17

18
19
20
21
22
23
24
25
26
27

29
30
31
32
33
34
35
36
37

ON LOCALITY-SENSITIVE ORDERINGS AND THEIR
APPLICATIONS*

TIMOTHY M. CHANT, SARIEL HAR-PELED!, AND MITCHELL JONES?

Abstract. For any constant d and parameter £ € (0,1/2], we show the existence of (roughly)
1/e? orderings on the unit cube [0,1)%, such that for any two points p,q € [0,1)? close together
under the Euclidean metric, there is a linear ordering in which all points between p and ¢ in the
ordering are “close” to p or q. More precisely, the only points that could lie between p and ¢ in the
ordering are points with Euclidean distance at most ¢ ||p — q|| from either p or q. These orderings
are extensions of the Z-order, and they can be efficiently computed.

Functionally, the orderings can be thought of as a replacement to quadtrees and related struc-
tures (like well-separated pair decompositions). We use such orderings to obtain surprisingly simple
algorithms for a number of basic problems in low-dimensional computational geometry, including
(i) dynamic approximate bichromatic closest pair, (ii) dynamic spanners, (iii) dynamic approximate
minimum spanning trees, (iv) static and dynamic fault-tolerant spanners, and (v) approximate near-
est neighbor search.

Key words. Approximation algorithms, data structures, computational geometry.

AMS subject classifications. 68W25, 68P05

1. Preface. In this paper, we describe a technique that leads to new, simpler
algorithms for a number of fundamental proximity problems in low-dimensional Eu-
clidean spaces.

Given data, having an ordering over it is quite useful—it enables one to sort it,
store it, and search it efficiently, among other things. Such an order is less natural
for points in the plane (or in higher dimensions). One way to impose such orders is
by using bijective mappings from the plane to the line (which has a natural order,
and thus endows the plane with an order). Such mappings, known as space-filling
curves, were discovered in 1890 by Peano [32]. (See also the book by Sagan [34] for
more information on space-filling curves.) For computational purposes, the Z-order,
a somewhat inferior space-filling curve, is the easiest to implement as it is easily
computed by interleaving the bits of the z and y coordinates.

A natural property one desires in an ordering of the plane is that it preserves
locality—points that are close together geometrically remain close in the resulting
ordering. Unfortunately, no mapping/ordering can have this property universally, as
the topology of the line and the plane are fundamentally different. Nevertheless, Z-
order already has some nice locality properties—it maps certain squares to intervals on
the real line, and these squares forms grids that cover the unit square. Furthermore,
these grids are universal, in the sense that there is a grid for any desired resolution.

To get better locality properties, one has to use more orders. It is known that

*Submitted to the editors 02/22/19. A preliminary version of this paper appeared in ITCS 2019
[11].
TDepartment of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
(tmc@illinois.edu).
Funding: Work on this paper was partially supported by NSF AF award CCF-1814026.
fDepartment of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IT, 61801
(sariel@illinois.edu).
Funding: Work on this paper was partially supported by NSF AF awards CCF-1421231 and
CCF-.
§Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, I, 61801
(mfjones2@illinois.edu).

This manuscript is for review purposes only.

10

S
co

9

N = O

S O Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot i
= O © 0w N O Otk W

[*2]
N

63
64
65
66
67
68
69
70
71
72

2 T. M. CHAN, S. HAR-PELED, AND M. JONES

if one uses three orders in the plane (which is the result of shifting the plane before
applying the Z-order), then for any axis parallel square C (inside the unit square),
there exists a square C’ that contains C, such that C’ is only slightly bigger than C,
and one of the three orders maps C’ to an interval.

Out purpose here is to get an even stronger locality property, which requires
a larger collection of orderings. Specifically, consider two points p,p’ € [0,1]2. The
desired property is that there are two squares C and C’, and an order o in the collection,
with the following properties: (i) p € C and p’ € C’/, (ii) the diameters of C and C’
are only an e-fraction of the distance between p and p’, (iii) C and C’ are mapped to
two intervals on the real line by o, and (iv) these two intervals are adjacent. Such an
ordering o with the desired properties is illustrated in Figure 1.1.

1

(o)

T

Figure 1.1

For algorithmic applications, this collection of orders need to be small, and it
needs to be easily computable. Surprisingly, we show that the desired collection of
orders has size that depends only on €, and these orders can be easily computed.

