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Abstract

We present a deterministic, truly subquadratic algorithm
for offline (1 + ε)-approximate nearest or farthest neighbor
search (in particular, the closest pair or diameter problem)
in Hamming space in any dimension d ≤ nδ, for a suf-
ficiently small constant δ > 0. The running time of the

algorithm is roughly n2−ε1/2+O(δ)

for nearest neighbors, or

n2−Ω(
√
ε/ log(1/ε)) for farthest. The algorithm follows from a

simple combination of expander walks, Chebyshev polyno-
mials, and rectangular matrix multiplication.

We also show how to eliminate errors in the previous
Monte Carlo randomized algorithm of Alman, Chan, and
Williams [FOCS’16] for offline approximate nearest or far-
thest neighbors, and obtain a Las Vegas randomized algo-

rithm with expected running time n2−Ω(ε1/3/ log(1/ε)).
Finally, we note a simplification of Alman, Chan,

and Williams’ method and obtain a slightly improved
Monte Carlo randomized algorithm with running time

n2−Ω(ε1/3/ log2/3(1/ε)).

As one application, we obtain improved deterministic

and randomized (1+ε)-approximation algorithms for MAX-

SAT.

1 Introduction

We consider the well-known approximate nearest neigh-
bor search (ANN) problem in high dimensions: prepro-
cess a set B of n points in d-dimensional space so that
given a query point r, a point b ∈ B can be found that
is within a factor 1 + ε of the closest distance to r.
It is hard to overstate the importance of the problem,
which has a wide range of applications, from databases
to machine learning. We will concentrate on the case
of Hamming space {0, 1}d, as known embedding tech-
niques can reduce, for example, the `1 or `2 metric case
to the Hamming case, even deterministically [10, 28].

Deterministic offline ANN. Standard techniques for
high-dimensional ANN [10], such as locality-sensitive
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hashing (LSH) [23, 21, 8, 9, 12, 11] and dimensional-
ity reduction [30, 23, 33], all rely on Monte Carlo ran-
domization. A fundamental question is whether these
techniques can be efficiently derandomized. Finding Las
Vegas randomized algorithms with comparable perfor-
mance is already a nontrivial problem, and has been the
subject of several recent papers [38, 2, 43]. Determin-
istic algorithms seem even more challenging. A deter-
ministic algorithm with subquadratic preprocessing and
sublinear query time was given by Indyk [27], but only
for computing (3 + ε)-approximations.

In this paper, we focus on the offline (or batched)
setting, where a set R of n query (“red”) points is given
in advance, along with a set B of n data (“blue”) points.
The offline problem is sufficient for many applications,
for example, computing the (monochromatic or bichro-
matic) closest pair. At the end of his SODA 2000 pa-
per [27], Indyk explicitly raised the question of finding a
truly subquadratic deterministic (1 + ε)-approximation
algorithm for computing closest (and farthest) pairs.

Our main result is a deterministic algorithm for
offline (1 + ε)-approximate nearest neighbor search in

Hamming space, running in n2−ε1/2+O(δ)

time for any
dimension d ≤ nδ for a sufficiently small constant
δ > 0. The running time almost matches a previous
randomized Monte Carlo algorithm for approximate
closest pair or offline ANN, by G. Valiant [42] (although
Valiant’s result was later superseded by Alman, Chan,
and Williams [5]).

Our algorithm consists of two parts:

(i) Solving the “main” case where the closest pair
distance is not too small, and

(ii) Reducing the general case to the main case.

In part (i), we solve the main case using Chebyshev
polynomials and rectangular matrix multiplication, as
in previous Monte Carlo algorithms by Valiant and
Alman et al. It has already been observed [5, Re-
mark 3] that such techniques can yield a deterministic

algorithm with running time n2−Ω(
√
ε/ log( d

ε log n )). The
fraction d

ε logn can be made small by applying dimen-

sionality reduction techniques [33] to bring d down to
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O((1/ε)2 log n); however, dimensionality reduction re-
quires randomization! For superlogarithmic dimensions,
further ideas are needed.

The main new idea we propose is to use expander
walks. Random walks in expander graphs are well-
studied in theoretical computer science (e.g., see [26,
41]). Our application to derandomizing ANN is simple
in hindsight—simple enough (at least in a warm-up
version without Chebyshev polynomials) to provide a
clean “textbook” application of expander walks. It may
not be obvious that the expander walk approach can
be combined with Chebyshev polynomials, but a careful
reexamination of known analyses of such walks [7] shows
that this is indeed possible.

Part (ii), reducing the general case to the main case
(i.e., “densification” to increase the distance thresh-
old), was already done implicitly, in Indyk’s determin-
istic (3 + ε)-approximation algorithm [27]. He used a
pairwise-independent family of hash functions, together
with error-correcting codes. However, the dependence
on ε gets worse with the reduction (we would lose an
entire factor of ε in the exponent). Here we describe
an improved reduction using k-wise independence for
derandomization (so only a factor of εO(δ) is lost).

It should be noted that Karppa et al. [32] has given
a deterministic algorithm for a similar problem they
called outlier correlations, which can probably be used
to solve part (i), but they obtained time bounds of the
form n2−Ω(ε), which is worse than ours. (Karppa et
al. did not explicitly consider finding closest pairs with
1+ ε approximation factor for arbitrary point sets, and
thus did not address part (ii) at all.) Their method
also used expanders, but their description appears more
complicated.

Our techniques are also applicable to (1 + ε)-
approximate offline farthest neighbor search, and in
particular, computing the farthest pair, i.e., diameter.
The deterministic running time is in fact slightly better
(n2−Ω(

√
ε/ log(1/ε))) here.

Las Vegas offline ANN. If the goal is to just elim-
inate errors in the output, better results are possible
with randomized Las Vegas algorithms. As mentioned,
there were a series of papers on turning LSH into Las Ve-
gas algorithms by Pagh (SODA 2016) [38], Ahle (FOCS
2017) [2], and Wei (SODA 2019) [43], but any (data-
oblivious or data-dependent) LSH-based method re-
quires at least n2−Θ(ε) time [34, 37] to answer n queries.

For offline approximate nearest (or farthest) neigh-
bor search, we show how to obtain a Las Vegas algo-

rithm with n2−Ω(ε1/3/ log(1/ε)) running time, matching
our earlier Monte Carlo result [5]. Not only is the
time bound better than LSH for ε sufficiently small,

but the approach is also less involved than the previ-
ous Las-Vegas-ification approaches for LSH [38, 2, 43].
Essentially, we show that the simple idea of using ran-
dom partitions instead of random samples, as first sug-
gested by Indyk [27] (and also used in part in subsequent
methods [38, 2, 43]), is compatible with the polynomial
method from [5], after some technical modifications.

Monte Carlo offline ANN. Finally, returning to
Monte Carlo algorithms, we reexamine Alman, Chan,
and Williams’ method and observe a small improve-

ment of the running time to n2−Ω(ε1/3/ log2/3(1/ε)), which
is currently the best for ε sufficiently small. The im-
provement may be minor, but the approach simplifies
one main part of Alman et al.’s probabilistic polyno-
mial construction, using an idea reminiscent to LSH,
interestingly.

An application: MAX-SAT approximation. Our
improved polynomial constructions have other appli-
cations beyond approximate nearest or farthest neigh-
bors. For example, one application is to MAX-SAT,
finding an assignment satisfying a maximum number
of clauses in a given CNF formula with n variables
and C clauses. We obtain an (1 + ε)-approximation
algorithm running in O∗((2 − Ω(

√
ε/ log(1/ε)))n) de-

terministic time, and O∗((2 − Ω(ε1/3/ log2/3(1/ε)))n)
randomized Monte Carlo time, where the O∗ notation
hides polynomial factors in n and C. Previously, a ran-
domized (1 + ε)-approximation algorithm for MAX-k-
SAT running in O∗((2 − Ω(ε/k))n) time was given by
Hirsch [25], which was improved by the deterministic
algorithms by Escoffier, Paschos, and Tourniaire [22]
running in O∗((2−Ω(ε))n) time, which in turn are im-
proved by our results here when ε is sufficiently small.

