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colored range reporting: report all the distinct colors in the query range.

colored “type-1” range counting: find the number of distinct colors in the query range.

colored “type-2” range counting: report the number of points of color χ in the query

range, for every color χ in the range.

In this paper, we focus on colored range reporting and type-2 colored range counting. Note

that the output size in both instances is equal to the number k of distinct colors in the range,

and we aim for query time bounds that depend linearly on k, of the form O(f(n) + kg(n)).

Naively using an uncolored range reporting data structure and looping through all points in

the range would be too costly, since the number of points in the range can be significantly

larger than k.

1.1 Colored orthogonal range reporting

The most basic version of the problem is perhaps colored orthogonal range reporting: report

the k distinct colors inside an orthogonal range (an axis-aligned box). It is not difficult to

obtain an O(n polylog n)-space data structure with O(k polylog n) query time [22] for any

constant dimension d: one approach is to directly modify the d-dimensional range tree [15, 43],

and another approach is to reduce colored range reporting to uncolored range emptiness [26]

(by building a one-dimensional range tree over the colors and storing a range emptiness

structure at each node). Both approaches require O(k polylog n) query time rather than

O(polylog n + k) as in traditional (uncolored) orthogonal range searching: the reason is that

in the first approach, each color may be discovered polylogarithmically many times, whereas

in the second approach, each discovered color costs us O(log n) range emptiness queries, each

of which requires polylogarithmic time.

Even the 2D case remains open, if one is interested in optimizing logarithmic factors. For

example, Larsen and van Walderveen [32] and Nekrich [37] independently presented data

structures with O(n log n) space and O(log log U + k) query time in the standard word-RAM

model, assuming that coordinates are integers bounded by U . The query bound is optimal,

but the space bound is not. Recently, Chan and Nekrich [11] have improved the space bound

to O(n log3/4+ε n) for an arbitrarily small constant ε > 0, while keeping O(log log U + k)

query time.

In 3D, the best result to date is by Chan and Nekrich [11], who obtained a data structure

with O(n log9/5+ε n) space and O( log n
log log n + k) query time. The first step is a data structure

for the case of 3D dominance (i.e., 3-sided) ranges: as they noted, this case can be solved in

O(n) space and O( log n
log log n + k) time by a known reduction [44, Section 3.1] to 3D 5-sided box

stabbing [12]. For 3D 5-sided box stabbing (or more simply, 2D 4-sided rectangle stabbing),

a matching lower bound of Ω( log n
log log n + k) is known for O(n polylog n)-space structures, due

to Pătraşcu [42]. A natural question then arises: is O( log n
log log n + k) query time also tight for

3D colored dominance range reporting?

We show that the answer is no – the O( log n
log log n ) term can in fact be improved when k is

small. Specifically, we present a randomized data structure for 3D colored dominance range

reporting with O(n log n) space and O(log log U + k log log n) expected time in the standard

word-RAM model. (We use only Las Vegas randomization, i.e., the query algorithm is always

correct; an oblivious adversary is assumed, i.e., the query range should be independent of the

random choices made by the preprocessing algorithm.) Combining with Chan and Nekrich’s

method [11], we can then obtain a data structure for 3D colored orthogonal range reporting

with O(n log2+ε n) space and O(log log U + k log log n) expected query time.
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An improved solution in 3D automatically implies improvements in any constant dimension

d > 3, by using standard range trees [15, 43] to reduce the dimension, at a cost of about

one logarithmic factor (ignoring log log factors) per dimension. This way, we obtain a data

structure in d dimensions with O(n logd−1+ε n) space and O(k( log n
log log n )d−3 log log n) query

time.1 (Note that O(( log n
log log n )d−3 log log n) is the current best query time bound for standard

(uncolored) range emptiness [9] for O(n polylog n)-space structures on the word RAM.)

