Better Data Structures for Colored Orthogonal Range Reporting

Timothy M. Chan*

Abstract

Range searching on categorical, or “colored”, data has been
studied extensively for over two decades. In this paper, we
obtain the current best results for perhaps the most basic,
and most often studied, version of the geometric problem:
colored orthogonal range reporting.

Given n colored points in two-dimensional space [U]?,

we present a data structure with O(nlog® 4+ n) space, for
an arbitrarily small constant € > 0, so that all k distinct
colors in any axis-aligned query rectangle can be reported in
(optimal) O(loglog U + k) time; this is the first method to
break the O(nlogn) space barrier.

In three dimensions, we present a data structure with
O(nlog®/>*¢ n) space and O(logn/loglogn + k) time; this
improves the previous space bound of O(nlog n).

1 Introduction

Range searching [1, 12, 34] is among the most funda-
mental classes of problems studied in computational ge-
ometry. A generalization known as colored range search-
ing (or “categorical range searching”, or just “general-
ized range searching”) [17] has received considerable at-
tention, motivated by applications from databases and
information retrieval, among other things. In the gener-
alized problem, each data object has a color (represent-
ing its “category”), and the objective is to obtain in-
formation about the colors of the objects inside a query
range, for example, to report or count all distinct colors.

Although numerous papers have appeared on col-
ored range searching [5, 13, 14, 15, 16, 18, 19, 20, 21,
22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 37] (for example,
exploring different types of geometric ranges, range vs.
intersection searching, reporting vs. counting, static vs.
dynamic data structures, online vs. offline queries, in-
ternal vs. external memory, etc.), we still do not have
complete understanding on arguably the most basic ver-
sion of the problem: static colored orthogonal range re-
porting, in the standard (internal-memory) word-RAM
model of computation. This problem is the main focus
of the present paper.

More precisely, given n points in a constant dimen-
sion d, where each point is assigned a color, we want to

~ *Department of Computer Science, University of Illinois at
Urbana-Champaign (tmc@illinois.edu). Work supported in part
by NSF Grant CCF-1814026.

fDepartment of Computer Science, Michigan Technological
University (yakov.nekrich@googlemail.com).

Yakov Nekricht

build a data structure so that for any axis-aligned query
box (i.e., hyperrectangle) ¢, we can quickly report the
distinct colors among the points inside g. Ideally, the
query time should be proportional to k, the number
of distinct colors in ¢q. The naive solution of answer-
ing a standard (uncolored) range reporting query and
then extracting the distinct colors is insufficient, since
the query time would be proportional to the number of
points in ¢, which could be much larger than k.

Colored 2D Orthogonal Range Reporting. The
complexity of colored orthogonal range reporting is
open even in the 2D case. Table 1 gives the long
list of previous results in the standard word-RAM
model, assuming that coordinates are integers in [U] =
{1,...,U}, and space is measured in words. The best
to date were obtained independently a few years ago
by Larsen and van Walderveen [27] (SODA 2013) and
Nekrich [31] (TODS 2014), and achieved O(nlogn)
space and optimal O(loglogU + k) query time. This
query time bound is optimal among O(n logo(l) n)-
space data structures, but the space bound may not
be.

Virtually all previous methods require at least
nlogn space,! even when O(log” Y n + k) query time
is allowed. The reason is that all previous methods first
solve the subproblem when the query rectangle is 3-
sided (unbounded from below, say); Larsen and van
Walderveen’s and Nekrich’s 3-sided solutions achieved
optimal O(n) space and O(loglogU + k) query time.
The general 4-sided problem is then solved using a
standard black-box reduction via range trees, which in-
creases space by a logarithmic factor.

Intuitively, one could explain the nlogn space bar-
rier by analogy to standard (uncolored) 3D orthogonal
range reporting. Colored 2D range searching is similar
to uncolored 3D range searching by viewing colors as z-
coordinates, but the best current result for general 3D
6-sided range reporting queries has O(n log'™e n) space
and O(loglogU + k) query time [6], which is obtained
via a black-box reduction to the 5-sided case, similarly
at a loss of a logarithmic factor in space. (Through-

TOne exception is the linear-space data structure by Grossi

and Vind [16], but their query time is very large (close to linear).

Copyright © 2020
Copyright for this paper is retained by authors

space query time
Janardan & Lopez (1993) [22] O(nlogn) O(log”n + k)
O(nlog®n) O(logn + k)
Gupta, Janardan, & Smid (1995) [18] O(nlog®n) O(logn + k)
Agarwal, Govindarajan, & Muthukrishnan (2002) [2] | O(nlog® n) O(loglogU + k)
Mortensen (2003) [28] O(nlognloglogn) | O(log?logU + k)
O(nlogn) O(lognlog®logn + k)
Shi & JaJa (2005) [37] O(nlogn) O(logn + k)
Larsen & van Walderveen (2013) [27] O(nlogn) O(loglogU + k)
Nekrich (2014) [31] O(nlogn) O(loglogU + k)

Table 1: Previous data structures for colored 2D orthogonal range reporting.

out the paper, ¢ denotes an arbitrarily small positive
constant.) This analogy turns out to be faulty.

Our new result is the first data structure that breaks
the O(nlogn) space barrier. Specifically, the structure
requires O(n logg/ e n) space while maintaining opti-
mal O(loglogU + k) query time.

