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Abstract—Under the trend of deeper renewable energy in-
tegration, active distribution networks are facing increasing
uncertainty and security issues, among which the arcing fault
detection (AFD) has baffled researchers for years. Existing
machine learning based AFD methods are deficient in feature
extraction and model interpretability. To overcome these limita-
tions in learning algorithms, we have designed a way to translate
the non-transparent machine learning prediction model into an
implementable logic for AFD. Moreover, the AFD logic is tested
under different fault scenarios and realistic renewable generation
data, with the help of our self-developed AFD software. The
performance from various tests shows that the interpretable
prediction model has high accuracy, dependability, security and
speed under the integration of renewable energy.

Index Terms—Arcing Fault Detection, Distribution Networks,
Power System Protection, and Renewable Energy.

I. INTRODUCTION

ESEARCHERS and engineers have kept on exploring

new ways for AFD since the 1970s. Arcing fault (AF)

is usually associated with an undowned or downed conductor.
The undowned conductor scenario involves the contacts be-
tween overhead lines and tree limbs that have large impedance.
Similarly, if a downed conductor falls on a poorly conductive
surface such as sand, asphalt, grass, soil, and concrete, the fault
current might be too low to reach the pickups of traditional
ground overcurrent relays. Additionally, the past two decades
have witnessed a rapid growth in distributed energy resources
(DERs) worldwide. This trend has added more uncertainties
on top of AF’s irregular, non-linear and asymmetric attributes.
At the early stage, enhancements of conventional relays are
proposed, leading to a proportional relaying algorithm [1],
impedance-based method [2], and PC-based fault locating and
diagnosis algorithm [3]. However, these methods are ineffec-
tive in detecting AFs with a low fault current. For this problem,
harmonics patterns are utilized to capture AF characteristics,
such as magnitudes and angles of 3"¢ and 5 harmonics
[4], even order harmonic power, and interharnomic currents.
Besides, a Kalman-filter-based method is proposed to monitor
harmonics in AFDs. This type of method actively injects
higher than fundamental frequency signals like positive/zero
voltage signals into the grid for AFD. Unfortunately, most
of these attempts at addressing AFD issues rely on simple
thresholds and logic, which lack a systematical procedure that
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determines the most effective features for various distribution
systems and scenarios during AFs. Therefore, it is getting
necessary to introduce a systematic design for a learning
framework so that information gain in high-dimensional cor-
relation can be quantified for better AFDs.

With the advancement of artificial intelligence, methods
on expert systems, neural networks, and machine learning
are gaining popularity in recent years. Wavelet transform
is adopted to extract data and Bayes classifier to differen-
tiate fault cases. Wavelet transform is also used and the
classification method used here is the nearest neighborhood
rule. Originating from the analysis and processing of geo-
metrical structures, mathematical morphology (MM) method
is presently gaining popularity in data extracting upon the
inception of fault, [5] proposed a method based on MM
alone to detect AFs, while some papers combined MM with
neural network, and support vector machine (SVM). Moreover,
principal component analysis and SVM are utilized. The
aforementioned machine learning methods share a common
drawback in model interpretability — their prediction models
are non-transparent and therefore not explainable. From the
implementation perspective, this issue is vital since a non-
transparent model causes tremendous problems to application
engineers, even though we assume future application engineers
have acquired necessary training on neural networks, Naive
Bayes, nearest neighborhood, etc.