1.2 Colored 3D halfspace range reporting

An equally fundamental problem is colored halfspace range reporting. In 2D, an O(n)-space

data structure with O(log n + k) query time is known [2, 22]. In 3D, the current best result

is obtained by applying a general reduction of colored range reporting to uncolored range

emptiness [26], which yields O(n log n) space and O(k log2 n) query time [22]. (An alternative

solution with O(n) space and O(n2/3+ε + k) time is also known, by reduction to simplex

range searching.) The 3D case is especially important, as 2D colored circular range reporting

reduces to 3D colored halfspace range reporting by the standard lifting transformation.

We describe a randomized data structure with O(n log n) space and O(k log n) expected

query time for 3D halfspace ranges (and thus 2D circular ranges). This is a logarithmic-factor

improvement over the previous query time bound.

1.3 Colored 2D orthogonal type-2 range counting

Finally, we consider colored orthogonal “type-2” range counting: compute the number of

occurrences of every color in a given orthogonal range. Despite the nondescript name, colored

type-2 counting is quite natural, providing more information than colored reporting, as

we are generating an entire histogram. The problem was introduced by Gupta et al. [23]

(and more recently revisited by Ganguly et al. [20] in external memory). An old paper by

Bozanis et al. [5] gave a solution in the 1D case with O(n) space and O(log n + k) query

time, which implies a solution in 2D with O(n log n) space and O(log2 n + k log n) query

time. Alternatively, to answer a colored type-2 counting query, we can first answer a colored

range reporting query, followed by k standard (uncolored) range counting queries, if we store

each color class in a standard range counting data structure; by known results on colored

range reporting [11] and standard range counting [27], this then yields O(n log3/4+ε n) space

and O(k log n
log log n ) query time. Thus, in some sense, a type-2 counting query corresponds to

“simultaneous” range counting queries on multiple point sets.2

We present a data structure for the problem in 2D with O(n log1+ε n) space and O( log n
log log n +

k log log n) query time in the standard word-RAM model. As 2D standard (uncolored) range

counting has an Ω( log n
log log n ) time lower bound for O(n polylog n)-space structures [41], our

result shows, surprisingly, that answering multiple range counting queries “simultaneously”

are cheaper than answering one by one – we only have to pay O(log log n) cost per color!

1.4 Techniques

Our solutions for colored 3D dominance range reporting and 3D halfspace range reporting

are based on similar ideas. We in fact propose two different methods.

1 In all reported bounds, we implicitly assume k > 0. The k = 0 case can be handled by answering one
initial uncolored range emptiness query.

2 See [1] for a different notion of “concurrent” range reporting.
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In the first method (Section 2), we solve the k = 1 case (testing whether a range contains

only one color) by introducing a colored variant of randomized incremental construction; we

then extend the solution to the general case by a randomized one-dimensional range tree over

the colors. Along the way, we prove a combinatorial lemma which may be of independent

interest: in a colored point set in 3D, if we randomly permute the color classes and randomly

permute the points within each color classes, and if we insert the points in the resulting

order, then the convex hull undergoes O(n log n) structural changes in expectation. (It is a

well known fact, by Clarkson and Shor [14], that in the uncolored setting, if we insert points

in a random order, the 3D convex hull undergoes O(n) structural changes in expectation.)

In the second method (Section 3), which is slightly more efficient, we solve the k = 1 case

differently, by adapting known techniques for uncolored 3D halfspace range reporting [6]

based on random sampling (namely, conflict lists of lower envelopes of random subsets).

The approach guarantees only Ω(1) success probability per query (in the uncolored setting,

shallow cuttings can fix the problem, but they do not seem easily generalizable to the 3D

colored setting). Fortunately, we show that a solution for the k = 1 case with constant

success probability is sufficient to complete the solution for the general case.

Our method for colored 2D type-2 orthogonal range counting (Section 5) is technically

the most involved. It is obtained by a nontrivial combination of several techniques, including

the recursive grid approach of Alstrup, Brodal, and Rauhe [3], bit packing tricks, and 2D

shallow cuttings. Our work demonstrates yet again the power of the recursive grid approach

(see [9, 11, 12] for other recent examples).

2 Colored 3D Halfspace Range Reporting: First Method

In this and the next section, we describe our two methods for 3D halfspace ranges. The case

of 3D dominance ranges is similar and will be addressed later in Section 4.

