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 
Abstract—In this letter, we propose and demonstrate a data-

driven machine learning-based approach to accelerate the finite 
element method, method of moments, finite difference method, 
and related variational methods while maintaining the attractive 
properties that have allowed such methods to dominate 
computational science and engineering fields like computational 
electromagnetics. We use a neural network to predict a set of 
macro basis functions for a given problem, using only the 
solution to an extremely coarse description of the problem as 
input. We then solve the problem using the predicted macro 
basis. Unlike some existing methods, ours does not rely on direct 
prediction of the solution. We show that our macro basis function 
approach corrects errors in the raw prediction of the network, 
achieving a far more accurate solution. Results are presented for 
a class of finite element scattering problems, with error statistics 
presented from 1000 validation examples and compared to 
standard and naïve approaches. These results suggest the 
described macro basis function approach is superior to machine 
learning approaches that directly predict the solution. Meanwhile 
our method achieves comparable accuracy to the full solution 
while requiring only a fraction of the degrees of freedom. 
 

Index Terms—finite element method, method of moments, 
machine learning, neural networks, macro basis functions, 
variational methods, computational electromagnetics. 

I. INTRODUCTION 
ARIATIONAL techniques like finite element method 
(FEM), method of moments (MoM), and finite difference 
(FD) method are dominant for solving numerical physics 

problems in computational electromagnetics (CEM) and 
computational science/engineering (CSE) due to their 
flexibility, robustness, and rigorous mathematical 
underpinnings. The principal shortcoming of these methods is 
their poor scaling and high computational cost. We introduce a 
broadly applicable method by which neural networks can be 
applied to speed up variational methods without sacrificing 
their desirable characteristics. Rather than predicting solutions 
to these problems directly, we use neural networks to guess a 
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highly simplified basis on which to solve the problem 
rigorously using existing techniques. 

Previous work seeking to use neural networks to make 
predictions about the solutions to computational physics or 
CSE problems has capitalized on the strong predictive power 
of well-trained neural networks but has not addressed the 
shortcomings of using such an inherently empirical approach 
for real-world engineering problems. This has limited the real-
world usefulness of such results. Most previous work has 
focused on predicting quantities derived from a numerical 
solution given a description of the physical problem, typically 
material parameters in the computational domain and 
excitations for the problem [1]–[5]. There has been occasional 
work that uses a neural network to predict the solution itself, 
rather than a derived quantity [6]–[7]. In this way, such 
research has sought to effectively replace variational methods 
with neural networks as the numerical tool used to solve 
computational physics problems.  

In contrast, some of the biggest breakthroughs and 
substantial applications of neural networks to perform 
challenging tasks with the accuracy needed for industry use 
have used existing, mathematically formal methods guided by 
the intuitive predictive capability of neural networks to 
achieve speedup and even improve accuracy [8]–[9]. We 
believe this is critical to the application of machine learning in 
most engineering contexts. We have found no existing 
research that has coupled neural networks with variational 
methods in a broadly-applicable, robust way. The closest we 
have found is the use of neural networks to predict bulk 
material parameters for faster multi-scale FEM simulations in 
structural mechanics [10]–[15]. We consider this excellent 
work and in line with the philosophy of using neural networks 
to guide more-rigorous methods, but unfortunately the method 
described is specific to structural mechanics problems.  

Predicting basis functions directly, rather than trying to 
predict solutions or derived quantities, we exploit the crucial 
strength of neural networks: the ability to efficiently and 
accurately learn low-dimensional representations of 
complicated, high-dimensional datasets to understand 
underlying correlations. In the context of variational methods 
for CSE, this means learning not only the fundamental 
physical behavior of problems, but also larger emergent trends 
that define the aggregate behavior of a physical structure 
under simulation. By using predicted bases to rigorously solve 
a given problem, we maintain the key strengths of variational 
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methods: rigorous bounding of solution error, accurate error 
estimation, and well-substantiated methods to improve 
solution accuracy when solution error is found to be excessive 
for the given application. These benefits are crucial for any 
numerical method applied in an engineering context. 
Meanwhile, the proposed method avoids the downsides 
traditionally associated with empirical, data-driven predictors 
like neural networks, namely their black box nature and 
unpredictability when subject to inputs dissimilar to those 
used for training.  