Colored 3D Orthogonal Range Reporting. The
problem in 3D appears even tougher. The best result
that we can find explicitly stated in the literature has
O(nlog" n) space and O(log® n + k) query time [17], al-
though by using more recent geometric data structuring
techniques [7], it is not difficult to obtain a solution with
O(nlog®n) space and O(logn/loglogn + k) query time
(see the remarks after Lemma 3.1).

Our method in 2D (unlike many previous methods)
is powerful enough that it can be extended to solve the
5-sided problem in 3D. We obtain a new data struc-
ture for colored 3D 5-sided orthogonal range reporting
with O(nlog?°*cn) space and O(logn/loglogn + k)
query time. As a consequence, this implies a data
structure for the colored 3D general (6-sided) orthog-
onal range reporting with O(n logg/5’+‘€ n) space and
O(logn/loglogn + k) query time. This is an even
greater improvement than in 2D, by more than one log-
arithmic factor compared to the previous space bounds.

Note that improvements in low-dimensional case
are important, as they automatically lead to improve-
ments in higher dimensions via the standard range-tree
reduction, which loses one logarithmic factor per di-
mension in space and query time. Consequently, we
can obtain a data structure in dimension d > 4 with
O(nlogd_6/5""s n) space and O(logd_2 n/loglogn +
klogd73 n) query time. However, the result here is not
as strong, as we now have to pay a nonconstant logUF3 n
penalty per output color.

Related Work: The “Fractional-Power-of-Log”
Phenomenon. What make our 2D and 3D results

striking are the unusual space bounds involving frac-
tional powers of logn. We are not aware of similar
space bounds in the literature on static word-RAM
geometric data structures, except for one: Chan and
Tsakalidis [10] noted a static data structure for ver-
tical ray shooting among horizontal rectangles in 3D
with O(n log!/?¢ n) space and O(logn) expected query
time. Their result was actually obtained, via per-
sistence, from a dynamic data structure for vertical
ray shooting among horizontal line segments in 2D
with O(log!/?*¢ n) update time. There have been sev-
eral past occurrences of the fractional-power-of-log phe-
nomenon in dynamic data structures, notably, for 1D
rank queries (also with near v/logn update time) and
2D orthogonal range reporting [9, 29, 39] (with near
log2/ 3 n update time), as well as in algorithms for offline
orthogonal range counting (including inversion count-
ing) [8]. However, there does not appear to be a di-
rect connection with our techniques here, other than
some commonalities in the usage of bit packing. In par-
ticular, our method is more intricate than the “micro-
vs. macro-structures” framework described by Chan and
Tsakalidis [9, 10].

Our Techniques. Our data structures are obtained by
a nontrivial combination of a series of ideas:

0. bit packing;

1. certain sublinear-space structures, obtained by di-
viding the input into blocks;

2. avariant of the recursive grid technique by Alstrup,
Brodal, and Rauhe [4] (and also Chan, Larsen, and
Patrascu [6]);

3. range trees over the colors, with a large fan-out.

Although some of these ideas in isolation have been used
in prior work (for example, range trees on colors), what
is original is how we assemble the pieces together. We

Copyright © 2020
Copyright for this paper is retained by authors

hope that our approach will find further applications to
other geometric data structuring problems.

A rough roadmap to our 2D solution can be de-
scribed as follows. Colored range reporting is harder
than uncolored version because we need to report each
color once. Straightforward application of many stan-
dard techniques could result in reporting the same color
Q(logn) times. We address this problem by applying bit
packing to the output: if the number of points n is small,
we can pack many colors into one machine word. First
we apply this idea to uncolored range reporting (Idea 0).
Next we obtain a data structure supporting colored re-
porting queries in O(21°8" "™ + (klog® n)/w + k) time,
where k is the number of output colors (Idea 1). Thus
we can report each color in O(1) time provided that
n is sufficiently small. Both data structures use small
space, but have high query time. As a next step, we
reduce the query time and simultaneously get rid of the
restriction on n. We achieve this goal by using the re-
cursive grid approach and storing pre-computed answers
for selected query ranges (Idea 2). This data structure
uses O(nlog® n) space and supports colored reporting
queries in O(loglogU + k) time, under the assumption
that k is sufficiently small (k <« 21°g1/4”). We get rid
of this assumption on k by using a range tree on col-
ors with high fan-out (Idea 3). Our final data structure
uses O(nlog® ¢ n) space. Interestingly, the query time
remains O(loglogU + k).

Preliminaries. In the rest of the paper, we assume
a w-bit word RAM model with w = Q(logn), which
supports (possibly nonstandard) operations on words.
No “cheating” is involved when we set w = elogn
at the end, because nonstandard operations can be
simulated by table lookup in constant time, after an
initial preprocessing in 2°(®) = n©) time.

Unless noted otherwise, space usage is measured in
words rather than in bits.

By default, a 2D 3-sided range refers to one that
is unbounded from below in y, and a 3D 5-sided range
refers to one that is unbounded from below in z.

2 The 2D Solution

Our data structure for colored 2D orthogonal range
reporting is obtained by combining a series of different
ideas.

Idea 0: Bit-Packing the Output. An initial idea
is bit packing—the fact that multiple elements can be
packed in a single word, if logn <« w. We start by
observing that a standard data structure for (uncolored)
orthogonal range searching allows the output of a query

to be packed, potentially allowing for query time that
is slightly sublinear in k.