2.1 Combinatorial lemmas on colored randomized incremental

construction

Our first method relies on a simple combinatorial lemma related to a colored version of

randomized incremental construction of 3D convex hulls (the uncolored version of the lemma,

where all points are assigned different colors, is well known in computational geometry, from

the seminal work by Clarkson and Shor [14]):

I Lemma 1. Given a set S of n colored points in R
3, if we first randomly permute the color

classes, then for each color according to this order we simultaneously insert all points with

that color, then the expected total number of structural changes to the convex hull is O(n).

Proof. Consider a random permutation of the colors. Let Ci be the i-th color class, i.e., the

set of all points with the i-th color in the permutation. Let m be the number of color classes.

Let Vi =
⋃i

j=1 Cj contain all points with the first i colors. Let CH(Vi) denote the convex

hull of Vi. Let ∆+
i be the set of all facets in CH(Vi) that are not in CH(Vi−1), i.e., all hull

facets created when we insert the i-th color class Ci.

For each i, we have E[|Ci|] = n
m and E[|Vi|] = in

m . We use backwards analysis [45]. Observe

that |∆+
i | is bounded by the total degree of all points of Ci in CH(Vi). The total degree

over all points in CH(Vi) is O(|Vi|). Conditioned on a fixed Vi, we have E[|∆+
i |] = O( |Vi|

i ).

So, unconditionally, E[|∆+
i |] = O( n

m ). Therefore, the expected total number of hull facets

created is E[
∑m

i=1 |∆+
i |] = O(n). J
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The following refinement of the lemma further bounds the total amount of changes to

the convex hull when we additionally insert points one by one in a random order within each

color class. The proof is slightly trickier. (The first lemma is already sufficient to bound

the space of our new data structure, but the refined lemma will be useful in bounding the

preprocessing time.)

I Lemma 2. Given a set S of n colored points in R
3, if we first randomly permute the color

classes, then randomly permute the points in each color class, and insert the points one by

one according to this order, then the expected total number of structural changes of the convex

hull is O(n log n).

Proof. Continuing the earlier proof, let ∆−
i be the set of all facets in CH(Vi−1) that

are not in CH(Vi), i.e., all hull facets destroyed when we insert the i-th color class Ci.

Since the total number of facets destroyed is at most the total number of facets created,

E[
∑m

i=1 |∆−
i |] ≤ E[

∑m
i=1 |∆+

i |] = O(n).

Now, consider a random permutation of the points in Ci. Let Vi,j contain all points

in Vi−1 and also the first j points of Ci. Let Gi,j be the subgraph formed by all edges of

CH(Vi,j) that are incident to the vertices of Ci. Then every vertex v in Gi,j is either in Ci or

is incident to a facet of ∆−
i (because if v 6∈ Ci, then v must be a vertex of CH(Vi−1), and at

least one of its incident facets in CH(Vi−1) will be destroyed when Ci is inserted). Thus, Gi,j

has O(|Ci| + |∆−
i |) vertices, and since Gi,j is a planar graph, it has O(|Ci| + |∆−

i |) edges.

Let ∆+
i,j be the set of all facets in CH(Vi,j) that are not in CH(Vi,j−1), i.e., all hull facets

created when we insert the j-th point in Ci. We use backwards analysis again. Observe that

|∆+
i,j | is bounded by the degree of the j-th point in Ci in CH(Vi,j). The total degree over all

points of Ci in CH(Vi,j) is at most twice the number of edges in Gi,j . Conditioned on a fixed

Ci and a fixed Vi,j , we thus have E[|∆+
i,j |] = O

(

|Ci|+|∆−

i
|

j

)

. As the right-hand side does not

depend on the local permutation of the color class Ci, the expectation holds conditioned

only on the global permutation of the colors. Unconditionally, the expected total number of

hull facets created is

O



E





m
∑

i=1

|Ci|
∑

j=1

|Ci| + |∆−
i |

j







 = O

(

E

[

m
∑

i=1

(|Ci| + |∆−
i |) log n

])

= O(n log n). J

Remarks.