Our deterministic algorithm for MAX-SAT shows
that the problem of approximating MAX-SAT has a
fine-grained reduction (with no increase in variables)
to approximating MAX-LIN (the problem of optimally
satisfying XOR constraints); the latter can be easily
solved using a red-blue farthest neighbor algorithm.

2 Preliminaries: ANN via the Polynomial

Method

Our algorithms make use of the “polynomial method
in algorithm design,” a technique used in many recent
works on all-pairs shortest paths, the orthogonal vec-
tors problem, exact and approximate nearest neighbor
search, and related problems [46, 45, 1, 6, 16, 5, 15,
17, 4]. For two sets R,B ⊆ {0, 1}d each of size n,
a value t, and ε > 0, consider the decision version
of the approximate closest pair problem: find a pair
(r, b) ∈ R×B with Hamming distance at most (1+ ε)t,
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or conclude that all pairs have Hamming distance more
than t. We design a multivariate nonnegative polyno-

mial P
(d,s,ε)
≤t : {0, 1}d → R≥0, such that

• if x1+· · ·+xd > (1+ε)t, then P
(d,s,ε)
≤t (x1, . . . , xd) ≤

1;

• if x1 + · · ·+ xd ≤ t, then P
(d,s,ε)
≤t (x1, . . . , xd) > s.

(In other words, P
(d,s,ε)
≤t is a “polynomial threshold func-

tion” representation [5] of an approximate (unweighted)
threshold predicate; for example, for t = d/2, it is an
approximate majority.) Let P ′(x1, . . . , xd, y1, . . . , yd) =

P
(d,s,ε)
≤t ((x1 − y1)

2, . . . , (xd − yd)
2). Then for any two

sets of
√
s points X and Y in {0, 1}d, we can solve the

approximate closest pair decision problem for X and
Y by computing P ′′(X,Y ) =

∑
x∈X

∑
y∈Y P ′(x, y). If

all pairs in X × Y have Hamming distance more than
(1 + ε)t, then P ′′(X,Y ) ≤ s. If some pair has distance
at most t, then P ′′(X,Y ) > s.

Suppose P
(d,s,ε)
≤t has m monomials and degree q.

Then P ′ has m′ ≤ 3qm monomials, so we can write P ′

in the form

P ′(x, y) =
m′∑

`=1

c` ·
(

d∏

i=1

x
ai,`

i

)
·




d∏

j=1

y
bj,`
j


 .

Defining functions f, g : {0, 1}d → Z
m′

by f(x)[`] :=

c` · ∏d
i=1 x

ai,`

i and g(y)[`] :=
∏d

j=1 y
bj,`
j , we see

that P ′(x, y) = 〈f(x), g(y)〉. Thus by letting
f(X) :=

∑
x∈X f(x) and g(Y ) :=

∑
y∈Y g(y), we have

P ′′(X,Y ) = 〈f(X), g(Y )〉. Our algorithm thus pro-
ceeds by partitioning the input R (resp. B) into n/

√
s

setsX1, . . . , Xn/
√
s (resp. Y1, . . . , Yn/

√
s) of size

√
s, then

computing 〈f(Xi), g(Yj)〉 for all i, j ∈ [n/
√
s] using fast

rectangular matrix multiplication:

Lemma 2.1. ([20]; see also [45]) For all sufficiently
large N , multiplication of an N × N0.172 matrix with
an N0.172 × N matrix can be done in O(N2 log2 N)
arithmetic operations over any field.

Setting s so that 3qm ≤ (n/
√
s)0.172, we obtain

a final running time of Õ(n2/s)1 (all intermediate
numbers will have polylogarithmically many bits).

In most applications of the polynomial method, the
number m of monomials is typically bounded using the
degree q of the polynomial: Since the inputs are only

0/1, we may assume P
(d,s,ε)
≤t is a multilinear polynomial

(i.e., ai,`, bj,` ∈ {0, 1} for all i, j, `). Hence for q ≤

1Throughout the paper, the Õ notation hides polylogarithmic
factors.

d/2, the polynomial has m ≤
∑q

i=0

(
d
i

)
≤ O(d/q)q

monomials.2

However, a key message of this paper is that we
can sometimes get better algorithms by optimizing the
number m of monomials directly, instead of optimizing
just the degree.

Once the approximate decision problem has been
solved, we can solve the approximate closest pair prob-
lem by binary search (or more simply, linear search over
the logarithmically many powers of 1+ε). Offline ANN
can be solved in a similar way, for example, by not di-
viding R into groups, but dividing B into n/s groups of
size s (resulting in the multiplication of an n×m′ and

m′ × (n/s) matrix, which takes Õ(n2/s) time provided
that 3qm ≤ (n/s)0.172). Alternatively, there is a direct
reduction from offline ANN to approximate closest pair
[6, Theorem 4.4].

When designing randomized algorithms, it suffices
to use a probabilistic polynomial that has small error
probability (O(1/s)) on every fixed input. A probabilis-
tic polynomial P : {0, 1}d → R is a distribution on
d-variate polynomials over the integers. We will abuse
notation and write P for both the probabilistic poly-
nomial and a polynomial drawn from the distribution.
We say P has degree at most q if all polynomials in the
support of P have degree at most q, and similarly for
the number of monomials. We similarly define a prob-
abilistic pair of polynomials as a joint distribution on
pairs of polynomials.

When designing Las Vegas randomized algorithms
in particular, our idea is to impose extra conditions on
the probabilistic polynomial—that if the output value
lies in a certain range (e.g., [0, 1]), correctness of the
answer is guaranteed, but if the output value is outside
the range (which will occur with low probability), the
answer may be erroneous. A similar strategy was used
in some probabilistic polynomial constructions over the
integers by Beigel et al. [13] and Tarui [40].

3 Deterministic Algorithms

In this section, we present a deterministic algorithm for
offline (1 + ε)-approximate nearest neighbor search in

Hamming space, with running time near n2−ε1/2+O(δ)

for all dimensions d � nδ for a sufficiently small
δ > 0. As mentioned, it suffices to focus on the
approximate decision problem: decide whether the
closest pair distance, or each nearest neighbor distance,
is approximately smaller than a fixed threshold t :=
α0d.

We first solve the problem for the main case when

2This follows since, by Stirling’s approximation, for k ≤ n/2,
we have

(n
k

)
≤ (en/k)k.
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α0 is not too small (i.e., α0 � εO(δ)). Afterwards, we
describe how to reduce the general case to this main
case.

3.1 When α0 is not too small. As explained in
Section 2, the key is in the construction of a polynomial
for the approximate unweighted threshold predicate.
Specifically, we will prove the following theorem:

Theorem 3.1. Given d, s, and β0, ε ∈ (0, 1), we can

construct a nonnegative polynomial P
(d,s,ε)
≥β0d

: {0, 1}d →
R≥0 with O(

√
1/ε log s) degree and dsO(

√
1/ε log(1/εβ0))

monomials, in Õ(dsO(
√

1/ε log(1/εβ0))) deterministic
time, such that for every x = (x1, . . . , xd) ∈ {0, 1}d,

• if x1 + · · ·+ xd ≤ β0d, then P
(d,s,ε)
≥β0d

(x) ≤ 1;

• if x1 + · · ·+ xd > (1 + ε)β0d, then P
(d,s,ε)
≥β0d

(x) > s.

