
1949-3053 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2020.3008364, IEEE
Transactions on Smart Grid

1

Wide-area Measurement System-based Low
Frequency Oscillation Damping Control through

Reinforcement Learning
Yousuf Hashmy, Student Member, IEEE, Zhe Yu, Member, IEEE, Di Shi, Senior Member, IEEE,

and Yang Weng, Member, IEEE

Abstract—Ensuring the stability of power systems is gain-
ing more attention today than ever before due to the rapid
growth of uncertainties in load and increased renewable energy
penetration. Lately, wide-area measurement system (WAMS)-
based centralized controlling techniques are offering flexibility
and more robust control to keep the system stable. WAMS-
based controlling techniques, however, face pressing challenges
of irregular delays in long-distance communication channels and
subsequent responses of equipment to control actions. This paper
presents an innovative control strategy for damping down low-
frequency oscillations in transmission systems. The method uses
a reinforcement learning technique to overcome the challenges
of communication delays and other non-linearity in wide-area
damping control. It models the traditional problem of oscillation
damping control as a novel faster exploration-based deep deter-
ministic policy gradient (DDPG-S). An effective reward function
is designed to capture necessary features of oscillations enabling
timely damping of such oscillations, even under various kinds of
uncertainties. A detailed analysis and a systematically designed
numerical validation are presented to prove feasibility, scalability,
interpretability, and comparative performance of the modelled
low-frequency oscillation damping controller. The benefit of the
technique is that stability is ensured even when uncertainties of
load and generation are on the rise.

Index Terms—Wide-area networks, low frequency oscillations,
damping control, reinforcement learning.

I. INTRODUCTION

An important concern related to small signal stability is
the inter-area oscillations involving various generator groups
swinging around each other [1]. Such an effect adversely
impacts the economical and reliable operation of an inter-
connected large-scale power system because the maximum
available transfer capability (ATC) is known to be limited [1]–
[3]. To alleviate this problem, power engineers use traditional
power system stabilizers (PSSs) to try to damp down such os-
cillations. These inter-area modes, however, are neither always
controllable nor observable from local measurement signals
[4]. With the development of wide-area measurement systems
(WAMS) and practical implementation of phasor measurement
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units (PMUs), a natural progression to use wide-area damping
controller (WADC) through long-distance signal transmission
is gaining traction [5]–[7].

Specifically, [8] provides a detailed account for the real-time
testing mechanism for POD (phasor-based oscillation damping
[9]) algorithm for WADC using OPAL-RT’s eMegasim. In
[10], we are provided an account of the proposed centralized
non-linear controller without considering latency in communi-
cation. The work in [11] takes the latency into consideration
using a mixed H2

H∞
synthesis technique for the design of

WADC. Special properties of swing modes derived analytically
from a simplified system model are utilized for the control
strategy elaborated in [12]. In [13], the authors attempt to
address the compensation of delay, as well as the packet
dropout issue so a new WADC is proposed. For an overview of
WADCs and their operations through different communication
channels, we can refer to [14]–[17].

Stochastic WADCs represent another approach to overcome
uncertainties. To capture delay uncertainties stochastic control
method is adopted by [18], with an unfairly long stochastic
delay assumption. To overcome that assumption, [19] uses the
expectation modelling of time delays for shorter stochastic
time delays. [15] employs a network predictive control scheme
for estimating the time delays, which is an extension of [16]
as it assumes a low-order model for a more complex power
system through least-squares-based identification algorithm.
Here, the timing delays are predominantly dependent on the
multiple factors, including the power system, as well as those
that are not dependent on the system such as difference in
communication channels. In [16] timing delay uncertainties
are considered in low-frequency oscillation damping control
signals, but this assumes the delays as part of system un-
certainties and embeds the compensation in the controller.
Whereas, the performance of methods in [20] and [16] are
highly sensitive to the system operating conditions, that greatly
threatens the reliability of such a scheme. In addition to the
delay uncertainties, renewable energy sources and variations
also add stochasticity to the system [21]–[23].

In [24], we are introduced to a variable loop gain controller
based on the excessive regeneration for system stability, lim-
iting the delay range up to 250 ms. An approach to identify a
low-order transfer function model of a power system using
a multi-input multi-output (MIMO) autoregressive moving
average exogenous (ARMAX) model is presented in [25]. The
use of static VAR compensator (SVC) for damping control are
explained in [26]–[28] under different operating conditions and
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TABLE I
DELAYS DUE TO DIFFERENT COMMUNICATION LINKS [17].

Communication Link One way delay (ms)
Fiber-optic cables ≈ 100-150
Microwave links ≈ 100-150

Power line carrier (PLC) ≈ 150-350
Telephone lines ≈ 200-300

Satellite link ≈ 500-700

renewable energy sources.
A large-scale power system is a complex, non-linear, and

high-order dynamic system, which makes it difficult to obtain
the full-scale and detailed model and system parameters. To
overcome such issues, the genetic algorithms are implemented
to damp down the LFOs [29]. However, this adds to the com-
plexity and unreliability in seeking out global optima without
extensive guarantees. Deep supervised learning for WADC
is suggested in [30]. Supervised learning methods merely
exploit the value of data but do not explore the system, thus
lacking adaptability to the previously unknown randomness
and transforming nature of the system. Exploration is the key
concept in reinforcement learning. Q-learning is proposed to
overcome the randomness in the delays for WADC as in [31].
However, Q-learning will most likely be useless when the state
space is very large. Larger state spaces are well handled by
implementing the gradient directly on the continuous action
space.

We propose a controlling agent that can provide a stochastic
control using wide-area measurements, so that we can ensure
extended observability and flexibility to achieve centralized
control. Here, we consider various channels of communication
with stochastic delays. Such time delays can be represented
by some mixed Gaussain distributions, as shown in Fig. 1.
The delay value at any time instant can be anything within
the ranges mentioned in Table I for which the probability is
non-zero; however, its exact value is highly uncertain. The
controller aims to explore the wide-area system and adopts
a continuous action to effectively damp the LFOs under
different communication delays. This method is similar to deep
deterministic policy gradient (DDPG) as in [32]. However,
a direct implementation of the method on a large WAMS
will take too much time to learn under system uncertain-
ties. Therefore, we provide the solution based on a prior
distribution of different time sequences of complete action
space to effectively reduce the training computations. We call
this implementation DDPG-S. Table II depicts the comparison
among different reinforcement learning techniques.

We designed an extensive numerical validation of the
proposed technique and tested our learning method on the
Kundur’s 4-generator system and 10-generator New England
system. The performance of the WADC is assessed under
different communication delay probability distributions, as
shown in Figure 1, and renewable energy penetration to
establish the effectiveness of the proposed DDPG-S controller.
The impact of different types of faults and locations of the
faults are also studied in detail. Furthermore, we present the
reduced number of episodes required for effective learning
under different communication delays of DDPG-S.

Fig. 1. Probability distributions P (td) of delays in different communication
links, assuming they are mixed Gaussian distributions.