LEMMA 2.1. Given a set of n points in R? and any
constant € € (0,1), we can build an O(nlog® n)-space
data structure that can answer an (uncolored) orthogo-
nal range reporting query in O(21°5 "™ 4 (klogn)/w)
time with k output points. The output is a list of the
labels of the points, assuming that each label is O(logn)-
bit long.

Proof. This follows from a standard range tree [1, 12, 34]
with fan-out f, except that each canonical subset S
is stored as a list of O((|S]logn)/w) words (since a
word can store Q(w/logn) points by bit packing).
The data structure uses O(n(log; n)?) space, and the
answer to a query is a union of O((f log; n)?) such lists,
occupying a total of O((klogn)/w) words. We can set
f _ 2(log17E n)/3.]

Idea 1: Sublinear Space by Blocking. Our main
new idea is showing that it is actually possible to ob-
tain nontrivial data structures with sublinear space for
colored range reporting, under the assumption that the
point set has already been preprocessed for uncolored
range searching, specifically, in the data structure from
Lemma 2.1. We start with a capped version of the prob-
lem, where the output size is promised to be at most a
fixed value Ky. The basic idea is to divide data into
blocks of size B (like in external-memory data struc-
tures), and remember only a small number of points
per block. Note that the space bound O(Kyn/B) below
is indeed sublinear if the parameter B is chosen to be
slightly bigger than Ky. There are extra logn factors
in the query cost, but at the end these factors will be
offset by w in the denominator.

LEMMA 2.2. Suppose that we are given a set S of n
colored points in R?, and we have already built the data
structure in Lemma 2.1 for S, where the label of each
point stores the ranks of its color, its x-coordinate, and
its y-coordinate.

Given parameters Ky and B, we can build an
additional data structure with O(Kon/B) space that can
answer a colored 3-sided range reporting query with k
output points in O(21°8" " 4+ (Blog?n)/w + k) time,
provided that k < K. Failure is reported if k > K.

Proof. Divide the plane into n/B vertical slabs each
containing B points of S. In each slab, consider the (y-
Ylowest point of each color, and put the Ky + 1 lowest
of these lowest points (from each slab) into a set M.
Then |M| = O(Ky - n/B). Store M in a known data
structure for colored 3-sided range reporting structure

Copyright © 2020
Copyright for this paper is retained by authors

with O(|M|) space and O(log®" | M| + k) query time
(e.g., by Janardan and Lopez [22]).?

To answer a query for a 3-sided range ¢q, we do the
following:

1. Find all distinct colors in M N ¢ by querying the
structure for M in O(log®® n + k) time.

2. Let o7, and or be the slabs containing the left
and right edges of q. Colors from S Nop Ngq
and S N or N ¢ may not necessarily be found in
M Ngq, and so these two slabs need to be dealt with
differently: Generate the list of all O(B) points in
SNor and SNog by querying the data structure
from Lemma 2.1 in O(210g175 "+ (Blogn)/w) time.
Sort the combined list by color, which occupies
O((Blogn)/w) words, using a bit-packed version
of mergesort in O(((Blogn)/w) - logn) time [3].
Then perform a linear scan in O((Blogn)/w) time
to filter out points not in ¢ and remove duplicate
colors; this gives the list of all distinct colors in
SN(cpUor)Ngq.

We output the union of the lists from steps 1 and 2,
with duplicates removed, in O(k) additional time. We
can detect duplicates by using a bit vector of size O(n).
If more than K colors are found, failure is reported.
Correctness is easy to see: Consider a point p €
SNgq. If pisin oy, or o, then the color of p is found in
step 2. Otherwise, p is in some slab o that g completely
cuts across, and the color of p is the color of some point
in M NoNgqg and is found in step 1, unless M No Ngq
contains more than K, distinct colors, in which case
failure is reported. a

LEMMA 2.3. Under the same setting as Lemma 2.2,
we can build an additional data structure with
O((Kon/B)logn) space that can answer a colored 4-
sided range reporting query with k output points in
O(2°8" """ 4 (Blog? n)/w + k) time, provided that k <
Ky. Failure is reported if k > K.

Proof. We can reduce 4-sided queries to 3-sided queries
by using a standard range-tree divide-and-conquer (as
was also done in previous work [2, 31]). More precisely,
we store the point set in our 3-sided structure from
Lemma 2.2, divide the point set into the top and bottom
halves by the median horizontal line, and recursively
build a data structure for each half. Then a 4-sided
query can be decomposed into two 3-sided queries, by
jumping to the node at which the 4-sided range is split
into two by the dividing horizontal line. Space usage

2If a more self-contained solution is desired, we could instead

use bootstrapping here; see Section 3.

increases by a logarithmic factor, but the query time
increases only by a constant factor. Note that the
structure for Lemma 2.1 is built only once for the global
point set S.]

We now remove the cap assumption, by working
with logarithmically many values of Kj:

THEOREM 2.1. Given a set of n colored points in R?
and any constant ¢ € (0,1), we can build a data
structure with O(nlog® n) space that can answer a
colored 4-sided range reporting query with k output
points in 0215 "™ + (klog* n)/w + k) time.

Proof. In Lemma 2.3, we set B = Kglog®n; then
space is O(n/logn) (which is sublinear!). We build
this structure for every Ky that is a power of 2. The
total space is O((n/logn)-logn) = O(n), excluding the
structure from Lemma 2.1, which is built just once and
requires O(nlog®® n) space.