* Warm-up: Derandomization with 1/ε dependency.
To warm up, let us consider proving a weaker

version of Theorem 3.1, with O((1/ε) log s) degree and
dsO(1/ε) log(1/εβ0) monomials.

The simplest polynomial satisfying the above prop-
erties is

P
(d,s,ε)
≥β0d

(x1, . . . , xd) =
1

(β0d)q
(x1 + · · ·+ xd)

q,

of degree q = log1+ε s = O((1/ε) log s). However,

the number of monomials is O(
(
d
q

)
) = O(d/q)q =

sO((1/ε) log(d/ log s)), which is too big when d is super-
logarithmic. For our nearest neighbor application, di-
mensionality reduction can be applied first to bring d
down to O((1/ε)2 log s), making the extra log(d/ log s)
factor tolerable, but this requires randomization, which
we are trying to avoid.

To reduce the number of monomials, one simple
way is to take a random sample of the monomials. By
a Chernoff bound, it may be checked that a sample
of size about (1/β0)

O(q) = sO((1/ε) log(1/β0)) gives good
approximation with high probability, and by the union
bound, this holds for all x ∈ {0, 1}d. This approach can
thus prove the existence of a polynomial with a small
number of monomials, but an efficient deterministic
construction is not obvious. For example, by viewing a
sum of monomials of degree q with equal coefficients as a
q-uniform hypergraph, the problem is essentially about
deterministic constructions of pseudo-random or quasi-
random hypergraphs (in the sense of having bounded
“discrepancy”), but known constructions that we can
find in the literature [18, 24] appear too weak for our
application.

We observe that derandomization actually follows
from a simple application of expander walks! Specif-
ically, we use the following lemma by Alon, Feige,
Wigderson, and Zuckerman [7, Proposition 2.4] (the
upper-bound direction was established earlier [3, 31] and
can be found in textbooks [35, 41], but we need both di-
rections in our application).

Lemma 3.1. (Expander Walk Lemma) Let H be a ∆-
regular graph on d vertices, and let λ be the second
largest eigenvalue in absolute value of the normalized
adjacency matrix. Given a subset B of βd vertices and
a number q, let N(B, q) be the number of walks in H of
length q that stays inside B. Then for any even q,

|B|∆q(β−λ(1−β))q ≤ N(B, q) ≤ |B|∆q(β+λ(1−β))q.

Let H be a ∆-regular graph over vertices {1, . . . , d},
with λ = Θ(1/∆c0) for some constant c0 > 0; the
“ideal” value is c0 = 1/2, and known explicit expander

constructions can give such an H in O(d∆ logO(1) d)
time for certain values of c0 [26] (see also [39, 19]).
Choose ∆ so that λ = εβ0/3 (i.e., ∆ = Θ((1/εβ0)

1/c0)).
Let q be an even number, to be set later. For x =

(x1, . . . , xd) ∈ {0, 1}d, we define our polynomial P
(d,s,ε)
≥β0d

as

P
(d,s,ε)
≥β0d

(x) =

∑
length-q walk i0 · · · iq in H xi0 · · ·xiq

β0d∆q(β0 + λ)q
.

Analysis. Suppose that x1 + · · · + xd =
βd. Letting B = {i : xi = 1}, we see that∑

length-q walk i0 · · · iq in H xi0 · · ·xiq is precisely N(B, q).
By Lemma 3.1,

β

β0

(
β − λ

β0 + λ

)q

≤ P
(d,s,ε)
≥β0d

(x) ≤ β

β0

(
β + λ

β0 + λ

)q

.

If β ≤ β0, then P
(d,s,ε)
≥β0d

(x) ≤ 1. On the other hand,

if β > (1+ε)β0, then P
(d,s,ε)
≥β0d

(x) ≥ (1+Ω(ε))q, which can
be made greater than s by setting q = Θ((1/ε) log s).

The polynomial P
(d,s,ε)
≥β0d

has degree q + 1, and the

number of monomials is O(d∆q) ≤ d(1/εβ0)
O(q) =

dsO((1/ε) log(1/εβ0)).
Karppa et al. [32] described a similar result using

expanders, but their description and analysis appear
more complicated (which makes it difficult to combine
with Chebyshev polynomials, as we will do next). They
started with the standard expander mixing lemma (in-
stead of expander walks) and used repeated approxi-
mate squaring, with more complex calculations.

* Derandomization with
√
1/ε dependency.

To improve the degree from O((1/ε) log s) to
O(
√
1/ε log s), we use Chebyshev polynomials, as in
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Valiant [42] and Alman, Chan, and Williams [5]. Let Tq

denote the degree-q Chebyshev polynomial of the first
kind, which achieves better “gap amplification” than
the more naive polynomial xq. Specifically, the main
properties we need are:

• if |x| ≤ 1, then |Tq(x)| ≤ 1;

• if x ≥ 1 + ε, then Tq(x) ≥ 1
2e

q
√
ε.

Chebyshev polynomials have both positive and neg-
ative coefficients; naively applying Lemma 3.1 to each
term of the Chebyshev polynomial does not work. We
generalize Alon et al.’s proof of Lemma 3.1 as follows:

Lemma 3.2. (Generalized Expander Walk Lemma)
Let H be a ∆-regular graph on d vertices, and let λ
be the second largest eigenvalue in absolute value of the
normalized adjacency matrix. Let Q(y) =

∑q
k=0 aky

k be

a univariate degree-q polynomial over R, and let Q̆ be
the convex envelope of Q (i.e., supremum of all convex
functions below Q). Given a subset B of βd vertices and
a number q, let N(B, k) be the number of walks in H of
length k that stay inside B. Then

min
y≥β−λ(1−β)

Q̆(y) ≤
q∑

k=0

ak
|B|∆k

N(B, k)

≤ max
|y|≤β+λ(1−β)

Q(y).

Proof. By direct modification of Alon et al.’s proof [7].
Let L be 1/∆ times the adjacency matrix of the
subgraph of H induced by B. Let γ1 ≥ γ2 ≥ · · · ≥
γ|B| be the eigenvalues of L, and u1, . . . , u|B| be the
corresponding orthonormal eigenvectors. Let u be the

all-1’s vector, and write u =
∑|B|

i=1 ciui. Alon et al.’s
proof made use of the following observations:3

N(B, k) = ∆k

|B|∑

i=1

c2i γ
k
i(3.1)

|B|∑

i=1

c2i = |B|(3.2)

|B|
max
i=1

|γi| ≤ β + λ(1− β)(3.3)

1

|B|

|B|∑

i=1

c2i γi ≥ β − λ(1− β).(3.4)

3(3.1) corresponds to (2.3) in [7], (3.2) is noted immediately

after (2.3), (3.3) corresponds to Lemma 2.2, and (3.4) is shown
near the final paragraph in the proof of Proposition 2.4.

Let

Z =

q∑

k=0

ak
|B|∆k

N(B, k) =
1

|B|

|B|∑

i=1

c2i

q∑

k=0

akγ
k
i

=
1

|B|

|B|∑

i=1

c2iQ(γi)

(note that these are equalities, and hold regardless of
the signs of the ak’s). It follows that

Z ≤ 1

|B|

|B|∑

i=1

c2i · max
|y|≤β+λ(1−β)

Q(y)

= max
|y|≤β+λ(1−β)

Q(y), and

Z ≥ 1

|B|

|B|∑

i=1

c2i Q̆(γi)

≥ Q̆


 1

|B|

|B|∑

i=1

c2i γi


 ≥ min

y≥β−λ(1−β)
Q̆(y),

by Jensen’s inequality and the convexity of Q̆.

