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Abstract. For any constant d and parameter ε ∈ (0, 1/2], we show the existence of (roughly)4
1/εd orderings on the unit cube [0, 1)d, such that for any two points p, q ∈ [0, 1)d close together5
under the Euclidean metric, there is a linear ordering in which all points between p and q in the6
ordering are �close� to p or q. More precisely, the only points that could lie between p and q in the7
ordering are points with Euclidean distance at most ε ‖p− q‖ from either p or q. These orderings8
are extensions of the Z-order, and they can be e�ciently computed.9

Functionally, the orderings can be thought of as a replacement to quadtrees and related struc-10
tures (like well-separated pair decompositions). We use such orderings to obtain surprisingly simple11
algorithms for a number of basic problems in low-dimensional computational geometry, including12
(i) dynamic approximate bichromatic closest pair, (ii) dynamic spanners, (iii) dynamic approximate13
minimum spanning trees, (iv) static and dynamic fault-tolerant spanners, and (v) approximate near-14
est neighbor search.15
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AMS subject classi�cations. 68W25, 68P0517

1. Preface. In this paper, we describe a technique that leads to new, simpler18

algorithms for a number of fundamental proximity problems in low-dimensional Eu-19

clidean spaces.20

Given data, having an ordering over it is quite useful�it enables one to sort it,21

store it, and search it e�ciently, among other things. Such an order is less natural22

for points in the plane (or in higher dimensions). One way to impose such orders is23

by using bijective mappings from the plane to the line (which has a natural order,24

and thus endows the plane with an order). Such mappings, known as space-�lling25

curves, were discovered in 1890 by Peano [32]. (See also the book by Sagan [34] for26

more information on space-�lling curves.) For computational purposes, the Z-order,27

a somewhat inferior space-�lling curve, is the easiest to implement as it is easily28

computed by interleaving the bits of the x and y coordinates.29

A natural property one desires in an ordering of the plane is that it preserves30

locality�points that are close together geometrically remain close in the resulting31

ordering. Unfortunately, no mapping/ordering can have this property universally, as32

the topology of the line and the plane are fundamentally di�erent. Nevertheless, Z-33

order already has some nice locality properties�it maps certain squares to intervals on34

the real line, and these squares forms grids that cover the unit square. Furthermore,35

these grids are universal, in the sense that there is a grid for any desired resolution.36

To get better locality properties, one has to use more orders. It is known that37
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4 T. M. CHAN, S. HAR-PELED, AND M. JONES

given a query point q, �nd the successor and predecessor of q in the Z-order by binary104

search for each of the shifts, and return the closest point found. The data structure105

can be easily made dynamic to support insertions and deletions of points, and can106

also be adapted to �nd Od(1)-approximate bichromatic closest pairs.107

For approximate nearest neighbor (ANN) search, the Od(1) approximation factor108

can be reduced to 1+ε for any �xed ε > 0, though the query algorithm becomes more109

involved [8] and unfortunately cannot be adapted to compute (1 + ε)-approximate110

bichromatic closest pairs dynamically. (In the monochromatic case, however, the111

approach can be adapted to �nd exact closest pairs, by considering Od(1) successors112

and predecessors of each point [8].)113

For other proximity-related problems such as spanners and approximate minimum114

spanning trees (MST), this approach does not seem to work as well: for example, the115

static algorithms in [10], which use the Z-order, still requires explicit constructions of116

compressed quadtrees and are not easily dynamizable.117

Main new technique: Locality-sensitive orderings. For any given ε > 0, we show118

that there is a family of Od((1/ε
d) log(1/ε)) orderings of [0, 1)d with the following119

property: For any p, q ∈ [0, 1)d, there is an ordering in the family such that all points120

lying between p and q in this ordering are within distance at most ε ‖p− q‖ from either121

p or q (where ‖·‖ is the standard Euclidean norm). The order between two points can122

be determined e�ciently using some bitwise-logical operations. See Theorem 3.10.123

We refer to these as locality-sensitive orderings. They generalize the previous124

construction of 2dd/2e+ 1 shifted copies of the Z-order, which guarantees the stated125

property only for a large speci�c constant (equivalent to setting ε ≈ d3/2). The new126

re�ned property ensures, for example, that a (1+ ε)-approximate nearest neighbor of127

a point q can be found among the immediate predecessors and successors of q in these128

orderings.129

Applications. Locality-sensitive orderings immediately lead to simple algorithms130

for a number of problems, as listed below. Many of these results are signi�cant131

simpli�cation of previous work; some of the results are new.132

(A) Approximate bichromatic closest pair. Theorem 4.2 presents a data structure that133

maintains a (1 + ε)-approximate closest bichromatic pair for two sets of points134

in R
d, with an update time of Od,ε(log n), for any �xed ε > 0 (the hidden fac-135

tors depending on ε are proportional to (1/εd) log2(1/ε)). Previously, a general136

technique of Eppstein [14] can be applied in conjunction with a dynamic data137

structure for ANN, but the amortized update time increases by two log n factors.138

(B) Dynamic spanners. For a parameter t ≥ 1 and a set of points P in R
d, a graph139