The rest of this paper is organized as follows. Section II
gives modelling and problem definition. Section III entails the
control scheme. Section IV gives numerical validation of the
proposed methodology and section V concludes the paper.

TABLE II
COMPARISON OF FOUR REINFORCEMENT LEARNING APPROACHES.

Item World
model [33]

Q-
learning

[34]

DDPG
[32]

DDPG-
S

Model-based (MB)
or model-free (MF)? MB MF MF MF

Need system model
and parameters? Yes No No No

Value function
approximation? No Yes No No

Action Space Cont./ Discrete Cont. Cont.
Discrete Reduced

Note: Here Cont. stands for continuous.

II. MODELLING

The WAMS-based system provides the ingredients for build-
ing up efficient controllers. Phasor measurement units (PMUs)
are gaining wide popularity in the transmission systems. The
PMUs located at the generator buses detect the voltage and
current phasors and estimate the rotor speeds [35]. Here, we
assume that each generator-bus is equipped with a PMU so
that its phase angle and speed of the generator are available
to the controller, with possible delays. Define the state st for
all observable generators g = 1, · · · , G to be controlled. The
deviations in generator speeds are ωtg and the phase angles are
θbt between the voltages of the buses b = 1, · · · , B at remote
locations for time t = 1, · · · , T . As the speeds of generators
vary upon the occurrence of the disturbance, we use those
deviations of the speeds ∆ωtg = |ωtg − ωt−1g | to define the
state.

st1 = {∆ωt1,∆ωt2,∆ωt3, · · · ,∆ωtG},
st2 = {θt1, θt2, θt3, · · · , θtB},
st = st1 ∪ st2.

(1)
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Fig. 2. Framework of the overall scheme. In the above diagram, the dotted
lines indicate the communication lines with delays. The inputs to the controller
are the states and reward, whereas the output is the action.

The modern-day PSS is responsible for damping down LFOs
by adjusting the voltage applied at the field windings Vg of
all the synchronous generators g. As a result, the output of
the controller will essentially be an action vector at for all
the generators g at time t. The action vector at, defined in
equation (2), is a stabilizing voltage parameter that alters the
field voltage of synchronous generators.

at = {V t1 , V t2 , V t3 , · · · , V tG}. (2)
States and actions enable us to completely define the problem.

A. Problem Definition

Problem: Damp down low-frequency inter-area oscillations
by adjusting field voltages of generators.

Given:
• a transmission system as the environment X ,
• state of the system st in X , and communication time

delay probability distribution P (td).
To Find:
• discounted reward R(st, at),
• and a policy π comprising of action set at for stabilizing

field voltages V tg of synchronous generators.

B. Identifying Inputs/Output

With the above defined problem, the inputs and outputs for
the controller can be established with certainty. The states of
the system are obtained directly by manipulating the measure-
ments of voltages and currents of the busses obtained from
the PMUs. Moreover, the output of the controller is expected
to be a valid control action. The action is comprised of the
stabilizing field voltages.

Inputs : {st, rt}
Output : {at}.

(3)

where st is the state of the system, rt the reward function
which will be designed in the following section, and at the
control actions.

Fig. 2 gives a complete account of the mechanism, along
with the inputs and outputs for the model. The PMUs con-
nected to the remote buses send data (voltage and current
phasors) to the phasor data concentrator (PDC), over different

Fig. 3. Zoomed-in illustration of DDPG-S-proposed algorithm. The dotted
lines are representative of the inputs and output of the controller.

communication channels. This data helps in determining state
and reward at every time step. Fig. 3 shows the zoomed-in
structure of the controller, based on DDPG-S. Furthermore,
we design a controller that can produce a high fidelity control
action when the states and rewards are fed as input. We aim
to design such a controller in the following sections.

III. CONTROL SCHEME

Using a model, we aim to develop a reinforcement learning-
based robust control scheme. However, this is not possible
unless we have a specialized reward design that can maximize
the potential of the power system knowledge.

A. Reward Design with Maximized Information Gain

With states, actions, and policy clearly defined, we require
an evaluation function that helps in deciding the extent of the
fidelity of generated control action. The evaluation function
is also called a reward function in the reinforcement learning
domain. We design reward that can help maximize the infor-
mation obtained from the wide-area based observations from
synchrophasors and local measurements from the generators.
Our goal is to minimize the oscillations in the frequencies of
the power system. Based on this, we propose to capture all the
features related to oscillations, such as deviation of generator
speed from 1 p.u. and abrupt changes in the generator speed
with respect to time. However, that will not be enough to
capture the effect of buses connected by long-distance lines, so
we improve the information gain by leveraging the wide-area
measurements of phase angle variation between remote buses
as well. We incorporate all this information into the reward
design. Since the learning agent requires an immensely large
action space, which will impede its performance and speed,
we further boost the information gain by incorporating the
knowledge from locally used power system stabilizers (PSSs)
for each generator g. Such information is embedded into the
reward in the form of the bounds u and v, where u is indicative
of the upper bound of the control action space. Similarly, v
represents its lower bound. Such a definition enables the model
to treat the action inside and outside the constraints separately.

The speeds of generators are perturbed upon creating the
fault in any system, and the low-frequency oscillations should
be damped down. For that reason, the reward function consists
of four terms. The first terms help to bring the speed ωtg
as close to 1 pu as possible. The second terms overcome
the sustaining deviations in the speeds of the generators.

Authorized licensed use limited to: ASU Library. Downloaded on September 01,2020 at 06:03:57 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2020.3008364, IEEE
Transactions on Smart Grid

4

These terms are leverage the information from conventional
local PSSs. The third terms in equations (5) and (6) refer to
the operation of localized PSS, which helps in limiting the
bounds of actions. The fourth terms incorporate the difference
between the phase angles of voltages at remote buses. The
control actions are chosen based on the oscillations between
the remote buses. We use the difference of the phase angles
of remote buses to increase the observability because angle
differences of remote buses were unobservable without wide-
area damping controller. We intend to reduce such a difference
so that deviations of speeds of generators connected to remote
buses are limited. For all the terms, we take absolute values
to capture only the absolute difference so that the highest
attainable reward is 0.

As we have established the characteristics that capture the
maximum information, we then aim to combine them. A linear
relationship among them is the most suitable since we need
to have the differences large enough whereby the learning
agent can improve by gaining a reasonably large reward.
After experiments, the reward values are too small if higher-
order terms are employed, and the learning agent will keep
oscillating instead of gaining a substantially large reward. So,
we summarize the discussion mathematically as,

r(st, at) =


r1(st, at) if at < u,

r2(st, at) if at > v,

r3(st, at) Otherwise.
(4)

r1(st, at) =

B∑
b=1

T∑
t=0

G∑
g=1

(−α|1− ωtg| − β|∆ωtg|

− η| − atg − u| − ζ|θtb − θtb+1|),

(5)

r2(st, at) =

B∑
b=1

T∑
t=0

G∑
g=1

(−α|1− ωtg| − β|∆ωtg|

− η|atg − v| − ζ|θtb − θtb+1|),

(6)

r3(st, at) =
B∑
b=1

T∑
t=0

G∑
g=1

(−α|1− ωtg| − β|∆ωtg|

− ζ|θtb − θtb+1|),

(7)

where α, β, η and ζ are the scaling factors that depend greatly
on the system. All of these parameters can be tuned by cross-
validating the performance of the agent.

