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Abstract—The security of active distribution systems is critical
to grid modernization along with deep renewable penetration,
where the protection plays a vital role. Among various security
issues in protection, conventional protection clears only 17.5% of
staged high impedance faults (HIFs) due to the limited electrical
data utilization. For resolving this problem, a detection and
location scheme based on ;-PMUs is presented to enhance data
processing capability for HIF detection through machine learning
and big data analytics. To detect HIFs with reduced cost on data
labeling, we choose expectation-maximization (EM) algorithm for
semi-supervised learning (SSL) since it is capable of expressing
complex relationships between the observed and target variables
by fitting Gaussian models. As one of the generative models,
EM algorithm is compared with two discriminative models to
highlight its detection performance. To make HIF location robust
to HIF impedance variation, we adopt a probabilistic model
embedding parameter learning into the physical line modeling.
The location accuracy is validated at multiple locations of a
distribution line. Numerical results show that the proposed EM
algorithm greatly saves labeling cost and outperforms other SSL
methods. Hardware-in-the-loop simulation proves a superior HIF
location accuracy and detection time to complement the HIF’s
probabilistic model. With outstanding performance, we develop
software for our utility partner to integrate the proposed scheme.

I. INTRODUCTION

Societal production and living activities become more re-
liable on electricity as the grid modernization evolves. Con-
sequently, power interruptions cause severe economical loss
and even safety issues in modern grids. Take a recent one
for example, mid-Manhattan experienced power outage on
July 13, 2019, impacting approximately 72,000 customers. A
preliminary investigation from Consolidated Edison found the
relay system failed to isolate a fault [1]. From a protection
perspective, it is comparatively easy to detect a fault with low
impedance. Nevertheless, conventional relays have difficulties
in detection high impedance fault. For this purpose, various
algorithms, are proposed, such as proportional relaying ap-
proach, impedance-based method, and PC-based fault locating
and diagnosis algorithm [2], etc. However, these methods are
unable to solve two fundamental problems in HIF detection,
namely the measurement accuracy and information extraction
capability. Due to this reason, [3] uses case studies to show
that that conventional protection systems, even with new ideas,
can only 17.5% of staged HIFs.

Notably, different edge devices, such as u-PMUs are becom-
ing available in the distribution grid, providing better measure-
ment accuracy. With such measurement devices, HIF detection
devices can provide high-precision and high-resolution mea-
surements. For example, many utilities and campuses installed
or plan to install u-PMUs for distribution grid monitoring.
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Measurements from these devices can be easily be reused to
capture peculiar characteristics of HIFs, e.g., phasor data con-
centrators (PDCs) can use data analytics algorithms with the
data streams. Therefore, this paper proposes a architecture on
highly accurate data-driven HIF detection and location, based
on p-PMUs, leading to significantly improved protection in
distribution systems. Under such an architecture, a systematic
process is developed to extract and select features, conduct
semisupervised learnning (SSL), and perform probabilistic
learning for situational awareness in fault identification.

Admittedly, fault detection schemes already used machine
learning methods, but the past focus has been in the category
of supervised learning. For example, Bayes classifier has been
proposed to distinguish between fault cases in the Bayesian
framework, following wavelet-transform-based data extraction.
Decision tree algorithm was used for interpretations in the
form of a white box, which has been a conventional approach
to use neural network-structure to deal with inherently non-
linearity in the decision process. The major concern over such
supervised-learning approach is that it is seldom the case
that labelled records are readily available in utility database.
Even worse, there are ambiguities between fault and non-
fault events, even if all the labels are available. Finally, it is
costly for utilities to pay labors to manually identify all the
historical events without any error. So, we carefully design
a SSL to greatly enlarge the information gain, while reduce
uncertainties in HIF analysis.

In addition to detection, localizing the fault is also impor-
tant. For localization, yu-PMUs are found to be quite helpful.
For example, we can use the compensation theorem in circuit
theory and PMU-based state estimation via analyzing the
source of different power events. For our paper, we propose
to improve further by considering the probabilistic result of
the semi-supervised learning result as well as probability dis-
tribution over impedance in HIF. Specifically, we will suggest
a probabilistic analysis by forming a moving-window total-
least-square based on the probability distribution of the fault
impedance values.

To test the effectiveness of using real time p-PMU mea-
surements, we use real-time simulator for validation. For
example, real-time property of u-PMUs are examined by
establishing an experimental platform via a OPAL-RT real-
time simulator. With such validation design, we observed a
significantly improved HIF detection and location capability
over the conventional methods by extensive simulations.