To see why having such a collection of orders is so useful, consider the problem
of computing the closest pair of points in a given set of points P. Every order in
the collection induces an ordering of P. Furthermore, the closest pair of points are
going to be adjacent in one of these orders, and as such can be readily computed by
considering all consecutive pairs of points in the ordering (the number of such pairs is
linear). Furthermore, using balanced binary search trees, it is easy to maintain each
ordered set under insertions and deletions. Therefore, one can maintain the closest
pair of points by storing P in such a data structure for each of the orderings. As a
result, a dynamic problem that might seem in advance somewhat challenging reduces
(essentially) to the mundane task of maintaining ordered sets under insertions and
deletions.

2. Introduction.

Quadtrees and Z-order. Consider a point set P C [0,1)?, its quadtree, and a
depth-first search (DFS) traversal of this quadtree. One can order the points of P
according to this traversal, resulting in some ordering < of the underlying set [0, 1)2.
The relation < is the ordering along some space filling mapping.

One particular ordering of interest is the Z-order. Conceptually speaking, the Z-
order can be thought of as a DFS of the quadtree over [0, 1)?, where the children of each
node in the quadtree are always visited in the same pre-defined order (see Figure 1.2).
The Z-order is a total ordering over the points in [0,1)?, and can be formally defined
by a bijection z from the unit interval [0,1) to the unit square [0,1)2. Given a real

This manuscript is for review purposes only.

~

NN~
(2]

~N
© 0 N O

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

ON LOCALITY-SENSITIVE ORDERINGS 3

| > i =
g g

~ SN WG (TN
~ ™\ T
= > B

| s
i Y nin Y ain Yanin
T G| <
Pimp g o
< | B
<l~h[“al-h
<2 L—j <N [
> p o
N} ik N) L)
I N D R R

Figure 1.2: Changing the order in which a DFS visits the children of a quadtree node
induces a different ordering of the underlying square (and produces different space
filling curves). The top row shows the Z-order (or N-order), and the bottom row
shows the —-order.

number « € [0, 1), with the binary expansion v = 0.z12223 ... (i.e., @ = Y o) 2;27%),
the Z-order mapping of « is the point z(a) = (0.z22426...,0.212525...). We note
that the Z-order mapping z is not continuous. Nevertheless, the Z-order mapping
has the advantage of being easy to define. In particular, computing the Z-order or
its inverse is quite easy, if one is allowed bitwise-logical operations—in particular, the
ability to compute compressed quadtrees efficiently is possible only if such operations
are available [20]. The approach extends to higher constant dimensions.

The idea of using the Z-order can be traced back to the work of Morton [31], and
it is widely used in databases and seems to improve performance in practice [25]. Once
comparison by Z-order is available, building a compressed quadtree is no more than
storing the points according to the Z-order, and this yields simple data structures
for various problems. For example, Liao et al. [28] and Chan [8, 9, 10] applied the
Z-order to obtain simple efficient algorithms for approximate nearest neighbor search
and related problems.

Shifting. The Z-order (and quadtrees) does not preserve distance. That is, two
points that are far away might be mapped to two close-together points, and vice
versa. This problem is even apparent when using a grid, where points that are close
together get separated into different grid cells. One way to get around this problem
is to shift the grid (deterministically or randomly) [22]. The same approach works
for quadtrees—one can shift the quadtree constructed for a point set several times
such that for any pair of points in the quadtree, there will be a shift where the two
points are in a cell of diameter that is O4(1) times their distance. (Throughout,
we use the Oy notation to hide constants that depend on d. Similarly, O. hides
dependencies on ¢.) Improving an earlier work by Bern [3], Chan [7] showed that
2[d/2] + 1 deterministic shifts are enough in d dimensions (a proof is reproduced
in Appendix A.2). A somewhat similar shifting scheme was also suggested by Feige
and Krauthgamer [16]. Random shifting of quadtrees underlines, for example, the
approximation algorithm by Arora for Euclidean TSP [2].

By combining Z-order with shifting, both Chan [8] and Liao et al. [28] observed
an extremely simple data structure for O4(1)-approximate nearest neighbor search in
constant dimensions: just store the points in Z-order for each of the 2[d/2] + 1 shifts;

This manuscript is for review purposes only.

