

27:2 Faster Approximation Algorithms for Geometric Set Cover

Generally, greedy algorithms achieve only logarithmic approximation factors (there are

some easy cases where they give O(1) approximation factors, e.g., hitting set for fat objects

such as disks/balls in the “continuous” setting with X = R
d [20]). The LP-based approaches

give better approximation factors in many cases, e.g., O(1) approximation for set cover and

hitting set for disks in 2D and halfspaces in 3D, set cover for objects in 2D with linear

“union complexity”, and hitting set for pseudodisks in 2D [7, 19, 5, 32, 29]. Subsequently,

local-search PTASs have been found by Mustafa and Ray [27] in some cases, including set

cover and hitting set for disks in 2D and halfspaces in 3D (earlier, PTASs were known for

hitting set only in the continuous setting for unit disks/balls [21], and for arbitrary disks/balls

and fat objects [11]).

Historically, the focus has been on obtaining good approximation factors. Here, we are

interested in obtaining approximation algorithms with good – ideally, near linear – running

time. Concerning the efficiency of known approximation algorithms:

1. Certain simple heuristics can lead to fast O(1)-approximation algorithms in some easy

cases (e.g., continuous hitting set for unit disks or unit balls by using grids), but generally,

even simple greedy algorithms may be difficult to implement in near linear time (as they

may require nontrivial dynamic geometric data structures).

2. LP-based approaches initially may not seem to be the most efficient, because of the

need to solve an LP. However, a general-purpose LP solver can be avoided. The set-

cover LP can alternatively be solved (approximately) by the multiplicative weight update

(MWU) method. In the computational geometry literature, the technique has been called

iterative reweighting, and its use in geometric set cover was explored by Brönnimann

and Goodrich [7] (one specific application appeared in an earlier work by Clarkson [18]),

although the technique was known even earlier outside of geometry. On the other hand,

the LP-rounding part corresponds to the well-known geometric problem of constructing

ε-nets, for which efficient algorithms are known [15, 25].

3. PTAS approaches generally have large polynomial running time, even when specialized

to specific approximation factors. For example, see [8] for efforts in improving the degree

of the polynomial.

In this paper we design faster approximation algorithms for geometric set cover via the

LP/MWU-based approaches. There has been a series of work on speeding up MWU methods

for covering or packing LPs (e.g., see [17, 22, 33]). In geometric settings, we would like more

efficient algorithms (as generating the entire LP explicitly would already require quadratic

time), by somehow exploiting geometric data structures. The main previous work was by

Agarwal and Pan [4] from SoCG 2014, who showed how to compute an O(1)-approximation

for set cover for 2D disks or 3D halfspaces, in O(n log4 n) randomized time.

Agarwal and Pan actually proposed two MWU-based algorithms: The first is a simple

variant of the standard MWU algorithm of Brönnimann and Goodrich, which proceeds

in logarithmically many rounds. The second views the problem as a 2-player zero-sum

game, works quite differently (with weight updates to both points and objects), and uses

randomization; the analysis is more complicated. Because the first algorithm requires stronger

data structures – notably, for approximate weighted range counting with dynamic changes

to the weights – Agarwal and Pan chose to implement their second algorithm instead, to get

their O(n log4 n) result for 3D halfspaces.

New results. In this paper we give:

a deterministic near-linear O(1)-approximation algorithm for set cover for 3D halfspaces.

Its running time is O(n log3 n log log n), which besides eliminating randomization is also

a little faster than Agarwal and Pan’s;

T. M. Chan and Q. He 27:3

a still faster randomized near-linear O(1)-approximation algorithm for set cover for

3D halfspaces. Its running time is O(n log n logO(1) log n), which is essentially optimal1

ignoring minor log log n factors.

Although generally shaving logarithmic factors may not be the most important endeavor,

the problem is fundamental enough that we feel it worthwhile to find the most efficient

algorithm possible.

Our approach interestingly is to go back to Agarwal and Pan’s first MWU algorithm.

We show that with one simple modification, the data structure requirement can actually be

relaxed: namely, for the approximate counting structure, there is no need for weights, and the

only update operation is insertion. By standard techniques, insertion-only data structures

reduce to static data structures. This simple idea immediately yields our deterministic result.

(Before, Bus et al. [9] also aimed to find variants of Agarwal and Pan’s first algorithm with

simpler data structures, but they did not achieve improved theoretical time bounds.) Our

best randomized result requires a more sophisticated combination of several additional ideas.

In particular, we incorporate random sampling in the MWU algorithm, and extensively use

shallow cuttings, in both primal and dual space.

We have stated our results for set cover for 3D halfspaces. This case is arguably the most

central. It is equivalent to hitting set for 3D halfspaces, by duality, and also includes set cover

and hitting set for 2D disks as special cases, by the standard lifting transformation. The case

of 3D dominance ranges is another special case, by a known transformation [14, 28] (although

for the dominance case, word-RAM techniques can speed up the algorithms further). The

ideas here are likely useful also in the other cases considered in Agarwal and Pan’s paper

(e.g., hitting set for rectangles, set cover for fat triangles, etc.), but in the interest of keeping

the paper focused, we will not discuss these implications.