1. The O(n log n) bound in the refined lemma is tight: Consider n
2 points lying on the

xy-plane in convex position, each assigned a different color. In addition, add n
2 points on

the z-axis above the xy-plane, all with a common color χ0. When we insert the color

class for χ0, there are already Ω(n) points on the xy-plane with probability Ω(1). In an

iteration where the next point we insert with color χ0 has larger z-coordinate than all

previous points, the insertion would create Ω(n) new hull edges in expectation. By a well

known analysis, the expected number of such iterations is given by the Harmonic number,

which is Θ(log n). This shows an Ω(n log n) lower bound.

2. The same argument holds for other geometric structures besides 3D convex hulls, e.g.,

Voronoi diagrams of 2D points and trapezoidal decompositions of 2D disjoint line segments.

3. We can generalize the refined lemma to the setting when we have a hierarchy of color classes

with ` levels, and we randomly permute the child subclasses of each color class. (The

refined lemma corresponds to the ` = 2 case.) The bound becomes O(n log`−1 n). This

result seems potentially relevant to implementing randomized incremental constructions

in a hierarchical external-memory model.
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2.2 The k = 1 case

We now reveal how colored randomized incremental construction can help solve the colored

range reporting problem. We start with the case k = 1, i.e., we want to test whether there

is only one color in the query range. By an uncolored range search, we can find one point

in the range (in O(log n) time for 3D halfspace ranges) and identify its color χ. Thus, the

problem is to verify that all points in the range have the same color χ.

Fix a total ordering of the colors. It is easy to see that the problem reduces to two

subproblems: for a given query color χ, (i) decide whether there exists a point in the range

with color < χ, and (ii) decide whether there exists a point in the range with color > χ. By

symmetry, it suffices to solve subproblem (i). To this end, we imagine inserting the points in

increasing order of color, and maintaining a data structure for (uncolored) range emptiness

for the points. We can make this semi-dynamic data structure (which supports insertions

only) persistent. Then we can solve subproblem (i) by querying a past version of the range

emptiness data structure, right after all points with color < χ were inserted.

In the case of 3D upper halfspaces (lower halfspaces can be handled symmetrically), a

range emptiness query reduces to finding an extreme point on the upper hull along a query

direction, or equivalently, intersecting the lower envelope of the dual planes at a query vertical

line. By projection, this reduces to a planar point location query, answerable in O(log n) time

by a linear-space data structure [15, 43]. However, we need a data structure that supports

insertions, and in general this increases the query time (by an extra logarithmic factor via

the standard “logarithmic method” [4]).

The key is to observe that the above approach works regardless of which total ordering

of the colors we use. Our idea is simply to use a random ordering of the colors! (For

(ii), note that the reverse of a uniformly random ordering is still uniformly random.) By

Lemma 1, the upper hull undergoes O(n) expected number of structural changes. So is the

dual lower envelope. We can then apply a known dynamic planar point location method;

for example, the method by Chan and Nekrich [10] achieves O(log n(log log n)2) query time

and O(log n log log n) amortized update time per change to the envelope. The data structure

can be made persistent, for example, by applying Dietz’s technique [17], with a log log n

factor penalty (the space usage is related to the total update time). The final data structure

supports queries in O(log n(log log n)3) (worst-case) time and uses O(n log n(log log n)2)

expected space. (Note that the space bound can be made worst-case, by repeating O(1)

expected number of times until a “good” ordering is found.)

Remark on preprocessing time. It isn’t obvious how to efficiently insert an entire color

class to the 3D convex hull, even knowing that the total number of structural changes is

small. To get good preprocessing time, we propose inserting points one by one within each

color class, since Lemma 2 ensures that the number of changes to the convex hull is still near

linear (O(n log n)). Several implementation options can then yield O(n polylog n) expected

preprocessing time: (i) we can use a general-purpose dynamic convex hull data structure [7]

(in the insertion-only case, the cost per update is O(f log2 n) where f is the amount of

structural changes); (ii) we can adapt standard randomized incremental algorithms, e.g.,

handling the point location steps by using history DAGs [35] (this requires further randomized

analysis); or (iii) we can adapt standard randomized incremental algorithms, but handling

the point location steps by using a known dynamic planar point location method [10].