This paper proposes a framework that bridges the gap
between the non-transparent machine learning algorithm and
a real detection logic. Specifically, the AFD features are
firstly engineered to reduce their dimension through feature
extraction method. Then, the induction method of decision tree
is deployed for model interpretability. Subsequently, the AFD
logic is designed by considering a variety of realistic issues in
its application. It provides practical insights on utilizing ma-
chine learning based prediction model. Furthermore, we have
developed an AFD software that automates this process. The
numerical validation conducts a comprehensive fault analysis
and compares the performance of the proposed method with
five other methods over six evaluation metrics. This paper
contributes to use variable-importance-based feature selection
method to identify an effective feature set out from a large
feature pool. Specifically, we conduct a systematic design of
AF feature pool by looking into when the fault happens, how
long it lasts, and what the magnitude of the fault is. For when,
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Fig. 1. The current waveforms upon AF. The upper waveform shows the
instantaneous and RMS AF currents during 1 sec. The lower waveform is
zoomed in from the upper waveform from 0.5 to 0.6 sec.

we first calculate different quantities such as active power and
reactive power based on the voltage and current time series.
Then, we use the derivative of these quantities to tell when
there is a potential change due to AF.

This paper has the following structure: Section II introduces
the AF modeling techniques. Section III explains the formula-
tion of the interpretable AFD model. The details of the AFD
logic is elaborated in Section IV, followed by the performance
analysis in Section V. Section VI presents the conclusions.

II. MODELING OF ARCING FAULTS

Although AF phenomena are difficult to model in general,
there are mainly three ways to model AFs including both
downed and undowned types for analysis. Each way provides
acceptable similarity with real AFs from its own perspective.
In the following, we briefly explain each of them and the
motivation behind the chosen model.

o The first one is called the transient analysis of control
systems (TACS) controlled switch. This model emulates
arc conduction, re-ignition, and extinction. The advantage
of this model is the adjustable phase difference between
the applied voltage and fault current.

o The second way originates from the Kizilcay model
which utilizes a dynamic arc model derived from the
viewpoint of control theory based on the energy balance
in the arc column.

o The third way of modeling AF is the employment of
two anti-parallel DC-sources connected via two diodes,
plus two variable resistors. The nonlinear impedance was
included to add the non-linearity of fault current [4].
Later on, the model is extended with two anti-parallel
DC-sources connected via two diodes, which modeled
the asymmetric nature, as well as the intermediate arc
extinction around current zero. This kind of model is
able to model the effective impedance and thus the
randomness of the resulting fault current.

Due to the ease of implementation in Matlab Simulink for
multiple simulations to realize the proposed machine learning-
based method, we employ the third model. In addition, we
further improve this model by replacing the two variable
resistors with two controlled resistors. Each controlled resistor
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Fig. 2. Realistic renewable energy data from industrial partners. Red line:
averaged PV generation and EV load curve. Grey line: individual curves.
has an integrator to represent the moisture changing process in
the vicinity of the point of contact of the conductor with the
ground, a randomizer to introduce more randomness during
AF and a first-order transfer function to tune the response to
the introduced randomness.

The adopted model is, therefore, more accurate, since the
moisture change and system dynamic response are incorpo-
rated. The obtained AF current waveforms are presented in
Fig. 1, which clearly displays the irregular and decreasing
current waveforms upon an AF. Test results of this AF model
reveal a good modeling performance and are validated in the
simulation and field test results.

III. INTERPRETABLE ARCING FAULT DETECTION METHOD

To generate an interpretable detection model, we propose
an interpretable AFD method. The expert knowledge and the
system information are firstly needed before collecting all
necessary data. After data preparation, we rely on feature
extraction to reduce the dimension of the input signals. After
that, different induction algorithms are examined. We finally
choose the decision tree classifier to translate the prediction
model into an AFD logic, which is elaborated in Section IV.

A. Data Preparation: System-level Events

Data preparation is assisted with the expert knowledge of
useful system-level events. The adopted technique is trans-
ferable on different feeders because the event category and
event type in Table I are suitable for most of the distribution
feeders during the training. In our study, we include realistic
generation data from PV and load data from electric vehicle
charging stations, the purpose of which is to avoid false
tripping of the proposed pattern recognition method under
deep penetration levels of renewables. Fig. 2 depicts the typical
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curves from our industrial partner. We run simulations at spot
load by integrating realistic distributed generation and load
over a 24-hour horizon.