G = (P,E) is a t-spanner for P if for all p, q ∈ P , there is a p-q path in G of length140

at most t ‖p− q‖. Static algorithms for spanners have been extensively studied141

in computational geometry. The dynamic problem appears tougher, and has also142

received much attention (see Table 2.1). We obtain a very simple data structure143

for maintaining dynamic (1 + ε)-spanners in Euclidean space with an update144

(insertion and deletion) time of Od,ε(log n) and having Od,ε(n) edges in total,145

for any �xed ε > 0. See Theorem 4.4. Although Gottlieb and Roditty [19] have146

previously obtained the same update time Od,ε(log n), their method requires147

much more intricate details. (Note that Gottlieb and Roditty's method more148

generally applies to spaces with bounded doubling dimension, but no simpler149

methods have been reported in the Euclidean setting.)150

(C) Dynamic approximate minimum spanning trees. As is well-known [5, 20], a (1+ ε)-151
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reference insertion time deletion time

Roditty [33] log n n1/3 logO(1) n

Gottlieb and Roditty [18] log2 n log3 n
Gottlieb and Roditty [19] log n log n
Theorem 4.4 log n log n

Table 2.1: Previous work and our result on dynamic (1 + ε)-spanners in R
d. All

bounds are of the form Od,ε( · ) (the hidden dependencies on ε are 1/εO(d)).

approximate Euclidean MST of a point set P can be computed from the MST of152

a (1+ε)-spanner of P . In our dynamic spanner (and also Gottlieb and Roditty's153

method [19]), each insertion/deletion of a point causes Od,ε(1) edge updates to154

the graph. Immediately, we thus obtain a dynamic data structure for maintaining155

a (1+ ε)-approximate Euclidean MST, with update time (ignoring dependencies156

on d and ε) equal to that for the dynamic graph MST problem, which is currently157

O(log4 n/ log log n) with amortization [23].158

(D) Static and dynamic vertex-fault-tolerant spanners. For parameters k, t ≥ 1 and a159

set of points P in R
d, a k-vertex-fault-tolerant t-spanner is a graph G which is160

a t-spanner and for any P ′ ⊆ P of size at most k, the graph G \ P ′ remains a161

t-spanner for P \ P ′. Fault-tolerant spanners have been extensively studied (see162

Table 2.2). Locality-sensitive orderings lead to a very simple construction for163

k-vertex-fault-tolerant (1 + ε)-spanners, with Od,ε(kn) edges, maximum degree164

Od,ε(k), and Od,ε(n log n + kn) running time. See Theorem 4.6. Although this165

result was known before, all previous constructions (including suboptimal ones),166

from Levcopoulos et al.'s [27] to Solomon's work [35], as listed in Table 2.2,167

require intricate details. It is remarkable how e�ortlessly we achieve optimal168

Od,ε(k) degree, compared to the previous methods. (Note, however, that some169

of the more recent previous constructions more generally apply to spaces with170

bounded doubling dimension, and some also achieve good bounds on other pa-171

rameters such as the total weight and the hop-diameter.)172

Our algorithm can be easily made dynamic, with Od,ε(log n + k) update time.173

No previous results on dynamic fault-tolerant spanners were known.174

(E) Approximate nearest neighbors. Locality-sensitive orderings lead to a simple175

dynamic data structure for (1 + ε)-approximate nearest neighbor search with176

Od,ε(log n) time per update/query. While this result is not new [8], we emphasize177

that the query algorithm is the simplest so far�it is just a binary search in the178

orderings maintained.179

Computational models and assumptions. The model of computation we have as-180

sumed is a unit-cost real RAM, supporting standard arithmetic operations and com-181

parisons (but no �oor function), augmented with bitwise-logical operations (bitwise-182

exclusive-or and bitwise-and), which are commonly available in programming lan-183

guages (and in reality are cheaper than some arithmetic operations like multiplica-184

tion).185

If we assume that input coordinates are integers bounded by U and instead work in186

the word RAM model with (logU)-bit words (U ≥ n), then our approach can actually187

yield sublogarithmic query/update time. For example, we can achieve Od,ε(log logU)188
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reference # edges degree running time

Levcopoulos et al. [27] 2O(k)
n 2O(k)

n log n+ 2O(k)
n

k
2
n unbounded n log n+ k

2
n

kn log n unbounded kn log n

Lukovszki [29, 30] kn k
2

n logd−1
n+ kn log log n

Czumaj and Zhao [13] kn k kn logd n+ k
2
n log k

H. Chan et al. [6] k
2
n k

2
n log n+ k

2
n

Kapoor and Li [26]/Solomon [35] kn k n log n+ kn

Theorem 4.6 kn k n log n+ kn

Table 2.2: Previous work and our result on static k-vertex-fault-tolerant (1 + ε)-
spanners in R

d. All bounds are of the form Od,ε( · ) (the hidden dependencies on ε
are 1/εO(d)).

expected time for dynamic approximate bichromatic closest pair, dynamic spanners,189

and dynamic ANN, by replacing binary search with van Emde Boas trees [36]. Sublog-190

arithmic algorithms were known before for dynamic ANN [8], but ours is the �rst191

sublogarithmic result for dynamic (1+ε)-spanners. Our results also answers the open192

problem of dynamic (1 + ε)-approximate bichromatic closest pair in sublogarithmic193

time, originally posed by Chan and Skrepetos [12].194

Throughout, we assume (without loss of generality) that ε is a power of 2; that195

is, ε = 2−E for some positive integer E.196

3. Locality-sensitive orderings.197

3.1. Grids and orderings.198

Definition. For a set X, consider a total order (or ordering) ≺ on the elements199

of X. Two elements x, y ∈ X are adjacent if there is no element z ∈ X, such that200