I Theorem 3. For n colored points in R
3, there is a data structure with O(n polylog n)

expected preprocessing time and O(n log n(log log n)2) space that can test whether the number

of colors in a query halfspace is exactly 1 in O(log n(log log n)3) time.
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2.3 The general case

Previous papers [22, 26] (see also [13] in the uncolored case) have noted a straightforward

black-box reduction of colored range reporting to the k = 0 case (range emptiness), essentially

by using a one-dimensional range tree over the colors: More precisely, we split the color

classes into two halves. We build a data structure for k = 0, and recursively build a data

structure for the two halves. Space usage increases by a logarithmic factor. If the k = 0

structure has Q0(n) query time, the overall query time is O(kQ0(n) log n), since at each of

the O(log n) levels of recursion tree, O(k) nodes are examined.

We present a new black-box reduction of colored range reporting to the k ≤ 1 case, which

saves a logarithmic factor, by using a similar idea but with randomization.

I Theorem 4. Suppose that for n colored points, there is a data structure with P (n) (expected)

preprocessing time and S(n) space that can decide whether the number of colors in a query

range is exactly 1 in Q1(n) time. In addition, the data structure can decide whether the

range is empty, and if not, report one point, in Q0(n) time. Then there is a randomized Las

Vegas data structure with O(P (n) log n) expected preprocessing time and O(S(n) log n) space

that can report all k distinct colors in a query range in O(k(Q0(n) + Q1(n))) expected time,

assuming that P (n)/n and S(n)/n are nondecreasing.

Proof. We split the color classes into two parts, where each color is randomly assigned to

one of the two parts. We build the given k = 1 structure and range emptiness structure, and

recursively build a data structure for the two parts. Space usage increases by a logarithmic

factor (with high probability).

To answer a query, we test whether the range is empty or whether k = 1. If so, we are

done. Otherwise, we recursively query both parts.

Consider a query range that is independent of the random choices made by the data

structure. At the i-th level of the recursion tree, how many nodes are examined (in expecta-

tion)? This question is analogous to the following: place k balls randomly (independently)

into 2i bins; how many bins contain two or more balls? The number is upper-bounded by

the number of pairs of balls that are in the same bin. Since the probability that a fixed pair

of balls are placed in the same bin is 1/2i, the expected number of pairs is at most k2/2i.

Thus, the expected number of nodes examined at the i-th level is at most min{2i, k2/2i}.

The overall expected number of nodes examined is

O

(

∑

i

min{2i, k2/2i}
)

= O





∑

i: 2i≤k

2i +
∑

i: 2i>k

k2/2i



 = O(k). J

Combining Theorems 3 and 4 yields:

I Theorem 5. For n colored points in R
3, there is a randomized Las Vegas data structure

with O(n polylog n) expected preprocessing time and O(n log2 n(log log n)2) space that can

report all k distinct colors in a query halfspace in O(k log n(log log n)3) expected time.
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3 Colored 3D Halfspace Range Reporting: Second Method

We next describe a slightly better (and simpler) method for colored 3D halfspace range

reporting.

3.1 The k = 1 case

The idea is to relax the k = 1 subproblem and allow the query algorithm to occasionally be

wrong (since we will be using randomization anyways for the general case). The algorithm

has constant error probability and can only make one-sided errors: if it returns “yes”, we

must have k = 1. We work in dual space: given a set of colored planes in R
3, we want to

decide whether the number of colors among the planes below a query point is exactly 1.

Preprocessing. Take a random sample R of the planes, where each color class is included

independently with probability 1
2 . Take the lower envelope LE(R) of R, and consider the

vertical decomposition VD(R) of the region underneath LE(R). (The vertical decomposition

is defined as follows: we triangulate each face of LE(R) by joining each vertex to the bottom

vertex of the face; for each triangle, we form the unbounded prism containing all points

underneath the triangle.) For each cell ∆ ∈ VD(R), let L∆ denote the set of distinct colors

among all planes intersecting ∆ (the “color conflict list” of ∆). We store the list L∆ if

|L∆| ≤ c for a sufficiently large constant c; otherwise, we mark ∆ as “bad”.