Proof of Theorem 3.1. As before, let H be a ∆-regular
graph H over vertices {1, . . . , d}, with λ = Θ(1/∆c0)
for some constant c0 > 0. Choose ∆ so that λ = εβ0/3
(i.e., ∆ = Θ((1/εβ0)

1/c0)). Let q be an even number,
to be set later. Write the rescaled degree-q Chebyshev
polynomial Q(y) = 1

2 (Tq(
y

β0+λ ) + 1) as
∑q

k=0 aky
k. For

x = (x1, . . . , xd) ∈ {0, 1}d, our polynomial P
(d,s,ε)
≥β0d

is
defined as

P
(d,s,ε)
≥β0d

(x) =

q∑

k=0

ak
∑

length-k walk i0 · · · ik in H xi0 · · ·xik

β0d∆k
.

Analysis. Suppose that x1 + · · · + xd =
βd. Letting B = {i : xi = 1}, we see that∑

length-k walk i0 · · · ik in H xi0 · · ·xik is precisely N(B, k).
By Lemma 3.2,

β

β0
min

y≥β−λ
Q̆(y) ≤ P

(d,s,ε)
≥β0d

(x) ≤ β

β0
max

|y|≤β+λ
Q(y).

If β ≤ β0, then P
(d,s,ε)
≥β0d

(x) ≤ 1. On the other hand,
if β > (1 + ε)β0, then for any y ≥ β − λ,

y

β0 + λ
≥ β − λ

β0 + λ
≥ 1 +

εβ0 − 2λ

β0 + λ
≥ 1 + Ω(ε),

and since the convex envelope T̆q agrees with Tq over

[1,∞), we have P
(d,s,ε)
≥β0d

(x) ≥ 1
2Tq(1 + Ω(ε)) ≥ eΩ(q

√
ε),

which can be made greater than s by setting q =
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Θ(
√
1/ε log s). The polynomial P

(d,s,ε)
≥β0d

has degree
q + 1, and the number of monomials is O(d∆q) ≤
d(1/εβ0)

O(q) = dsO(
√

1/ε log(1/εβ0)).

We can now solve the ANN problem in the
main case via the polynomial method as described

in Section 2, by setting P
(d,s,ε)
≤α0d

(x1, . . . , xd) :=

P
(d,s,εα0)
≥(1−(1+ε)α0)d

(1 − x1, . . . , 1 − xd), and applying The-

orem 3.1 with ε changed to εα0. The degree is
q = O(

√
1/εα0 log s), and the number of monomials is

m ≤ dsO(
√

1/εα0 log(1/εα0) (the negation of the variables
causes an increase of a factor of 2q, which is absorbed
by the bound), and we can set s = nΘ(

√
εα0/ log(1/εα0))

to ensure that 3qm ≤ (n/s)0.172.

Theorem 3.2. Given d ≤ n0.1 and α0, ε ∈ (0, 1),
and given n red and n blue points in {0, 1}d, the

following can be computed in Õ(n2−Ω(
√
εα0/ log(1/εα0)))

deterministic time: for every red point q, we can find a
blue point of Hamming distance at most (1+ε)α0d from
q, or conclude that no blue point has Hamming distance
at most α0d from q.

3.2 Densification to increase α0. The bound in
Theorem 3.2 is not good if the parameter α0 is very
small. To fix this issue, we provide a deterministic
reduction from the general case to the case when α0 is
not too small. Indyk [27, Section 3] already (implicitly)
described such a reduction, which increases α0 to Ω(ε).
His reduction consisted of two parts: (1) use pairwise-
independent hash functions to map to strings over a
larger alphabet, and (2) use error-correcting codes to
map back to the binary alphabet. Alternatively, as
noted in Andoni et al.’s survey [10], part (1) can be
viewed as an unbalanced expander construction (which
is quite different from our preceding expander walk
approach).

Using k-wise independence instead of pairwise inde-
pendence, we can improve the first step, increasing α0

to Ω(ε1/(k−1)) for an arbitrarily large constant k. Let
dH(·, ·) denote the Hamming distance.

Lemma 3.3. Given d, an even number k, and α0, ε ∈
(0, 1), we can find a number α′

0 = Ω(ε1/(k−1)) and
construct a randomized mapping h : {0, 1}d → Σ with
|Σ| ≤ 2O(1/α0), from a sample space of size O(d)k, such
that for every fixed p, q ∈ {0, 1}d,
• if dH(p, q) ≤ α0d, then Prh[h(p) 6= h(q)] ≤ α′

0;

• if dH(p, q) > (1 + ε)α0d, then Prh[h(p) 6= h(q)] >
(1 + Ω(ε))α′

0.

Proof. Choose r random indices j1, . . . , jr ∈ [d] that are
k-wise independent, for a parameter r to be set later. By

standard constructions for k-wise independent random
variables [29, 35], a sample space of size O(d)k suffices.
For p = (p1, . . . , pd) ∈ {0, 1}∗, we define

h(p) := pj1 · · · pjr ,

with Σ = {0, 1}r.
Analysis. We use the following fact: if E1, . . . , Er

are k-wise independent events with Pr(Ei) = α, then
the probability of the event E =

⋃r
i=1 Ei lies in 1− (1−

α)r ±O((αr)k), assuming that αr < 1/2.
This fact follows from the inclusion-exclusion for-

mula: for even k,

∑

S⊆[r],1≤|S|≤k−1

(−1)|S|−1 Pr

(⋂

i∈S

Ei

)
≤ Pr(E)

≤
∑

S⊆[r],1≤|S|≤k

(−1)|S|−1 Pr

(⋂

i∈S

Ei

)
.

By k-wise independence,

k−1∑

s=1

(
r

s

)
(−1)s−1αs ≤ Pr(E) ≤

k∑

s=1

(
r

s

)
(−1)s−1αs.

Since

r∑

s=1

(
r

s

)
(−1)s−1αs = −

r∑

s=1

(
r

s

)
(−α)s = −((1−α)r−1)

by the binomial theorem, and
∑r

s=k

(
r
s

)
αs ≤∑r

s=k(αr)
s ≤ O((αr)k) (assuming that αr < 1/2), this

proves the above fact.
Now, we show that the above function h satisfies

the property stated in the lemma. Let Ei be the event
that pji 6= qji . These events are k-wise independent,
and the event h(p) 6= h(q) is precisely

⋃r
i=1 Ei. Assume

(1 + ε)α0r < 1/2 (which will indeed be true).

• Suppose that dH(p, q) ≤ α0d. Then Pr(Ei) ≤
α0. By the above fact, Pr[h(p) 6= h(q)] ≤
Pr (

⋃r
i=1 Ei) ≤ α′

0 := 1− (1− α0)
r +O((α0r)

k).

• Suppose that dH(p, q) ≥ (1+ε)α0d. Then Pr(Ei) ≥
(1+ε)α0. We can define k-wise independent events
E′′

i such that E′′
i is contained in Ei and Pr(E′′

i ) =
(1+ε)α0. By the above fact applied to these events
E′′

i instead, Pr[h(p) 6= h(q)] ≥ Pr (
⋃r

i=1 E
′′
i ) ≥

α′′
0 := 1− (1− (1 + ε)α0)

r −O((α0r)
k).

Note that α′
0 = Θ(α0r). Furthermore, α′′

0 = 1 −
(1 − α0)

r(1 − Ω(εα0))
r − O((α0r)

k) = α′
0 + Ω(εα0r) −

O((α0r)
k) = (1+Ω(ε))α′

0−O(α′
0)

k, which is (1+Ω(ε))α′
0

by setting r to be a small constant times ε1/(k−1)/α0,
so that α′

0 is a small constant times ε1/(k−1).
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We next use known constructions of ε-balanced
error-correcting codes (which follow from known con-
structions of ε-biased sets) [36]:

Lemma 3.4. (Error-Correcting Codes) Given d, an al-
phabet Σ, and δ ∈ (0, 1), we can construct a map-
ping g : Σ → {0, 1}τ for some τ = O((1/δ)2 log d),
such that for every a, b ∈ Σ with a 6= b, we have
dH(g(a), g(b)) ∈ (1 ± δ)τ/2. The construction takes

O((1/δ)O(1) logO(1) |Σ|) time.