x ≺ z ≺ y or y ≺ z ≺ x.201

Given two elements x, y ∈ X, such that x ≺ y, the interval [x, y) is the set202

[x, y) = {x} ∪ {z ∈ X | x ≺ z ≺ y} .203

The following is well known, and goes back to a work by Walecki in the 19th204

century [1]. We include a proof in Appendix A.1 for the sake of completeness. (If205

we don't care about the constant factor in the number of orderings, there are other206

straightforward alternative proofs.)207

Lemma 3.1. For n elements {0, . . . , n− 1}, there is a set O of dn/2e orderings208

of the elements, such that, for all i, j ∈ {0, . . . , n− 1}, there exists an ordering σ ∈ O209

in which i and j are adjacent.210

Definition 3.2. Consider an axis-parallel cube C ⊆ R
d with side length `. Par-211

titioning it uniformly into a t× t× · · · × t grid G creates the t-grid of C. The grid G212

is a set of td identically sized cubes with side length `/t.213

For a cube � ⊆ R
d, its diameter is diam(�) = sidelength(�)

√
d.214

By Lemma 3.1 we obtain the following result.215

Corollary 3.3. For a t-grid G of an axis-parallel cube C ⊆ R
d, there is a set216

O(t, d) of O(td) orderings, such that for any �1,�2 ∈ G, there exists an order σ ∈217

O(t, d) where �1 and �2 are adjacent in σ.218

3.2. ε-Quadtrees.219
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8 T. M. CHAN, S. HAR-PELED, AND M. JONES

Suppose there are two points which lie in a quadtree cell that has diameter close253

to their distance. Formally, consider two points p, q ∈ [0, 1)d, a parameter ε > 0, such254

that p, q are both contained in a cell � of the regular quadtree T with diam(�) ≤255

2 ‖p− q‖. Then, there is an ε-quadtree Tε that has � as a node, and let �p and �q256

be the two children of � in Tε, containing p and q respectively. Furthermore, there is257

an ordering σ ∈ O(1/ε, d), such that �p and �q are adjacent. As such, the cube �p258

(resp., �q) corresponds to an interval [x, x′) (resp., [x′, x′′)) in the ordering (Tε, σ),259

and these two intervals are adjacent. In particular, this implies that all points lying260

between p and q in σ have distance at most 2ε ‖p− q‖ from p or q.261

If the above statement were true for all pairs of points, then this would imply the262

main result (Theorem 3.10). However, consider the case when there are two points263

close together, but no appropriately sized quadtree cell contains both p and q. In264

other words, two points that are close together might get separated by nodes that265

are much bigger in the quadtree, and this would not provide the guarantee of the266

main result. However, this issue can be resolved using shifting. We need the following267

result of Chan [7, Lemma 3.3]�a proof is provided in Appendix A.2.268

Lemma 3.7. Consider any two points p, q ∈ [0, 1)d, and let T be the in�nite269

quadtree of [0, 2)d. For D = 2 dd/2e and i = 0, . . . , D, let vi = (i/(D+1), . . . , i/(D+270

1)). Then there exists an i ∈ {0, . . . , D}, such that p+ vi and q + vi are contained in271

a cell of T with side length ≤ 2(D + 1) ‖p− q‖.272

3.3. Comparing two points according to an ε-ordering. We now show how273

to e�ciently compare two points in P according to a given ε-ordering σ with a shift274

vi. The shift can be added to the two points directly, and as such we can focus on275

comparing two points according to σ.276

First, we show how to compare the msb of two numbers using only bitwise-277

exclusive-or and bitwise-and operations. We remark that Observation 3.8 (A) is from278

Chan [8].279

Observation 3.8. Let ⊕ denote the bitwise-exclusive-or operator. De�ne280

msb(a) := −blg ac to be the index of the most signi�cant bit in the binary expan-281

sion of a ∈ [0, 2). Given a, b ∈ [0, 2), one can compare the msb of two numbers using282

the following:283

(A) msb(a) > msb(b) if and only if a < b and a < a⊕ b.284

(B) msb(a) = msb(b) if and only if a⊕b ≤ a∧b, where ∧ is the bitwise-and operator.285

Proof. (A) Observe that if msb(a) > msb(b), then 2−msb(a) ≤ a < 2−msb(a)+1 ≤286

2−msb(b) ≤ b. Since msb(a) > msb(b) and a < b, we have msb(a ⊕ b) = msb(b). As287

such, we have a < 2−msb(a)+1 ≤ 2−msb(b) = 2−msb(a⊕b) ≤ a⊕ b.288

Assume that a < b and a < a⊕ b. Since a < b, it must be that msb(a) ≥ msb(b).289

Observe that if msb(a) = msb(b), then a⊕ b < a, which is impossible. It follows that290

msb(a) > msb(b), as desired.291

(B) Follows by applying (A) twice (in addition to using the inequalities a∧ b ≤ a292

and a ∧ b ≤ b), one can show that a ⊕ b ≤ a ∧ b if and only if msb(a) ≥ msb(b) and293

msb(b) ≥ msb(a).294

Lemma 3.9. Let p = (p1, . . . , pd) and q = (q1, . . . , qd) be two distinct points in295

P ⊆ [0, 2)d and σ ∈ Π be an ε-ordering over the cells of some ε-quadtree Tε storing296

P . Then one can determine if p ≺σ q using O(d log(1/ε)) bitwise-logical operations.297