II. THEORY 
We consider in general a discretized linear (or linearized) 

differential or integral equation-based problem with solution 
𝑆, set of basis functions 𝐹, and linear system of form [𝐴]𝑥 =
𝑏, where 𝑓𝑖 ∈ 𝐹 and 𝑥𝑖 denote the ith basis function and 
associated solution weight, respectively. This system may be 
Galerkin-weighted but we do not impose this. The weak 
solution to the problem with 𝑁 basis functions in this notation 
is given by 
 

𝑆̃ = ∑ 𝑥𝑖𝑓𝑖

𝑖∈[1..𝑁]

≈ 𝑆 

 
 

 
(1) 

 
Construction and solution of the linear system for large 

problems is computationally time consuming and memory-
intensive. With 𝑁 basis functions, solution of the system has 
time complexity 𝑂(𝑁2) for iterative methods or 𝑂(𝑁3) for 
direct methods [16]. Meanwhile, construction of the system, 
typically dominated by performing the necessary integrations, 
has complexity 𝑂(𝑁2) for boundary integral methods due to 
global coupling of the basis functions and 𝑂(𝑁) for finite 
element and finite difference methods due to local coupling.  

Convolutional neural networks (CNNs) have seen an 
explosion in popularity in recent years due to advances in 
parallel computing power and network architecture that have, 
together, enabled applicability of CNNs to a broad range of 
complicated tasks from playing board games [8] to classifying 
images with record accuracy [17]. For an excellent overview 
of the theory and concept of modern CNN architectures, see 
[18]. CNNs take advantage of spatial correlation in data to 
efficiently learn complicated underlying trends more 
effectively than classical fully-connected neural networks. If 
our data have 𝑑 discrete spatial dimensions, input to a CNN is 
an array with 𝑑 + 1 dimensions; the extra dimension of the 
array corresponding to the number of input channels, 𝑐. We 
denote by 𝑛𝑖 , 𝑖 ∈  [1. . 𝑑] the size of the input array in the ith 
spatial dimension. The total number of scalar inputs to a CNN 
is then 
 

𝑁𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑐 ∗ ∏ 𝑛𝑖

 𝑖 ∈ [1..𝑑] 

 

 
 

(2) 

 
The time complexity of evaluating a CNN is 𝑂(𝑁𝑖𝑛𝑝𝑢𝑡𝑠

 ), a 
substantial improvement over the 𝑂(𝑁𝑖𝑛𝑝𝑢𝑡𝑠

2 ) complexity of 
evaluating a fully connected neural network, assuming a 
typical case where the fully connected network has a similar 
number of neurons in a hidden layer as the number of inputs 
[19].  

Table I. Asymptotic speedup using CNNs for various cases.  
Solver MoM FEM 
Direct Solver 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∝
𝑁

𝛾2
 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∝

𝑁2

𝛾
 

Iterative Solver 
𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∝

1

𝛾2
 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∝

𝑁

𝛾
 

 
We propose to use a deep convolutional neural network to 

predict the solution weights, 𝑥, to complicated FEM, MoM, 
and FD problems given only the solution to a computationally-
inexpensive analogue of the problem solved on a reduced 
basis. Most simply, the reduced basis, 𝐹̌, would constitute a 
small subset of the complete basis, 𝐹.  A reduced basis is easy 
to conceive of for FEM and MoM, especially using higher-
order bases. We can simply reduce the number of polynomial 
basis functions allocated to each element. A reduced basis is 
less obvious at first for FD, since we typically do not consider 
the concept of basis functions when working with finite 
difference techniques, but rather sample points. However, we 
can consider the sample points used in FD as a weighting of 
Dirac-delta basis functions centered on the spatial locations of 
the sample points. In this sense, FD is a special case of FEM 
given a particular choice of basis and a particular quadrature 
rule. From this perspective, a reduced basis is easy to conceive 
of: a coarser grid, the sample points of which are a subset of 
the original grid. 

If a CNN can predict 𝑥 from 𝑥̌, the solution to the problem 
discretized using basis 𝐹̌ containing 𝑁̌ = 𝛾𝑁, 𝛾 ∈ (0,1] basis 
functions, then the achieved speedup of solving for 𝑥 is 
asymptotically proportional to expressions given in Table I. 