TABLE I
EVENT CATEGORY OF SYSTEM UNDER STUDY

Event Category Event Type Number
of Events
System Operating Loading Condition (30%-100%) 8
Condition DER Tech. (SG, inverter, hybrid) 3
Type 1: SLG, LLG, LL, LLLG 10
Type 2: Downed conductor 3
Fault Event Fault impedance 6
Inception Angle (0°, 30°, 60°, 90°) 4
Fault location 3
Normal State 1
Non-fault Event Load Switching 6
Capacitor Switching 2

Moreover, the event category in Table I is flexible and can
be tailored for other special systems by adding or deleting
some of them. In this case study, comprehensive scenarios are
considered in the event category. A loading condition ranging
from 30% to 100%, in a step of 10%, is simulated. Further-
more, eight loading conditions and three DG technologies are
examined respectively on top of the base case scenario.

B. Feature Selection for Arcing Fault

If we have to use hundreds of features for AFD, its applica-
bility is compromised. Therefore, it is necessary to identify key
feature set and reduce the data amount. We elaborate on the
way of selecting the key features in this section. The variable-
importance in feature evaluation is firstly explained, followed
by the selected feature set.

1) Variable-importance in Feature Evaluation: An effective
and unbiased feature evaluator is required to calculate the
merit of each tested feature before the classification between
AF event and non-AF event. Here, we take advantages of
the information gain and minimum description length (MDL)-
based discretization algorithm to select important features
during AF. For the convenience of power background readers,
we call MDL score the variable of importance in this paper.

The score of variable-importance is one type of selection
measures in machine learning. The problem of selecting the
best attribute can be stated as the problem of selecting the most
compressive attribute. Assuming that all features are discrete,
the objective is to find the best features that maximize the
selection measure. Let C, A and V denote the number of
classes, the number of features, and the number of values
of the given feature. With this notation, we have the entropy
of the classes Ho = — ZZ pi. log p;., the values of the given
feature H4—> . p. ;j log p_;, the joint events class-feature value
Hop = — Zl ; Dij log p;;, and the classes given the value
of the attribute Hojga = Hoa — Ha, where p;; = ni;/n.,
pi. =ng/n., pj=n;/n. and p;; = ni;/n;. “n.” denotes
the number of training instances and “n;” is the number of
training instances from class C;, n_; is the number of instances

with the j-th value of the given attribute, and n;; is the number
of instances from class C; with the j-th value of the given
attribute. The approximation of the total number of bits that
are needed to encode the classes of n _ is:

Prior MDL' = n..Hc + log (4971, (1

and the approximation of the number of blts to encode the
classes of examples in all subsets corresponding to all values
of the selected attribute is:

Zn HC|J +Zlog

The last term (log A) is needed to encode the selection of an
attribute among A attributes. However, this term is constant
for a given selection problem and can be ignored. The first
term equals 7 H¢| 4. Therefore, the MDL' measure evaluates
the average compression (per instance) of the message by an
attribute. The measure is defined by the following difference,
Prior MDL’ — Post MDL/, normalized with n_:

MDL' = Gain + —<log (™dh

—Zlog o 1)). 2)

However, entropy Hc can be used to derive MDL' if the
messages are of arbitrary length. If the length of the message
is known, the more optimal coding uses the logarithm of all
possible combinations of class labels for a given probability
distribution:

Prior MDL = (,, "

Post MDL' = ) +log A.

ne ) Flog (AT, 3)

Similarly, if we use the priori minus the posterior of the
MDL, we have

MDL = i((
n.. \ o

Zl % (o, e,
Zlog ))

2) Effective Feature Set (EFS): To get an EFS using the
score of variable-importance, we systematically design a pool
[6] with many practical and reliable features widely used in
microprocessor-based relays. Currently, we have 246 features
in the feature pool, as indicated in [7]. Some of them are
discrete Fourier transform (DFT) based, while others are
Kalman Filter (KF) based. But many other features in the
literature can be added to the feature pool. The feature pool is
flexible and expandable to maximize the AFD accuracy. Table
IT summarizes the obtained EFS for unbalanced AFD.