To answer a query, we query the structure from
Lemma 2.3, with a time limit of O(210g175” +
(Ko log? n)/w + Ky), for Ko = 270 2J0+L " with jo =
|log"~*n|, until success is reached. The total query
time forms a geometric series. 0

The data structure in the above theorem works
well only when k is large (k > 2'°¢" "), We would
like to reduce the overhead term 21°8' "™ to loglog U
somehow. . .

Idea 2: Grid Recursion. We now adopt a powerful
recursive grid method, which was first proposed by Al-
strup, Brodal, and Rauhe [4] for standard (uncolored)
2D orthogonal range reporting, and has since found
several applications in geometric data structures (e.g.,
[6, 7, 25, 35]). More precisely, we use a “lop-sided” vari-
ant due to Chan, Larsen, and Patragcu [6, Section 3],
originally for (uncolored) 3D 4-sided and 5-sided orthog-
onal range reporting; in a lop-sided grid, there will be
more columns than rows. In adapting the method for
colored reporting, we run into problems when the query
output size k is large, because we need to store more in-
formation per grid cell. Luckily the method from The-
orem 2.1 works well for large £ and can be combined
perfectly with the grid recursion:

THEOREM 2.2. Given a set S of n colored points in
[U)? and any constant € € (0,1), we can build a data
structure with O(n log?(® n) space that can answer a
colored 4-sided range reporting query with k output
points in O(loglog U + (klog* =) k) /w + k) time.

Proof. Suppose that there is already a colored j-
sided range reporting structure DS; (j € {2,3,4})

Copyright © 2020
Copyright for this paper is retained by authors

with O(nlog' ™ n) bits of space and O(loglogU +
(klog* 1= k) /w + k) query time. For example, known
linear-space data structures for colored 2-sided (domi-
nance) range reporting [27, 31] imply as = 0, and by
using a standard range tree construction to add sides,
we can easily obtain a3 =1 and oy = 2. (Known data
structures on colored 3-sided range reporting [27, 31]
actually give a3 = 0 and oy = 1, but to be more self-
contained, we will not use such structures.)

Form an (n/A?) x A grid, where each row contains
A? points of S and each column contains n/A points of
S, for some parameter A to be set later. For j € {3,4},
our j-sided data structure for S is built as follows:

1. For each column o, recursively build a data struc-
ture for SNo.

2. For each row o, build the DS; structure for SN o;
the total space in bits is O(nlog'™® A). Here, we
assume that coordinates and colors are replaced by
their ranks in S N o, which require O(log A) bits
each (this is known as rank space reduction).

For each column o, build the DS;_; structure for
S No (possibly with - and y-axes swapped); the
total space in bits is O(nlog! ™= n).

3. For each grid cell v, take up to glog’“n 4 1 points
of distinct colors in v, and put them in a set M.
Then |M| = O(2°8 "™ . A.n/A?). Store M
in the DS; structure with O(|M|log'™* |M|) =
O((n/A)2e" " m 1og+9 n) bits of space.

4. Build the data structure from Theorem 2.1 for S
with O(nlog 2 n) bits of space.

(In the base case when n < A2, we can just build
the structure DS; directly, with O(nlog' ™/ A) bits of
space.)

To answer a query for a j-sided range ¢, we do the
following:

1. If ¢ is completely inside a column o, then recur-
sively solve the problem in o.

2. Otherwise, let o and op be the rows containing
the top and bottom edges of ¢, and let o, and o
be the columns containing the left and right edges
of ¢. Find all distinct colors in SNorNgq, SNogNg,
SNopNg, and SNorNg by querying the DS; or
DS;_1 structures at the rows/columns (depending
on whether the range is j- or (j — 1)-sided in the
row/column), in O(loglog U + (klog" =% k) /w +
k) time. We may need an additional O(k) time to
undo rank space reduction for the output colors.

3. Find all distinct colors in M Ng by querying the DS ;
structure for M in O(log log U+ (klog® =) k) Jw+
k) time.

4. If more than 2'°¢" °" colors have been found in the
previous step, then query the data structure from
Theorem 2.1 in time O(210g176 "+ (klog* n)/w+k),
which is bounded by O((klog® *=) k) /w+k), since
k> 210g17E n.

We return the union of the lists of colors found in steps
2-4, with duplicates removed, in O(k) additional time.

Correctness is easy to see: Consider a point p €
SNgq. If pisin or, op, or, or or, then the color of p is
found in step 2 (or in step 1 if o5, = og). Otherwise, p
is in some grid cell v completely inside ¢, and the color
of p is the color of some point in M N~y N g and is found
in step 3, unless M N~y N ¢ contains more than glog’ ~“n
distinct colors, in which case the color of p is found in
step 4.

To analyze the query time, note that after an initial
predecessor search we can jump directly to the first
node of the recursion at which ¢ is not completely
contained in a column. The predecessor search takes
O(loglogU) time [38]. Afterwards, steps 2-4 take
O(loglog U + (klog* " =%) k) /w + k) time. This bounds
the overall query time.

Since there are O(log, n) levels of recursion, the
total space in bits is O((nlog' ™™ A + nlog'™—1 n +
(n/A)21°8" "1 1og % 4 nlog!™? n) - log, n). Setting
A = 48" gives the bound O(nlog't®(=9)p 4
nlog' T =17 n 4 nlog' T3 n). Thus, we can effectively
replace a; with

max{a;(1 —¢), aj_1 +¢, 3¢}

As as = 0, after O((1/¢)log(1/e)) rounds
of bootstrapping, we obtain az = O(g). After
O((1/e)log(1/e)) further rounds of bootstrapping, we
obtain ay = O(g). This proves the theorem. d

The above theorem works well when the output size
k is sufficiently small, up to around 20" We need
one final ingredient to obtain an efficient solution in
general. . .