Weighted geometric set cover. Finally, we consider the weighted version of set cover:

assuming that each object is given a weight, we now want a subset of the objects of R with

the minimum total weight that covers all points in X. The weighted problem has also received

considerable attention: Varadarajan [31] and Chan et al. [13] used the LP-based approach to

obtain O(1)-approximation algorithms for weighted set cover for 3D halfspaces (or for objects

in 2D with linear union complexity); the difficult part is in constructing ε-nets with small

weights, which they solved by the quasi-random sampling technique. Later, Mustafa, Raman,

and Ray [26] discovered a quasi-PTAS for 3D halfspaces by using geometric separators; the

running time is very high (nlogO(1) n).

Very recently, Chekuri, Har-Peled, and Quanrud [16] described new randomized MWU

methods which can efficiently solve the LP corresponding to various generalizations of

geometric set cover, by using appropriate geometric data structures. In particular, for weighted

set cover for 3D halfspaces, they obtained a randomized O(n logO(1) n)-time algorithm to

solve the LP but with an unspecified number of logarithmic factors. They did not address

the LP-rounding part, i.e., construction of an ε-net of small weight – a direct implementation

of the quasi-uniform sampling technique would not lead to a near-linear time bound.

We observe that a simple direct modification of the standard MWU algorithm of Brönni-

mann and Goodrich, or Agarwal and Pan’s first algorithm, can also solve the LP for weighted

geometric set cover, with arguably simpler data structures than Chekuri et al.’s. Secondly,

1 Just deciding whether a solution exists requires Ω(n log n) time in the algebraic decision-tree model,
even for 1D intervals.

SoCG 2020

27:4 Faster Approximation Algorithms for Geometric Set Cover

we observe that an ε-net of small weight can be constructed in near-linear time, by using

quasi-uniform sampling more carefully. This leads to a randomized O(n log4 n log log n)-

time, O(1)-approximation algorithm for weighted set cover for 3D halfspaces (and thus

for 2D disks).

2 Preliminaries

Let X be a set of points and S be a set of objects. For a point p, its depth in S refers to

the number of objects in S containing p. A point p is said to be ε-light in S, if it has depth

≤ ε|S| in S; otherwise it is ε-heavy. A subset of objects T ⊆ S is an ε-net of S if T covers

all points that are ε-heavy in S.

It is known that there exists an ε-net with size O(1
ε) for any set of halfspaces in 3D or

disks in 2D [24] (or more generally for objects in the plane with linear union complexity [19]).

2.1 The Basic MWU Algorithm

We first review the standard multiplicative weight2 update (MWU) algorithm for geometric set

cover, as described by Brönnimann and Goodrich [7] (which generalizes an earlier algorithm

by Clarkson [18], and is also well known outside of computational geometry).

Let X be the set of input points and S be the set of input objects, with n = |X|+ |S|.

Let OPT denote the size of the minimum set cover. We assume that a value t = Θ(OPT)

is known; this assumption will be removed later by a binary search for t. In the following

pseudocode, we work with a multiset Ŝ; in measuring size or counting depth, we include

multiplicities (e.g., |Ŝ| is the sum of the multiplicities of all its elements).

1: Guess a value t ∈ [OPT, 2 OPT] and set ε = 1
2t .

2: Define a multiset Ŝ where each object i in S initially has multiplicity mi = 1.

3: while we can find a point p ∈ X which is ε-light in Ŝ do

4: for each object i containing p do . call lines 4–5 a multiplicity-doubling step

5: Double its multiplicity mi.

6: Return an ε-net of the multiset Ŝ.

Since at the end all points in X are ε-heavy in Ŝ, the returned subset is a valid set cover

of X. For halfspaces in 3D or disks in 2D, its size is O(1
ε) = O(t) = O(OPT).

A standard analysis shows that the algorithm always terminates after O(t log n
t) multipli-

city-doubling steps. We include a quick proof: Each multiplicity-doubling step increases

|Ŝ| by a factor of at most 1 + ε, due to the ε-lightness of p. Thus, after z doubling steps,

|Ŝ| ≤ n(1 + ε)z ≤ neεz = nez/(2t). On the other hand, consider a set cover T ∗ of size t. In

each multiplicity-doubling step, at least one of the objects in T ∗ has its multiplicity doubled.

So, after z multiplicity-doubling steps, the total multiplicity in T ∗ is at least t2z/t. We

conclude that t2z/t ≤ |Ŝ| ≤ nez/(2t), implying that z = O(t log n
t).

2 In our algorithm description, we prefer to use the term “multiplicity” instead of “weight”, to avoid
confusion with the weighted set cover problem later.

T. M. Chan and Q. He 27:5

2.2 Agarwal and Pan’s (First) MWU Algorithm

Next, we review Agarwal and Pan’s first variant of the MWU algorithm [4]. One issue in

implementing the original algorithm lies in the test in line 3: searching for one light point by

scanning all points in X from scratch every time seems inefficient. In Agarwal and Pan’s

refined approach, we proceed in a small number of rounds, where in each round, we examine

the points in X in a fixed order and test for lightness in that order.

1: Guess a value t ∈ [OPT, 2 OPT] and set ε = 1
2t .

2: Define a multiset Ŝ where each object i in S initially has multiplicity mi = 1.

3: loop . call this the start of a new round

4: for each point p ∈ X in any fixed order do

5: while p is ε-light in Ŝ do

6: for each object i containing p do . call lines 6–7 a multiplicity-doubling step

7: Double its multiplicity mi.

