..d] the size of the input array in the /"
spatial dimension. The total number of scalar inputs to a CNN
is then

Ninputs =cCx* 1_[ n; @)
iel1.dl

The time complexity of evaluating a CNN is O(Nippyts), @
substantial improvement over the O(N7,,,.s) complexity of
evaluating a fully connected neural network, assuming a
typical case where the fully connected network has a similar

number of neurons in a hidden layer as the number of inputs
[19].
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Table I. Asymptotic speedup using CNNs for various cases.

Solver MoM FEM

Direct Solver z
speedup « vz speedup « >

Iterative Solver 1 N
speedup < ﬁ speedup « ?

We propose to use a deep convolutional neural network to
predict the solution weights, x, to complicated FEM, MoM,
and FD problems given only the solution to a computationally-
inexpensive analogue of the problem solved on a reduced
basis. Most simply, the reduced basis, F, would constitute a
small subset of the complete basis, F. A reduced basis is easy
to conceive of for FEM and MoM, especially using higher-
order bases. We can simply reduce the number of polynomial
basis functions allocated to each element. A reduced basis is
less obvious at first for FD, since we typically do not consider
the concept of basis functions when working with finite
difference techniques, but rather sample points. However, we
can consider the sample points used in FD as a weighting of
Dirac-delta basis functions centered on the spatial locations of
the sample points. In this sense, FD is a special case of FEM
given a particular choice of basis and a particular quadrature
rule. From this perspective, a reduced basis is easy to conceive
of: a coarser grid, the sample points of which are a subset of
the original grid.

If a CNN can predict x from X, the solution to the problem
discretized using basis F containing N = yN,y € (0,1] basis
functions, then the achieved speedup of solving for x is
asymptotically proportional to expressions given in Table I.

A difficulty with CNNs and applicability of their results for
certain tasks is their black box nature. A trained CNN is a
purely empirical model, typically with little theoretical
underpinning nor theoretical guarantee on the accuracy of its
output. To counteract this to quickly obtain accurate FEM,
FD, and MoM solutions, we propose to use x predicted by the
network not as the final solution, but rather to generate a set of
macro basis functions that can be used to re-solve the problem
at comparable accuracy to the approximation using F, but
instead using a substantially smaller number of basis
functions. We define a macro basis function in general as a
linear combination of basis functions from F

aifi (3)

i€e[1.N]

fmacro =

where a coefficients are specific to a particular macro basis
function. We denote the set of macro basis functions F,;c0-
By this approach, we can guarantee that the solution
obtained using the CNN’s prediction exactly and rigorously
solves a weak formulation of the problem. We also guarantee
that the solution satisfies the boundary conditions of the
problem by careful choice of the original basis function in F
and careful definition of the macro basis functions. We denote
by Fpoundary € F the set of basis functions in the original
basis that are nonzero wherever a boundary condition is
imposed in the original problem. We also denote by
Fremainder = F — Fpoundary the remaining basis functions in
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the original basis. We then place the additional constraint on
any macro basis function that it contains no contribution from
basis functions in Fpoynaary

Z aifi,

Imacro (4)
Imacro = {i S [1--N]| fL & Fboundary}

fmacro =

We then solve the problem with the modified basis F =
Fpoundary Y Fnacro- The macro basis function approach
scales as before but with specification that y = |F|/|F| where
vertical brackets denote set cardinality.

III. NUMERICAL RESULTS AND DISCUSSION

We demonstrate here the usefulness of the proposed macro
basis function approach for FEM. We randomly generated a
dataset of 1000 lossy dielectric slab scattering FEM problems
as in [20]. Both slab location and slab material parameters
were varied and randomly sampled from a uniform
distribution, with slab location varied over 3 wavelengths, slab
real relative permittivity varied between 1 and 10, and slab
imaginary relative permittivity varied between 0j and -5j. The
domain was PML-truncated. F for this test was a set of 6"-
order polynomial basis functions as defined in [16]. F
comprised only the linear subset of F, giving y = 0.33. A
simple feedforward CNN was trained on all 1000 examples to
predict x from X. We used a simple four-layer CNN with 3x1
filters and 64 filters per layer. Convolution was performed
only in the spatial dimension of the data, with basis functions
of different orders encoded as different input or output
channels. Niypy s for this network was 27, and the network
had 162 outputs. For each element, a single macro basis
function was constructed as a linear combination of higher-
order basis functions with a coefficients equal to predicted
complex solution weights in x. To validate, 1000 new
problems were generated from the same distribution. For each,
the problem was solved using F predicted by the network. Fig.
1 compares the solution obtained using F to the solution using
F and to a 2"-order solution for a typical example. Note that
the 2™-order basis and F have the same number of basis
functions.