In summary, this paper contributes to the following aspects.
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First, we propose an HIF detection and location scheme that
leverages on big data obtained from the edge device of -
PMU. Second, a generative EM-algorithm-based SSL model
for HIF detection is designed iteratively. This model presents
a higher binary classification accuracy than another two
discriminative models under study. Second, the probabilistic
characteristics of HIF impedance are modeled to assist HIF
location. This model embeds the physical law of distribution
lines into fault location method.

We organize the paper in the follows: Section II explain
the proposed method on feature selection method for HIF
detection, the EM-based SSL approach, and the probabilistic
method for HIF location. We implement our method in Sec-
tion III by integrating the three aforementioned approaches.
Section IV shows experimental results followed by hardware
implementation in Section V. Section VI summerize the paper.

II. HIF DETECTION AND LOCATION SCHEME

The proposed HIF detection and location scheme utilizes
SSL for HIF detection and a probabilistic model for location.

A. Feature Selection

This paper adopts the wrapper approach (refer to Section
IV-D) as its feature evaluator to solve the binary classification
problem in HIF detection. Unlike the filter approach, the
training set in the wrapper approach goes through three steps
before it is sent to the ultimate induction algorithm: feature
selection search, feature evaluation, and induction algorithm.

In this paper, we propose to search feature by an engine
called best-first search, due to its robust performance against
the well known hill-climbing search engines. One of the major
advantages in best-first search method is that it stops immedi-
ately after the performance starts to drop. However, it keeps a
long list of all possible and evaluated attribute subsets and sorts
according to performance measure with a goal of letting a prior
configuration be reached again. Specifically, we search with
greedy hill-climbing augmented with a backtracking facility in
the attribute subset space. Algorithm 1 illustrate the process.
Notably, we use a five-fold cross-validation (CV) for validation
with an underline assumption: all folds are independent during
training process. Additionally, we use standard deviation of the
accuracy estimate to determine the number of repetition tines.

Algorithm 1 Best-first algorithm

1: Put the initial state on the OPEN list.

2: CLOSED list <~ ¢ , BEST < initial state.

3: Letv = arg mazycoprn f(w) (get the state from OPEN
with maximal f(w)).
Remove v from OPEN, add v to CLOSED.
if f(v) —e > f(BEST) then

BEST + v.

Expand v: apply all operators to v, giving v’s children.
For each child not in the CLOSED or CLOSED list,
evaluate and add to the CLOSED list.
if BEST changed in the last k£ expansions then

10: goto 3.
return BEST.

i A

o

In short, we stop the search when we can not find a node
with improvements during the past & expansions. Therefore,
an enhanced node would have an accuracy estimation at least
e times higher than the best one found in the past. For
consistancy and clearance, we use k¥ = 5 and € = 0.1% in
the rest of the paper.

B. Expectation-Maximization (EM) Algorithm in SSL for HIF
Detection

After data cleaning and feature extraction, we can apply a
supervised learning approach for HIF detection. However, the
performance of supervised learning relies on the number of
labeled HIF event in the past, which may not be sufficient. For
this reason, we propose to employ semi-supervised learning to
incorporate data from unseen events, therefore saving the cost
of data labeling. Table I shows the comparison of required
dataset among unsupervised learning, supervised learning,
and SSL. As a highlight, SSL only requires a few labeled
observations and can improve performance significantly by
adding a large number of unlabeled observations, which is
cheap to obtain.

TABLE I
THREE MACHINE LEARNING CATEGORIES FOR LABEL AVAILABILITY.
Category Input dataset Labeling
Unsupervised _ T
Learning X =[x1,...,Xn] Yeo
Supervised - T nx1
Learning X = [xl,...,xn] Y eR
Semi-Supervised
LearEing X:[xlr"'7x17~~"xl+u]Tb Y € RIx!
A% = [z1,22,...,24], i € N, X € R**? where n denotes the

number of observations and d denotes the number of features.
bl 4w =n, usually | < wu, where [ denotes the number of labeled
observations and u denotes the number of unlabeled observations.

In the machine learning field, there are various dedicated
approaches for combining labelled and unlabelled datasets.
The two most popular approaches are based on self-training
and co-training. For self-training, it uses predictions to train
itself on its own whereas co-training uses two classifiers to
train each other with the most appropriate prediction labels.
This paper involves the use of self-training since HIF detection
as HIF detection does not need two classifiers in co-training.
To perform such training, it is necessary to select appropriate
discriminative or generative probabilistic models.