8: if the number of multiplicity-doubling steps in this round exceeds t then

9: Go to line 3 and start a new round.

10: Terminate and return an ε
2 -net of the multiset Ŝ.

To justify correctness, observe that since each round performs at most t multiplicity-

doubling steps, |Ŝ| increases by a factor of at most (1 + ε)t ≤ eεt ≤ e1/2 < 2. Thus, a point

p that is checked to be ε-heavy in Ŝ at any moment during the round will remain ε
2 -heavy in

Ŝ at the end of the round.

Since all but the last round performs t multiplicity-doubling steps and we have already

shown that the total number of such steps is O(t log n
t), the number of rounds is O(log n

t).

3 “New” MWU Algorithm

Agarwal and Pan’s algorithm still requires an efficient data structure to test whether a given

point is light, and the data structure needs to support dynamic changes to the multiplicities.

We propose a new variant that requires simpler data structures.

Our new algorithm is almost identical to Agarwal and Pan’s, but with just one very

simple change! Namely, after line 3, at the beginning of each round, we add the following

line, to readjust all multiplicities:

3.5: for each object i, reset its multiplicity mi ← dmi
10n
|Ŝ|
e.

To analyze the new algorithm, consider modifying the multiplicity mi instead to dmi
10n
|Ŝ|
e ·

|Ŝ|
10n . The algorithm behaves identically (since the multiplicities are identical except for a

common rescaling factor), but is more convenient to analyze. In this version, multiplicities

are nondecreasing over time (though they may be non-integers). After the modified line 3.5,

the new |Ŝ| is at most
∑

i

(

mi
10n
|Ŝ|

+ 1
)

· |Ŝ|
10n ≤ 11n · |Ŝ|

10n = 1.1|Ŝ|. If the algorithm makes

z multiplicity-doubling steps, then it performs line 3.5 at most z/t times and we now have

|Ŝ| ≤ n(1 + ε)z · 1.1z/t ≤ nez/(2t) · 1.1z/t. This is still sufficient to imply that z = O(t log n
t),

and so the number of rounds remains O(log n
t).

SoCG 2020

27:6 Faster Approximation Algorithms for Geometric Set Cover

Now, let’s go back to line 3.5 as written. The advantage of this multiplicity readjustment

step is that it decreases |Ŝ| to
∑

i

(

mi
10n
|Ŝ|

+ 1
)

= O(n). At the end of the round, |Ŝ|

increases by a factor of at most (1 + ε)t < 2 and so remains O(n). Thus, in line 7, instead of

doubling the multiplicity of an object, we can just repeatedly increment the multiplicity (i.e.,

insert one copy of an object) to reach the desired value. The total number of increments per

round is O(n).

Note that in testing for ε-lightness in line 5, a constant-factor approximation of the depth

is sufficient, with appropriate adjustments of constants in the algorithm. Also, although

the algorithm as described may test the same point p for lightness several times in a round,

this can be easily avoided: we just keep track of the increase D in the depth of the current

point p; the new depth of p can be 2-approximated by the maximum of the old depth and D.

To summarize, an efficient implementation of each round of the new algorithm requires

solving the following geometric data structure problems (Report for line 6, and Approx-

Count-Decision for line 5):

Problem Report: Design a data structure to store a static set S of size O(n) so that given a

query point p ∈ X, we can report all objects in S containing the query point p. Here, the

output size of a query is guaranteed to be at most O(k) where k := n
t (since ε-lightness

of p implies that its depth is at most ε|Ŝ| = Θ(n
t) even including multiplicities).

Problem Approx-Count-Decision: Design a data structure to store a multiset Ŝ of size O(n)

so that given a query point p ∈ X, we can either declare that the number of objects in Ŝ

containing p is less than a fixed threshold value k, or that the number is more than k
c ,

for some constant c > 1. Here, the threshold again is k := n
t (since ε|Ŝ| = Θ(n

t)). The

data structure should support the following type of updates: insert one copy of an object

to Ŝ. (Deletions are not required.) Each point in X is queried once.

To bound the cost of the algorithm:

Let Treport denote the total time for O(t) queries in Problem Report.

Let Tcount denote the total time for O(n) queries and O(n) insertions in Problem Approx-

Count-Decision. (Note that the initialization of Ŝ at the beginning of the round can

be done by O(n) insertions.)

Let Tnet denote the time for computing an ε-net of size O(1
ε) for a given multiset Ŝ of

size O(n).

The total running time over all O(log n
t) rounds is

O((Treport + Tcount) log n
t + Tnet). (1)

4 Implementations

In this section, we describe specific implementations of our MWU algorithm when the objects

are halfspaces in 3D (which include disks in 2D as a special case by the standard lifting

transformation). We first consider deterministic algorithms.

4.1 Deterministic Version

Shallow cuttings. We begin by reviewing an important tool that we will use several times

later. For a set of n planes in R
3, a k-shallow ε-cutting is a collection of interior-disjoint

polyhedral cells, such that each cell intersects at most εn planes, and the union of the cells

cover all points of level at most k (the level of a point refers to the number of planes below

it). The list of all planes intersecting a cell ∆ is called the conflict list of ∆. Matoušek [23]

T. M. Chan and Q. He 27:7

proved the existence of a k-shallow (ck
n)-cutting with O(n

k) cells for any constant c. Chan and

Tsakalidis [15] gave an O(n log n
k)-time deterministic algorithm to construct such a cutting,

along with all its conflict lists (an earlier randomized algorithm was given by Ramos [30]). If

c is sufficiently large, the cells may be made “downward”, i.e., they all contain (0, 0,−∞).