4)

+10g 71 +C’ 1

TABLE I
REFERENCE TO THE UNBALANCED FAULT DETECTION FEATURES IN EFS

Features in EFS Reference

Vo, Is [4], [8]

Ovy, — Oy, 01, — 01, [41, [9]

KF_V,_cos_H3
KF V,_sin_H3

[4] (3rd harmonic), [10] (KF and low-order odd
harmonic), (KF harmonic decomposition)
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Remark 1. These features are extracted mainly through two
techniques: DFT and KF. Both techniques are simple, reliable
and implementable in engineering fields. The DFT is used to
capture the majority of physical quantities in fault detection
as is widely used in microprocessor-based relays. On the other
hand, the utilization of the KF-based algorithm is motivated
by the fact that it can accurately track the harmonics and
inter-harmonics coefficients at given frequency components.

IV. FROM INTERPRETABLE DECISION-TREE MODEL TO
ARCING FAULT DETECTION LOGIC

Inspired by the tree structure of the machine learning
classifier, we further explore the possibility of relating the EFS
and the detection logic using simple thresholds as most of the
commercial products and patents do. Statistically, since three-
phase faults take up only 2% — 3% of the fault occurrences,
an AFD logic is designed in this regard for unbalanced AFs.

The AFD logic is targeted to be implemented in a
microprocessor-based digital relay. Before the explanation of
the AFD logic, the logic circuit is presented first in Fig. 3.
Generally, the proposed AFD scheme updates its comparison
and decision logic according to the obtained tree structure.

\I/;bc DFT SDFT
17"—* Tnj
EDFT ref E F
— System . Comparison s Decision Output
Characteristic . .
— = Logic — Logic
Averager SKE ref Bxr
z=
KF =
SKF

Fig. 3. The proposed AFD logic scheme.

As indicated in the detection logic, three-phase voltage and
current signals are sent to DFT and KF for feature extraction.
This section takes the obtained EFS in Section III-B as an
example. (5) and (6) show the extracted instantaneous signals
after the DFT and KF blocks:

Sprr = {s1,52 83,84} = {Va, Lo, 0v, — vy, 01, — 01, }, (5)

Skr = {s5, 56, 57, 88, 89, 510} = {KF_V,_cos_H3,
KF_V,_cos_H3, KF_V,_cos_H3,KF_V,_sin_H3,
KF V,_sin_H3,KF_V,_sin_H3}.
(6)
A. System Characteristic Averager

The inputs of the System Characteristic Averager are the
extracted instantaneous signals after the DFT and KF blocks.
Meanwhile, the time duration 7' needs to be provided to this
averager. Specifically, the System Characteristic Averager has
a memory that stores the signals for a predefined duration
of T = {tl, to,ts, tq4,15,t6, t7,ts,to, t10}. In other words,
T is the time constant that is a vector of ten elements
associated with Spprr and Sk . The input signals are stored
and calculated at every 18,000 cycles (5 minutes) [4]. The
five minutes interval is subject to change depending on the
case-specific analysis.

B. Comparison Logic

The block of Comparison Logic is depicted in Fig. 4.
Based on the feature extraction technique discussed in Section
III-B, the extracted instantaneous signal s; can be understood
as the system background signal superimposed by the extra
signal contributed from the AF behavior. The comparison is,
therefore, made between the extracted instantaneous signal s;
and its reference value s; ..y [4].

Si

|~<

Sign bi

Si_ref

Fig. 4. Comparison Logic in the proposed AFD logic.