Final Idea: Range Tree on Colors. The final idea
is an old one: use a range tree over the colors. If a
query’s output size at a tree node is smaller than a cap
of around Ky = 2“’1/47 we can apply an existing solution
for small k (Theorem 2.2); otherwise, we recurse in the
children. This idea dates back at least to old work on
(uncolored) circular range reporting by Chazelle et al. in
the 1980s [11] (where higher-order Voronoi diagrams

Copyright © 2020
Copyright for this paper is retained by authors

were used to solve the capped problem); in the context
of colored range searching, the usual application sets
the cap to Ky = 0, i.e., it provides a reduction of the
colored problem to uncolored range emptiness, at the
expense of extra logarithmic factors (e.g., see [21] or
[17, Section 3.4]). What makes our application more
interesting is that we will use a tree of a fairly large fan-
out f ~ 2“’1/47 to avoid losing a full logarithmic factor
in space.

One technical issue needs to be addressed first: how
can we decide whether a query’s output size at a tree
node is smaller than the cap Ky? The following lemma
solves this subproblem with a polylogarithmic approx-
imation factor, which is sufficient for our purposes (a
solution by random sampling is straightforward, but we
give a deterministic method).

LEMMA 2.4. Given a set S of n colored points in R?
and a parameter Ko, we can build a data structure with
O((n/Ko)logO(l) n) space so that for a query 4-sided
axis-aligned rectangle, we can conclude that the number
of distinct colors is at most Ky logo(l) n or at least Ky
in 0(og®M n) time.

Proof. By the standard range tree construction, we can
form a collection R of canonical rectangles, with total
size), cplSNrl =0 log?n), such that any query
axis-aligned rectangle can be expressed as a disjoint
union of at most O(log®n) canonical rectangles.

Let R’ be the subcollection of all canonical rect-
angles » € R that contain at least K, distinct col-
ors. Then |R'| = O((n/Ky)log>n). We store R in a
data structure with O(|R’|log®® |R'|) space that sup-
ports rectangle enclosure queries (finding a rectangle of
R’ contained in a given query axis-aligned rectangle)
in O(log® |R'|) time; note that rectangle enclosure
queries in 2D can be reduced to orthogonal range queries
in 4D [34].

Consider a query rectangle g. If some rectangle of
R’ is contained in ¢, then ¢ contains at least K distinct
colors. If no rectangle of R’ is contained in ¢, then
the O(log2 n) canonical rectangles associated with ¢ all
have at most K distinct colors, so ¢ contains at most
O(Ky log® n) distinct colors. |

THEOREM 2.3. Given a set of n colored points in [U]?
and any constant € € (0,1), we can build a data
structure with O(nlog® **°® n) space that can answer
a colored 4-sided range reporting query with k output

points in O(loglogU + k) time.

Proof. We build a range tree over the colors with fan-
out f, where each node stores the data structures from
Theorem 2.2 and Lemma 2.4. More precisely, we store

the point set in the structures from Lemma 2.4 for some
choice of Ky and from Theorem 2.2, divide the set of
all colors into f subsets Ci,...,Cy of (roughly) equal
size, and for each i = 1,..., f, recursively build a data
structure for the subset of points with colors from Cj.
Since there are O(log;n) levels of recursion, the total
space is O((n1og®® n + (n/Ky)log®M n) - log;n).

To answer a query, we first query the structure
from Lemma 2.4. If the number of distinct colors is
at most K logo(l) n, then we query the structure from
Theorem 2.2. If the number of distinct colors exceeds
Ky, we recursively query the data structure for C; for
every i = 1,..., f. An exception is at the root: here, we
skip the query by Lemma 2.4 and instead directly query
the structure from Theorem 2.2 with a time limit of
O(loglog U + (K log" "' =%) K) /w+ Ky), and if success
is not reached, we recursively query the data structure
for each C;.

We now analyze the query time. We visit a node
of the range tree only if its parent contains at least
K different colors in the query range. Thus the total
number of visited nodes per level is O(fk/Ky) (we can
identify at least K unique colors per f visited nodes).
The total number of nodes visited in the recursion is
O((fk/Ko)log;n) over all levels. All queries to data
structures from Theorem 2.2 take O((fk/Ko)log;n -
loglogU + (klog® (=) (Kylog®M n))/w + k) time.
All calls to data structures from Lemma 2.4 take
O((fk/Ko)logsn - log®M n) time. Additionally, we
spend O(loglog U + (klog* " =% Ky) /w+k) time at the
root node.

Weset f = 2v" """ and K, = f2. For this choice of
Ky and f, we have log4/(1_5)(Ko log@W n) = O(w), and
(fk/Ko)logsn - (loglogU + log®M n) = o(k). Hence,
the total query cost is O(loglog U + k). The space usage
is O(nlog® 49 p). 0

3 The 3D Solution

In this section, we extend our 2D solution to solve the
colored 3D 5-sided range reporting problem. We first
note that a solution to the 3D 3-sided case follows from
previous work:

LEMMA 3.1. Given a set of n points in [U]3, we can
build a data structure with O(n) space that can answer
a colored 3-sided (i.e., dominance) range reporting query
with k output points in O(log,, n + k) time.