Lemma 3.5. (Improved Densification Lemma) Given
d, k, and α0, ε ∈ (0, 1), we can find numbers d′ ≤ O(d)k

and α′
0 = Ω(ε1/(k−1)) and construct a mapping f :

{0, 1}d → {0, 1}d′

which can be evaluated in O(d)k+O(1)

deterministic time, such that for every p, q ∈ {0, 1}d,

• if dH(p, q) ≤ α0d, then dH(f(p), f(q)) ≤ α′
0d

′;

• if dH(p, q) > (1 + ε)α0d, then dH(f(p), f(q)) >
(1 + Ω(ε))α′

0d
′.

Proof. Define f(p) to be the concatenation of g(h(p))
over all mappings h in the sample space of Lemma 3.3,
where g is the mapping of Lemma 3.4 with δ := cε for
a small enough constant c.

Let D be the number of different hash functions h.
If dH(p, q) ≤ α0d, then dH(f(p), f(q)) ≤ α′

0D · (1 +
δ)τ/2. If dH(p, q) > (1 + ε)α0d, then dH(f(p), f(q)) >
(1+Ω(ε))α′

0D ·(1−δ)τ/2. We set d′ := Dτ/2, and reset
α′
0 := α′

0(1 + δ).

Applying Lemma 3.5 and then Theorem 3.2, we im-
mediately obtain a deterministic algorithm with run-

ning time Õ(n2−Ω(ε(1/2)(1+1/(k−1))/ log(1/ε))), for d ≤
n0.1/k, for the approximate decision problem for any
threshold α0d, and thus for offline ANN. For d <
2o(logn/ log(1/ε)), we may even use a nonconstant value
of k = Θ(log(1/ε)).

Theorem 3.3. Given d and ε ∈ (0, 1), and given n
red and n blue points in {0, 1}d, we can find a (1 + ε)-
approximate Hamming nearest blue point for every red

point, in Õ(n2−ε1/2+O(δ)

) deterministic time, if d ≤ nδ

for δ ≤ 0.05.
The running time reduces to Õ(n2−Ω(

√
ε/ log(1/ε))) if

d < 2o(logn/ log(1/ε)).

3.3 Other applications. Approximate offline Ham-
ming farthest neighbor search (and approximate diame-
ter) can be solved similarly. We can work directly with

the polynomial P
(d,s,ε)
≥t instead of P

(d,s,ε)
≤t , and can apply

Theorem 3.2 with β0 := α0 and ε unchanged, to obtain
a time bound of Õ(n2−Ω(

√
ε/ log(1/εα0))). It then suffices

to apply Lemma 3.5 with k = 2 to make α0 = Ω(ε).

Theorem 3.4. Given d and ε ∈ (0, 1), and given n
red and n blue points in {0, 1}d, we can find a (1 + ε)-
approximate Hamming farthest blue point for every red

point, in Õ(n2−Ω(ε1/2/ log(1/ε))) deterministic time, if
d ≤ n0.05.

The results can be extended to `1. For points
in [U ]d, we can map each point (x1, . . . , xd) to
the string 1x10U−x1 · · · 1xd0U−xd in Hamming space
{0, 1}Ud, while preserving distances. This may be in-
efficient for large U , but the universe size U can be
made small. Consider the approximate decision prob-
lem of comparing the nearest neighbor distance for a
query point q with a fixed value r. It is known [14] that
with O(d) shifted uniform grids of side length O(dr),
a nearest neighbor can be found in the same cell as q
in one of the grids. It suffices to solve the problem in-
side each grid cell; in each grid cell, coordinates can be
rounded to multiples of εr/d, effectively reducing the
universe size to U = O( dr

εr/d ) = O(d2/ε). (For farthest

neighbors, we can round coordinates directly without
shifted grids.)

The results can also be extended to `2, using Indyk’s
deterministic embedding [28] from `2 to `1. We therefore
have the following result.

Theorem 3.5. Given d and ε ∈ (0, 1), and given n
red and n blue points in R

d, we can find a (1 + ε)-
approximate `1 or `2 nearest blue point for every red

point, in Õ(n2−ε1/2+O(δ)

) deterministic time, if d ≤ nδ

for δ ≤ 0.05.
The running time reduces to Õ(n2−Ω(

√
ε/ log(1/ε))) if

d � 2o(logn/ log(1/ε)).

Another application is to (1 + ε)-approximation al-
gorithms for MAX-SAT. Here we proceed by giving
an efficient approximation-preserving reduction from
MAX-SAT to MAX-LIN, and arguing that MAX-LIN
approximation algorithms can be derived from approx-
imate farthest pair algorithms.

Theorem 3.6. Given a CNF formula with n variables
and C ≤ 2o(n) clauses, and ε ∈ (0, 1), there is a
(1+ε)-approximation algorithm for MAX-SAT that runs
(2− Ω(

√
ε/ log(1/ε)))n · CO(1) deterministic time.

Proof. Recall in the MAX-LIN problem, we are given a
set of linear equations over F2 in n variables, and wish
to find an assignment satisfying a maximum number
of equations. First, by a known reduction in fine-
grained complexity [44], we can obtain a (2 − Ω(α))n-
time algorithm for (1 + ε)-approximating the MAX-
LIN problem directly from an N2−α-time algorithm
for (1 + ε)-approximating red-blue farthest pair on N
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red and N blue points.4 By Theorem 3.4, we can set
α = ε1/2/ log(1/ε).

Now we show how to obtain a (1 + ε)-approximate
MAX-SAT algorithm from a (1 + ε/6)-approximate
MAX-LIN algorithm, with essentially the same running
time. The standard reduction from MAX-k-SAT to
MAX-k-LIN increases the number of clauses by a factor
of Ω(2k), which is unacceptable for large k. To avoid
this blowup, we use ε-biased sets.

For every clause c = (`1∨· · ·∨ `w) of a given MAX-
SAT instance instance F over the literals `1, . . . , `w, we
do the following. If w ≤ log(n), then we can reduce c
to a collection of MAX-w-LIN clauses in the standard
way (we include all linear equations over the literals
`1, . . . , `w that are consistent with c). This increases the
number of clauses by a poly(n) factor, and preserves the
approximation factor (if c is not satisfied, then all new
clauses are unsatisfied; if c is satisfied, then exactly 1/2
of the new clauses are satisfied). From now on, assume
w > log(n) and n is sufficiently large.

For a parameter δ > 0 to be set later, determin-
istically construct an δ-biased set S = {v1, . . . , vt} ⊂
{0, 1}w of size t = poly(w, 1/δ) ([36]), and replace the
clause c with the t XOR constraints

w∑

i=1

`i · vj [i] = 1 mod 2

for all j = 1, . . . , t (Note the vj [i] are all 0/1 constants,
so the XOR constraints are all over the original literals
`j .) Call the obtained MAX-LIN instance F ′.

By the properties of small-biased sets, we have: for
every variable assignment A, if A satisfies a clause in
F then it satisfies between 1/2 − δ and 1/2 + δ of the
corresponding XOR constraints in F ′. (If A does not
satisfy the clause, it satisfies none of the corresponding
XOR constraints.) Therefore if A satisfies a ρ-fraction
of clauses in F , then the fraction of XOR constraints
ρ′ satisfied by A in F ′ is in the interval [ρ(1/2 −
δ), ρ(1/2 + δ)]. Moreover, if A satisfies a ρ′-fraction
in F ′, then it satisfies a ρ-fraction in F , where ρ ∈
[ρ′/(1/2 + δ), ρ′/(1/2 − δ)]. Let ρmax and ρ′max be the
maximum fraction of constraints satisfiable in F and
F ′, respectively, and note that ρmax(1/2− δ) ≤ ρ′max ≤
ρmax(1/2 + δ).