The discriminative model relies on conditional probability
distribution P(x;|y;) of features x; and labels y;. However,
the problem of discriminative model is that it cannot generally
express complex relationships between the observed and target
variables. We, therefore, choose the EM method in generative
models by fitting Gaussian mixture models. A mixture model
assumes that the probability of x1 is given by

prl,yl—c Zpyi=c p(xily:i = ¢), (D)

where c is Vlewed asasetof k clusters of the data, and y; is the
cluster membership of x;. (x;]y;) usually has a simple form
like a Gaussian distribution. But we do not know the y; values
when labels are partially available. Therefore, by viewing y;
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as hidden values, we deploy the EM method for HIF data
classification. The goal of the proposed SSL method for HIF
is to classify any « € X achieving § = arg max,cy p(x,y|0).
The expected log—likelihood parameterized by 6 is

Q(616") Zlogp (yi, xi|0")
i=1
2
+Z > r¥ilogp(yi, xilf).
i= 1y16{0 1}
We define the following 4 .
i <i y' = 0,x'|6")
i =p(y' = 0%, 0") = ply =0,x1]6 SNE)
Zye{0,1}p(Y;XZ|9t)
, ) vi = 1.%%9t
—p( = 10 = LY =LX)_

231.5{0,1}13(}’;iilgt)7

where Z and y denote the unlabeled data and labels respec-
tively. Thus, the EM method proposed for semi-supervised
learning alternates between the following two steps:

1) E-step: Compute probabilities ) and 7} for all the
unlabeled examples 7 based on the current 6%,

2) M-step: Maximize the expected complete-data log-
likelihood (equation (2)), which is a weighted version
of the complete-data log-likelihood.

C. A Probabilistic Model for HIF Location

After fault detection, we need to locate the fault. The loca-
tion system (Fig. 1) firstly calculates fault data classification
accuracy A;(¢ = 1,---,n, assuming there are n u-PMUs)
based on each u-PMU’s measurement. Secondly, we compute
the fault location using our proposed probabilistic model that
outputs the calculated fault location. This probabilistic model
will be elaborated later.

Calculate fault data

classification
accuracy Ai

Locate the HIF

Compute fault
location using the
probabilistic model

Voting mechanism
for the most relevant
pu-PMU index

Fig. 1. The flowchart for the HIF location method.

Thirdly, a voting mechanism is introduced to determine
which p-PMU provides the most reliable data for location.
We view each ;-PMU as a voter. Each voter v; 1 = 1,--- ,n)
has a ranking of the vector of candidates C; = [y, - - - ,cm]T,
where each element in C' has a binary value indicating the
voting of protection 1,--- ;m. In this application, the voted
faulty zone is translated from the calculated fault location
obtained from last step. To refine the ranking, with a slight
abuse of notation, we define:

idx* = max i maXZ ;) 5

where idx™ is the 1ndex of the most relevant p-PMU. It is
obtained by firstly finding the index of the highest voted pu-
PMU(s) and then the one with highest classification accuracy.

The probabilistic model for HIF Location is discussed here.
The HIF is modelled with the extensively used anti-parallel
dc-source model, as shown in Fig. 2b. The details of the

(a) (b)
Fig. 2. The single line diagram and HIF model under study: (a) Single line
model for the HIF location analysis [5]; (b) Two anti-diode HIF model [6].

same can be found in [4]. In the beginning, a relationship is
established between the one-terminal measurement and fault
location using a constant-impedance constant-DC-source HIF
model. It is difficult to represent the random phenomenon
of fault impedance during arcing using the HIF model in
[5] as constant impedance and DC source are assumed. The
conventional solutions such as in [5] come with limitations
on measurement location, device, and accuracy. To overcome
the aforementioned issues, the p-PMU environments come
equipped with HIF location systems that are capable of in-
troducing randomness.

Fig. 2a presents the one terminal system’s single line dia-
gram. On the left of this figure, v,, is the measured voltage of
the n'* ;-PMU. Assuming a fault is occurring at the distance
0, then the line impedance, Req + jwLcq, seen by the nth
1-PMU is calculated as the multiplication of § and the per-
unit-length impedance. We merge the two shunt capacitance
into one on the left, with the value of C. It draws i~ current.
In this paper, the per-unit-length resistance, inductance, and
capacitance are denoted by R, L, and C.