Clearly, the space usage is O(n), since there are O(n) cells in VD(R) and each list stored

has constant size. To bound the preprocessing time, we can generate (up to c elements of)

each list L∆ by answering colored range reporting queries at the three vertices of ∆, since a

plane intersects ∆ iff it is below at least one of the vertices of ∆. By previous results, these

O(n) colored range reporting queries take O(n polylog n) time.

In addition, for each color class, we store an (uncolored) range emptiness structure (i.e., a

planar point location structure for the xy-projection of the lower envelope of the color class).

This takes O(n) space in total.

Querying. Given a query point q, we find the cell ∆(q) of VD(R) containing q in O(log n)

time by planar point location (on the xy-projection of VD(R)). If the cell does not exist

(i.e., q lies above LE(R)), or if the cell is bad, we return “no”. Otherwise, for each of the at

most c colors in the conflict list L∆(q), we test whether any plane below q has that color by

querying the corresponding range emptiness structure in O(log n) time. We return “yes” iff

exactly one color passes the test. The overall query time is O(log n).

The algorithm is clearly correct if it returns “yes”. Consider a fixed query point q, such

that there is just one color χ among all planes below q. The algorithm would erroneously

return “no” in two scenarios: (i) when q lies above LE(R), or (ii) when |L∆(q)| > c. The

probability of (i) is the probability that the color χ is chosen in the random sample R, which

is 1
2 . By the following lemma, and Markov’s inequality, the probability of (ii) is at most

0.1 (say) for a sufficiently large constant c. This lemma directly follows from Clarkson and

Shor’s technique [14] (see the full paper for a quick proof).

I Lemma 6. For a fixed point q, we have E[|L∆(q)|] = O(1).

We conclude:

I Theorem 7. For n colored points in R
3, there is a randomized Monte Carlo data structure

with O(n polylog n) preprocessing time and O(n) space that decides whether the number of

colors in a query halfspace is exactly 1 in O(log n) time; if the actual answer is true, the

algorithm returns “yes” with probability Ω(1), else it always returns “no”.
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Remarks. The method can be viewed as a variant of Chan’s random-sampling-based

method for uncolored 3D halfspace range reporting [6]. In the uncolored setting, errors can

be completely avoided by replacing lower envelopes of samples with shallow cuttings [33],

but it is unclear how to do so in the colored setting.

3.2 The general case

Finally, to solve the general problem, we use a variant of Theorem 4 that tolerates one-sided

errors in the given k = 1 data structure.

I Theorem 8. Suppose that for n colored points, there is a randomized Monte Carlo data

structure with P (n) (expected) preprocessing time and S(n) space that decides whether the

number of colors in a query range is exactly 1 in Q1(n) time; if the actual answer is true, the

algorithm returns “yes” with probability Ω(1), else it always returns “no”. In addition, the

data structure can decide whether the range is empty, and if not, report one point, in Q0(n)

time (without errors). Then there is a randomized Las Vegas data structure with O(P (n) log n)

expected preprocessing time and O(S(n) log n) space that can report all k distinct colors in a

query range in O(k(Q0(n) + Q1(n))) expected time, assuming that P (n)/n and S(n)/n are

nondecreasing.

Proof. We use the same approach as in the proof of Theorem 4. In the query algorithm,

if the range is empty or the k = 1 structure returns “yes”, we are done; otherwise, we

recursively query both parts.

To analyze the query time, we say that a node in the recursion tree is bad if the number

of colors in the query range at the node is exactly 1. Our earlier analysis shows that the

expected total number of non-bad nodes visited is O(k). However, because of the possibility

of one-sided errors, the query algorithm may examine some bad nodes. For each bad node v

visited by the query algorithm, we charge v to its lowest ancestor u that is not bad. Then for

a fixed node u, we may have up to two paths of nodes charged to u. The expected number

of nodes charged to a fixed node u is at most O(
∑

i(1 − Ω(1))i) = O(1). We conclude that

the expected total number of nodes visited is O(k). J

Combining Theorems 7 and 8 yields:

I Theorem 9. For n colored points in R
3, there is a randomized Las Vegas data structure

with O(n polylog n) expected preprocessing time and O(n log n) space that can report all k

distinct colors in a query halfspace in O(k log n) expected time.