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151

4 T. M. CHAN, S. HAR-PELED, AND M. JONES

given a query point ¢, find the successor and predecessor of ¢ in the Z-order by binary
search for each of the shifts, and return the closest point found. The data structure
can be easily made dynamic to support insertions and deletions of points, and can
also be adapted to find O,4(1)-approximate bichromatic closest pairs.

For approximate nearest neighbor (ANN) search, the O4(1) approximation factor
can be reduced to 1+ ¢ for any fixed £ > 0, though the query algorithm becomes more
involved [8] and unfortunately cannot be adapted to compute (1 + €)-approximate
bichromatic closest pairs dynamically. (In the monochromatic case, however, the
approach can be adapted to find ezact closest pairs, by considering O4(1) successors
and predecessors of each point [8].)

For other proximity-related problems such as spanners and approximate minimum
spanning trees (MST), this approach does not seem to work as well: for example, the
static algorithms in [10], which use the Z-order, still requires explicit constructions of
compressed quadtrees and are not easily dynamizable.

Main new technique: Locality-sensitive orderings. For any given £ > 0, we show
that there is a family of O4((1/¢%)log(1/¢)) orderings of [0,1)? with the following
property: For any p,q € [0,1)?, there is an ordering in the family such that all points
lying between p and ¢ in this ordering are within distance at most ¢ ||p — ¢|| from either
p or q (where ||-|| is the standard Euclidean norm). The order between two points can
be determined efficiently using some bitwise-logical operations. See Theorem 3.10.
We refer to these as locality-sensitive orderings. They generalize the previous
construction of 2[d/2] + 1 shifted copies of the Z-order, which guarantees the stated
property only for a large specific constant (equivalent to setting ¢ ~ d3/2). The new
refined property ensures, for example, that a (1 + €)-approximate nearest neighbor of
a point ¢ can be found among the immediate predecessors and successors of ¢ in these
orderings.

Applications. Locality-sensitive orderings immediately lead to simple algorithms
for a number of problems, as listed below. Many of these results are significant
simplification of previous work; some of the results are new.

(A) Approximate bichromatic closest pair. Theorem 4.2 presents a data structure that
maintains a (1 + €)-approximate closest bichromatic pair for two sets of points
in RY, with an update time of Oy (logn), for any fixed € > 0 (the hidden fac-
tors depending on ¢ are proportional to (1/e%)log®(1/¢)). Previously, a general
technique of Eppstein [14] can be applied in conjunction with a dynamic data
structure for ANN, but the amortized update time increases by two log n factors.

(B) Dynamic spanners. For a parameter ¢ > 1 and a set of points P in R%, a graph
G = (P, E) is a t-spanner for P if for all p, ¢ € P, there is a p-¢ path in G of length
at most ¢ ||p — ¢||. Static algorithms for spanners have been extensively studied
in computational geometry. The dynamic problem appears tougher, and has also
received much attention (see Table 2.1). We obtain a very simple data structure
for maintaining dynamic (1 + ¢)-spanners in Euclidean space with an update
(insertion and deletion) time of Oy .(logn) and having Og4.(n) edges in total,
for any fixed € > 0. See Theorem 4.4. Although Gottlieb and Roditty [19] have
previously obtained the same update time Og4.(logn), their method requires
much more intricate details. (Note that Gottlieb and Roditty’s method more
generally applies to spaces with bounded doubling dimension, but no simpler
methods have been reported in the Euclidean setting.)

(C) Dynamic approximate minimum spanning trees. As is well-known [5, 20], a (1 +¢)-

This manuscript is for review purposes only.

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186
187
188

ON LOCALITY-SENSITIVE ORDERINGS)

reference insertion time deletion time
Roditty [33] logn n*/310g%M n
Gottlieb and Roditty [18] log®n log® n
Gottlieb and Roditty [19] logn logn
Theorem 4.4 logn logn

Table 2.1: Previous work and our result on dynamic (1 + €)-spanners in R¢. All
bounds are of the form Og.(-) (the hidden dependencies on ¢ are 1/£°(4),

~—

~

approximate Euclidean MST of a point set P can be computed from the MST of
a (1+¢)-spanner of P. In our dynamic spanner (and also Gottlieb and Roditty’s
method [19]), each insertion/deletion of a point causes Og (1) edge updates to
the graph. Immediately, we thus obtain a dynamic data structure for maintaining
a (1+ ¢)-approximate Euclidean MST, with update time (ignoring dependencies
on d and €) equal to that for the dynamic graph MST problem, which is currently
O(log* n/loglogn) with amortization [23].