Proof. Recall ε is a power of two and E = lg(1/ε). In order to compare p and q, for298
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i = 1, . . . , d, compute ai = pi⊕qi. Find an index i
′ such thatmsb(ai′) ≤ msb(ai) for all299

i. Such an index can be computed with O(d) msb comparisons (using Observation 3.8300

(A)). Given pi′ and qi′ , we next determine the place in which pi′ and qi′ �rst di�er in301

their binary representation. Note that because ε is a power of two, each digit in the302

base 1/ε expansion of pi′ corresponds to a block of E bits in the binary expansion of303

pi′ . Suppose that pi′ and qi′ �rst di�er inside the hth block at an index j ∈ {1, . . . E}.304

The algorithm now locates this index j. To do so, for j = 1, . . . , E, let bj =305

2E−j/(2E − 1) ∈ (0, 1] be the number whose binary expansion has a 1 in positions306

j, j + E, j + 2E, . . ., and 0 everywhere else. For j = 1, . . . , E, compute bj ∧ ai′ and307

check if msb(ai′) = msb(bj ∧ ai′) (using Observation 3.8 (B)). When the algorithm308

�nds such an index j obeying this equality, it exits the loop. We know that pi′ and qi′309

�rst di�er in the jth position inside the hth block (the value of h is never explicitly310

computed).311

It remains to extract the E bits from the hth block in each coordinate p1, . . . , pd.312

For i = 1, . . . , d, let Bi ∈ {0, 1}E be the bits inside the hth block of pi. For k =313

1, . . . , E, set Bi,k = 1
[

msb(2j−kai′) = msb((2j−kai′) ∧ pi)
]

(where 1[·] is the indicator314

function). By repeating a similar process for all q1, . . . , qd, we obtain the coordinates315

of the cells in which p and q di�er. We can then consult σ to determine whether or316

not p ≺σ q.317

This implies that p and q can be compared using O(d log(1/ε)) operations by318

Observation 3.8.319

Remark. In the word RAM model for integer input, the extra log(1/ε) factor in320

the above time bound can be eliminated: msb can be explicitly computed in O(1) time321

by a complicated algorithm of Fredman and Willard [17]; this allows us to directly322

jump to the right block of each coordinate and extract the relevant bits. (Furthermore,323

assembly operations performing such computations are nowadays available on most324

CPUs.)325

3.4. The result.326

Theorem 3.10. For ε ∈ (0, 1/2], there is a set Π+ of Od(log(1/ε)/ε
d) orderings327

of [0, 1)d, such that for any two points p, q ∈ [0, 1)d there is an ordering σ ∈ Π+328

de�ned over [0, 1)d, such that for any point u with p ≺σ u ≺σ q it holds that either329

‖p− u‖ ≤ ε ‖p− q‖ or ‖q − u‖ ≤ ε ‖p− q‖.330

Furthermore, given such an ordering σ, and two points p, q, one can compute their331

ordering, according to σ, using O(d log(1/ε)) arithmetic and bitwise-logical operations.332

Proof. Let Π+ be the set of all orderings de�ned by picking an ordering from Π, as333

de�ned by De�nition 3.6 using the parameter ε, together with a shift from Lemma 3.7.334

Consider any two points p, q ∈ [0, 1)d. By Lemma 3.7 there is a shift for which the335

two points fall into a quadtree cell � with side length at most 2(D+1) ‖p− q‖. Next,336

there is an ε-quadtree Tε that contains �, and the two children that correspond to337

two cells �p and �q with side length at most 2(D+1)ε ‖p− q‖, which readily implies338

that the diameter of these cells is at most 2(D + 1)
√
dε ‖p− q‖. Furthermore, there339

is an ε-ordering in Π such that all the points of �p are adjacent to all the points of340

�q in this ordering. This implies the desired claim, after adjusting ε by a factor of341

2(D + 1)
√
d (and rounding to a power of 2).342

From now on, we refer to the set of orderings Π+ in the above Theorem as locality-343

sensitive orderings. We remark that by the readjustment of ε in the �nal step of the344

proof, the number of locality-sensitive orderings when including the factors involving345

d is O(d3/2)d · (1/εd) log(1/ε).346
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10 T. M. CHAN, S. HAR-PELED, AND M. JONES

3.4.1. Discussion.347

Connection to locality-sensitive hashing. Let P be a set of n points in Hamming348

space {0, 1}d. Consider the decision version of the (1+ ε)-approximate nearest neigh-349

bor problem. Speci�cally, for a pre-speci�ed radius r and any given query point q,350

we would like to e�ciently decide whether or not there exists a point p ∈ P such351

that ‖q − p‖1 ≤ (1 + ε)r or conclude that all points in P are at least distance r from352

q. The locality-sensitive hashing (LSH) technique [24] implies the existence of a data353

structure supporting this type of decision query in time O(dn1/(1+ε) log n) time (which354

is correct with high probability) and using total space O(dn1+1/(1+ε) log n). Similar355

results also hold in the Euclidean setting.356

At a high level, LSH works as follows. Start by choosing k := k(ε, r, n) indices in357

[d] at random (with replacement). Let R denote the resulting multiset of coordinates.358

For each point p ∈ P , let pR be the projection p onto these coordinates of R. We can359

group the points of P into buckets, where each bucket contains points with the same360

projection. Given a query point q, we check if any of the points in the same bucket361

as q is at distance at most (1 + ε)r from q. This construction can also be repeated a362

su�cient number of times in order to guarantee success with high probability.363

The idea of bucketing can also be viewed as an implicit ordering on the randomly364

projected point set by ordering points lexicographically according to the k coordinates.365