Proof. 1t is not difficult to reduce colored 3D dominance
to uncolored 3D 5-sided box stabbing (given a set of 5-
sided boxes in 3D, reporting the rectangles that contain
a query point). For example, see [36, Section 3.1] for
a description of the reduction. The 3D 5-sided box

Copyright © 2020
Copyright for this paper is retained by authors

stabbing problem was recently solved optimally by Chan
et al. [7] with O(n) space and O(log,, n+ k) query time.
d

Note that by using Lemma 3.1 and a standard
range tree construction to add sides, we can immedi-
ately obtain a data structure with O(n log? n) space and
O(log,, n+k) query time for colored 3D 5-sided range re-
porting, and O(nlog® n) space and O(log,, n + k) query
time for colored 3D general 6-sided range reporting. We
will improve these space bounds.

Idea 1: Sublinear Space by Blocking. We follow
the same overall plan as in our 2D solution. The main
difference lies in a new version of Lemmas 2.2-2.3, which
requires more logarithmic factors in the space and query
time bounds (this will explain why the fraction in the
final space bound is increased from 3/4 to 4/5). The
key idea is again to obtain sublinear-space structures
by dividing into blocks and retaining a small number
of points (based on the cap) per block. We assume the
availability of the following data structure (the remark
after Lemma 3.1 implies a structure with a = 2 and
B =0, for example):

HyPOTHESIS 3.2. Given a set of n colored points in
[U]? and a parameter Ko, we can build a data structure
with O(nlog®n) space that can answer a colored 5-
sided range reporting query with k output points in
O(log,, n + (Kolog” n)/w + k) time, provided that k <
Ky. If k > Ky, failure is reported.

LEMMA 3.3. Suppose that we are given a set S of n
colored points in R3, and we have already built the
data structure in Lemma 2.1 for the xy-projection of
S, where the label of each point stores the ranks of its
x-coordinate, y-coordinate, and color.

Given parameters Ko and B and any constant € €
(0,1), assuming Hypothesis 3.2, we can build an addi-
tional data structure with O((Kon/B)log't*n) space
that can answer a colored 5-sided range reporting query
with k output points in O(2°8" "™ + (Blog®n)/w +
(Kolog? n)/w + k) time, provided that k < K,. If
k > Ky, failure is reported.

Proof. Let o) denote the zy-projection of an object (or
a set of objects) o from 3D to 2D, and let o' denote the
lifting of an object ¢ from 2D to 3D.

We build a standard 2D range tree for S|, except
that a node is made a leaf when the size of its corre-
sponding point set drops below B. This gives a col-
lection of O((n/B)logn) canonical rectangles and leaf
rectangles (of total size O((n/B)log® n)), such that each
leaf rectangle contains O(B) points of S|, and any axis-
aligned rectangle ¢ in 2D can be covered by O(log® n)

canonical rectangles completely inside ¢, and O(logn)
extra leaf rectangles crossing the boundary of q.

For each canonical rectangle r, consider the (z-
Jlowest point in 7T of each color, and put the Ky + 1
lowest among these points in a set M. Then |M| =
O(Ky - (n/B)logn). Store M in the colored 5-sided
range reporting structure from Hypothesis 3.2 with
O(|M|log®™ |M|) = O((Kon/B)log" ™ n) space.

To answer a query for a 5-sided range ¢q, we do the
following:

1. Find all distinct colors in M N ¢ by querying the
structure for M in O(log,, n + (Kqlog® n)/w + k)
time.

2. Cover q; by O(log®n) canonical rectangles and
O(log n) leaf rectangles. For each of these leaf rect-
angles r, generate the list of all O(B) points in SNr'
by querying the data structure from Lemma 2.1 in
O(2°5' " 4 (Blogn)/w) time. Sort the combined
list over the O(logn) leaf rectangles by color (which
occupies O((Blog®n)/w) words) using a packed
mergesort in O((Blog®n)/w - logn) time. Then
perform a linear scan in O((Blog®n)/w) time to
filter out points not in ¢ and remove duplicate col-
ors; this gives the list of colors of points in SNrTNgq
over all of these leaf rectangles r.

We return the union of the lists from steps 1 and 2,
with duplicates removed, in O(k) additional time. If
more than K colors are found, failure is reported.
Correctness is easy to see: Consider a point p €
SNg. If py is in a leaf rectangle associated with ¢,
then the color of p is found in step 2. Otherwise, p, is
in a canonical rectangle r completely inside ¢, and the
color of p is the color of some point in M NrT Ng and is
found in step 1, unless M NrTN¢q contains more than kg
distinct colors, in which case failure is reported.]

Bootstrapping helps reduce the number of logarith-
mic factors:

COROLLARY 3.1. Hypothesis 3.2 is true for a = 2¢ and

B=5.

Proof. Apply Lemma 3.3 with B = K log? n. Then the
new data structure has O(nlog” n + nlog® ' n) space
and O(2°8" "™ 4 (Kylog®n)/w + (Kolog” n)/w + k)
query time. Thus, o and 8 can effectively be replaced
by max{a — 1,2¢} and max{3,5}. A constant number

of rounds of bootstrapping makes a« = 2¢ and g = 5.
O

We can now obtain the following theorem from
Lemma 3.3 (with o = 2¢ and § = 5), in exactly the
same way that we obtain Theorem 2.1 from Lemma 2.3:

Copyright © 2020
Copyright for this paper is retained by authors

THEOREM 3.1. Given a set of n colored points in R3
and any constant € € (0,1), we can build a data
structure with O(nlog n) space that can answer a
colored 5-sided range reporting query with k output
points in 0215 "™ + (klog® n)/w + k) time.