A difficulty with CNNs and applicability of their results for 
certain tasks is their black box nature. A trained CNN is a 
purely empirical model, typically with little theoretical 
underpinning nor theoretical guarantee on the accuracy of its 
output. To counteract this to quickly obtain accurate FEM, 
FD, and MoM solutions, we propose to use 𝑥 predicted by the 
network not as the final solution, but rather to generate a set of 
macro basis functions that can be used to re-solve the problem 
at comparable accuracy to the approximation using 𝐹, but 
instead using a substantially smaller number of basis 
functions. We define a macro basis function in general as a 
linear combination of basis functions from 𝐹 
 
𝑓𝑚𝑎𝑐𝑟𝑜 =  ∑ 𝛼𝑖𝑓𝑖

𝑖∈[1..𝑁]

 

 
 

 
(3) 

 
where 𝛼 coefficients are specific to a particular macro basis 
function. We denote the set of macro basis functions 𝐹𝑚𝑎𝑐𝑟𝑜. 
 By this approach, we can guarantee that the solution 
obtained using the CNN’s prediction exactly and rigorously 
solves a weak formulation of the problem. We also guarantee 
that the solution satisfies the boundary conditions of the 
problem by careful choice of the original basis function in 𝐹 
and careful definition of the macro basis functions. We denote 
by 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  ⊂ 𝐹 the set of basis functions in the original 
basis that are nonzero wherever a boundary condition is 
imposed in the original problem. We also denote by 
𝐹𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝐹 − 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 the remaining basis functions in 
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the original basis. We then place the additional constraint on 
any macro basis function that it contains no contribution from 
basis functions in 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 
 
𝑓𝑚𝑎𝑐𝑟𝑜 =  ∑ 𝛼𝑖𝑓𝑖

𝐼𝑚𝑎𝑐𝑟𝑜

, 

 𝐼𝑚𝑎𝑐𝑟𝑜 = {𝑖 ∈ [1. . 𝑁]| 𝑓𝑖 ∉ 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦} 
 

 
(4) 

 
We then solve the problem with the modified basis 𝐹̅ =
 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∪ 𝐹𝑚𝑎𝑐𝑟𝑜. The macro basis function approach 
scales as before but with specification that 𝛾 = |𝐹̅| |𝐹|⁄  where 
vertical brackets denote set cardinality.  

III. NUMERICAL RESULTS AND DISCUSSION 
We demonstrate here the usefulness of the proposed macro 

basis function approach for FEM. We randomly generated a 
dataset of 1000 lossy dielectric slab scattering FEM problems 
as in [20]. Both slab location and slab material parameters 
were varied and randomly sampled from a uniform 
distribution, with slab location varied over 3 wavelengths, slab 
real relative permittivity varied between 1 and 10, and slab 
imaginary relative permittivity varied between 0j and -5j. The 
domain was PML-truncated. 𝐹 for this test was a set of 6th-
order polynomial basis functions as defined in [16]. 𝐹̌ 
comprised only the linear subset of 𝐹, giving 𝛾 = 0.33. A 
simple feedforward CNN was trained on all 1000 examples to 
predict 𝑥 from 𝑥̌. We used a simple four-layer CNN with 3×1 
filters and 64 filters per layer. Convolution was performed 
only in the spatial dimension of the data, with basis functions 
of different orders encoded as different input or output 
channels.  𝑁𝑖𝑛𝑝𝑢𝑡𝑠

  for this network was 27, and the network 
had 162 outputs. For each element, a single macro basis 
function was constructed as a linear combination of higher-
order basis functions with 𝛼 coefficients equal to predicted 
complex solution weights in 𝑥. To validate, 1000 new 
problems were generated from the same distribution. For each, 
the problem was solved using 𝐹̅ predicted by the network. Fig. 
1 compares the solution obtained using 𝐹̅ to the solution using 
𝐹 and to a 2nd-order solution for a typical example. Note that 
the 2nd-order basis and 𝐹̅ have the same number of basis 
functions. 

We see poor agreement between the 2nd-order solution and 
the 6th-order solution. Meanwhile, despite yielding the same 
linear system size and structure as the 2nd-order solution, the 
solution using 𝐹̅ agrees well with the full 6th-order solution. 
To further demonstrate the strength of the proposed macro 
basis function approach, we used the raw output of the neural 
network (a prediction of the solution weights) to plot a “naïve” 
predicted solution without re-solving the system. This serves 
as a benchmark for the somewhat common approach in 
existing literature to predict a solution directly. Fig. 2 
compares this solution with the actual solution and the 
predicted solution using the proposed method.  