In this sense, the query algorithm can be viewed as locating q within each of the366

orderings, and comparing q to similar points nearby in each ordering. From this367

perspective, every locality-sensitive ordering can be viewed as an LSH scheme. Indeed,368

for a given query point q, the approximate nearest neighbor to q can be found by369

inspecting the elements adjacent to q in each of the locality-sensitive orderings and370

returning the closest point to q found (see Theorem 4.7).371

Of course, the main di�erence between the two schemes is that for every �xed ε,372

the number of �orderings� in an LSH scheme is polynomial in both d and n. While for373

locality-sensitive orderings, the number of orderings remains exponential in d. This374

trade-o� is to be expected, as locality-sensitive orderings guarantee a much stronger375

property than that of an LSH scheme.376

Extension of locality-sensitive orderings to other norms in Euclidean space. The377

Lp-norm, for p ≥ 1, of a vector x ∈ R
d is de�ned as ‖x‖p = (|x1|p + · · ·+ |xn|p)1/p.378

The L∞-norm, or maximum norm, is de�ned as ‖x‖∞ = max(|x1| , . . . , |xn|).379

The result of Theorem 3.10 also holds for any Lp-norm. The key change that is380

needed is in the proof of Lemma 3.7: For any two points s, t ∈ [0, 1)d, there exists381

a shift v such that s + v and t + v are contained in a quadtree cell of side length at382

most 2(D+1) ‖s− t‖p. This extension follows easily from the proof of the Lemma (see383

Appendix A.2). Theorem 3.10 then follows by adjusting ε by a factor of 2(D+1)d1/p in384

the last step, implying that the number of orderings will be O(d1+1/p)d(1/εd) log(1/ε).385

(For the L∞-norm, ε only needs to be adjusted by a factor of 2(D + 1).)386

Extension of locality-sensitive orderings for doubling metrics. An abstraction of387

low-dimensional Euclidean space, is a metric space with (low) doubling dimension.388

Formally, a metric space (M, d) has doubling dimension λ if any ball of M of radius389

r can be covered by at most 2λ balls of half the radius (i.e., r/2). It is known that390

R
d has doubling dimension O(d) [37]. We point out that locality-sensitive orderings391

still exist in this case, but they are less constructive in nature, since one needs to be392

provided with all the points of interest in advance.393

For a point set P ⊆ M, the analogue of a quadtree for a metric space is a net tree394

[21]. A net tree can be constructed as follows (the construction algorithm described395
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here is somewhat imprecise): The root node corresponds to the point set P ⊆ M.396

Compute a randomized partition of P of diameter 1/2 (assume P has diameter one),397

and for each cluster in the partition, create an associated node and hang it on the398

root. The tree is computed recursively in this manner, at each level i computing a399

random partition of diameter 2−i. The leaves of the tree are points of P .400

As with quadtrees, it is possible during this randomized construction for two401

nearby points to be placed in di�erent clusters and be separated further down the tree.402

If ` = d(p, q) for two points p, q ∈ P , then the probability that p and q lie in di�erent403

clusters of diameter r = 2−i in the randomized partition is at most O((`/r) log n)404

[15]. In particular, for r ≈ 1/(` log n), the probability that p and q are separated is at405

most a constant. If we want this property to hold with high probability for all pairs of406

points, one needs to construct O(log n) (randomly constructed) net trees of P . (This407

corresponds to randomly shifting a quadtree O(log n) times in the Euclidean setting.)408

Given such a net tree T , each node has I = 2O(λ) children. We can arbitrarily409

and explicitly number the children of each node by a distinct label from JIK. One410

can de�ne an ordering of such a tree as we did in the Euclidean case, except that411

the gap (in diameter) between a node and its children is O(ε/ log n) instead of ε.412

Repeating our scheme in the Euclidean case, this implies that one would expect to413

require (ε−1 log n)O(λ) orderings of P .414

This requires having all the points of P in advance, which is a strong assumption415

for a dynamic data structure (as in some of the applications below). For example,416

Gottlieb and Roditty [19] show how to maintain dynamic spanners in a doubling417

metric, but only assuming that after a point has been deleted from P , the distance418

between the deleted point and a point currently in P can still be computed in constant419

time.420

4. Applications.421

4.1. Bichromatic closest pair. Given an ordering σ ∈ Π+, and two �nite sets422

of points R,B in R
d, let Z = Z(σ,R,B) be the set of all pairs of points in R × B423

that are adjacent in the ordering of R ∪ B according to σ. Observe that inserting or424

deleting a single point from these two sets changes the contents of Z by a constant425

number of pairs. Furthermore, a point participates in at most two pairs.426

Lemma 4.1. Let R and B be two sets of points in [0, 1)d, and let ε ∈ (0, 1) be a427

parameter. Let σ ∈ Π+ be a locality-sensitive ordering (see Theorem 3.10). Then, one428

can maintain the set Z = Z(σ,R,B) under insertions and deletions to R and B. In429

addition, one can maintain the closest pair in Z (under the Euclidean metric). Each430

update takes O(d log n log(1/ε)) time, where n is the total size of R and B during the431

update operation.432

Proof. Maintain two balanced binary search trees TR and TB storing the points433

in R and B, respectively, according to the order σ. Insertion, deletion, predecessor434

query and successor query can be implemented in O(d log(1/ε) log n) time (since any435

query requires O(log n) comparisons each costing O(d log(1/ε)) time by Lemma 3.9).436