Constructing ε-nets. The best known deterministic algorithm for constructing ε-nets for

3D halfspaces is by Chan and Tsakalidis [15] and runs in Tnet = O(n log 1
ε) = O(n log n) time.

The result follows directly from their shallow cutting algorithm (using a simple argument

of Matoušek [23]): Without loss of generality, assume that all halfspaces are upper halfspaces,

so depth corresponds to level with respect to the bounding planes (we can compute a net for

lower halfspaces separately and take the union, with readjustment of ε by a factor of 2). We

construct an (εn)-shallow ε
2 -cutting with O(1

ε) cells, and for each cell, add a plane completely

below the cell (if it exists) to the net. To see correctness, for a point p with level εn, consider

the cell ∆ containing p; at least εn− εn
2 > 0 planes are completely below ∆, and so the net

contains at least one plane below p.

Solving Problem Report. This problem corresponds to 3D halfspace range reporting in

dual space, and by known data structures [10, 2, 15], the total time to answer O(t) queries is

Treport = O(t · (log n + k)) = O(t log n + n), assuming an initial preprocessing of O(n log n)

time (which is done only once).

This result also follows directly from shallow cuttings (since space is not our concern,

the solution is much simplified): Without loss of generality, assume that all halfspaces are

upper halfspaces. We construct a k-shallow O(k
n)-cutting with O(n

k) downward cells. Given

a query point p ∈ X, we find the cell containing p, which can be done in O(log n) time by

planar point location; we then do a linear search over its conflict list, which has size O(k).

Note that the point location operations can be actually be done during preprocessing in

O(n log n) time since X is known in advance. This lowers the time bound for O(t) queries to

Treport = O(tk) = O(n).

Solving Problem Approx-Count-Decision. This problem corresponds to the decision ver-

sion of 3D halfspace approximate range counting in dual space, and several deterministic

and randomized data structures have already been given in the static case [1, 3], achieving

O(log n) query time and O(n log n) preprocessing time.

This result also follows directly from shallow cuttings: Without loss of generality, assume

that all halfspaces are upper halfspaces. We construct a n
bi -shallow O(1

bi)-cutting with

O(bi) downward cells for every i = 1, . . . , logb n for some constant b. Chan and Tsakalidis’s

algorithm can actually construct all O(log n) such cuttings in O(n log n) total time. With

these cuttings, we can compute an O(1)-approximation to the depth/level of a query point p

by simply finding the largest i such that p is contained in a cell of the n
bi -shallow cutting

(the level of p would then be O(n
bi) and at least n

bi+1). In Chan and Tsakalidis’s construction,

each cell in one cutting intersects O(1) cells in the next cutting, and so we can locate the

cells containing p in O(1) time per i, for a total of O(log n) time.

To solve Problem Approx-Count-Decision, we still need to support insertion. Al-

though the approximate decision problem is not decomposable, the above solution solves the

approximate counting problem, which is decomposable, so we can apply the standard loga-

rithmic method [6] to transform the static data structure into a semi-dynamic, insertion-only

data structure. The transformation causes a logarithmic factor increase, yielding in our case

O(log2 n) query time and O(log2 n) insertion time. Thus, the total time for O(n) queries

and insertions is Tcount = O(n log2 n).

SoCG 2020

27:8 Faster Approximation Algorithms for Geometric Set Cover

Conclusion. By (1), the complete algorithm has running time O((Treport + Tcount) log n
t +

Tnet) = O((n + n log2 n) log n
t + n log n) = O(n log3 n).

One final issue remains: we have assumed that a value t ∈ [OPT, 2 OPT] is given. In

general, either the algorithm produces a solution of size O(t), or (if it fails to complete

within O(log n
t) rounds) the algorithm may conclude that OPT > t. We can thus find an

O(1)-approximation to OPT by a binary search over t among the O(log n) possible powers

of 2, with O(log log n) calls to the algorithm. The final time bound is O(n log3 n log log n).

I Theorem 1. Given O(n) points and O(n) halfspaces in R
3, we can find a subset of

halfspaces covering all points, of size within O(1) factor of the minimum, in deterministic

O(n log3 n log log n) time.

4.2 Randomized Version 1

We now describe a better solution to Problem Approx-Count-Decision, by using random-

ization and the fact that all query points (namely, X) are given in advance.

Reducing the number of insertions in Problem Approx-Count-Decision. In solving Prob-

lem Approx-Count-Decision, one simple way to speed up insertions is to work with a

random sample R of Ŝ. When we insert an object to Ŝ, we independently decide to insert

it to the sample R with probability ρ := c0 log n
k , or ignore it with probability 1 − ρ, for a

sufficiently large constant c0. (Different copies of an object are treated as different objects

here.) It suffices to solve the problem for the sample R with the new threshold around ρk.

To justify correctness, consider a fixed query point p ∈ X. Let x1, x2, . . . be the sequence

of objects in Ŝ that contain p, in the order in which they are inserted (extend the sequence

arbitrarily to make its length greater than k). Let yi = 1 if object xi is chosen to be in

the sample R, or 0 otherwise. Note that the xi’s may not be independent (since the object

we insert could depend on random choices made before); however, the yi’s are independent.