The sensitivity gain of k; is incorporated in order to 1) set
the margin of detection and 2) add a handle to the detection
sensitivity. The undefined parameter of K stands for:

(7

The sensitivity gain K is set at 1.2 (adjustable for each
element). The 20% above and below margin is adjustable and
is taken as a typical blackout region where the AF tripping is
not required [4]. This k; value can be set to close to 1.0 after
getting more confidence in AFD scheme. After the summation
block in Fig. 4, a Sign function is employed to output “1”” when
input is larger than zero. The output of the comparison logic
is the comparison assertion bit of b; (i = 1,2,---,10) and B
is the input to the decision logic.

K = {ki, ko, ks, ka, ks, ke, k7, ks, ko, k10}.

C. Decision Logic

As mentioned in the previous subsection, the comparison
assertion bit of b; (¢t = 1,2,---,10) is the output of the
comparison logic in Fig. 4. The decision logic in Fig. 5, is
the execution part of the AFD logic. There are four groups of
signal bits:

b1

b2 AND>7
b3

ba

bs

be

b7

bs

b9

bio

bbiock

Time Dela;

AND (To)

Fig. 5. Decision Logic in the proposed AFD logic.

1) DFT-based assertion bits. The four bits go through an
AND gate. If any of the four signals are not asserted,
the decision logic will not be set high.

2) KF-estimated in-phase components of third harmonic
voltage. If none of the three-phase in-phase components
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of third harmonic estimated from the KF gets asserted,
the decision logic will not be set high.

3) KF-estimated in-quadrature components of harmonic
voltage. If none of the three-phase in-quadrature com-
ponents of third harmonic estimated from the KF gets
asserted, the decision logic will not be set high.

4) The blocking bit byocr. If this bit is 1, the detection
logic is blocked and none of AF events can be detected;
if this bit is 0, AFD is enabled.

A time delay of Tp is implemented because an appropriate
selection of Tp can effectively avoid the false operation
resulting from normal switching, which sometimes contributes
to third harmonics. The output of the AF logic is either
alarming or tripping signal.

V. PERFORMANCE TEST OF THE PROPOSED AFD LoOGIC

A. Testing Environment

The benchmark system utilized can be found in Fig. 6. It
has a 9 MVA synchronous generator and a 1 MVA PV system.
The proposed AFD logic is tested under 7884 new scenarios:
7776 unbalanced faults and 108 non-faults. To overcome the
imbalance in the samples, the synthetic minority over-sampling
technique (SMOTE) is employed to generate synthetic samples
and shift the classifier learning bias towards minority class
[11]. The fault locations under testing include faults near B-
3, B-11, and B-16. Similar to the work in [4] and [5], the
measurement point is at the substation. Its sampling frequency
is 2,000 Hz. The time delay in Fig. 5 is set to 100 ms. The
average fault detection time is 0.126 sec using a real-time
simulator. The signals measured are the voltage and current.
The features used are derived from the measured signals and
can be found in the EFS in Table II.

B-23

™

B- 17 B- 16 B-lS

L-18
B-14 B-13 B-12 " B-11 B-10 B-9

T rmtmﬁc’si'ﬁ“

LZG L25 L-24 123 L-22L-21

Utility T1 I I
&I o
CB-1 CB-2
SClevel:

1000MVA 15 MVA
120 k- 25 kV

A-Yg

Fig. 6. Single line diagram of distribution feeder under study.

B. Performance of the AFD Logic

In order to compare the proposed technique with some
existing ones in the field, we borrow the concepts of true
positive (TP), true negative (TN), false positive (FP), and false

negative (FN)! from statistical classification, and define them
and their related evaluation criteria [12] as follows:

A= TP+TN
o Accuracy: A = TP+FP$TN+FN(7
o Dependability: D = 7555
o Security: § = 7=-—=%.
e Speed: V = %% where  Tone—cycle and

Tdetection are the time duration of one cycle and the
detection time respectively.

¢ Objectivity (OBJ): the objectivity to fault type and net-
work, indicating whether the technique is objective to the
type of fault, and the network topology.

o Completeness (COM): the ability to hold important in-
formation, indicating the time window of the data that is
needed for the method to make the crucial decision.