We also maintain a min-heap of the pairs in Z sorted according to the Euclidean437

distance. The minimum is the desired closest pair. Notice that a single point can438

participate in at most two pairs in Z.439

We now explain how to handle updates. Given a newly inserted point r (say a440

red point that belongs to R), we compute the (potential) pairs it participates in, by441

computing its successor r′ in R, and its successor b′ in B. If r ≺σ b′ ≺σ r′ then the442

new pair rb′ should be added to Z. The pair before r in the ordering that might use443
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r is computed in a similar fashion. In addition, we recompute the predecessor and444

successor of r in R, and we recompute the pairs they might participate in (deleting445

potentially old pairs that are no longer valid).446

Deletion is handled in a similar fashion�all points included in pairs with the447

deleted point recompute their pairs. In addition, the successor and predecessor (of448

the same color) need to recompute their pairs. This all requires a constant number449

of queries in the two trees, and thus takes the running time as stated.450

Theorem 4.2. Let R and B be two sets of points in [0, 1)d, and let ε ∈ (0, 1/2] be451

a parameter. Then one can maintain a (1+ε)-approximation to the bichromatic closest452

pair in R×B under updates (i.e., insertions and deletions) in Od(log n log2(1/ε)/εd)453

time per operation, where n is the total number of points in the two sets. The data454

structure uses Od(n log(1/ε)/εd) space, and at all times maintains a pair of points r ∈455

R, b ∈ B, such that ‖r − b‖ ≤ (1 + ε)d(R,B), where d(R,B) = minr∈R,b∈B ‖r − b‖.456

Proof. We maintain the data structure of Lemma 4.1 for all the locality-sensitive457

orderings of Theorem 3.10. All the good pairs for these data structures can be main-458

tained together in one global min-heap. The claim is that the minimum length pair459

in this heap is the desired approximation.460

To see that, consider the bichromatic closest pair r ∈ R and b ∈ B. By Theo-461

rem 3.10 there is a locality-sensitive ordering σ, such that the interval I in the ordering462

between r and b contains points that are in distance at most ` = ε ‖r − b‖ from either463

r or b. In particular, let Pr (resp., Pb) be all the points in I in distance at most ` from464

r (resp., b). Observe that Pr ⊆ R, as otherwise, there would be a bichromatic pair465

in PR, and since the diameter of this set is at most `, this would imply that (r, b) is466

not the closest bichromatic pair�a contradiction. Similarly, Pb ⊆ B. As such, there467

must be two points b′ ∈ B and r′ ∈ R, that are consecutive in σ, and this is one of468

the pairs considered by the algorithm (as it is stored in the min-heap). In particular,469

by the triangle inequality, we have470

‖r′ − b′‖ ≤ ‖r′ − r‖+ ‖r − b‖+ ‖b− b′‖ ≤ 2`+ ‖r − b‖ ≤ (1 + 2ε) ‖r − b‖ .471

The theorem follows after adjusting ε by a factor of 2.472

Remark. In the word RAM model, for integer input in {1, . . . , U}d, the update473

time can be improved to Od((log logU) log2(1/ε)/εd) expected, by using van Emde474

Boas trees [36] in place of the binary search trees (and the min-heaps as well). With475

standard word operations, we may not be able to explicitly map each point to an476

integer in one dimension following each locality-sensitive ordering, but we can still477

simulate van Emde Boas trees on the input as if the mapping has been applied. Each478

recursive call in the van Emde Boas recursion focuses on a speci�c block of bits of each479

input coordinate value (after shifting); we can extract these blocks, and perform the480

needed hashing operations on the concatenation of these blocks over the d coordinates481

of each point.482

4.2. Dynamic spanners.483

Definition 4.3. For a set of n points P in R
d and a parameter t ≥ 1, a t-

spanner of P is an undirected graph G = (P,E) such that for all p, q ∈ P ,

‖p− q‖ ≤ dG(p, q) ≤ t‖p− q‖,

where dG(p, q) is the length of the shortest path from p to q in G using the edge set484

E.485
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Using a small modi�cation of the results in the previous section, we easily obtain486

a dynamic (1 + ε)-spanner. Note that there is nothing special about how the data487

structure in Theorem 4.2 deals with the bichromatic point set. If the point set is488

monochromatic, modifying the data structure in Lemma 4.1 to account for the closest489

monochromatic pair of points leads to a data structure with the same bounds and490

maintains the (1 + ε)-approximate closest pair.491

The construction of the spanner is very simple: Given P and ε ∈ (0, 1), maintain492

orderings of the points speci�ed by Π+ (see Theorem 3.10). For each σ ∈ Π+, let493

Eσ be the edge set consisting of edges connecting two consecutive points according494

to σ, with weight equal to their Euclidean distance. Thus |Eσ| = n− 1. Our spanner495

G = (P,E) then consists of the edge set E =
⋃

σ∈Π+ Eσ.496

Theorem 4.4. Let P be a set of n points in [0, 1)d and ε ∈ (0, 1/2]. One can497

compute a (1 + ε)-spanner G of P with Od(n log(1/ε)/εd) edges, where every ver-498

tex has degree Od(log(1/ε)/ε
d). Furthermore, a point can be inserted or deleted in499