By the Chernoff bound,
∑k/c

i=1 yi ≤
(1+δ)ρk

c and
∑k

i=1 yi ≥ (1 − δ)ρk with probability

1− e−Ω(ρk) = 1− n−Ω(c0) for any fixed constant δ > 0. Thus, with high probability, at any

time, if the number of objects in R containing p is more than (1+δ)ρk
c , then the number of

objects in Ŝ containing p is more than k
c ; if the former number is less than (1− δ)ρk, then

the later number is less than k. Since there are O(n) possible query points, all queries are

correct with high probability.

By this strategy, the number of insertions is reduced to O(ρn) = O(n
k log n) = O(t log n)

with high probability.

Preprocessing step. Next we use a known preprocessing step to ensure that each object

contains at most n
t points, in the case of 3D halfspaces. This subproblem was addressed

in Agarwal and Pan’s paper [4] (where it was called “(P5)” – curiously, they used it to

implement their second algorithm but not their first MWU-based algorithm.) We state a

better running time:

I Lemma 2. In O(n log t) time, we can find a subset T0 ⊆ S of O(t) halfspaces, such that

after removing all points in X covered by T0, each halfspace of S contains at most n
t points.

Proof. We may assume that all halfspaces are upper halfspaces. We work in dual space,

where S is now a set of points and X is a set of planes. The goal is to find a subset T0 ⊆ S

of O(t) points such that after removing all planes of X that are below some points of T0,

each point of S has depth/level at most n
t .

T. M. Chan and Q. He 27:9

We proceed in rounds. Let b be a constant. In the i-th round, assume that all points of

S have level ≤ n
bi . Compute a n

bi -shallow 1
bi+1 -cutting with O(bi) cells. In each cell, add an

arbitrary point of S (if exists) to the set T0. In total O(bi) points are added. Remove all

planes that are below these added points from X.

Consider a point p of S. Let ∆ be the cell containing p, and let q be the point in ∆

that was added to T0. Any plane that is below p but not removed (and thus above q) must

intersect ∆, so there can be at most n
bi+1 such planes. Thus, after the round, the level of p is

at most n
bi+1 . We terminate when bi reaches t. The total size of T0 is O(

∑logb t
i=1 bi) = O(t).

Naively computing each shallow cutting from scratch by Chan and Tsakalidis’s algorithm

would require O(n log n · log n) = O(n log2 n) total time. But Chan and Tsakalidis’s approach

can compute multiple shallow cuttings more quickly: given a n
bi -shallow cutting along with

its conflict lists, we can compute the next n
bi+1 -shallow cutting along with its conflict lists in

O(n + bi log bi) time. However, in our application, before computing the next cutting, we

also remove some of the input planes. Fortunately, this type of scenario has been examined

in a recent paper by Chan [12], who shows that the approach still works, provided that the

next cutting is relaxed to cover only points covered by the previous cutting (see Lemma 8 in

his paper); this is sufficient in our application. In our application, we also need to locate the

cell containing each point of S. This can still be done in O(n) time given the locations in

the previous cutting. Thus, the total time is O(
∑logb t

i=1 (n + bi log bi)) = O(n log t). J

At the end, we add T0 back to the solution, which still has O(t) total size.

Solving Problem Approx-Count-Decision. We now propose a very simple approach to

solve Problem Approx-Count-Decision: just explicitly maintain the depth of all points in

X. Each query then trivially takes O(1) time. When inserting an object, we find all points

contained in the object and increment their depths.

Due to the above preprocessing step, the number of points contained in the object is

O(n
t). For the case of 3D halfspaces, we can find these points by halfspace range reporting;

as explained before for Problem Report, this can be done in O(n
t) time by using shallow

cuttings, after an initial preprocessing in O(n log n) time. Thus, each insertion takes O(n
t)

time. Since the number of insertions has been reduced to O(t log n) by sampling, the total

time for Problem Approx-Count-Decision is Tcount = O((t log n) · n
t) = O(n log n).

Conclusion. By (1), the complete randomized algorithm has running time O((Treport +

Tcount) log n
t + Tnet) = O((n + n log n) log n

t + n log n) = O(n log n log n
t) = O(n log2 n) (even

including the O(n log n)-time preprocessing step). Including the binary search for t, the time

bound is O(n log2 n log log n).

4.3 Randomized Version 2

Finally, we combine the ideas from both the deterministic and randomized implementations,

to get our fastest randomized algorithm for 3D halfspaces.

Solving Problem Approx-Count-Decision. We may assume that all halfspaces are upper

halfspaces. We work in dual space, where Ŝ is now a multiset of points and X is a set of

planes. In a query, we want to approximately count the number of points in Ŝ that are above

a query plane in X. By the sampling reduction from Section 4.2, we may assume that the

number of insertions to Ŝ is O(t log n). By the preprocessing step from Section 4.2, we may

assume that all points in Ŝ have level at most n
t .

SoCG 2020

27:10 Faster Approximation Algorithms for Geometric Set Cover

Compute a n
t -shallow O(1

t)-cutting with O(t) downward cells, along with its conflict lists.

For each point p ∈ R, locate the cell containing p. All this can be done during a (one-time)

preprocessing in O(n log n) time.