Based on Fig. 2b, the HIF voltage is computed as follows:

: ip >
S R ©)
ZF]%n - Vna trp < 0,

Line capacitance has a substantial contribution to the fault
location error in underground cables, but for overhead lines,
we can ignore the impact of the shunt capacitors without
jeopardizing the results: i = 50% ~ (. Here, we use
one equation to represent the above two conditions in (6) and
apply KVL for the circuit in Fig. 2a:

di,

= 0(Rip + L— %

where R,, Ry, and V,, (=V,,) are the positive and negative
cycle values of Ry and Vpe.

The way of predicting the fault current (i) originates from
[5]. We firstly estimate the fault distance, then employ the least
square method to calculate §, R, and Vpe of both positive
and negative cycles. According to 7, we have

) + Rpir + Vpo, @)

Rp = Cpo + Cp157 7;F > 07 (8)
R, = cno+ cn1d, ip <0,
=, ; ]
where cpg = va Cpl1 = (RZ%+L%)’ Cno = 7%’
and ¢, = %(R/Ln + L4 )
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Fig. 3. The proposed HIF detection and location scheme with four func-
tion blocks: feature extraction and selection, SSL-based HIF detection, HIF
location system, and HIF alarm & execution.

III. IMPLEMENTATION SCHEME

To implement our proposed scheme, we assume p-PMUs
are available in the system with full observability. The syn-
chronized phasor data are sent to phasor data concentrators
(PDCs), as shown in Fig. 3. The red box shows the proposed
scheme with four functions: feature extraction and selection,
SSL-based HIF detection, HIF location system, and HIF alarm
& execution. The method for feature extraction and selection
is supplied in [4]. This section elaborates on the remaining
three functions.

A. Classification Between HIF and non-HIF

From the machine learning perspective, it is a classifica-
tion issue regarding differentiating between fault and non-
fault data. The collected data from p-PMUs is firstly feature
engineered and then classified by the proposed EM-based SSL
method. There is one binary classification model for each -
PMU, since the local measurement of u-PMUs differ from
each other. The detailed method of classifying the HIF and
non-HIF data can be referred to as Section II-B.

B. HIF Location Function

If the location of the HIF is identified, line dispatchers
can efficiently clear the fault. However, the biggest challenge
here is the determination of the varying HIF impedance. The
random and irregular characteristics of the HIF are usually
associated with contact objects such as soil, plant, and sand,
as well as the moisture and temperature of the air. Also,
the low fault current is beyond the capacity of the legacy
protective elements. To solve this problem, two probability
models are proposed to recognize the nature of the varying
HIF impedance.

1) Normal distribution of the HIF impedance: The first
model explores the normal distribution of the HIF impedance
Rp. We have Rp ~ N (p, 02). The fault location, therefore,
follows

5~ N(E=2 (2)), ©)
C1 C1

where ¢y and c¢; are the normal distribution parameters.
Consequently, the confidence interval of the fault location
estimation can be easily quantified.

2) Uniform distribution of the HIF impedance: In the
second model, we adopt a uniform distribution model to
capture the fault impedance range. Given the HIF impedance
range of (Rpin, Rimaz), We can derive the following fault
location equation:

(Rmin —Co Rmar —Co

 Tmes = %0),

1. R T
where cg and c; are the uniform distribution parameters.

(10)

C. High Impedance Fault Alarm and Execution System

With the help of the HIF location function, an estimated
fault location can be calculated through the two proposed
impedance models. Since they are probability models, the
fault location is a predicted range. Although a precise location
cannot be determined, the location range can greatly helpline
dispatchers to eliminate unnecessary search. The HIF signal
and its location information are transmitted to the system
operator. Associated alarming or tripping signals can be imme-
diately sent to the execution system, which controls the circuit
breakers or switches.

IV. EXPERIMENT RESULTS

A. Benchmark System

The McGill Electric Energy Systems Laboratory has de-
veloped the benchmark system showed in Fig. 4, which is
a simulation of the distribution feeder as a common rural
community feeder. This feeder is rated for 25 kV which is
obtained through utility step down transformer rated for 120
kV : 25 kV. In the upcoming section, the hardware experiment
platform is discussed in details with the real-time benchmark
system simulation.

= B-23
| Cap.
L-19 _| E |

B-22

;e B-11 B10 B9
B- 14 B13 B2 | 8 - 5
_—-

TIT] musg;:%t'*l i

B- 17 B-16

L-26 L—ZS L-24 L23 L-221-21

Utility T

C | ag CB-1
SC level:
1000MVA  15MVA

120 k- 25 kv
A-Yg

B.