We aim to use future reward values to determine the state
and action pairs resulting in a maximum expected reward. As
such, we require the rewards of the future and sum them all,
but this creates a mathematical difficulty of getting an infinite
reward. This condition may happen in the power system
control domain very frequently because there exists an infinite
number of possible states when we aim to continuously control
the generator field voltages. We avoid such a situation by using
discounted reward, which gives lower weights to the rewards
associated with the state and action pairs in the timesteps of
distant future and gives higher weights to the reward values
in the near future. Hence, we take the definition of discounted
future reward from [36] as Rt
Rt = r(st, at) + γr(st+1, at+1) + γ2r(st+2, at+2) + · · · ,

(8)

where discount factor γ ∈ [0, 1] is a hyperparameter. The
main objective of reinforcement learning is to maximize the
expected discounted future reward. Therefore, we need to have
a model with such functionality, under time and computational
limitations.

Algorithm 1: Novel DDPG-S algorithm for WADC
Agent based on [32]

1 Randomly initialize critic network Q(s, a|θQ) and
actor network µ(s|θµ) with weights θQ and θµ;

2 Initialize target network with weights θQ
′

and θµ
′
;

Initialize experience buffer D;
3 for episode=1, E do
4 Receive initial state s1;
5 Initialize a random exploration noise N ;
6 for t = 1, T do
7 Set

N ∗t =

{
Nt, t ∈ applicable time sequences
0, Otherwise

;

8 Select at according to the current policy and
exploration noise N ∗t ;

9 Execute action at and observe reward rt and
new state st+1;

10 Store transition (st, at, rt, st+1) in D;
11 Sample a random minibatch (with size N ) of

transitions (si, ai, ri, si+1) from D;
12 Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′

);
13 Update critic by minimizing the loss:

L = 1
N

∑
i(yi −Q(si, ai|θQ))2 ;

14 Update the actor policy using the sampled
policy gradient: ∇θµJ ≈
1
N

∑
i∇aQ(s, a|θQ)|s=si,a=µsi∇θµµ(s|θµ)|si ;

15 Update the targets: θQ
′ ← τθQ + (1− τ)θQ

′
,

θµ
′ ← τθµ + (1− τ)θµ

′
;

16 end
17 end

B. Learning Agent Achieving Accurate Control

State st is involved in defining state value function V (st).
However, we intend to incorporate more information. For a
learning agent, we propose to use Q(st, at) so that not only
states but also the action values are also considered while
making the optimal control decision,

Q(st, at) = E[Rt|st, at], (9)
where E[.] is the expectation function, Rt is the discounted
reward, which is already defined in equation (8).

The proposed learning agent is expected to learn the optimal
policy π taking the communication delay into account. This is
important because there can be uncertainties in the response
of generating units and communication channel delays. Such
changes become worse with the aging of the equipment.
Therefore, we use the learning agent that can learn through
interacting with the power system and eventually learns to
deliver the policy based on maximized information. Unlike a
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conventional feedback control system designed to respond in
a certain fashion based on the current state of the system, we
propose to embed the knowledge from the past and random ex-
ploration of the transmission network so that the uncertainties
due to load switching, capacitor bank switching, and DERs can
be learned effectively. Moreover, the adaptation of the learning
agent to the ever-dynamic nature of the power system is also
significant due to the dynamics of power systems.

To accomplish the goals, the discretized states and actions
will help to generate a discrete Q function, but in a real
scenario such as a power system, the number of states and
action pairs can grow rapidly with an increase in the count of
buses in the system. This may create a Q table of an infinite
number of entries. To overcome this challenge, we introduce a
function approximation method, based on neural networks to
provide a finite set of parameters that can be learned through
experience data. The data comprises of the states and actions of
the current and future states along with their respective reward
values. Then, we are in a better position to approximate the
Q function.

However, using only a single neural network might fail
because there will be a high chance of falling victim to local
minima. Therefore, as shown in Fig. 3 we choose an actor-
critic model, where a critic-network might help to suppress
the bad decisions made by an actor-network. The details of
continuous control through the actor-critic model is presented
in [32]. Our proposed model not only deals with continuous
action space, but also its fidelity for learning under complex
environments is proven in [36]. By combining expressions (9)
and (8), we obtain

Q(st, at) = E[r(st, at) + γmax
a

E[Q(st+1, at+1)]. (10)

The function approximator Q for the critic network, by
sampling states from the wide-area measurements following a
specific distribution is given in [32]. An actor-network µ(st+1)
takes only the states as input features and directly estimates
the actions. But such estimation requires critical evaluation.
So, we define the approximator yi for critic network,

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ

′
) (11)

Since both of the function approximators are characterized
as deep layers of neural networks, we parameterize them with
θQ and θµ as presented in [32]. So, the loss function for M
samples becomes,

Loss =
1

M

M∑
i=1

(yi −Q(si, ai))
2, (12)

where i = 1 · · · ,M is the number of samples in mini-batch.
The parameters of critic-network are obtained by iteratively
minimizing the above loss function [32]. The goal in rein-
forcement learning is to learn a policy that maximizes the
expected return from the start distribution J . We update the
actor-network by applying the chain rule to the expected return
from J concerning the actor parameters,

∇θµJ ≈
1

M
∇aQ(si, ai|θQ)∇θµµ(si|θµ), (13)

Fig. 4. Two-area (4-generator) system from [37] with additional renewable
energy integration.

Then, we update the target actor Q′ and target critic µ′

parameters using a periodic approach, so that after each
iteration the target actor becomes the initial actor and target
critic becomes the initial critic as proposed in [32], θQ

′
= θQ

and θµ
′

= θµ respectively.
The flow of the algorithm for damping the low-frequency

oscillations using this procedure can also be observed in Fig.
3. Algorithm 1 provides a detailed account of the working
mechanism of the proposed methodology for effective control
policy learning in a reasonable amount of time. The opti-
mal values of hyperparameters including discounting factor,
experience buffer size and minibatch size are determined by
extensive cross-validation of the model. The actions at reach
the generators after the time delays taken from the probability
distribution P (td) for each kind of communication delay. The
non-linearity is an unknown for the model to train on. A fully
trained model is capable of adjusting itself to the delays in
communication.

C. Theoretical Proof on Stability Guarantee
There has been an ongoing discussion on the stability

guarantee of a controller relying on the neural networks
and reinforcement learning. Machine learning algorithms are
dependent upon the data. Specifically, reinforcement learning
algorithms gather data by exploring the environment directly.
Hence, the environments are the key factor in establishing
the guarantee of stabilization. The larger the available data
is and the more realistic the environment is, the better is the
performance of the reinforcement learning systems.