Idea 2: Grid Recursion. The next step is to use the
recursive grid method to obtain the following theorem
from Theorem 3.1, in the same way that we obtain
Theorem 2.2 from Theorem 2.1:

THEOREM 3.2. Given a set S of n colored points in
[U]?, and any constant ¢ € (0,1), we can build a
data structure with O(n logo(s) n) space that can answer
a colored 5-sided range reporting query with k output
points in O(log,, n + (klog”+ % k) /w + k) time.

The grid decomposition is applied to the xy-
projection S|. Note that 3D 4-sided/5-sided ranges are
projected to 2D 3-sided/4-sided ranges. The method is
almost identical to that in Theorem 2.1, so there is no
need to redescribe the proof. The only main difference
is in step 3 of the construction: in each grid cell v, we
consider the (z-)lowest point of SN~T of each color, and
put the 2108 " n 1 1 lowest of these lowest points in the
set M. Another difference is that we start with the col-
ored 3D dominance structure from Lemma 3.1 instead
of colored 2D dominance, and so all loglog U terms are
replaced by log,, n.

Final Idea: Range Tree on Colors. The proof of
Lemma 2.4 easily extends to 3D, with larger polyloga-
rithmic factors. We can thus obtain the following the-
orem from Theorem 3.2, in exactly the same way that
we obtain Theorem 2.3 from Theorem 2.2:

THEOREM 3.3. Given a set of n colored points in [U]3
and any constant ¢ € (0,1), we can build a data
structure with O(nlog® %) n) space that can answer
a colored 5-sided range reporting query with k output
points in O(log,, n + k) time.

The general 6-sided case can be reduced to the 5-
sided case by a standard range tree construction, which
increases space by a logarithmic factor but does not
increase the query time. This leads to our final result
in 3D:

COROLLARY 3.2. Given a set of n colored points in
[U]? and any constant € € (0,1), we can build a data
structure with O(nlog®**°® n) space that can answer
a colored 6-sided range reporting query with k output
points in O(log,, n + k) time.

4 Final Remarks

An obvious open problem is to improve the exponent
in the logarithmic factors in our space bounds. With
this type of techniques, it seems difficult to get below
n+/log n space, however.

In applications where the output size k is expected
to be small, Theorems 2.2 and 3.2 may already be good
enough and have near-linear (O(nlog®n)) space. If all
queries have approximately the same fixed value of k,
then we can again get near-linear space, for example,
by randomly partitioning the colors into O(k/logn)
subclasses, and building the structure for Theorems 2.2
and 3.2 for the points from each subclass (the query
range would have about O(logn) colors in each subclass
with high probability by the Chernoff bound, so these
theorems would work well in such a case).

Can the log,, n term in the query time bound be
improved for colored 3D orthogonal range reporting?
Note that if the query time could be improved for
colored 3D dominance range reporting (Lemma 3.1),
we would automatically get better query time for our
data structures for colored 5-sided and 6-sided range
reporting. (In the proof of Lemma 3.1, colored 3D
dominance is reduced to the 3D 5-sided box stabbing
problem, for which log,, n is known to be tight; however,
reduction in the opposite direction is unclear.)

References

[1] P. K. Agarwal and J. Erickson. Geometric range
searching and its relatives. In Advances in Discrete and
Computational Geometry, volume 223 of Contemporary
Mathematics, pages 1-56. Providence, RI: American
Mathematical Society, 1999.

[2] P. K. Agarwal, S. Govindarajan, and S. Muthukrish-
nan. Range searching in categorical data: Colored
range searching on grid. In Proc. 10th Annual Euro-
pean Symposium on Algorithms (ESA), pages 17-28,
2002.

[3] S. Albers and T. Hagerup. Improved parallel integer
sorting without concurrent writing. Inf. Comput.,
136(1):25-51, 1997.

[4] S. Alstrup, G. S. Brodal, and T. Rauhe. New data
structures for orthogonal range searching. In Proc.
41st Annual Symposium on Foundations of Computer
Science (FOCS), pages 198-207, 2000.

[5] P.Bozanis, N. Kitsios, C. Makris, and A. K. Tsakalidis.
New upper bounds for generalized intersection search-
ing problems. In Proc. 22nd International Colloquium
on Automata, Languages and Programming (ICALP),
pages 464-474, 1995.

[6] T. M. Chan, K. G. Larsen, and M. P&tragcu. Or-
thogonal range searching on the RAM, revisited. In
Proc. 27th ACM Symposium on Computational Geom-
etry (SoCG), pages 1-10, 2011.

Copyright © 2020
Copyright for this paper is retained by authors

(7]

[10]

[11]

[12]

[14]

[15]

[16]

T. M. Chan, Y. Nekrich, S. Rahul, and K. Tsaka-
lidis. Orthogonal point location and rectangle stabbing
queries in 3-d. In Proc. 45th International Colloquium
on Automata, Languages, and Programming (ICALP),
pages 31:1-31:14, 2018.

T. M. Chan and M. Patragcu. Counting inversions, of-
fline orthogonal range counting, and related problems.
In Proc. 21st Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 161-173, 2010.

T. M. Chan and K. Tsakalidis. Dynamic orthogonal
range searching on the RAM, revisited. In Proc. 33rd
International Symposium on Computational Geometry
(SoCQG), pages 28:1-28:13, 2017.