4 Colored 3D Dominance Range Reporting

Both methods can be adapted to solve the colored 3D dominance range reporting problem:

here, we want to report the distinct colors of all points inside a 3-sided range of the form

(−∞, q1]×(−∞, q2]×(−∞, q3]. Equivalently, we can map input points (p1, p2, p3) to orthants

[p1, ∞) × [p2, ∞) × [p3, ∞), and the problem becomes reporting the distinct colors among all

orthants containing a query point q = (q1, q2, q3). By replacing values with their ranks, we

may assume that all coordinates are in {1, . . . , n} (in a query, an initial predecessor search

to reduce to rank space requires an additional O(log log U) cost by van Emde Boas trees).

We assume the standard word-RAM model.

In the first method, the combinatorial lemmas on colored randomized incremental con-

structions can be extended to the union of the orthants (a “staircase polyhedron”). In fact,

by a known transformation involving an exponentially spaced grid [9, 39], orthants can be
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mapped to halfspaces and a union of orthants can be mapped to a halfspace intersection,

or in the dual, a 3D convex hull. For the k = 1 structure, we not only randomly permute

the color classes but also randomly permute the points inside each color class, and maintain

the union of the orthants as points are inserted one by one. Instead of using persistence,

we reduce to static 3D point location: we insert in reverse order, and as a new orthant is

inserted, we create a region for the newly added portion of the union (i.e., the new orthant

minus the old union). Identifying the smallest color of the orthants containing q (to solve

subproblem (i)) reduces to locating the region containing q. The expected total size of these

regions is O(n log n) by Lemma 2; we can further subdivide each of these regions into boxes

(by taking a vertical decomposition), without asymptotically increasing the total size. Known

results on orthogonal point location in a 3D subdivision of (space-filling) boxes [16, 12] then

give O((log log n)2) query time and space linear in the size of the subdivision. Thus, the

final data structure for the general case has O(n log2 n) space and O(log log U + k(log log n)2)

expected query time.

In the second method, we replace lower envelopes with unions of orthants. The only main

change is that planar point location queries for orthogonal subdivisions now cost O(log log n)

time by Chan’s result [8] instead of O(log n). Thus, the final data structure has O(n log n)

space and O(log log U + k log log n) expected time.

I Theorem 10. For n colored points in R
3, there is a randomized Las Vegas data structure

with O(n polylog n) expected preprocessing time and O(n log n) space that can report all k

distinct colors in a query dominance range in O(log log U + k log log n) expected time.

We can extend the result of Theorem 10 to orthogonal ranges with more sides or to d > 3

dimensions. See the full paper for more details.

5 Colored 2D Orthogonal Type-2 Range Counting

Our solution for orthogonal type-2 range counting is described in stages. First we consider

the capped variant of type-2 range counting. A capped query returns the correct answer if

the number of colors k in the query range does not exceed log3 n. If k > log3 n, the answer to

the capped query is NULL. Capped queries in the case when the query range is bounded on

2 sides are considered in Section 5.1. We extend the solution to 3-sided and 4-sided queries,

as well as for the case when the number of colors can be arbitrarily large, in the full paper.

5.1 Capped 2-Sided Queries

With foresight, we will solve the more general weighted version of this problem. Each point in

S is also assigned a positive integer weight. For a 2-sided query range Q, we want to identify

all colors that occur in Q; for each color we report the total weight of all its occurrences in Q.

We will denote by n the total weight of all points in S; we will denote by m the total

number of points in S. We prove the following result:

I Lemma 11. Let S be the set of m points in R
2 with total weight n ≥ m. There exists a

data structure that uses O(m(log log n)2) words of space and supports 2-sided capped type-2

counting queries in O(log n/ log log n + k log log n) time.