We let a DDPG-S powered controller ρ, having states st ∈
R(G+B)×T and at ∈ RG×T . By assuming an exploration e
summed up with policy π parameterized by θQ and θµ, we
can get the specific state of the environment.

ut = π(yt|θQ, θµ) + et, (14)
where et represents the exploration that captures additive
randomization effect, yt and ut depicts the input and output
respectively. The objective of RL is to maximize expectation
of reward rt. We can simply assume the energy of et to be
bounded over time ||e||2 =

√∫
|et|22dt ≤ ∞. Since ρ deals

with implementing gradient directly on π and is a neural
network based learner, the stability criteria is expressed in
terms of L2 gain [38].

Definition 1. The L2 gain of the environment X controlled
by π is the worst-case ratio between total output energy and
total input energy:

K(X,π) = sup
s∈L2

||y||2
||u||2

, (15)
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where L2 gives all the square-summable signals. The total
energy over time is |y|2 =

√
||yt||22dt, and equation (14) gives

the state and learner relationship with exploration. Whenever
K(X,π) is finite, the interconnected system is said to have
input-output stability (or finite L2 gain) [38].

ρ{ε} = {π|εt ≤ ∂πt ≤ εt} (16)

as the controller whose policy has its partial derivative
bounded by εt ∈ R(G+B)T×GT and εt ∈ R(G+B)T×GT ,
it is desirable to provide stability certificate as long as the
RL policy remains within the above “safety set”. Specifically,
consider the linear time invariant component K:

ẋK = AxK +Bs+ v,

y = xK ,
(17)

where xK ∈ R(G+B)T is the state and output is y ∈ R(G+B)T .
Since system is assumed to be stable, A is Hurwitz.

s = e+ a,

w = π(y),

v = pt(y),

(18)

where e ∈ RG×T is the exploration, a ∈ RG×T is the policy
and pt : R(G+B)T → R(G+B)T represents the uncertainty
added into the system due to communication delays having
respective probability distributions P (td). It is assumed to
satisfy integrated quadratic constraint (IQC) and represented
by (Ψ,Mpt) [39], and Ψ has the state space of,

ψ̇ = Aψψ +Bvψv +Byψy,

z = Cψψ +Dv
ψv +Dy

ψy,
(19)

where internal state is ψ ∈ R(G+B)×T and filtered out state is
z. By defining x = [xTK ψT ]T ∈ R2∗(G+B)×T as the newly
created state, and assuming w = Wq .

Theorem 1. Let transmission network X be stable (i.e., A is
Hurwitz) and π ∈ R(G+B)T×GT bounded causal controller.
Assume that:

1) the interconnection of transmission network X and
controller policy π is well-posed;

2) π has bounded partial derivatives on the open subset B
(i.e.,εt ≤ ∂πt ≤ εt,∀x ∈ B).

3) pt ∈ IQC(Ψ,Mpt), where Ψ is stable.
If semi-definite programming SDP(P, λ,Γ, ε) is feasible for
P ≥ 0 and Γ > 0, then the feedback interconnection of
the nonlinear system and policy π is stable upon satisfying
stability condition from [38],∫ T

0

|yt|2dt ≤ Γ2

∫ T

0

|e(t)|2dt. (20)

Proof. Using newly created state Ψ and the filtered output z
as the constraints of IQC on delay uncertainties pt following
[39]. The exact solution of SDP(P, λ,Γ, ε) is feasible, and is
available in [38]. We obtain dissipation inequality by multi-
plying both sides of SDP(P, λ,Γ, ε) with [xT qT vT eT ]T and
[xT qT vT eT ].

dxTKPxK
dt

+ zTMPtz +

[
xG
pt

]T
Mπ

[
xG
pt

]
< ΓeT e− 1

Γ
yT y

(21)

Fig. 5. Time sequences-based division of stochastic Noise Nt reducing the
action space. Here seq. stands for time sequences and Med. stands for medium.

Because pt ∈ IQC(Ψ,Mpt), zTMPtz is non-negative. The
third term on the left-hand side of the inequality is guaranteed
to be non-negative due to the property of smoothness quadratic
constraint [38],

dxTKPxk
dt

− ΓeT e+
1

Γ
yT y < 0. (22)

Since time derivative of the storage function is negative
definite, first term on left is guaranteed to be negative.

1

Γ
yT y < ΓeT e. (23)

By integrating both sides from 0 to T time of each episode, we
see that inequality (20) holds. Hence, the theorem is proven.

In [38], there is a comprehensive account of the safe limits
to ensure performance guarantee. Additionally, in [38], a
preventative certificate of stability for a broad class of neural
network controllers including policy gradient-based algorithms
is presented in detail.

D. Action Space Reduction for Improving Computation Time

The learning model has to be accurate, but its training
speed is also important. By considering time domain, we get
an immense action space. To have a working algorithm, we
need to remove most of the infeasible action space in the
exploration phase, using our domain knowledge, to ensure high
performance in lesser time. A conventional DDPG algorithm
usually provides solution for the problems, which are mostly
games that do not contain the time dimension. However, in the
damping control issue where time domain is highly significant,
we introduce the time dimension to embed the physical law
into the algorithm – eliminating the physically infeasible
region and enhancing the exploitation in the physically feasible
region. Therefore, instead of directly utilizing the standard
action selection method a = µ(s) +N , where N is stochastic
noise from the noise model,we restrict it based on time points
or sequences. For example, in our domain, the amplitude of
oscillations is initially large, while it recedes with time. Hence,
we use a specific distribution of noise divided based on time
sequences.

N ∗t =

{
Nt, t ∈ applicable time sequences
0, Otherwise.

(24)

Fig. 5 shows segregation of the time dimension on the
basis of time sequences, and employing a different noise for
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Fig. 6. 39-bus system with controller for the generator at bus 5 by drawing
measurements from bus 13.

each one reduces the action space while exploring. For time
sequence 2 and time sequence 3, we achieve a very significant
reduction in learning episodes because the agent finds the
optimal policy by exploring in the reduced region. Anything
outside these applicable time sequences do not have any noise,
and that is equivalent to the time before the occurrence of the
fault. We provide a study based on the speed measurement for
learning using the mean overall speed of the agent towards the
target, which is defined using the success rate. The success
rate is the rate at which the episodes end without losing the
synchronism.

v̄ =

∑
vxcos(θtarget)

vmax
x

, (25)

where v̄ is the average speed and vx is the speed value for all
the time steps in an episode. The maximum value is named
as vmaxx . θtarget gives the parameters of the target in policy
gradient method.

We have the blueprint for the learning agent to sample
out the reliable control actions, but this is not only in the
conventional working environments, but also where there are
irregularities of the renewable energy supply. So we have to
find a way to prove the controller is working for damping down
the oscillations in time, and in an environment that is prone
to different uncertainties such as renewable energy sources.
With the special feature of the learning agent, uncertainties in
the system can also be compensated accordingly. The unique
design of the learning agent enables it to learn how to perform
well in a power system setting, that is highly dynamic.

IV. NUMERICAL VALIDATION

In this section, the proposed method was applied to the 2-
area and 4-generator Kundur system and the IEEE 39-bus 10-
generator system. A PID controller and a networked predictive
controller (NPC) [15] are employed as benchmarks.