T. M. Chan and K. Tsakalidis. Dynamic planar
orthogonal point location in sublogarithmic time. In
Proc. 34th International Symposium on Computational
Geometry (SoCG), pages 25:1-25:15, 2018.

B. Chazelle, R. Cole, F. P. Preparata, and C. Yap. New
upper bounds for neighbor searching. Information and
Control, 68(1-3):105-124, 1986.

M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Springer-Verlag, 3rd edition, 2008.

H. El-Zein, J. I. Munro, and Y. Nekrich. Succinct color
searching in one dimension. In Proc. 28th International
Symposium on Algorithms and Computation (ISAAC),
pages 30:1-30:11, 2017.

T. Gagie, J. Karkkainen, G. Navarro, and S. J. Puglisi.
Colored range queries and document retrieval. Theor.
Comput. Sci., 483:36-50, 2013.

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and
S. V. Thankachan. Categorical range reporting with
frequencies. In Proc. 22nd International Conference on
Database Theory (ICDT), pages 9:1-9:19, 2019.

R. Grossi and S. Vind. Colored range searching in
linear space. In Proc. 14th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT), pages
229-240, 2014.

P. Gupta, R. Janardan, S. Rahul, and M. H. M. Smid.
Computational geometry: Generalized (or colored)
intersection searching. In Handbook of Data Structures
and Applications, chapter 67, pages 1042-1057. CRC
Press, 2nd edition, 2018.

P. Gupta, R. Janardan, and M. H. M. Smid. Further
results on generalized intersection searching problems:
Counting, reporting, and dynamization. J. Algorithms,
19(2):282-317, 1995.

P. Gupta, R. Janardan, and M. H. M. Smid. Algo-
rithms for generalized halfspace range searching and
other intersection searching problems. Comput. Geom.,
6:1-19, 1996.

P. Gupta, R. Janardan, and M. H. M. Smid. A
technique for adding range restrictions to generalized
searching problems. Inf. Process. Lett., 64(5):263-269,
1997.

P. Gupta, R. Janardan, and M. H. M. Smid. Algo-
rithms for some intersection searching problems involv-
ing circular objects. International Journal of Mathe-

22]

23]

24]

[25]

[26]

27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

37]

[38]

matical Algorithms, 1:35-52, 1999.

R. Janardan and M. A. Lopez. Generalized intersection
searching problems. International Journal of Compu-
tational Geometry and Applications, 3(1):39-69, 1993.
H. Kaplan, N. Rubin, M. Sharir, and E. Verbin.
Efficient colored orthogonal range counting. SIAM J.
Comput., 38(3):982-1011, 2008.

H. Kaplan, M. Sharir, and E. Verbin. Colored intersec-
tion searching via sparse rectangular matrix multipli-
cation. In Proc. 22nd ACM Symposium on Computa-
tional Geometry (SoCG), pages 52-60, 2006.

M. Karpinski and Y. Nekrich. Space efficient multi-
dimensional range reporting. In Proc. 15th Annual
International Conference on Computing and Combina-
torics (COCOON), pages 215-224, 2009.

K. G. Larsen and R. Pagh. I/O-efficient data struc-
tures for colored range and prefix reporting. In Proc.
23rd Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 583-592, 2012.

K. G. Larsen and F. van Walderveen. Near-optimal
range reporting structures for categorical data. In
Proc. 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 256-276, 2013.

C. W. Mortensen. Generalized static orthogonal range
searching in less space. Technical report, IT University
Technical Report Series 2003-33, 2003.

C. W. Mortensen. Fully dynamic orthogonal range
reporting on RAM. SIAM J. Comput., 35(6):1494—
1525, 2006.

S. Muthukrishnan. Efficient algorithms for document
retrieval problems. In Proc. 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
657-666, 2002.

Y. Nekrich. Efficient range searching for categorical
and plain data. ACM Trans. Database Syst., 39(1):9,
2014.

Y. Nekrich and J. S. Vitter. Optimal color range
reporting in one dimension. In Proc. 21st Annual
European Symposium Algorithms (ESA), pages 743—
754, 2013.

M. Patil, S. V. Thankachan, R. Shah, Y. Nekrich, and
J. S. Vitter. Categorical range maxima queries. In
Proc. 33rd ACM Symposium on Principles of Database
Systems (PODS), pages 266—277, 2014.

F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer—Verlag, 1985.

S. Rahul. Improved bounds for orthogonal point en-
closure query and point location in orthogonal subdivi-
sions in R®. In Proc. 26th Annual ACM-SIAM Sympo-
stum on Discrete Algorithms (SODA), pages 200-211,
2015.

S. Rahul. Approximate range counting revisited. In
Proc. 33rd International Symposium on Computational
Geometry (SoCG), pages 55:1-55:15, 2017.

Q. Shi and J. JaJ4. Optimal and near-optimal algo-
rithms for generalized intersection reporting on pointer
machines. Inf. Process. Lett., 95(3):382-388, 2005.

P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and

Copyright © 2020
Copyright for this paper is retained by authors

39]

implementation of an efficient priority queue. Math.
Sys. Theory, 10:99-127, 1977.

B. T. Wilkinson. Amortized bounds for dynamic
orthogonal range reporting. In Proc. 22th Annual
European Symposium on Algorithms (ESA), pages 842—
856, 2014.

Copyright © 2020
Copyright for this paper is retained by authors