4Divide the n variables of the MAX-LIN instance into two
halves, enumerate all N = O(2n/2) partial assignments on both
halves, and set up a red-blue farthest pair instance on N red
points (from one half) and N blue points (from the other half)
such that each red-blue pair has Hamming distance equal to the
number of XOR constraints satisfied by the corresponding (full)
variable assignment. Then, (1+ε)-approximations to the farthest

pair are (1+ε)-approximations to the optimum for the MAX-LIN
instance.

Suppose we have an algorithm that (1 + δ)-
approximates MAX-LIN: given F ′, it outputs an as-
signment A? satisfying a fraction of constraints ρ′ ≥
ρ′max/(1 + δ). Therefore A? also satisfies a ρ-fraction of
clauses in F , where ρ ≥ ρ′max/((1/2+ δ)(1+ δ)). There-
fore ρ ≥ ρmax(1/2 − δ)/((1/2 + δ)(1 + δ)); that is, ρ
satisfies at least a ρmax(1−2δ)/((1+2δ)(1+δ)) fraction
of clauses in F . For δ = ε/6, we have

(1− 2δ)/((1 + 2δ)(1 + δ)) ≥ 1/(1 + ε),

for all ε ∈ (0, 3/7), and thus obtain a (1 + ε) approxi-
mation. (For larger ε, we can just set ε to be a smaller
constant, which is absorbed in the big-O.)

4 Las Vegas Algorithms

In this section, we present a Las Vegas algorithm for
offline (1 + ε)-approximate nearest neighbor search in

Hamming space, running in time Õ
(
n2−Ω(ε1/3/ log(1/ε))

)

for dimension d ≤ nδ for a sufficiently small δ > 0. This
matches the previous best running time for Monte Carlo
algorithms from past work [5].

The Monte Carlo algorithm from prior work (see
also Section 5 below) makes use of a probabilistic
polynomial threshold representation of an approximate
threshold predicate, which consists of two main steps:
(1) a probabilistic polynomial for an exact thresh-
old predicate on d inputs with error 1/s and de-
gree O(

√
d log s), and (2) combining it with a Cheby-

shev polynomial in order to decrease the degree to
O((1/ε)1/3 log(ds)) for computing an ε-approximate
threshold predicate instead. In this section, we make
one key modification to each step so that our resulting
probabilistic polynomials never give the wrong answer:
they either output the correct answer, or else a large
value indicating that an error has occurred.

For the probabilistic polynomial for step (1), we
modify the original probabilistic polynomial construc-
tion of [6]. The polynomial from the prior work makes
use of random samples of entries from the input vector,
and notes that the polynomial will output the correct
answer as long as certain tail bounds on these random
samples hold. In Lemma 4.1 we construct a second poly-
nomial (eTH) for checking whether these tail bounds
hold, so that we can tell when the polynomial may be
making a mistake. Next, for step (2), we replace a simi-
lar random sample with a partitioning of the input first
suggested by Indyk [27]. By recursively evaluating our
polynomial on each partition, we are guaranteed that
at least one part will give the correct answer, and so we
can tell whether an error may have occurred based on
whether all the recursive calls agreed.

We begin with part (1).
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Lemma 4.1. Given d, s, t, there is a probabilis-

tic pair of polynomials (TH
(d,s)
≤t , eTH

(d,s)
≤t ), where

TH
(d,s)
≤t , eTH

(d,s)
≤t : {0, 1}d → N both have degree

O(
√
t log(s)), such that for every x = (x1, . . . , xd) ∈

{0, 1}d, we have Pr[eTH
(d,s)
≤t (x) = 0] ≥ 1 − 1/s and

eTH
(d,s)
≤t (x) > 0 otherwise, and

• if x1 + · · · + xd > t, then TH
(d,s)
≤t (x) = 0 or

eTH
(d,s)
≤t (x) 6= 0, and

• if x1 + · · · + xd ≤ t, then TH
(d,s)
≤t (x) = 1 or

eTH
(d,s)
≤t (x) 6= 0.

Proof. We proceed by strong induction on t. Let c, k ≥
1 be two constants to be set later. We may assume
that t ≥ 9c2 log s, for otherwise we can naively use a
polynomial of degree t. Let a = c

√
t log s and define the

polynomials:

• C : Z → Z defined as C(z) =
∏a

r=−a(z − r)2,
so that C(z) = 0 when |r| ≤ a, and C(z) ≥ 1
otherwise, and

• A : Zd → Z a degree O(a) polynomial such that for
x ∈ {0, 1}d,

– if |x| ∈ (t, t+ 2a] then A(x) = 0, and

– if |x| ∈ [t− 2a, t] then A(x) = 1, and

– otherwise A(x) may take any value.

Such a polynomial exists by interpolation (see
e.g. [6, Lemma 3.1]).

• Two recursively drawn probabilistic pairs of

polynomials (TH
(d/k,3s)
≤(t−a)/k, eTH

(d/k,3s)
≤(t−a)/k) and

(TH
(d/k,3s)
≤(t+a)/k, eTH

(d/k,3s)
≤(t+a)/k) for d/k-bit inputs.

On input x ∈ {0, 1}d, let x̃ ∈ {0, 1}d/k be a
sample of d/k independent uniformly random entries
of x. Define our polynomials as:

TH
(d,s)
≤t (x) := TH

(d/k,3s)
≤(t−a)/k(x̃)

+A(x) ·
(
1− TH

(d/k,3s)
≤(t−a)/k(x̃)

)
· TH(d/k,3s)

≤(t+a)/k(x̃),

eTH
(d,s)
≤t (x) := eTH

(d/k,3s)
≤(t+a)/k(x̃)

+ eTH
(d/k,3s)
≤(t−a)/k(x̃) + C(|x| − k · |x̃|).

Correctness. A Chernoff bound shows that if c is
big enough relative to k, then Pr[|x|−k · |x̃| /∈ [−a, a]] ≤
1/(3s). Hence, by a union bound over the three terms

defining eTH
(d,s)
≤t , we have Pr[eTH

(d,s)
≤t (x) 6= 0] ≤ 1/s.

Assuming eTH
(d,s)
≤t (x) = 0, meaning TH

(d/k,3s)
≤(t−a)/k(x̃)

and TH
(d/k,3s)
≤(t+a)/k(x̃) both give the correct answer, and

|x| − k · |x̃| ∈ [−a, a], then:

• Case 1: |x| > t + 2a. Thus, |x̃| > (t + a)/k so

TH
(d/k,3s)
≤(t+a)/k(x̃) = TH

(d/k,3s)
≤(t−a)/k(x̃) = 0 and hence

TH
(d,s)
≤t (x) = 0.

• Case 2: |x| ∈ (t, t + 2a]. Thus, A(x) = 0, and

|x̃| > (t − a)/k so TH
(d/k,3s)
≤(t−a)/k(x̃) = 0, and hence

TH
(d,s)
≤t (x) = 0.

• Case 3: |x| ∈ [t − 2a, t]. Thus, A(x) = 1, and

|x̃| < (t + a)/k so TH
(d/k,3s)
≤(t+a)/k(x̃) = 1, and hence

TH
(d,s)
≤t (x) = 1.

• Case 4: |x| < t − 2a. Thus, |x̃| < (t − a)/k so

TH
(d/k,3s)
≤(t−a)/k(x̃) = 1, and hence TH

(d,s)
≤t (x) = 1.