For each cell ∆, we maintain Ŝ ∩∆ in a semi-dynamic data structure for 3D approximate

halfspace range counting. As described in Section 4.1, we get O(log2 n∆) query and insertion

time, where n∆ = |Ŝ ∩∆|.

In an insertion of a point p to Ŝ, we look up the cell ∆ containing p and insert the point

to the approximate counting structure in ∆.

In a query for a plane h ∈ X, we look up the cells ∆ whose conflict lists contain h, answer

approximate counting queries in these cells, and sum the answers.

We bound the total time for all insertions and queries. For each cell ∆, the number of

insertions in its approximate counting structure is n∆ and the number of queries is O(n
t)

(since each plane h ∈ X is queried once). The total time is

O

(

∑

∆

(n
t + n∆) log2 n∆

)

.

Since there are O(t) terms and
∑

∆ n∆ = O(t log n), we have n∆ = O(log n) “on average”;

applying Jensen’s inequality to the first term, we can bound the sum by O(n log2 log n +

t log3 n). Thus, Tcount = O(n log2 log n + t log3 n).

Conclusion. By (1), the complete randomized algorithm has running time O((Treport +

Tcount) log n
t + Tnet) = O((n + n log2 log n + t log3 n) log n

t + n log n) = O(n log n log2 log n +

t log4 n). If t ≤ n/ log3 n, the first term dominates. On the other hand, if t > n/ log3 n, our

earlier randomized algorithm has running time O(n log n log n
t) = O(n log n log log n). In any

case, the time bound is at most O(n log n log2 log n). Including the binary search for t, the

time bound is O(n log n log3 log n).

I Theorem 3. Given O(n) points and O(n) halfspaces in R
3, we can find a subset of halfspaces

covering all points, of size within O(1) factor of the minimum, in O(n log n log3 log n) time

by a randomized Monte-Carlo algorithm with error probability O(n−c0) for any constant c0.

Remark. The number of the log log n factors is improvable with still more effort, but we

feel it is of minor significance.

5 Weighted Set Cover

In this final section, we consider the weighted set cover problem. We define ε-lightness and

ε-nets as before, ignoring the weights. It is known that there exists an ε-net of S with total

weight O(1
ε ·

w(S)
|S|), for any set of 3D halfspaces or 2D disks (or objects in 2D with linear

union complexity) [13]. Here, the weight w(S) of a set S refers to the sum of the weights of

the objects in S.

5.1 MWU Algorithm in the Weighted Case

Let X be the set of input points and S be the set of weighted input objects, where object i

has weight wi, with n = |X|+ |S|. Let OPT be the weight of the minimum-weight set cover.

We assume that a value t ∈ [OPT, 2 OPT] is given; this assumption can be removed by a

binary search for t.

T. M. Chan and Q. He 27:11

We may delete objects with weights > t. We may automatically include all objects with

weights < 1
n t in the solution, and delete them and all points covered by them, since the total

weight of the solution increases by only O(n · 1
n t) = O(t). Thus, all remaining objects have

weights in [1
n t, t]. By rescaling, we may now assume that all objects have weights in [1, n]

and that t = Θ(n).

In the following, for a multiset Ŝ where object i has multiplicity mi, the weight of the

multiset is defined as w(Ŝ) =
∑

i miwi.

We describe a simple variant of the basic MWU algorithm to solve the weighted set cover

problem. (A more general, randomized MWU algorithm for geometric set cover was given

recently by Chekuri, Har-Peled, and Quanrud [16], but our algorithm is simpler to describe

and analyze.) The key innovation is to replace doubling with multiplication by a factor

1 + 1
wi

, where wi is the weight of the concerned object i. (Note that multiplicities may now

be non-integers.)

1: Guess a value t ∈ [OPT, 2 OPT].

2: Define a multiset Ŝ where each object i in S initially has multiplicity mi = 1.

3: repeat

4: Find a point p which is ε-light in Ŝ with ε = 1
2t ·

w(Ŝ)

|Ŝ|
.

5: for each object i containing p do . call lines 5–6 a “multiplicity-increasing step”

6: Multiply its multiplicity mi by 1 + 1
wi

.

7: until all points are ε-heavy in Ŝ.

8: Return an ε-net of the multiset Ŝ.

Since at the end all points are ε-heavy in Ŝ, the returned subset is a valid set cover of X.

For halfspaces in 3D or disks in 2D, its weight is O(1
ε ·

w(Ŝ)

|Ŝ|
) = O(OPT).

We now prove that the algorithm terminates in O(t log n) = O(n log n) multiplicity-

increasing steps.

In each multiplicity-increasing step, w(Ŝ) increases by

∑

object i containing p

mi ·
1

wi
· wi =

∑

object i containing p

mi ≤
w(Ŝ)

2t ,

i.e., w(Ŝ) increases by a factor of at most 1 + 1
2t . Initially, w(Ŝ) ≤ n2. Thus, after z

multiplicity-increasing steps, w(Ŝ) ≤ n2(1 + 1
2t)z ≤ n2ez/(2t).