Fig. 7. Learning curve showing reward with respect to increasing episodes.
The blue points show the episode reward. Red line is showing the average
reward considering an averaging window of past five episodes. Green points
indicate the initial Q value for each episode.

A. Validation Setup

For the small-signal studies, the 4-generator model has
been used extensively in the past to provide evidence for
the methodologies adopted in transmission systems [37] and
[40]. The system under study consists of two symmetrical
areas linked together by two 230 kV lines of 220 km long. It
was specifically designed to study low-frequency electrome-
chanical oscillations in large interconnected power systems.
The detailed model is shown in Fig. 4. We control all the
4-generators through our proposed methodology because of
the limited computational capability allowed for a 4-generator
control.

Despite its small size, the behavior of typical systems in
actual operations resemble this test case to a reasonable degree.
Each area is equipped with two identical generating units rated
20kV/900MVA [37] and [40]. The synchronous machines have
identical parameters, except for inertias, which are H = 6.5s
in the first area and H = 6.175s in the second area. Thermal
plants having identical speed regulators are further assumed at
all locations, alongside fast static exciters with a 200 gain. The
load is represented as constant impedances and split between
the areas in such a way that area 1 is exporting 413 MW to
area 2. Since the surge impedance loading of a single line
is about 140 MW, the system is somewhat stressed, even in
steady-state. The reference load-flow, with area 2 considered
as the slack machine, is such that all generators are producing
about 700 MW each. Additionally, a solar power system of
100 MW is added to both the areas. This creates an uncertain
loads variation.

The 10-generator and 39-bus system from New England is
also used to validate the proposed methodology. Such a large
system helps to establish the scalability of the mechanism.
For the disturbance, we select the buses to apply faults that
can give rise to oscillations. Since faults on any of the buses
will have a similar effect on the controlled generators, as
long as at least one long-distance line exists in between the
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(a) (b) (c) (d)

Fig. 8. Control method with reinforcement learning compared with past techniques with only the communication delay uncertainties corresponding to different
communication channels.

(a) (b) (c) (d)
Fig. 9. Control method with reinforcement learning compared with past techniques when renewable energy uncertainties are introduced to the system along
with the communication delay uncertainties corresponding to different communication channels.

faulty bus and controlled generator. Keeping these points into
consideration, we have the liberty to select bus 13 and bus
35, both of which have long-distance lines between them and
a controlled generator bus 5. Similarly, the measurements are
taken from bus 13 as the input to the reinforcement learning-
based controller. The generator under reinforcement learning
control is connected to bus 5, as illustrated in Fig. 6. The
control mechanism is validated by controlling only one gen-
erator while the others are assumed to be controlled through
standard PSSs. The reason for controlling only one generator
is that the burden on computational capability becomes too
high when action space becomes 10 dimensional. The single
generator control strategy is widely adopted for LFO damping
control, as in [41].

B. Training and Testing

For the training of WADC, we interface the RL-agent block
with power system simulation in Simulink. For each episode,
the simulation is repeated from 0s to 20s. The deep layers in
the neural networks are updated with their optimal weights
according to the loss being provided in equation (12). That
loss is calculated using a dataset stored in experience buffer
D as depicted in Algorithm 1. The dataset comprises of the
features {st, at, rt, st+1}, with t being a timestep. Initially, the
experience is filled with the data, and N random samples are
taken for predicting value function. Then real and predicted
ones helps to update the critic parameters. A sampled policy
gradient updates the actor parameters. The policy π adopted
in each episode is evaluated by the reward calculator. The
higher the cumulative reward of an episode is, the more the
future policies are close to the policy resulting in high reward.
If an episode encounters loss of synchronism of the system,
the episode terminates immediately with a very high penalty
instead of a reward. The training process stops when the
difference between episode reward and the average reward

becomes less than 0.1. The model is trained under different
system operating conditions by simulating for each one, saving
the model parameters, and then resuming the training by
initializing with previous parameters.

Next, we test out learned agents. The action value cor-
responding to the specific states of the system are already
determined for each time step. The set of optimal action
values is called the policy. The policy is reproduced whenever
the model is tested under the similar state, resulting in high
rewards and least oscillations.

C. Validation: Achieve Accurate Control Under Different Sce-
narios

With a simulation environment in place, we interface the
policy gradient-based reinforcement learning agent to the
measurements from the state evaluator. The control action is
supplied to the field voltage of the generators under consider-
ation. The four generator model results are shown in Fig. 9,
due to space limitations.

Equations (4)-(7) show that the maximum attainable reward
is 0. We applied the algorithm to a 4-generator system. The
learning curve seen in Fig. 7 shows that the model starts
at a very low value and then upon learning on based on
the discounted reward, the parameters of the neural networks
are updated and the policy tends toward optimal value. After
5, 000 episodes, the average reward in Fig. 7 reaches a value
close to 0. Since the reward functions are highly dependent
on the existence of the oscillations, we aim to show the
performance of a well-learned model where there are low-
frequency oscillations, in case of different communication
channel delays. Additionally, Fig. 7 validates the special
reward design we proposed. The high penalty is enforced in
the scenarios where the system loses synchronism since such
a case will be responsible for a large outage of the system.
We consider such scenarios as game-over for the model, and
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there is no further evaluation performed so that the training
time can be curtailed.

The model explores from episode 0 to around episode
2, 000 as illustrated in Fig. 7. Reasonable exploration is the
primary requirement while learning in uncertain environments.
The model achieves a high average reward after sufficient
exploration. After 4, 000 episodes, the model converges to a
very high reward. The effect of learning can also be observed
from another perspective of implementing a control policy that
maintains system synchronization for stable operation of the
whole power system. Fig. 7 shows that after 3, 400 episodes,
high fidelity control action enables the system to maintain
stability.

Another set of experiments are conducted to study the effect
of different operating conditions and the efficiency of the
learning model. For this reason, we vary the length of the
line between two different areas in the 4-generator model.
The length of the line is varied at a constant step size of 20
km. Table III illustrates the reward accumulation after 5, 000
episodes since gaining a high reward is the primary job of the
learner. A high mean reward of −6.14 and a maximum reward
of −0.11 ensure the least oscillations when the line length is
140 km. Furthermore, with the same system parameters and

TABLE III
EFFECT OF CHANGE OF LINE LENGTH BETWEEN 2-AREAS ON REWARD OF

THE AGENT OF 4-GENERATOR MODEL WITH PLC DELAY.

Line Length (km) Mean Reward Maximum Reward Std. Reward
220 -10.12 -0.46 36.27
200 -13.08 -0.33 32.40
180 -8.53 -0.37 29.07
160 -9.32 -1.32 29.51
140 -6.14 -0.11 24.93

Note: All the cases are generated by fixing the number of learning episodes to
5,000. The highlighted row shows the results for default operating conditions
of 4-generator case.

training settings, we develop Table IV, which presents the
damping ratios under the NPC (past) method and the proposed
RL agent. Here, we vary the length of the line between the
two areas of the 4-generator model. The analysis shows that
under the influence of PLC delay, there are some instances
where NPC and RL (DDPG-S) both perform equally well,
e.g., at line length equal to 160 km. For most of the cases, the
damping is more abrupt in the case of the learned RL agent.