Static and dynamic vertex-fault-tolerant spanners. For parameters k,¢t > 1 and a
set of points P in RY, a k-vertex-fault-tolerant t-spanner is a graph G which is
a t-spanner and for any P’ C P of size at most k, the graph G \ P’ remains a
t-spanner for P\ P’. Fault-tolerant spanners have been extensively studied (see
Table 2.2). Locality-sensitive orderings lead to a very simple construction for
k-vertex-fault-tolerant (1 + €)-spanners, with Og.(kn) edges, maximum degree
Og4.(k), and Og4c(nlogn + kn) running time. See Theorem 4.6. Although this
result was known before, all previous constructions (including suboptimal ones),
from Levcopoulos et al.’s [27] to Solomon’s work [35], as listed in Table 2.2,
require intricate details. It is remarkable how effortlessly we achieve optimal
Og. (k) degree, compared to the previous methods. (Note, however, that some
of the more recent previous constructions more generally apply to spaces with
bounded doubling dimension, and some also achieve good bounds on other pa-
rameters such as the total weight and the hop-diameter.)

Our algorithm can be easily made dynamic, with Oy (logn + k) update time.
No previous results on dynamic fault-tolerant spanners were known.

Approximate nearest neighbors. Locality-sensitive orderings lead to a simple
dynamic data structure for (1 + ¢)-approximate nearest neighbor search with
Oy, (log n) time per update/query. While this result is not new [8], we emphasize
that the query algorithm is the simplest, so far—it is just a binary search in the
orderings maintained.

Computational models and assumptions. The model of computation we have as-

sumed is a unit-cost real RAM, supporting standard arithmetic operations and com-
parisons (but no floor function), augmented with bitwise-logical operations (bitwise-
exclusive-or and bitwise-and), which are commonly available in programming lan-
guages (and in reality are cheaper than some arithmetic operations like multiplica-
tion).

If we assume that input coordinates are integers bounded by U and instead work in

the word RAM model with (log U)-bit words (U > n), then our approach can actually
yield sublogarithmic query/update time. For example, we can achieve Og4 . (loglog U)

This manuscript is for review purposes only.

189
190
191
192
193
194
195
196

198

199
200

202
203
204
205
206
207
208
209
210
211
212
213
214

215
216
217
218

219

6 T. M. CHAN, S. HAR-PELED, AND M. JONES

reference # edges degree running time
Levcopoulos et al. [27] 20k, 20 nlogn +2°®n
k%n unbounded nlogn + k?n
knlogn unbounded knlogn
Lukovszki [29, 30] kn k2 nlog®*n + knloglogn
Czumaj and Zhao [13] kn k knlog?n + k*nlog k
H. Chan et al. [6] k*n K2 nlogn + k*n
Kapoor and Li [26]/Solomon [35] kn k nlogn + kn
Theorem 4.6 kn k nlogn + kn

Table 2.2: Previous work and our result on static k-vertex-fault-tolerant (1 + ¢)-

spanners in R%. All bounds are of the form O4.(-) (the hidden dependencies on &
are 1/e9(@),

expected time for dynamic approximate bichromatic closest pair, dynamic spanners,
and dynamic ANN, by replacing binary search with van Emde Boas trees [36]. Sublog-
arithmic algorithms were known before for dynamic ANN [8], but ours is the first
sublogarithmic result for dynamic (14 ¢)-spanners. Our results also answers the open
problem of dynamic (1 + ¢)-approximate bichromatic closest pair in sublogarithmic
time, originally posed by Chan and Skrepetos [12].

Throughout, we assume (without loss of generality) that ¢ is a power of 2; that
is, ¢ = 27F for some positive integer E.

3. Locality-sensitive orderings.

3.1. Grids and orderings.

DEFINITION. For a set X, consider a total order (or ordering) < on the elements
of X. Two elements x,y € X are adjacent if there is no element z € X, such that
rT<z<Yyory<=z-<=T

Given two elements x,y € X, such that x < y, the interval [z,y) is the set
[,y) ={z}U{zeX |z <2=<y}.