Od(log n log2(1/ε)/εd) time, where each insertion or deletion creates or removes at500

most Od(log(1/ε)/ε
d) edges in the spanner.501

Proof. The construction is described above. The same analysis as in the proof of502

Theorem 4.2 implies the number of edges in G and the update time.503

It remains to prove that G is a spanner. By Theorem 3.10, for any pair of points504

s, t ∈ P , there is a locality-sensitive ordering σ ∈ Π+, such that the σ-interval [s, t)505

contains only points that are in distance at most ε ‖s− t‖ from either s or t. In506

particular, there must be two points in s′, t′ ∈ P that are adjacent in σ, such that one507

of them, say s′ (resp., t′) is in distance at most ε ‖s− t‖ from s (resp., t). As such,508

the edge s′t′ exists in the graph being maintained.509

This property is already enough to imply that this graph is a (1+ cε)-spanner for510

a su�ciently large constant c�this follows by an induction on the distances between511

the points (speci�cally, in the above, we apply the induction hypothesis on the pairs512

s, s′ and t, t′). We omit the easy but somewhat tedious argument�see [5] or [20,513

Theorem 3.12] for details. The theorem follows after adjusting ε by a factor of c.514

4.2.1. Static and dynamic vertex-fault-tolerant spanners.515

Definition 4.5. For a set of n points P in R
d and a parameter t ≥ 1, a k-516

vertex-fault-tolerant t-spanner of P , denoted by (k, t)-VFTS, is a graph G =517

(P,E) such that518

(i) G is a t-spanner (see De�nition 4.3), and519

(ii) For any P ′ ⊆ P of size at most k, the graph G \P ′ is a t-spanner for P \P ′.520

A (k, 1 + ε)-VFTS can be obtained by modifying the construction of the (1 + ε)-521

spanner in Section 4.2. Construct a set of locality-sensitive orderings Π+. For each522

σ ∈ Π+ and each p ∈ P , connect p to its k + 1 successors and k + 1 predecessors523

according to σ with edge weights equal to the Euclidean distances. Thus each ordering524

maintains O(nk) edges and there are O(|Π+| kn) = Od(kn log(1/ε)/εd) edges overall.525

We now prove that this graph G is in fact a (k, 1 + ε)-VFTS.526

Theorem 4.6. Let P be a set of n points in [0, 1)d and ε ∈ (0, 1/2]. One can527

compute a k-vertex-fault-tolerant (1 + ε)-spanner G for P in time528

Od

(

(n log n log(1/ε) + kn) log(1/ε)/εd
)

.529530

The number of edges is Od(kn log(1/ε)/εd) and the maximum degree is bounded by531

Od(k log(1/ε)/ε
d).532
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Furthermore, one can maintain the k-vertex-fault-tolerant (1+ε)-spanner G under533

insertions and deletions of points in Od

(

(log n log(1/ε) + k) log(1/ε)/εd
)

time per534

operation.535

Proof. The construction algorithm, number of edges, and maximum degree follows536

from the discussion above. So, consider deleting a set P ′ ⊆ P of size at most k from537

G. Consider an ordering σ ∈ Π+ with the points P ′ removed. By the construction of538

G, all the pairs of points of P \ P ′ that are (now) adjacent in σ remain connected by539

an edge in G \P ′. The argument of Theorem 4.4 implies that the remaining graph is540

spanner. We conclude that G \ P ′ is a (1 + ε)-spanner for P \ P ′.541

As for the time taken to handle insertions and deletions, one simply maintains the542

orderings of the points using balanced search trees. After an insertion of a point to one543

of the orderings in O(log n log(1/ε)) time, O(k) edges have to be added and deleted.544

Therefore inserting a point takes O
(

(log n log(1/ε) + k) |Π+|
)

= Od

(

(log n log(1/ε) +545

k) log(1/ε)/εd
)

time total. Deletions are handled similarly.546

The total construction time follows by inserting each of the points into the dy-547

namic data structure.548

4.3. Dynamic approximate nearest neighbors. Another application of the549

same data structure in Theorem 4.2 is supporting (1+ε)-approximate nearest neighbor550

queries. In this scenario, the data structure must support insertions and deletions of551

points and the following queries: given a point q, return a point t ∈ P such that552

‖q − t‖ ≤ (1 + ε)minp∈P ‖q − p‖.553

Theorem 4.7. Let P be a set of n points in [0, 1)d. For a given ε ∈ (0, 1/2],554

one can build a data structure using Od(n log(1/ε)/εd) space, that supports insertion555

and deletion in time Od(log n log2(1/ε)/εd). Furthermore, given a query point q ∈556

[0, 1)d, the data structure returns a (1 + ε)-approximate nearest neighbor in P in557

Od(log n log2(1/ε)/εd) time.558

Proof. Maintain the data structure of Lemma 4.1 for all locality-sensitive order-559

ings of Theorem 3.10, with one di�erence: Since the input is monochromatic, for each560

locality-sensitive ordering σ ∈ Π+, we store the points in a balanced binary search561

tree according to σ. The space and update time bounds easily follow by the same562

analysis.563

Given a query point q ∈ [0, 1)d, for each of the orderings the algorithm inspects564

the predecessor and successor to q. The algorithm returns the closest point to q565

encountered. We claim that the returned point p is the desired approximate nearest566

neighbor.567

Let p? ∈ P be the nearest neighbor to q and ` = ‖q−p?‖. By Theorem 3.10, there568

is a locality-sensitive ordering σ ∈ Π+ such that the σ-interval I = [p?, q) contains569

points that are of distance at most ε` from p? or q (and this interval contains at least570

one point of P , namely, p?). Note that no point of P can be at distance less than571