We see poor agreement between the 2"-order solution and
the 6"-order solution. Meanwhile, despite yielding the same
linear system size and structure as the 2™'-order solution, the
solution using F agrees well with the full 6™-order solution.
To further demonstrate the strength of the proposed macro
basis function approach, we used the raw output of the neural
network (a prediction of the solution weights) to plot a “naive”
predicted solution without re-solving the system. This serves
as a benchmark for the somewhat common approach in
existing literature to predict a solution directly. Fig. 2
compares this solution with the actual solution and the
predicted solution using the proposed method.

Although the naive predicted solution agrees with the actual
solution somewhat better than the 2"-order solution, we see
various inaccuracies in the network’s prediction manifest
themselves directly in the form of amplitude errors (for
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Fig. 1. Scattered field (z-directed) solution comparison between weak solution
obtained using predicted macro basis functions, actual solution, and 2" order
weak solution: (a) real component and (b) imaginary component. Predicted
solution using the proposed macro basis function approach agrees almost
perfectly with the actual solution, despite using only 14% as many basis
functions. The 2™-order solution shown uses the same number of basis
functions as the predicted solution but does not agree with the actual solution.
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instance in the imaginary plot around 2.5 meters) and even
substantial errors in solution behavior (around 1.3 meters in
the imaginary plot). Because we have taken the solution
predicted directly by the neural network at face value as the
naive predicted solution, these errors go uncorrected.
Meanwhile, our proposed macro basis function approach
compensates for inaccuracies and misconceptions of the
network to produce a substantially more accurate solution with
the same number of basis functions as the 2"-order solution.
Fig. 3 shows the root mean square (RMS) error with respect
to the 6™-order solution for all 1000 validation problems. The
validation problem from Figs. 1 and 2 was chosen to fall at the
peak of the real predicted RMS error histogram, i.e., an
example with typical error. The error at the peak of the
histograms for the solutions obtained using the predicted
macro basis functions is approximately an order of magnitude
less than that for the 2™ order solutions. The proposed method
also dominates the naive predictive approach. In no case does
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Fig. 2. Scattered field (z-directed) solution comparison between weak solution
obtained using predicted macro basis functions, actual solution, and naive
predicted solution: (a) real component and (b) imaginary component. Naive
predicted solution is obtained by plotting the solution directly predicted by the
network without the macro-basis function approach.

the naive approach have error equal to or lower than the peak
of the distribution for the proposed method. This demonstrates
the potential of the proposed predicted macro basis function
approach over both neural network predicted solutions and
variational method solutions in isolation.

We also present a direct computation time comparison
between the 2™-order, 6™-order, naive, and proposed macro
basis function methods. Table II gives the time taken by our
implementation of each method to solve 1000 randomly
generated validation problems. Note that direct time
comparisons are highly implementation-dependent, so,
although we believe our implementations are efficient, we
present Table II with that in mind.

IV. CONCLUSION

This letter has introduced a robust data-enabled machine
learning approach to accelerate CEM and CSE variational
methods like FEM, MoM, and FD techniques. Predicting
macro basis functions by which a weak formulation can be
solved rigorously, the described approach substantially
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Fig. 3. Real (a) and imaginary (b) RMS error histograms for all 1000
validation problems. Predicted case is for the proposed macro basis function
approach. Naive case gives the error of the solutions directly predicted with
the network using no macro basis function approach (the typical, existing
approach). 2™-order case serves as a comparison to the proposed approach.
The 2™-order case and predicted case use the same number of basis functions,
but the proposed method yields error an order of magnitude lower.

Table I1. Direct time comparisons for 1000 random problems.

Method 2" Order | 6™ Order | Naive Proposed
Method | Method
Time (ms) | 41.94 439.7 110.9 152.1

reduces the number of unknowns required to solve a given
problem, offering an asymptotic speedup over pure FEM,
MoM, or FD solutions while maintaining the rigorousness,
accuracy, and broad applicability of these methods. The
described method has been demonstrated on a class of FEM
problems and rigorously validated on a set of 1000 unseen
validation problems. Compared to the naive approach of
predicting the solution directly, our method obtains
substantially higher accuracy, its solution typically almost
indistinguishable from the true solution. Our method also
obtains far higher accuracy than a typical (no predicted macro
basis) solution with an equal number of unknowns.
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