The following is well known, and goes back to a work by Walecki in the 19th
century [1]. We include a proof in Appendix A.1 for the sake of completeness. (If

we don’t care about the constant factor in the number of orderings, there are other
straightforward alternative proofs.)

LEMMA 3.1. For n elements {0,...,n — 1}, there is a set O of [n/2] orderings
of the elements, such that, for alli,j € {0,...,n — 1}, there exists an ordering o € O
in which i and j are adjacent.

DEFINITION 3.2. Consider an azis-parallel cube C C R? with side length (. Par-
titioning it uniformly into a t X t X --- X t grid G creates the t-grid of C. The grid G
is a set of t* identically sized cubes with side length (/t.

For a cube O C R?, its diameter is diam([J) = sidelength(C1)v/d.

By Lemma 3.1 we obtain the following result.

COROLLARY 3.3. For a t-grid G of an axis-parallel cube C C RY, there is a set
O(t,d) of O(t?) orderings, such that for any Oy,0s € G, there exists an order o €
O(t,d) where Oy and Oy are adjacent in o.

3.2. e-Quadtrees.

This manuscript is for review purposes only.

246

249

ON LOCALITY-SENSITIVE ORDERINGS 7

A2 A 10] 6
ff'/\gz} 71

s 11]15(14
SRR 2112 8

Figure 3.1: One ordering of a set of cells.

=~ | O] cvo

—_
Q2

DEFINITION 3.4. An e-quadtree 7. is a quadtree-like structure, built on a cube
with side length ¢, where each cell is partitioned into a (1/¢)-grid. The construction
then continues recursively into each grid cell of interest. As such, a node in this tree
has up to 1/c¢ children, and a node at level i > 0 has an associated cube of side length
(. When e = 1/2, this is a regular quadtree.

LEMMA 3.5. Let E > 0 be an integer, ¢ = 2=F, and T be a regular quadtree over
[0,2). There are e-quadtrees T2, ..., TX~1, such that the collection of cells at each
level in T is contained in exactly one of these e-quadtrees.

Proof. For i = 0,...,E — 1, construct the e-quadtree T; using the cube
[0, 2E*i+1)d 2 [0,2)* as the root. Now for j € {0,...,E — 1}, observe that the
collection of cells at levels j,j + E,j + 2E, ..., of T will also be in the quadtree 7.
Indeed, any node at level j 4+ ¢E in T corresponds to a cell of side length 2~ G+¢E)+1,

Now in the (¢ + 1)th level of quadtree 77, this same node will have side length
€Z+12E*j+1 — 27(j+ZE)+1' O

Consider an e-quadtree 7.. Every node has up to 1/¢? children. Consider any
ordering o of {1,...,1/e?}. Conceptually speaking, this induces a DFS of 7; that al-
ways visits the children of a node in the order specified by . This induces an ordering
on the points in the cube which is the root of 7. Indeed, for any two points, imagine
storing them in an e-quadtree—this implies that the two points are each stored in
their own leaf node, which contains no other point of interest. Now, independently of
what other points are stored in the quadtree, this DFS traversal would visit these two
points in the same order. This can be viewed as a space filling curve (which is not
continuous) which maps a cube to an interval. This is a generalization of the Z-order.
In particular, given a point set stored in 7., and given o, one can conceptually order
the points according to this DFS traversal, resulting in 1-dimensional ordering of the
points. We denote the resulting ordering by (7z, o).

In Section 3.3, we show that given (7,), the order of any two points in [0,2)?
can be determined efficiently, and avoids explicitly handling this DFS traversal of
Te. Alternatively, the DFS on T (according to o) is implicitly defined by the total
ordering (7,) of points in [0,2)%.

DEFINITION 3.6. Let II be the set of all orderings of [0,2)¢, induced by picking
one of the 1g(1/¢) trees of Lemma 3.5, together with an ordering o € O(1/e,d), as
defined by Lemma 3.1. Each ordering in II is an e-ordering.

This manuscript is for review purposes only.