TABLE IV
COMPARISON OF DAMPING RATIOS UNDER THE LEARNED PL (DDPG-S)
AGENT AND NPC METHOD FOR 4-GENERATOR MODEL WITH PLC DELAY.

Line Length (km) Damping Ratio
NPC RL

220 0.025 0.44
200 0.29 0.44
180 0.39 0.45
160 0.46 0.46
140 0.49 0.52

Since we are interested in evaluating model performance
under different fault types, we designed an experiment on
the 10-generator model by applying different types of faults
on bus 13 and bus 35. The training is carried out until the
difference between average and episode rewards is less than

0.1. The accumulated reward values for each episode are
recorded. Their means, maximums, and standard deviations
(Std.) are determined and tabulated in Table V, which shows
some interesting points. For bus 13, the impact on the highest
mean reward of −18.59 with a least standard deviation of
41.34 is obtained when the model is tested under the single
line to ground (LG) fault as compared to double line (LL)
faults, double line to ground (LG) faults, and tripe line faults
(LLL). This shows the mildness of the LG case. Moreover,
we observe that for bus 35, overall means, and maximums are
lower, and standard deviations are relatively high, ignoring
very few cases (due to the stochasticity in the system). The
reason for such values for bus 35 is the closeness to the
generator under control.

TABLE V
EFFECT OF FAULT TYPE ON REWARD OF THE AGENT OF 10-GENERATOR

MODEL WITH PLC DELAY.

Fault Type
Reward LG LL LLG LLL

bus 13
Mean -18.59 -21.44 -21.88 -19.27

Maximum -0.87 -0.59 -0.65 -0.88
Std. 41.34 48.22 51.73 50.26

bus 35
Mean -21.39 -21.41 -24.70 -24.27

Maximum -0.92 -0.99 -1.35 -1.44
Std. 52.17 51.62 51.28 53.77

D. Validation: Evaluate Performance Under Communication
Delays

With a well-learned model, our next step is to validate
the performance of the model with communication delays. In
Fig. 8a the performance of different algorithms with commu-
nication time delay in microwave link or fiber-optic line is
shown. The comparison is carried out among an optimized
PID controller, a past method based on a network predictive
approach (NPC), and the proposed reinforcement learning
(RL)-based approach. It is safe to say that the RL Control
method has outperformed others. Although we prove the
effectiveness of our model under one kind of communication
channel, it is imperative to establish the effect of other commu-
nication channels available for SCADA measurements. Hence,
Fig. 8b shows the comparison of the control schemes when
the communication delays of telephone lines are simulated.
Moreover, Fig. 8c and Fig. 8d show the performance of the
proposed model for a satellite link and PLC, respectively.

PLC has an estimated communication delay between 150
ms to 300 ms. Similar to the other channels, in this case,
the proposed controller has the best performance. Moreover,
the result in Fig. 8d shows that the other methods have
shown worse performance, while the proposed method has
successfully contained the oscillations in the case of satellite
communication delay. This shows that not only has the model
achieved a high fidelity in controlling the generator, but also
the timing delay randomness is successfully learned. Other
methods, such as a tuned PID controller, completely fails when
there are significant delays in the communication channels,
and the NPC method also suffers deterioration in performance.
Hence, to accomplish a wide-area-based controller, deep de-
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Fig. 10. Difference between the generator speeds with (80%) and without
PV penetration.

terministic policy gradient provides the best solution under
normal circumstances.

E. Validation: Assess Efficacy Under PV Uncertainties

In this section, we aim to provide validation of our proposed
technique under the presence of up to 80% of load shared
by the solar power system in both the areas. The impact of
PV in damping control is overwhelming. Fig. 10 provides an
idea regarding the impact of PV uncertainties; we plot the
conventional PSS control of the 4-generator system with 80%
solar penetration.

We retrained the model, with time delay uncertainties and
PV sources incorporated into the system. Fig. 9 shows the fre-
quency oscillations by different controllers under the influence
of a microwave or fiber-optic link, a telephone line, a satellite
link, and power line carrier delays, under the influence of
renewable energy uncertainties. The results show that although
the increase in uncertainty has made the control more difficult
for the PID controller and for past methods, it does not affect
the RL control much because the RL method can learn by
exploring the environment.

Specifically, for both telephone line and power line carrier
communication channels, the tuned PID controller fails to
provide a required control. Such a failure causes the speeds
of the generators to deviate from the standard 1 pu, and
eventually causes the whole system to lose synchronism. For
the remaining two channels of microwave or fiber-optic links
and satellite links, the deviation of speeds is slower, but the
result will be the same, i.e., the loss of synchronism.

Note that the networked predictive control (NPC) shows
a better performance than a simple PID controller. However,
with more uncertainties introduced into the system, the per-
formance of NPC deteriorates, as indicated in Fig. 9. The
communication delays of microwave and fiber-optic, which are
well handled in the case without renewable energy integration,
are not the case in the presence of renewable energy. The
oscillations are not completely damped down in the case of
microwave and fiber-optic link, as shown in Fig. 9a.

The overall performance is not much different, under the
delays due to other communication modes. A similar effect
can be observed by comparing the results for telephone line,
satellite communication, and power line carrier modes. For
both PID and NPC controllers, the low-frequency oscillations
are not getting damped completely, even after 20 s for the
telephone line and satellite communication. The case of power

line carrier is even worse, where the oscillations keep growing
in amplitude and will result in the loss of synchronism for the
whole system. Hence, in the proposed method, the exploration-
exploitation learning process with solar power systems can
help the model to experience such scenarios as well, and it
can adjust the parameters to meet the requirement of damping
down the oscillations.

The proposed method based on reinforcement learning has
proven its reliability in successfully damping down the LFOs
for all kinds of communication channels, even under the
presence of uncertainties due to deep penetration of solar
power systems. For microwave and fiber-optic link as well as
telephone lines, the oscillations are damped down very quickly,
whereas, the satellite and power line carriers have relatively
slower damping. This proves that DDPG-S has the capability
of learning the uncertainties effectively, including not only
those that are introduced due to communication delays, but
also the ones introduced by renewable energy integration into
the system.

F. Validation: Accomplish High-Speed Learning With Uncer-
tainties

The accuracy of the control methodology is not the only
consideration while selecting the method, but researchers are
also concerned with the speed and computational feasibility of
the learning model. Therefore, we analyze the time required
for learning for the 4-generator system when there is a constant
time delay versus a variable uncertain time delay of the
Gaussian mixture model. Fig. 11 indicates, that more episodes
are required to train the model when the communication delay
has uncertainty. Therefore, we provide a model that avails
the domain knowledge of the oscillation damping problem in
power systems. The overshoots of such oscillations are larger
in the first 10 s; we use this time for exploring larger action
space. Such a procedure shows encouraging results as seen
in Table VI. By removing the unnecessary action space, the
number of episodes required to reach the mean overall speed
of greater than 0.6 is increased for all the communication
channels. This is intuitive because the continuous action space
is limited to only the relevant space minimizing the exploration
computations.