Although the naïve predicted solution agrees with the actual 
solution somewhat better than the 2nd-order solution, we see 
various inaccuracies in the network’s prediction manifest 
themselves directly in the form of amplitude errors (for 
 

 
(a) 

 
(b) 

Fig. 1. Scattered field (z-directed) solution comparison between weak solution 
obtained using predicted macro basis functions, actual solution, and 2nd order 
weak solution: (a) real component and (b) imaginary component. Predicted 
solution using the proposed macro basis function approach agrees almost 
perfectly with the actual solution, despite using only 14% as many basis 
functions. The 2nd-order solution shown uses the same number of basis 
functions as the predicted solution but does not agree with the actual solution. 

 
instance in the imaginary plot around 2.5 meters) and even 
substantial errors in solution behavior (around 1.3 meters in 
the imaginary plot). Because we have taken the solution 
predicted directly by the neural network at face value as the 
naïve predicted solution, these errors go uncorrected. 
Meanwhile, our proposed macro basis function approach 
compensates for inaccuracies and misconceptions of the 
network to produce a substantially more accurate solution with 
the same number of basis functions as the 2nd-order solution. 

Fig. 3 shows the root mean square (RMS) error with respect 
to the 6th-order solution for all 1000 validation problems. The 
validation problem from Figs. 1 and 2 was chosen to fall at the 
peak of the real predicted RMS error histogram, i.e., an 
example with typical error. The error at the peak of the 
histograms for the solutions obtained using the predicted 
macro basis functions is approximately an order of magnitude 
less than that for the 2nd order solutions. The proposed method 
also dominates the naïve predictive approach. In no case does 
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(a) 

 
(b) 

Fig. 2. Scattered field (z-directed) solution comparison between weak solution 
obtained using predicted macro basis functions, actual solution, and naïve 
predicted solution: (a) real component and (b) imaginary component. Naïve 
predicted solution is obtained by plotting the solution directly predicted by the 
network without the macro-basis function approach. 
 
the naïve approach have error equal to or lower than the peak 
of the distribution for the proposed method. This demonstrates 
the potential of the proposed predicted macro basis function 
approach over both neural network predicted solutions and 
variational method solutions in isolation. 

We also present a direct computation time comparison 
between the 2nd-order, 6th-order, naïve, and proposed macro 
basis function methods. Table II gives the time taken by our 
implementation of each method to solve 1000 randomly 
generated validation problems. Note that direct time 
comparisons are highly implementation-dependent, so, 
although we believe our implementations are efficient, we 
present Table II with that in mind. 

IV. CONCLUSION 
This letter has introduced a robust data-enabled machine 

learning approach to accelerate CEM and CSE variational 
methods like FEM, MoM, and FD techniques. Predicting 
macro basis functions by which a weak formulation can be 
solved rigorously, the described approach substantially 

  
  

 
(a) 

 
(b) 

Fig. 3. Real (a) and imaginary (b) RMS error histograms for all 1000 
validation problems. Predicted case is for the proposed macro basis function 
approach. Naïve case gives the error of the solutions directly predicted with 
the network using no macro basis function approach (the typical, existing 
approach). 2nd-order case serves as a comparison to the proposed approach. 
The 2nd-order case and predicted case use the same number of basis functions, 
but the proposed method yields error an order of magnitude lower. 
 
Table II. Direct time comparisons for 1000 random problems. 
Method 2nd Order 6th Order Naïve 

Method 
Proposed 
Method 

Time (ms) 41.94 439.7 110.9 152.1 
 

 
reduces the number of unknowns required to solve a given 
problem, offering an asymptotic speedup over pure FEM, 
MoM, or FD solutions while maintaining the rigorousness, 
accuracy, and broad applicability of these methods. The 
described method has been demonstrated on a class of FEM 
problems and rigorously validated on a set of 1000 unseen 
validation problems. Compared to the naïve approach of 
predicting the solution directly, our method obtains 
substantially higher accuracy, its solution typically almost 
indistinguishable from the true solution. Our method also 
obtains far higher accuracy than a typical (no predicted macro 
basis) solution with an equal number of unknowns.  
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