Our data structure is based on the recursive grid approach [3]. The set of points is

recursively sub-divided into vertical slabs (or columns) and horizontal slabs (or rows).
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Data Structure. Let τ = log3 n0 where n0 is the total weight of all points in the global

data set (thus τ remains unchanged on all recursion levels). We divide the set of points

into
√

n/τ columns so that either the total weight of all points in a column is bounded by

O(
√

nτ) or a column contains only one point. This division can be obtained by scanning

the set of points in the left-to-right order. We add points to a column Ci for i = 1, 2, . . . by

repeating the following steps: (1) if the weight of the next point p exceeds
√

nτ , we increment

i, (2) we add p to Ci, and (3) if the total weight of Ci exceeds
√

nτ , we increment i.

Thus either the total weight of a column exceeds
√

nτ or the next column contains a

point of weight at least
√

nτ . Hence the number of columns is O(
√

n/τ). We also divide the

set of points into rows satisfying the same conditions. Let pij = (xi, yj) denote the point

where the upper boundary of the j-th row intersects the right boundary of the i-th column.

Let Dom(i, j) = [0, xi] × [0, yj ], denote the range dominated by pij . If Dom(i, j) contains

at most τ distinct colors, we store the list Lij of colors that occur in Dom(i, j). For every

color in Lij we also keep the number of its occurrences in Dom(i, j). If the range Dom(i, j)

contains more than τ different colors, we set Lij = NULL. Thus Lij provides the answer to

a capped type-2 counting query on [0, xi] × [0, yj ].

Every row/column of weight at least τ2 that contains more than one point is recursively

divided in the same way as explained above. If the total weight of all points is smaller than

τ2, we can answer a type-2 range counting query in O(k) time.

Slow Queries. A query [0, a] × [0, b] is answered as follows. We identify the column Ci+1

containing a and the row Rj+1 containing b. The query is then divided into the middle part

[0, xi] × [0, yj ], the upper part [0, a] × [yj , b] and the right part [xi, a] × [0, yj ]. The answer to

the middle query is stored in the pre-computed list Lij . The upper query is contained in

the row Rj+1 and the right query is contained in the column Ci+1. Hence we can answer

the upper and the right query using data structures on Rj+1 and Ci+1 respectively. If

Lij = NULL, we return NULL because the number of colors in the query range exceeds

log2 n; if the answer to a query on Ci+1 or Rj+1 is NULL, we also return NULL. Otherwise,

we merge the answers to the three queries. The resulting list L can contain up to three

items of the same color because the same color can occur in the left, right, and middle query.

Since the items in L are sorted by color, we can scan L and compute the total number of

occurrences for each color in time proportional to the length of L.

The total query time is given by the formula Q(n, k) = O(k) + Q(
√

nτ, k1) + Q(
√

nτ, k2)

where k is the number of colors in the query range and n is the total weight of all points.

We denote by k1 (resp. k2) the total number of colors reported by the query on Rj+1

(resp. Ci+1). There are at most 2i recursive calls at level i of recursion. The total

weight of points at recursion level i is bounded by n1/2i

log3(1−1/2i) n. Hence the number

of recursion levels is bounded by ` = log log n − 2 log log log n and the total query time is
∑`

i=1 2i · k = O(k · (log n/ log log n)).

Fast Queries. We can significantly speed-up queries using the following approach. We keep

colors of all points in a column/row in the rank space. Thus each point column or row

on the l-th level of recursion contains O(n1/2l

) points. Hence for any list Lij on the l-th

recursion level we can keep each color and the number of its occurrences in Dom(i, j) using

O((1/2l) log n) bits.

As explained above, the query on recursion level l is answered by merging three lists: the

list Lij that contains the pre-computed answer to the middle query, the list of colors that occur

in the right query, and the list of colors that occur in the upper query. Every list occupies

O(k/2l) words of log n bits. Hence we can merge these lists in O(k/2l) time using table

look-ups. Hence the total query time is
∑`

i=1 2i · dk/2ie = O(log n/ log log n + k · log log n).
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I Theorem 12. Let S be the set of m points in R
2 with total weight n ≥ m. There exists a

data structure that uses O(m log m logε n) words of space and supports 4-sided type-2 range

counting queries in O(log n/ log log n + k log log n) time.
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