The AFD logic performance is tested against realistic renew-
able energy data (refer to Fig. 2) from our industrial partners.
We also compare the performance of the AFD logic with four
representative AFD methods in [4], [12]-[14], as well as the
combined conventional relay elements (including frequency,
over/under voltage, over current) in Table IIl. The methods
in the comparison group cover logic-gate based AFD, wavelet
domain analysis, time-frequency domain analysis, and pattern
recognition techniques.

TABLE III
AFD LOGIC PERFORMANCE TESTED AGAINST REALISTIC RENEWABLE
ENERGY DATA.

. A D S
Solution under test (%) (%) (%) \%

The proposed EFS and

AFD logic 983 983 982 0.13 No Yes
The work in [4] N/A 690 90.7 N/A No Yes
The work in [12] 93.6 100 81.5 1.00 Yes Yes

0.25 No No
0.11 No Yes

The work in [13] 96 90 100
The work in [14] 949 90.0 90.9

Combined conventional
relay elements

Note: N/A stands for “Not Available” in this table.

49.1 0.0 98.2 N/A Yes Yes

Comparing with the other five methods in Table III, it is
indicated that the proposed method has a superior overall
performance in terms of the six evaluation criteria. For ex-
ample, the detection accuracy of the proposed method is the
highest among the solutions under test; its detection speed
(1/60/0.126 = 0.13) is not the fastest but fits well in the AF
detector requirements on response time. The detection time of
less than 1 second, which means the minimum speed of 0.017
in a 60 Hz network is viewed as a conservative setting [5].

C. Fault Scenario Analysis

We have tested the EFS in various fault impedance and
locations. The quantifier for evaluation is the variable of

ITP: the number of correctly detected fault events. TN: the number of
correctly detected non-fault events. FP: the number of incorrectly detected
fault events but they are actually non-fault events. FN: the number of
incorrectly detected non-fault events but they are actually fault events.
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Fig. 8. Variable-importance at different fault locations.

importance explained in Section III-B1. In general, the EFS
is robust in all fault scenarios. Specifically, we plot Fig. 7
to provide the impact of fault impedance on the variable-
importance. To be practical, this paper investigates the fault
impedance up to 5002 to cover typical AFDs whose fault
currents are as low as 10 amps. It is concluded that the negative
sequence of voltage and current are the most reliable features
that can keep unaffected during any unbalanced fault upon a
varying fault impedance. We also notice that the feature of
the angle difference between negative sequence voltage and
zero sequence voltage is vulnerable to high fault impedance,
and the third harmonic components estimated from KF gets
slightly deteriorated when the fault impedance increases.

The variable-importance of the features in EFS is presented
at three fault locations (refer to Section V-A). The result is
demonstrated in Fig. 8, including all fault impedance and
all fault inception angles in Table I. The feature of negative
sequence current keeps being unaffected at each location.
However, the negative sequence of voltage is so low at location
1 and 2 that the variable of importance becomes almost zero.
As the strong voltage source from the substation is ideally
balanced, the negative sequence voltage deviation contributed
from the AF is weak. Location 3 is selected, that is far from
the substation, so the negative sequence voltage becomes a
good AF indicator again. To a negligible extent, it is similar
for the variable of importance performance of other features:
the further the fault is, the less compromised the features are.

VI. CONCLUSIONS

This paper proposes a new framework for AF detection
and classification. By introducing the MDL-based algorithm
to rank a pool of systematically designed features, an effective
feature set is generated. The detection capability of such
a ranked feature set is evaluated through a comprehensive
fault analysis. Furthermore, an interpretable AFD logic is
successfully implemented based on the extensively used tech-
niques of DFT and KF. It is shown that the proposed method
achieves significantly enhanced performance in AFD with the
effective feature set in different scenarios and that the proposed
AFD logic exhibits satisfactory dependability, security, and
detection time using the real-time simulator.
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