Degree. The degree D(t) of TH
(d,s)
≤t satisfies the

recurrence D(t) = 2D((t + c
√
t log s)/k) + O(

√
t log s),

which solves to D(t) = O(
√
t log s) when k is sufficiently

large. The degree of eTH
(d,s)
≤t is similarly O(

√
t log s).

Lemma 4.2. Given d, s, t, there is a nonnegative prob-

abilistic polynomial T̂H
(d,s)

≤t : {0, 1}d → N with degree

O(
√

t log(s)), such that for every x = (x1, . . . , xd) ∈
{0, 1}d,

• if x1 + · · · + xd > t, then T̂H
(d,s)

≤t (x) = 0 with
probability at least 1− 1/s;

• if x1 + · · · + xd ≤ t, then T̂H
(d,s)

≤t (x) ≥ 1 with

probability 1, and T̂H
(d,s)

≤t (x) = 1 with probability
at least 1− 1/s.

Proof. Draw (TH
(d,s)
≤t , eTH

(d,s)
≤t ) from Lemma 4.1, then

pick

T̂H
(d,s)

≤t (x) :=
(
TH

(d,s)
≤t (x)

)2
+ 2 · eTH(d,s)

≤t (x).

We now move on to part (2) mentioned at the
beginning of the section.

Lemma 4.3. Given d, s, t and ε ∈ (0, 1), there is a non-

negative probabilistic polynomial T̃H
(d,s,ε)

≤t : {0, 1}d →
R≥0 with degree O((1/ε)1/3 log(ds)), such that for ev-
ery x = (x1, . . . , xd) ∈ {0, 1}d,
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• if x1 + · · · + xd > (1 + ε)t, then T̃H
(d,s,ε)

≤t (x) ≤ 1
with probability at least 1− 1/s;

• if x1 + · · · + xd ≤ t, then T̃H
(d,s,ε)

≤t (x) > s with
probability 1.

Proof. We may assume that t ≥ log(ds), for otherwise
we can naively use a polynomial of degree t. Let k be a
parameter to be set later. Let s′ = 2ks.

Take a random partition of [d] into k subsets
R1, . . . , Rk of size d/k. Let ∆ = c

√
kt log s′ for a

sufficiently large constant c.
Let Q : {0, 1}d → R≥0 be a (deterministic) nonneg-

ative polynomial such that for every x = (x1, . . . , xd) ∈
{0, 1}d, (i) Q(x) > s′ if x1 + · · · + xd ≤ t, and
(ii) Q(x) ≤ 1 if x1+ · · ·+xd ∈ [(1+ε)t, t+∆]. As in [5],
this can be achieved by a shifted, rescaled Chebyshev

polynomial Q(x) = 1
2 (Tq(

(t+∆)−(x1+···+xd)
(t+∆)−(1+ε)t ) + 1), with

an even degree q = Θ(
√

∆/(εt) log(s′)).
For x = (x1, . . . , xd) ∈ {0, 1}d, define

H(x) =
k∑

i=1

T̂H
(d/k,s′)

≤t/k ({xj : j ∈ Ri})

T̃H
(d,s,ε)

≤t (x) = 1
kQ(x)H(x).

Correctness.

• Case 1:
∑d

j=1 xj ≤ t. Then Q(x) ≥ s′. Also,∑
j∈Ri

xj ≤ t/k for some i ∈ [k]. So, H(x) ≥ 1 and

T̃H
(d,s,ε)

≤t (x) ≥ s′/k > s with probability 1.

• Case 2:
∑d

j=1 xj ∈ ((1+ε)t, t+∆]. Then Q(x) ≤ 1,
and H(x) ≤ k with probability at least 1− k/s′ >

1− 1/s. Thus, T̃H
(d,s,ε)

≤t (x) ≤ 1 with probability at
least 1− 1/s.

• Case 3:
∑d

j=1 xj > t+∆. By the Chernoff bound,
for each i ∈ [k], we have

∑
j∈Ri

xj > t/k with
probability at least 1 − 1/s′. Thus, H(x) = 0

and T̃H
(d,s,ε)

≤t (x) = 0 with probability at least
1− 2k/s′ = 1− 1/s.

The degree of T̃H
(d,s,ε)

≤t is

O


√(t/k) log(s) +

√√
kt log(ds)

εt
log(ds)


 .

Set k = ε2/3t/ log(ds).

We next repeat a similar approach of partitioning
the input as in Lemma 4.3, with the aim of decreasing
the number of monomials in the resulting polynomial
rather than the degree.

Lemma 4.4. Given d, s, t and ε ∈ (0, 1), for t =

α0d, there is a probabilistic polynomial P
(d,s,ε)
≤t with

degree O((1/ε)1/3 log(ds)) and (ds)O((1/ε)1/3 log(1/εα0))

monomials, satisfying the same properties as in the
previous lemma.

Proof. Let k = bt/((2c/ε)2 log(2ds))c for a sufficiently
large constant c. Let ε′ = ε/2 and s′ = 2ks.

Take a random partition of [d] into k subsets
R1, . . . , Rk of size d/k.

For x = (x1, . . . , xd) ∈ {0, 1}d, define

P
(d,s,ε)
≤t (x) =

1

k

k∑

i=1

T̃H
(d/k,s′,ε′)

≤t/k ({xj : j ∈ Ri}).

Correctness.

• Case 1:
∑d

j=1 xj ≤ t. Then
∑

j∈Ri
xj ≤ t/k for

some i ∈ [k]. Thus, P
(d,s,ε)
≤t (x) ≥ s′/k > s with

probability 1.

• Case 2:
∑d

j=1 xj > (1 + ε)t. By the Chernoff
bound, for each i, we have

∑
j∈Ri

xj > (1+ε)t/k−
c
√
(t/k) log s′ > (1 + ε′)t/k with probability at

least 1 − 1/s′. Thus, P
(d,s,ε)
≤t (x) ≤ k/k = 1 with

probability at least 1− k/s′ − 1/s′ > 1− 1/s.

The degree of P
(d,s,ε)
≤t is O((1/ε)1/3 log(ds)). The

number of monomials is at most k ·
( d/k
O((1/ε)1/3 log(ds))

)
≤

k ·
(O((1/α0)(1/ε)

2 log s)
O((1/ε)1/3 log(ds))

)
≤ d(1/εα0)

O((1/ε)1/3 log(ds)) ≤
(ds)O((1/ε)1/3 log(1/εα0)).

We can now apply the polynomial method, as
described in Section 2, to obtain a Las Vegas algorithm
for the decision version of the offline approximate closest
pair problem, using the polynomial in Lemma 4.4.
We compute P ′′(X,Y ) for all pairs of groups (X,Y ).
For each (X,Y ) with P ′′(X,Y ) ≤ s, we know with
probability 1 that (X,Y ) has closest pair distance more
than t = α0d. For each (X,Y ) with P ′′(X,Y ) > s, we
verify that there is a pair of distance at most (1 + ε)t

by brute force in O(
√
s
2
) = O(s) time, and terminate

the algorithm as soon as the first such pair is found.
The algorithm clearly is always correct. For a pair
(X,Y ) with closest pair distance more than (1+ε)t, the
probability that the brute force search is run is at most
O(1/s), so the expected cost of the brute force search

is O((1/s) · s) = O(1). We set s = nΘ(ε1/3/ log(εα0)),
so that 3qs ≤ (n/

√
s)0.172. Offline ANN can be solved

similarly.
Finally, we apply the deterministic Lemma 3.3 with

k = 2 to make α0 = Ω(ε). We then obtain our main
theorem on Las Vegas algorithms.
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Theorem 4.1. Given d and ε ∈ (0, 1), and given n
red and n blue points in {0, 1}d, we can find a (1 + ε)-
approximate Hamming nearest blue point for every red

point, in Õ(n2−Ω(ε1/3/ log(1/ε))) time by a Las Vegas
randomized algorithm, if d ≤ n0.05.