On the other hand, consider the optimal set cover T ∗. Suppose that object i has its

multiplicity increased zi times. In each multiplicity-increasing step, at least one object in

T ∗ has its multiplicity increased. So, after z multiplicity-increasing steps,
∑

i∈T ∗ zi ≥ z and
∑

i∈T ∗ wi ≤ t. In particular, zi/wi ≥ z/t for some i ∈ T ∗. Therefore, w(Ŝ) ≥ (1 + 1
wi

)ziwi ≥

(1 + 1
wi

)zi ≥ 2zi/wi ≥ 2z/t (since wi ≥ 1). We conclude that 2z/t ≤ w(Ŝ) ≤ n2ez/(2t),

implying that z = O(t log n).

Similar to Agarwal and Pan’s first MWU algorithm, we can also divide the multiplicity-

increasing steps into rounds, with each round performing up to t multiplicity-increasing steps.

Within each round, the total weight w(Ŝ) increases by at most (1 + 1
2t)t = O(1). Also if |Ŝ|

increases by a constant factor, we immediately start a new round: because |Ŝ| ≤ w(Ŝ) and

w(Ŝ) may be doubled at most O(log n) times, this case can happen at most O(log n) times.

This ensures that if a point is checked to be ε-heavy at any moment during a round, it will

remain Ω(ε)-heavy at the end of the round. There are only O(log n) rounds.

SoCG 2020

27:12 Faster Approximation Algorithms for Geometric Set Cover

Additional ideas are needed to speed up implementation (in particular, our modified

MWU algorithm with multiplicity-readjustment steps does not work as well now). First, we

work with an approximation m̃i to the multiplicity mi of each object i. By rounding, we may

assume all weights wi are powers of 2. In the original algorithm, mi = (1 + 1
wi

)zi , where zi is

the number of points p ∈ Z that are contained in object i, and Z be the multiset consisting of

all points p that have undergone multiplicity-increasing steps so far. Note that since the total

multiplicity is nO(1), we have zi = O(wi log n). Let Y (wi) be a random sample of Z where

each point p ∈ Z is included independently with probability log2 n
wi

(if wi = O(log2 n), we can

just set Y (wi) = Z). Let yi be the number of points p ∈ Y (wi) that are contained in object i.

By the Chernoff bound, since log2 n
wi

zi = O(log3 n), we have |yi −
log2 n

wi
zi| ≤ O(log2 n) with

high probability. By letting m̃i = (1 + 1
wi

)yiwi/ log2 n, it follows that m̃i and mi are within a

factor of O(1) of each other, with high probability, at all times, for all i. Thus, our earlier

analysis still holds when working with m̃i instead of mi. Since zi = O(wi log n), we have

yi = O(log3 n) with high probability. So, the total number of increments to all yi and updates

to all m̃i is O(n log3 n). In lines 5–6, we flip a biased coin to decide whether p should be

placed in the sample Y (2j) (with probability log2 n
2j) for each j, and if so, we use halfspace

range reporting in the dual to find all objects i of weight 2j containing p, and increment yi

and update m̃i. Over all O(n log n) executions of lines 5–6 and all O(log n) indices j, the

cost of these halfspace range reporting queries is O(n log n · log n · log n) plus the output size.

As the total output size for the queries is O(n log3 n), the total cost is O(n log3 n).

We also need to redesign a data structure for lightness testing subject to multiplicity

updates: For each j, we maintain a subset S(j) containing all objects i with multiplicity

at least 2j , in a data structure to support approximate depth (without multiplicity). The

depth of a point p in Ŝ can be O(1)-approximated by
∑

j 2j · (depth of p in S(j)). Each

subset S(j) undergoes insertion only, and the logarithmic method can be applied to each

S(j). Since |Ŝ| ≤ w(Ŝ) ≤ nO(1), there are O(log n) values of j. This slows down lightness

testing by a logarithmic factor, and so in the case of 3D halfspaces, the overall time bound is

O(n log4 n log log n), excluding the ε-net construction time.

We can efficiently construct an ε-net of the desired weight for 3D halfspaces in O(n log n)

randomized time, by using the quasi-random sampling technique of Varadarajan [31] and

Chan et al. [13] in a more careful way. Due to lack of space, we defer the description to the

full paper. We conclude:

I Theorem 4. Given O(n) points and O(n) weighted halfspaces in R
3, we can find a subset

of halfspaces covering all points, of total weight within O(1) factor of the minimum, in

O(n log4 n log log n) expected time by a randomized Las Vegas algorithm.

Remark. A remaining open problem is to find efficient deterministic algorithms for the

weighted problem. Chan et al. [13] noted that the quasi-uniform sampling technique can be

derandomized via the method of conditional probabilities, but the running time is high.

References

1 Peyman Afshani and Timothy M. Chan. On approximate range counting and depth. Discrete

& Computational Geometry, 42(1):3–21, 2009. doi:10.1007/s00454-009-9177-z.

2 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three dimensions.

In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 180–186, 2009.

T. M. Chan and Q. He 27:13

3 Peyman Afshani, Chris Hamilton, and Norbert Zeh. A general approach for cache-oblivious

range reporting and approximate range counting. Computational Geometry, 43(8):700–712,

2010.

4 Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets and

set covers. In Proceedings of the 30th Symposium on Computational Geometry (SoCG), page

271, 2014.

5 Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-parallel rectangles

and boxes. SIAM Journal on Computing, 39(7):3248–3282, 2010. doi:10.1137/090762968.

6 Jon Louis Bentley and James B. Saxe. Decomposable searching problems I. static-to-dynamic

transformation. Journal of Algorithms, 1(4):301–358, 1980.