253
254

266

269
270
271
272

273
274
275
276
277
278
279

280

295
296
297

298

8 T. M. CHAN, S. HAR-PELED, AND M. JONES

Suppose there are two points which lie in a quadtree cell that has diameter close
to their distance. Formally, consider two points p, ¢ € [0,1)¢, a parameter ¢ > 0, such
that p,q are both contained in a cell O of the regular quadtree 7 with diam(d) <
2||p — q||- Then, there is an e-quadtree 7. that has O as a node, and let 00, and O,
be the two children of [J in 7, containing p and q respectively. Furthermore, there is
an ordering o € O(1/e, d), such that O, and O, are adjacent. As such, the cube [,
(resp., O,) corresponds to an interval [z,z") (resp., [#’,2")) in the ordering (7, 0),
and these two intervals are adjacent. In particular, this implies that all points lying
between p and ¢ in ¢ have distance at most 2¢ ||p — ¢|| from p or ¢.

If the above statement were true for all pairs of points, then this would imply the
main result (Theorem 3.10). However, consider the case when there are two points
close together, but no appropriately sized quadtree cell contains both p and ¢. In
other words, two points that are close together might get separated by nodes that
are much bigger in the quadtree, and this would not provide the guarantee of the
main result. However, this issue can be resolved using shifting. We need the following
result of Chan [7, Lemma 3.3]—a proof is provided in Appendix A.2.

LEMMA 3.7. Consider any two points p,q € [0,1)%, and let T be the infinite
quadtree of [0,2)¢. For D =2[d/2] andi=0,...,D, letv; = (i/(D+1),...,i/(D+
1)). Then there exists an i € {0,..., D}, such that p+ v; and g+ v; are contained in
a cell of T with side length < 2(D + 1) |lp — q||-

3.3. Comparing two points according to an e-ordering. We now show how
to efficiently compare two points in P according to a given e-ordering o with a shift
v;. The shift can be added to the two points directly, and as such we can focus on
comparing two points according to o.

First, we show how to compare the msb of two numbers using only bitwise-
exclusive-or and bitwise-and operations. We remark that Observation 3.8 (A) is from
Chan [8].

OBSERVATION 3.8. Let @ denote the bitwise-exclusive-or operator. Define
msb(a) := — |lga| to be the index of the most significant bit in the binary expan-
sion of a € [0,2). Given a,b € [0,2), one can compare the msb of two numbers using
the following:

(A) msb(a) > msb(b) if and only if a <b and a < a ®b.
(B) msb(a) = msb(b) if and only if a®b < aAb, where A is the bitwise-and operator.

Proof. (A) Observe that if msh(a) > msh(b), then 27™P(@) < g < 27msbla)+1 <
27msb(®) < . Since msb(a) > msh(b) and a < b, we have msh(a @ b) = msh(b). As
such, we have a < 27 msb(a)+1 < g—msb(b) — 9g—msb(a®b) < ¢ gy p,

Assume that ¢ < b and a < a®b. Since a < b, it must be that msb(a) > msb(b).
Observe that if msb(a) = msb(b), then a ® b < a, which is impossible. It follows that
msb(a) > msb(b), as desired.

(B) Follows by applying (A) twice (in addition to using the inequalities a A b < a
and a A b < b), one can show that a ® b < a A b if and only if msb(a) > msb(b) and
msb(b) > msb(a). |

LeEmMA 3.9. Let p = (p1,...,p4) and ¢ = (q1,...,94) be two distinct points in
P C [0,2)% and o € T be an c-ordering over the cells of some e-quadtree T. storing
P. Then one can determine if p <, q using O(dlog(1/e)) bitwise-logical operations.

Proof. Recall € is a power of two and F = lg(1/¢). In order to compare p and ¢, for

This manuscript is for review purposes only.

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

ON LOCALITY-SENSITIVE ORDERINGS 9

t=1,...,d, compute a; = p;®q;. Find an index i’ such that msb(a;s) < msb(a;) for all
i. Such an index can be computed with O(d) msb comparisons (using Observation 3.8
(A)). Given p; and g;/, we next determine the place in which p; and g;/ first differ in
their binary representation. Note that because ¢ is a power of two, each digit in the
base 1/e expansion of p;; corresponds to a block of E bits in the binary expansion of
pir. Suppose that p;; and g;/ first differ inside the hth block at an index j € {1,... E}.