TABLE VI
DOMAIN KNOWLEDGE UTILIZATION FOR ACTION SPACE REDUCTION IN

4-GENERATOR CASE.

Comparison # of episodes taken to reach v̄ greater than 0.6
PLC Microwave Telephone Satellite

Without Removal 1325 1083 1265 1455
With Removal 412 284 557 817

V. CONCLUSION

Inter-area oscillations have been a longstanding issue in
power systems, and controlling them is a challenge that needs
to be addressed using modern techniques. The wide-area mea-
surement systems provide a centralized control philosophy;
however, it faces serious concerns of the uncertainties in the
communication delays and responses time of the equipment.
We provide a holistic solution to such a problem by carefully
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Fig. 11. Mean overall speed v̄ of the learning agent with constant time and
variable time delay of PLC.

modelling the control methodology and leveraging the capabil-
ity of learning stochastic continuous control actions through a
policy gradient method. Such a policy is learned by employing
deep neural networks as the approximator. We provide the
discussion on the stability of the learning-based controller.
Additionally, the training speed is substantially increased
by employing the prior knowledge of time sequences. The
proposed methodologyy is validated numerically on numer-
ous test cases under different scenarios of renewable energy
penetration. The results prove scalability and robustness of the
control system for low-frequency oscillations. Hence, a stable
power system is ensured.

REFERENCES

[1] I. Zenelis and X. Wang, “Wide-area damping control for interarea
oscillations in power grids based on PMU measurements,” IEEE Control
Systems Letters, vol. 2, no. 4, pp. 719–724, 2018.

[2] S. P. Azad, R. Iravani, and J. E. Tate, “Damping inter-area oscillations
based on a model predictive control (MPC) HVDC supplementary
controller,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp.
3174–3183, 2013.

[3] M. Klein, G. J. Rogers, and P. Kundur, “A fundamental study of
inter-area oscillations in power systems,” IEEE Transactions on Power
systems, vol. 6, no. 3, pp. 914–921, 1991.

[4] M. E. Aboul-Ela, A. Sallam, J. D. McCalley, and A. Fouad, “Damping
controller design for power system oscillations using global signals,”
IEEE Transactions on Power Systems, vol. 11, no. 2, pp. 767–773, 1996.

[5] S. Zhang and V. Vittal, “Design of wide-area power system damping
controllers resilient to communication failures,” IEEE Transactions on
Power Systems, vol. 28, no. 4, pp. 4292–4300, 2013.

[6] M. Zahid, Y. Li, J. Chen, J. Zuo, and A. Waqar, “Inter-area oscillation
damping and voltage regulation by using UPFC for 500 kV transmission
network,” in IEEE International Conference on Control and Robotics
Engineering, 2017, pp. 165–169.

[7] I. Kamwa, R. Grondin, and Y. Hebert, “Wide-area measurement based
stabilizing control of large power systems-a decentralized/hierarchical
approach,” IEEE Transactions on Power Systems, vol. 16, no. 1, pp.
136–153, 2001.

[8] E. Rebello, L. Vanfretti, and M. S. Almas, “Experimental testing of a
real-time implementation of a PMU-based wide-area damping control
system,” IEEE Access, vol. 8, pp. 25 800–25 810, 2020.

[9] L. Angquist and C. Gama, “Damping algorithm based on phasor estima-
tion,” in IEEE Power Engineering Society Winter Meeting. Conference
Proceedings, vol. 3, 2001, pp. 1160–1165.

[10] G. Sánchez-Ayala, V. Centeno, and J. Thorp, “Gain scheduling with clas-
sification trees for robust centralized control of psss,” IEEE Transactions
on Power Systems, vol. 31, no. 3, pp. 1933–1942, 2016.

[11] M. Beiraghi and A. M. Ranjbar, “Adaptive delay compensator for the
robust wide-area damping controller design,” IEEE Transactions on
Power Systems, vol. 31, no. 6, pp. 4966–4976, 2016.

[12] V. Pradhan, A. M. Kulkarni, and S. A. Khaparde, “A model-free ap-
proach for emergency damping control using wide area measurements,”
IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 4902–4912,
2018.

[13] M. Li and Y. Chen, “A wide-area dynamic damping controller based on
robust h∞ control for wide-area power systems with random delay and
packet dropout,” IEEE Transactions on Power Systems, vol. 33, no. 4,
pp. 4026–4037, 2018.

[14] A. Chakrabortty, “Wide-area damping control of large power systems
using a model reference approach,” in IEEE Conference on Decision
and Control and European Control Conference, 2011, pp. 2189–2194.

[15] W. Yao, L. Jiang, J. Wen, Q. Wu, and S. Cheng, “Wide-area damp-
ing controller for power system inter-area oscillations: A networked
predictive control approach,” IEEE Transactions on Control Systems
Technology, vol. 23, no. 1, pp. 27–36, 2014.

[16] H. Wu, K. S. Tsakalis, and G. T. Heydt, “Evaluation of time delay
effects to wide-area power system stabilizer design,” IEEE Transactions
on Power Systems, vol. 19, no. 4, pp. 1935–1941, 2004.

[17] M. R. Younis and R. Iravani, “Wide-area damping control for inter-
area oscillations: A comprehensive review,” in IEEE Electrical Power
& Energy Conference, 2013, pp. 1–6.

[18] X. Zhang, C. Lu, and Y. Han, “Stability analysis of wide-area damping
control system with stochastic communication time delay,” in IEEE
Power & Energy Society Innovative Smart Grid Technologies Confer-
ence, 2015, pp. 1–5.

[19] C. Lu, X. Zhang, X. Wang, and Y. Han, “Mathematical expectation
modeling of wide-area controlled power systems with stochastic time
delay,” IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1511–1519,
2015.

[20] B. Yang and Y. Sun, “Damping factor based delay margin for wide area
signals in power system damping control,” IEEE Transactions on Power
Systems, vol. 28, no. 3, pp. 3501–3502, 2013.

[21] X. Zhang, C. Lu, S. Liu, and X. Wang, “A review on wide-area damping
control to restrain inter-area low frequency oscillation for large-scale
power systems with increasing renewable generation,” Renewable and
Sustainable Energy Reviews, vol. 57, pp. 45–58, 2016.

[22] M. Tajdinian, M. Allahbakhshi, M. Mohammadpourfard, B. Moham-
madi, Y. Weng, and Z. Dong, “Probabilistic framework for transient
stability contingency ranking of power grids with active distribution
networks: application in post disturbance security assessment,” IET
Generation, Transmission & Distribution, vol. 14, no. 5, pp. 719–727,
2020.

[23] Y. Weng, Y. Liao, and R. Rajagopal, “Distributed energy resources
topology identification via graphical modeling,” IEEE Transactions on
Power Systems, vol. 32, no. 4, pp. 2682–2694, 2017.