7 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite VC-dimension.

Discrete & Computational Geometry, 14(4):463–479, 1995.

8 Norbert Bus, Shashwat Garg, Nabil H. Mustafa, and Saurabh Ray. Limits of local search:

Quality and efficiency. Discrete & Computational Geometry, 57(3):607–624, 2017. doi:

10.1007/s00454-016-9819-x.

9 Norbert Bus, Nabil H. Mustafa, and Saurabh Ray. Practical and efficient algorithms for the

geometric hitting set problem. Discrete Applied Mathematics, 240:25–32, 2018.

10 Timothy M. Chan. Random sampling, halfspace range reporting, and construction of (≤ k)-

levels in three dimensions. SIAM Journal on Computing, 30(2):561–575, 2000. doi:10.1137/

S0097539798349188.

11 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat

objects. Journal of Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.

12 Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. In Proceedings of

the 35th Symposium on Computational Geometry (SoCG), pages 24:1–24:13, 2019.

13 Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted capaci-

tated, priority, and geometric set cover via improved quasi-uniform sampling. In Proceedings

of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1576–1585,

2012.

14 Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range searching

on the RAM, revisited. In Proceedings of the 27th Symposium on Computational Geometry

(SoCG), pages 1–10, 2011.

15 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d and

3-d shallow cuttings. Discrete & Computational Geometry, 56(4):866–881, 2016.

16 Chandra Chekuri, Sariel Har-Peled, and Kent Quanrud. Fast LP solving and approximation

algorithms for geometric packing and covering problems. In Proceedings of the 31st Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1019–1038, 2020.

17 Chandra Chekuri and Kent Quanrud. Randomized MWU for positive LPs. In Proceedings

of the 29th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 358–377,

2018.

18 Kenneth L. Clarkson. Algorithms for polytope covering and approximation. In Workshop on

Algorithms and Data Structures, pages 246–252, 1993.

19 Kenneth L. Clarkson and Kasturi Varadarajan. Improved approximation algorithms for

geometric set cover. Discrete & Computational Geometry, 37(1):43–58, 2007.

20 Alon Efrat, Matthew J. Katz, Frank Nielsen, and Micha Sharir. Dynamic data structures

for fat objects and their applications. Computational Geometry, 15(4):215–227, 2000. doi:

10.1016/S0925-7721(99)00059-0.

21 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing

problems in image processing and VLSI. Journal of the ACM (JACM), 32(1):130–136, 1985.

doi:10.1145/2455.214106.

22 Christos Koufogiannakis and Neal E. Young. A nearly linear-time PTAS for explicit fractional

packing and covering linear programs. Algorithmica, 70(4):648–674, 2014. doi:10.1007/

s00453-013-9771-6.

SoCG 2020

27:14 Faster Approximation Algorithms for Geometric Set Cover

23 Jiří Matoušek. Reporting points in halfspaces. Computational Geometry, 2(3):169–186, 1992.

24 Jiří Matoušek, Raimund Seidel, and Emo Welzl. How to net a lot with little: Small ε-nets

for disks and halfspaces. In Proceedings of the 6th Symposium on Computational Geometry

(SoCG), pages 16–22, 1990.

25 Nabil H. Mustafa. Computing optimal epsilon-nets is as easy as finding an unhit set. In

Proceedings of the 46th International Colloquium on Automata, Languages, and Programming

(ICALP), pages 87:1–87:12, 2019. doi:10.4230/LIPIcs.ICALP.2019.87.

26 Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Quasi-polynomial time approximation

scheme for weighted geometric set cover on pseudodisks and halfspaces. SIAM J. Comput.,

44(6):1650–1669, 2015. doi:10.1137/14099317X.

27 Nabil H. Mustafa and Saurabh Ray. PTAS for geometric hitting set problems via local search.

In Proceedings of the 25th Symposium on Computational Geometry (SoCG), pages 17–22, 2009.

28 János Pach and Gábor Tardos. Tight lower bounds for the size of epsilon-nets. In Proceedings

of the 27th Symposium on Computational Geometry (SoCG), pages 458–463, 2011. doi:

10.1145/1998196.1998271.

29 Evangelia Pyrga and Saurabh Ray. New existence proofs for ε-nets. In Proceedings of the

24th Symposium on Computational Geometry (SoCG), pages 199–207, 2008. doi:10.1145/

1377676.1377708.

30 Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In Proceedings

of the 15th Symposium on Computational Geometry (SoCG), pages 390–399, 1999.

31 Kasturi Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In Proceedings

of the 42nd ACM Symposium on Theory of Computing (STOC), pages 641–648, 2010.

32 Kasturi R. Varadarajan. Epsilon nets and union complexity. In Proceedings of the 25th

Symposium on Computational Geometry (SoCG), pages 11–16, 2009. doi:10.1145/1542362.

1542366.

33 Neal E. Young. Sequential and parallel algorithms for mixed packing and covering. In

Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science

(FOCS), pages 538–546, 2001. doi:10.1109/SFCS.2001.959930.

	Introduction
	Preliminaries
	The Basic MWU Algorithm
	Agarwal and Pan's (First) MWU Algorithm

	``New'' MWU Algorithm
	Implementations
	Deterministic Version
	Randomized Version 1
	Randomized Version 2

	Weighted Set Cover
	MWU Algorithm in the Weighted Case