Offline approximate farthest neighbor search is sim-
ilar, although one has to directly modify most of the
above lemmas, to reverse the direction of the inequali-
ties. As in Section 3.3, the results extend to the `1 or
`2 metric.

Our Las Vegas polynomial construction for thresh-
old predicates have other applications, for example, to
obtaining Las Vegas satisfiability algorithms for depth-2
threshold circuits; see [5].

5 Monte Carlo Algorithms

In this section, we give a slight improvement over Al-
man, Chan, and Williams’ Monte Carlo algorithm [5]
for offline approximate nearest neighbor search, from

n2−Ω(ε1/3/ log(1/ε)) running time to n2−Ω(ε1/3/ log2/3(1/ε)).
The improvement is small, but the approach is interest-
ing in that it simplifies Alman et al.’s polynomial con-
struction, and also brings in some connection to locality-
sensitive hashing. The approach is not useful for Las
Vegas algorithms, however. Following the same philos-
ophy as our deterministic polynomial construction, the
improvement comes not from improving the degree but
from reducing the number of monomials.

Alman, Chan, and Williams’ polynomial construc-
tion for the unweighted threshold predicate is a com-
bination of two parts: (i) a probabilistic polynomial
obtained by random sampling (using Chernoff bounds
in the analysis), polynomial interpolation, and recur-
sion, and (ii) the Chebyshev polynomial. We replace
the first part with the following lemma with a simple
direct proof:

Lemma 5.1. Given d and β0, ε ∈ (0, 1) with β0 =
Θ(1), there is a nonnegative probabilistic polynomial
R : {0, 1}d → N with degree O((1/δ) log s) and sO(1/δ)

monomials, such that for every fixed x = (x1, . . . , xd) ∈
{0, 1}d,

• if x1 + · · · + xd ≤ (1 − δ)β0d, then R(x) = 0 with
probability 1−O(1/s);

• if x1+· · ·+xd > β0d, then R(x) ≥ 1 with probability
1−O(1/s);

• if x1 + · · ·+ xd ∈ ((1− δ)β0d, β0d], then R(x) < s2

with probability 1−O(1/s).

Proof. Define

R(x) =

M∑

i=1

xri1 · · ·xriq ,

where the rij ’s are independently chosen random indices
in [d], and q := log1/(1−δ)(s

2), and M := (1/β0)
q ln s ≤

sO(1/δ).

• If x1 + · · ·+ xd ≤ (1− δ)β0d, then Pr[R(x) > 0] ≤
M((1− δ)β0)

q ≤ (ln s)/s2.

• If x1 + · · · + xd > β0d, then Pr[R(x) = 0] <
(1− βq

0)
M < e−βq

0M ≤ 1/s.

• If x1 + · · ·+ xd ∈ ((1− δ)β0d, β0d], then E[R(x)] ≤
Mβq

0 ≤ ln s, so by Markov’s inequality, Pr[R(x) ≥
s2] ≤ (ln s)/s2. (We could use Chernoff for a better
bound, but that would not be necessary.)

This covers all the desired cases.

The above idea is similar to the standard LSH
method in Hamming space [23], which uses multiple
hash functions each of which is a random projection.
Each monomial corresponds essentially to a random
projection, and the number of monomials corresponds
to the number of hash functions used.

We can now obtain the following theorem by com-
bining with Chebyshev polynomials in the same way as
in Alman, Chan, and Williams [5].

Theorem 5.1. Given d, s, and β0, ε ∈ (0, 1) with
β0 = Θ(1), there is a nonnegative probabilistic

polynomial P
(d,s,ε)
≥β0d

: {0, 1}d → R≥0 with degree

O((1/ε)1/3 log s log2/3 E) and sO((1/ε)1/3 log2/3 E) mono-
mials, where E := d/ log s, such that

• if x1 + · · · + xd ≤ β0d, then P
(d,s,ε)
≥β0d

(x) ≤ 1 with
probability 1−O(1/s).

• if x1 + · · · + xd > (1 + ε)β0d, then P
(d,s,ε)
≥β0d

(x) > s
with probability 1−O(1/s).

Proof. Let δ be a parameter to be chosen later. Let
Q : {0, 1}d → R to be a (deterministic) nonnegative
polynomial such that for every x = (x1, . . . , xd) ∈
{0, 1}d, (i) Q(x) > s′ if x1 + · · · + xd > (1 + ε)β0d,
and (ii) Q(x) ≤ 1 if x1 + · · · + xd ∈ (β0d − ∆, β0d],
where ∆ = δd and s′ = s3. As in [5], this can be
achieved by a shifted, rescaled Chebyshev polynomial

Q(x) = 1
2 (Tq(

(x1+···+xd)−(β0d−∆)
∆ ) + 1), with an even

degree q = Θ(
√

∆/(εβ0d) log s
′) = O(

√
δ/ε log s). Let

R be the polynomial from the above lemma. Define

P
(d,s,ε)
≥β0d

(x) = 1
s2R(x)Q(x).
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Correctness.

• If x1 + · · · + xd ≤ (1 − δ)β0d, then R(x) = 0 and

hence P
(d,s,ε)
≥β0d

(x) = 0 with probability 1−O(1/s).

• If x1 + · · ·+ xd ∈ ((1− δ)β0d, β0d], then R(x) < s2

with probability 1 − O(1/s), and Q(x) ≤ 1. So,

P
(d,s,ε)
≥β0d

(x) ≤ 1 with probability 1−O(1/s).

• If x1 + · · · + xd > (1 + ε)β0d, then R(x) ≥ 1
with probability 1 − O(1/s), and Q(x) > s′. So,

P
(d,s,ε)
≥β0d

(x) > s′/s2 = s with probability 1−O(1/s).

The degree of P
(d,s,ε)
≥β0d

is O(
√
δ/ε log s+(1/δ) log s).

The number of monomials in P
(d,s,ε)
≥β0d

is
( d

O(
√

δ/ε log s)

)
·

sO(1/δ) ≤ sO(
√

δ/ε logE+1/δ). The result follows by
choosing δ = ε1/3/ log2/3 E.

Like before, we can set P
(d,s,ε)
≤α0d

(x1, . . . , xd) :=

P
(d,s,εα0)
≥(1−(1+ε)α0)d

(1− x1, . . . , 1− xd), and apply the above

theorem with β0 := 1 − (1 + ε)α0 and ε changed to
εα0. Note that by padding with extra coordinates, we
can ensure α0 ≤ 1/2 and thus β0 = Ω(1). As in [5,
proof of Theorem 1.5], with Monte Carlo randomiza-
tion, we can apply Kushilevitz, Ostrovsky, and Rabani’s
dimensionality reduction technique [33], which makes
d = O((1/ε)2 log n), implying E = poly(1/ε); at the
same time, the reduction makes α0 = Θ(1).

Theorem 5.2. Given d and ε ∈ (0, 1), and given n
red and n blue points in {0, 1}d, we can find a (1 + ε)-
approximate Hamming nearest blue point for every red

point, in Õ(dn+n2−Ω(ε1/3/ log2/3(1/ε))) time by a Monte
Carlo randomized algorithm.

Offline approximate farthest neighbor search is
similar, and the results extend to the `1 or `2
metric. We can obtain a Monte Carlo (1 + ε)-
approximation algorithm for MAX-SAT with O∗((2 −
Ω(ε1/3/ log2/3(1/ε)))n) running time, in the same man-
ner as in the proof of Theorem 3.6.

A similar approach works for exact offline nearest
neighbor search in Hamming space in dimension d =
c log n: Alman, Chan, and Williams’ time bound of

n2−1/O(
√
c log3/2 c) time to n2−1/O(

√
c log c) with Monte

Carlo randomization.
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