L9 L-10
L-11
CB-9

T2
Fig. 4. Benchmark system [7].

B. HIF Detection Performance

The SSL algorithm as discussed above is tested with shorted
out feature group from the 14,850 HIF and non-HIF event
characteristics of the benchmark system such as HIF with
unbalanced impedance, HIF with different fault location, HIF
with various fault types, load and capacitor switching, load
variation and so on. First, it is required to define SSL principle,
therefore we identify a couple of common features such as
— Iy and 60y, — Oy, — which are helpful to identify the
difficulties associated with the classification feature grouping
and to illustrate feature groping process of the unlabeled data
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BINARY CLASSIFICATION RESULTS USING SEMI-SUPERVISED LEARNING METHODS.

TABLE I

K-nearest-neighbors method Information-theoretic method [8] EM method
% of labeled data
precision recall F1 score | precision recall F1 score | precision recall F1 score
6.25 0.996 0.996 0.996 0.868 0.969 0.915 1.000 1.000 1.000
125 0.997 0.997 0.997 0.855 0.980 0913 1.000 1.000 1.000
25 0.997 0.997 0.997 0.900 0.955 0.927 1.000 1.000 1.000
50 0.998 0.998 0.998 0.998 0.996 0.997 1.000 1.000 1.000

for the same task. As shown in the left of Fig. 5, only twenty-
five percent of the total available data is used for the training
purpose at first.

Two notations are used to discriminate the non-fault events
and fault events such as solid circle and solid square respec-
tively which are concentrated at the particular mark in the
graph. Therefore, we require to generate a feasible algorithm
to large scale binary feature grouping. On the other hand, there
are other notations such as circle and square, used to show two
other types of events to illuminate the forecast groups which
help to see through the discussed approach picks up through
the training data and generates forecast about the unidentified
data-set. In addition to this, Fig. 5 clearly shows that forecast
results are nearby the labeled data even it is difficult to identify
multi-dimension data.

With Unlabelled Data Automatic Labeling Unlabeled data

40 40 © Labeled non-fault
o ® Labeled fault
° o Predicted non-fault
Automatic Labeling via EM Algorithms o Predicted fault
30 g 307
Q}g =
r 20 T 20
o Q
< | TNl L. >__
abelingCB
®
10 ; 10
o Labelled d
non-fault """ T T T T T T TS0 - T
o Labeled fault| _ Labeling 5
- Unlabeled
0 N | 5 0 I
0 10 20 30 0 10 20 30

Fig. 5. Visualization of training and testing data in the SSL-based method. We
utilize two typical features of I3 and 6y, — 0y, to visualize the complexity
of the classification task in a two-dimension plot and to depict the SSL
classification process of the unlabeled data. The corresponding data is rescaled
and standardized using the following equation: ¥ = %, where X is
the vector of the original data, Y is the rescaled and standardized vector,
Xomin is the minimum data value in the corresponding vector, and o is the
standard deviation of X. In this figure, 25% data are labeled.

To further investigate the accuracy of the SSL-based
method, we demonstrate the performance of the generative EM
method in comparison with two discriminative models. Table
II reveals and quantifies the improvement in fault detection
as the percent of labeled data grows. To maintain a fair
comparison, we randomly select the labeled data, which means
that the quality of data during SSL varies case to case.
Despite the performance oscillation due to the goodness of
data, the precision, recall and F1 score have a trend to rising
as the percent of labeled data increases. Through horizontal
comparison, it is easy to see that EM method outperforms
k-nearest-neighbors and information-theoretic method.

C. HIF Location

Here, u-PMUs are used to take measurements from the
source side and six main lines such as 2-3, 4-5, 7-8, 9-10, 11-
12, 15-16. These measurements are utilized to simulate and
analyze 18 HIF events. And, exercises results show that HIF
events are found on these lines as mentioned above.

As per [5] location error is Location error =
estimated d‘iitﬁgclz;gat;t“al distance . 100%. To test the HIF location

system, many HIFs are generated on the line connected
between bus 2 and 3 in Fig. 4, of the distribution feeder and
results are shown in Fig. 6. The estimated error using linear
least square estimation (LSE) method in [5] is compared
with these results mentioned above. Here, the line under
test in the benchmark system is 4.167km long. Therefore,
the proposed method has more data points than the method
tested in [5], which is 0.6 km long only. And, due to small
line length, fault impedance plays a dominant role in the
calculation of the estimation error while the fault is near the
measurement unit but the fault impedance does not deviate
from the location estimation error.