ε` to q. Thus, the point p ∈ P adjacent to q in I is of distance at most ε` from p?.572

Therefore, for such a point p, we have ‖p− q‖ ≤ ‖p− p?‖+ ‖p? − q‖ ≤ (1 + ε)`.573

The �nal query time follows from the time taken for these predecessor and suc-574

cessor queries, as in the proof of Lemma 4.1.575

5. Conclusion. In this paper, we showed that any bounded subset of Rd has a576

collection of �few� orderings which captures proximity. This readily leads to simpli�ed577

and improved approximate dynamic data structures for many fundamental proximity-578

based problems in computational geometry. Beyond these improvements, we believe579

that the new technique could potentially be simple enough to be useful in practice,580
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and could be easily taught in an undergraduate level class (replacing, for example,581

well-separated pair decomposition�a topic that is not as easily accessible).582

We expect other applications to follow from the technique presented in this paper.583

For example, recently Buchin et al. [4] presented a near linear-sized construction584

for robust spanners. The idea is to build a robust spanner in one dimension, and585

then obtain a robust spanner in higher dimensions by applying the one-dimensional586

construction using the locality-sensitive orderings.587
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Appendix A. Proofs.691

A.1. Proof of Lemma 3.1. Restatement of Lemma 3.1. For n elements692

{0, . . . , n− 1}, there is a set O of dn/2e orderings of the elements, such that, for all693

i, j ∈ {0, . . . , n− 1}, there exists an ordering σ ∈ O in which i and j are adjacent.694

Proof. As mentioned earlier this is well known [1]. Assume n is even, and consider695

the clique Kn, with its vertices v0, . . . , vn−1. The edges of this clique can be covered696
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Setting δ = ∆/2 = 2−i−1/n, we have727

X % 2−i−1 =
(

X % 2−i
)

% 2−i−1
728

= {0, (m+ 1)∆,∆, (m+ 2)∆, 2∆, . . . , (m+ j)∆, j∆, . . . , (m+m)∆,m∆}% 2−i−1
729

= {0, 2(m+ 1)δ, 2δ, 2(m+ 2)δ, 4δ, . . . , 2(m+ j)δ, 2jδ, . . . , 2(m+m)δ, 2mδ}% 2−i−1
730

= {0, δ, 2δ, 3δ, 4δ, . . . , (2j − 1)δ, 2jδ, . . . , (2m− 1)δ, 2mδ} ,731732

since (2m+ 1)δ = nδ = 2−i−1 and 2(m+ j)δ % 2−i−1 = (2m+ 1 + 2j − 1)δ % 2−i−1 =733

(2j − 1)δ, for j = 1, . . . ,m.734

Restatement of Lemma 3.7. Consider any two points p, q ∈ [0, 1)d, and let T be735

the in�nite quadtree of [0, 2)d. For D = 2 dd/2e and i = 0, . . . , D, let vi = (i/(D +736

1), . . . , i/(D + 1)). Then there exists an i ∈ {0, . . . , D}, such that p + vi and q + vi737

are contained in a cell of T with side length ≤ 2(D + 1) ‖p− q‖.738

Proof. We start with the assumption that d is even (this assumption will be739

removed at the end of the proof). Let ` ∈ N, such that for α = 2−`, we have740

(d+ 1) ‖p− q‖ < α ≤ 2(d+ 1) ‖p− q‖ .741

For τ ∈ [0, 1], let G + τ denote the (in�nite) grid with side length α shifted by the742

point (τ, . . . , τ).743

Let X = {i/(d+ 1) | i = 0, . . . , d} be the set of shifts considered. Since we are744

shifting a grid with side length α, the shifting is periodical with value α. It is thus745

su�cient to consider the shifts modulo α.746

Let p = (p1, . . . , pd) and q = (q1, . . . , qd). Assume that p1 ≤ q1. A shift τ is bad,747

for the �rst coordinate, if there is an integer i, such that p1 ≤ τ + iα ≤ q1. The set748

of bad shifts in the interval [0, α] is749

B1 =
{

(p1, q1) + iα
∣

∣ i ∈ Z
}

∩ [0, α].750

The set B1 is either an interval of length |p1 − q1| ≤ ‖p− q‖ < α/(d + 1), or two751

intervals (of the same total length) adjacent to 0 and α. In either case, B1 can752

contain at most one point of αX = X %α, since the distance between any two values753

of αX is at least α/(d+ 1), by Lemma A.1.754

Thus, the �rst coordinate rules out at most one candidate shift in X %α. Repeat-755

ing the above argument for all d coordinates, we conclude that there is at least one756

shift in αX that is good for all coordinates. Let β = αi/(d + 1) ∈ αX this be good757

shift. Namely, p and q belong to the same cell of G+ β. The �nal step is to observe758

that shifting the points by −β, instead of the grid by distance β has the same e�ect759

(and −β %α ∈ αX), and as such, the canonical cell containing both p and q is in the760

quadtree T as desired, and the side length of this cell is α.761

Finally, if d is odd, replace d by d+ 1 in the above proof. This results in a set of762

d+ 2 = 2 dd/2e+ 1 = D + 1 shifts.763

This manuscript is for review purposes only.
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