[24] D. Roberson and J. F. O’Brien, “Variable loop gain using excessive
regeneration detection for a delayed wide-area control system,” IEEE
Transactions on Smart Grid, vol. 9, no. 6, pp. 6623–6632, 2018.

[25] H. Liu, L. Zhu, Z. Pan, F. Bai, Y. Liu, Y. Liu, M. Patel, E. Farantatos,
and N. Bhatt, “Armax-based transfer function model identification using
wide-area measurement for adaptive and coordinated damping control,”
IEEE Transactions on Smart Grid, vol. 8, no. 3, pp. 1105–1115, 2017.

[26] A. Vahidnia, G. Ledwich, and E. W. Palmer, “Transient stability im-
provement through wide-area controlled SVCs,” IEEE Transactions on
Power Systems, vol. 31, no. 4, pp. 3082–3089, 2016.

[27] X. Y. Bian, Y. Geng, K. L. Lo, Y. Fu, and Q. B. Zhou, “Coordination
of psss and SVC damping controller to improve probabilistic small-
signal stability of power system with wind farm integration,” IEEE
Transactions on Power Systems, vol. 31, no. 3, pp. 2371–2382, 2016.

[28] K. Zhang, Z. Shi, Y. Huang, C. Qiu, and S. Yang, “SVC damping con-
troller design based on novel modified fruit fly optimisation algorithm,”
IET Renewable Power Generation, vol. 12, no. 1, pp. 90–97, 2018.

[29] M. E. C. Bento, D. Dotta, R. Kuiava, and R. A. Ramos, “A procedure
to design fault-tolerant wide-area damping controllers,” IEEE Access,
vol. 6, pp. 23 383–23 405, 2018.

[30] S. Jhang, H. Lee, C. Kim, C. Song, and W. Yu, “ANN control
for damping low-frequency oscillation using deep learning,” in IEEE
Australasian Universities Power Engineering Conference, 2018, pp. 1–
4.

[31] J. Duan, H. Xu, and W. Liu, “Q-learning-based damping control of wide-
area power systems under cyber uncertainties,” IEEE Transactions on
Smart Grid, vol. 9, no. 6, pp. 6408–6418, 2018.

[32] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[33] D. Ha and J. Schmidhuber, “World models,” arXiv preprint
arXiv:1803.10122, 2018.

[34] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

Authorized licensed use limited to: ASU Library. Downloaded on September 01,2020 at 06:03:57 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2020.3008364, IEEE
Transactions on Smart Grid

12

[35] L. Simon, K. S. Swarup, and J. Ravishankar, “Wide area oscillation
damping controller for DFIG using WAMS with delay compensation,”
IET Renewable Power Generation, vol. 13, no. 1, pp. 128–137, 2019.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[37] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and
control. McGraw-hill New York, 1994.

[38] M. Jin and J. Lavaei, “Stability-certified reinforcement learning: A
control-theoretic perspective,” arXiv preprint arXiv:1810.11505, 2018.

[39] A. Megretski and A. Rantzer, “System analysis via integral quadratic
constraints,” IEEE Transactions on Automatic Control, vol. 42, no. 6,
pp. 819–830, 1997.

[40] M. Klein, G. Rogers, S. Moorty, and P. Kundur, “Analytical investigation
of factors influencing power system stabilizers performance,” IEEE
Transactions on Energy Conversion, vol. 7, no. 3, pp. 382–390, 1992.

[41] T. Athay, R. Podmore, and S. Virmani, “A practical method for the direct
analysis of transient stability,” IEEE Transactions on Power Apparatus
and Systems, vol. 98, no. 2, pp. 573–584, 1979.

Yousuf Hashmy received his B.Sc. degree from the
University of Engineering and Technology, Lahore,
and M.Sc. degree from Arizona State University
(ASU), both in Electrical Engineering. He is also
trained in Energy Innovation and Emerging Tech-
nologies from Stanford University. Currently, he is
a research associate at ITU, Lahore. Previously, he
served as a research assistant in the Ira A. Fulton
Schools of Engineering of ASU. Prior to joining
ASU, he was an Application Engineer in Microgrid
Development Technical Cell with AESL-Caterpillar

Inc. from Nov. 2016 to Dec. 2017. He also served as a full-time researcher
at GEIRI North America.

His research interests are in the areas of machine learning and big data
applications in power systems, real-time control through reinforcement learn-
ing, power system protection, WAMS-based control systems, microgrid, global
public and energy policy, and sustainable infrastructure for underdeveloped
economies. He is a recipient of a gold medal from the Government of Pakistan
for outstanding performance in academics.

Zhe Yu received his B.E. degree from Department
of Electrical Engineering, Tsinghua University, Bei-
jing, China in 2009, M.S. degree from Department
of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA, USA in 2010, and
Ph.D. degree from the School of Electrical and Com-
puter Engineering, Cornell University, Ithaca, NY,
USA in 2016. He joined Global Energy Intercon-
nection Research Institute North America (GEIRI
North America) in 2017. His current research inter-
ests include power system and smart grid, machine

learning, data mining, and optimization.

Di Shi (M’12-SM’17) received the B.S. degree in
electrical engineering from Xian Jiaotong University,
Xian, China, in 2007, and M.S. and Ph.D. degrees in
electrical engineering from Arizona State University,
Tempe, AZ, USA, in 2009 and 2012, respectively.
He currently leads the AI & System Analytics Group
at GEIRI North America, San Jose, CA, USA. His
research interests include WAMS, Energy storage
systems, and renewable integration. He is an Editor
of IEEE Transactions on Smart Grid and the IEEE
Power Engineering Letters.

Yang Weng (M14) received the B.E. degree in
electrical engineering from Huazhong University of
Science and Technology, Wuhan, China; the M.Sc.
degree in statistics from the University of Illinois at
Chicago, Chicago, IL, USA; and the M.Sc. degree
in machine learning of computer science and M.E.
and Ph.D. degrees in electrical and computer engi-
neering from Carnegie Mellon University (CMU),
Pittsburgh, PA, USA. After finishing his Ph.D., he
joined Stanford University, Stanford, CA, USA, as
the TomKat Fellow for Sustainable Energy. He is

currently an Assistant Professor of electrical, computer and energy engineering
at Arizona State University (ASU), Tempe, AZ, USA. His research interest
is in the interdisciplinary area of power systems, machine learning, and
renewable integration.

Dr. Weng received the CMU Dean’s Graduate Fellowship in 2010, the Best
Paper Award at the International Conference on Smart Grid Communication
(SGC) in 2012, the first ranking paper of SGC in 2013, Best Papers at the
Power and Energy Society General Meeting in 2014, ABB fellowship in 2014,
Golden Best Paper Award at the International Conference on Probabilistic
Methods Applied to Power Systems in 2016, and Best Paper Award at IEEE
Conference on Energy Internet and Energy system Integration in 2017, Best
Paper Award at the IEEE North American Power Symposium in 2019, and
Best Paper Award at the IEEE Sustainable Power and Energy Conference in
2019.

Authorized licensed use limited to: ASU Library. Downloaded on September 01,2020 at 06:03:57 UTC from IEEE Xplore.  Restrictions apply. 