35 ; ;
=B The proposed method
30 =@ Method in [5] 1
X
=25t
£
Q
H20 A
- 1. Proposed method reduces
;C% 15 errors significantly!! — =7
£10 ---" 1
w -
=a) -~
5 - ~ 2. Distance increases > Errors |
0 --" , grows only moderately!!
0 0.5 3 3.5 4

1.5 2 2.5
Fault Distance (km)

Fig. 6. Fault location error comparison. HIF impedance follows the uniform
distribution in the proposed method. Line length in the proposed method:
4.167 km. Line length in [5]: 0.6 km.

Moreover, HIF location estimation approach and results
discussed here illustrate the remarkable improvement com-
pared to the HIFs location estimation method and results. For
example, it is difficult to locate HIF in [5] due to measurement
devices and the approach limitations if the line is 4 km long.
But, if the line is shorter than 1 km, then error rate is smaller
than 6% compare to [5]. Here, the focus of discussion aims to
eliminate the difficulties associated with the identifying HIF
location. After the HIF detection, utility management makes
a public announcement to illuminate potential danger and
initiate an operation to discover for the ground touch conductor
as a conventional approach [3]. Here, it is required to conduct
an operation to discover the downed conductor for only 20%
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Fig. 7. Our self-develop software with HIF detection and location scheme.

of the line to make a safe environment as per the approach
discussed above.

D. Commercial Software

To commercialize the HIF Detection and Location software,
we create a GUI application with Python cross-platform GUI
toolkit PyQt. Its interface is shown in Fig. 7, whose function-
ality includes Feature Extraction, SSL-based HIF Detection,
HIF Location System, and HIF Alarm and Execution System.
We have commercialized this software. Our industrial partners
also test the software.

V. HARDWARE EXPERIMENT PLATFORM

To simulate and prove the discussed HIF detection and loca-
tion method, a hardware experiment setup has been prepared
by the authors as per shown in Fig. 8. This model consists of
a real-time 25 kV feeder and a number of u-PMUSs to process
CTs and PTs analog output of the simulator via amplifiers. 3-¢
current and voltage signals of the specific bus are processed by
the p-PMUs and feature data is sent to the PDC. Furthermore,
discussed HIF detection and location algorithm is embedded in
the PC with the all programmed functions. Here, HIF location
and detection scheme efficiency are tested on six lines as
shown (named after from bus - to bus) in Fig. 4, and results
associated with testing are stated in Table III. In addition to
this, experiments to recognize HIF and its time from available
measurements for the HIF at 30%, 60%, and 90% of the length
of the line location under research.

There are two p-PMUs installed in the simulation to collect
data. And, the algorithm processing and HIF clearing time
are not critical in this method due to reasons discussed in
section IV-D about sending line dispatchers to search. Plus,
this method is a backup protection scheme to detect the
HIFs that legacy protective relays cannot detect. While some
of the existing and undeveloped work has already shown
response time below 200 ms. Moreover, this system is not fully
developed in terms of the backloop of a tripping signal to the
appropriate circuit breaker. Therefore, the interface between

the HIF detection algorithm and the circuit breaker is our
future work.

-y

Real-time simulator )

-
4

Distribution
networks

-

HIF monitoring
and location
scheme

S R R :
. H R + Ethernet
H Gateway

PC
. .
. - .
(A—

Fig. 8. The hardware experiment platform. The red dotted lines indicate
physical connection among real-time simulator, p-PMUs, PDC, Ethernet

gateway and PC.
TABLE III
HARDWARE EXPERIMENT RESULTS OF THE HIF DETECTION TIME.

Location of line 2-3 45 78
469 482 488

9-10
514

11-12
491

15-16
470

Avg. detection time (ms)

VI. CONCLUSIONS

Edge devices such as ;-PMUs are generating a large amount
of data everyday. This paper proposes to utilize u-PMUs
for HIF detection and location. An EM method on semi-
supervised learning is proposed to recognize HIFs, avoiding
the cost of high volumes HIF data labeling. After identifying
the faulty range with a voting mechanism and the impedance
probability models, HIF location can be predicted accord-
ingly. The results of the fault location function show a small
estimation error with the help of u-PMUs, in comparison
with previous work. Furthermore, the HIF detection time
obtained from hardware-in-the-loop simulation demonstrates
a promising result.
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