The algorithm now locates this index j. To do so, for j = 1,...,F, let b; =
2E=7 /(2P — 1) € (0,1] be the number whose binary expansion has a 1 in positions
5,J+E,j+2E,..., and 0 everywhere else. For j = 1,...,E, compute b; A a; and
check if msb(a;) = msb(b; A a;r) (using Observation 3.8 (B)). When the algorithm
finds such an index j obeying this equality, it exits the loop. We know that p;» and g,/
first differ in the jth position inside the hth block (the value of h is never explicitly
computed).

It remains to extract the E bits from the hth block in each coordinate p1, ..., pg.
For i = 1,...,d, let B; € {0,1}” be the bits inside the hth block of p;. For k =
1,...,E,set B;, = 1[msb(2/"%a;) = msb((27"*a;) A p;)| (where 1[-] is the indicator
function). By repeating a similar process for all ¢y, ..., qq, we obtain the coordinates
of the cells in which p and ¢ differ. We can then consult o to determine whether or
not p <, q.

This implies that p and ¢ can be compared using O(dlog(1/e)) operations by
Observation 3.8. a0

Remark. In the word RAM model for integer input, the extra log(1/¢) factor in
the above time bound can be eliminated: msb can be explicitly computed in O(1) time
by a complicated algorithm of Fredman and Willard [17]; this allows us to directly
jump to the right block of each coordinate and extract the relevant bits. (Furthermore,
assembly operations performing such computations are nowadays available on most
CPUs.)

3.4. The result.

THEOREM 3.10. For e € (0,1/2], there is a set IIT of Ogq(log(1/e) /%) orderings
of [0,1)%, such that for any two points p,q € [0,1)¢ there is an ordering o € IIT
defined over [0,1)%, such that for any point u with p <, u <, q it holds that either
lp—ull <ellp—qll orllg—ul <ellp —ql.

Furthermore, given such an ordering o, and two points p, q, one can compute their
ordering, according to o, using O(dlog(1/¢)) arithmetic and bitwise-logical operations.

Proof. Let IIT be the set of all orderings defined by picking an ordering from II, as
defined by Definition 3.6 using the parameter ¢, together with a shift from Lemma 3.7.

Consider any two points p, g € [0,1)%. By Lemma 3.7 there is a shift for which the
two points fall into a quadtree cell J with side length at most 2(D +1) ||p — ¢||. Next,
there is an e-quadtree 7 that contains [, and the two children that correspond to
two cells O, and O, with side length at most 2(D + 1)e ||p — ¢||, which readily implies
that the diameter of these cells is at most 2(D + 1)v/de ||p — q||. Furthermore, there
is an e-ordering in II such that all the points of [, are adjacent to all the points of
O, in this ordering. This implies the desired claim, after adjusting ¢ by a factor of
2(D + 1)V/d (and rounding to a power of 2). |

From now on, we refer to the set of orderings I in the above Theorem as locality-
sensitive orderings. We remark that by the readjustment of ¢ in the final step of the
proof, the number of locality-sensitive orderings when including the factors involving
dis O(d*?)® - (1/e%) log(1/¢).

This manuscript is for review purposes only.

366

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

10 T. M. CHAN, S. HAR-PELED, AND M. JONES

3.4.1. Discussion.

Connection to locality-sensitive hashing. Let P be a set of n points in Hamming
space {0, 1}d. Consider the decision version of the (14 ¢)-approximate nearest neigh-
bor problem. Specifically, for a pre-specified radius r and any given query point g,
we would like to efficiently decide whether or not there exists a point p € P such
that ||¢ — p||; < (14 ¢)r or conclude that all points in P are at least distance 7 from
q. The locality-sensitive hashing (LSH) technique [24] implies the existence of a data
structure supporting this type of decision query in time O(dnl/(HE) logn) time (which
is correct with high probability) and using total space O(dn1+1/(1+8) logn). Similar
results also hold in the Euclidean setting.

At a high level, LSH works as follows. Start by choosing k := k(e, r,n) indices in
[d] at random (with replacement). Let R denote the resulting multiset of coordinates.
For each point p € P, let pr be the projection p onto these coordinates of R. We can
group the points of P into buckets, where each bucket contains points with the same
projection. Given a query point ¢, we check if any of the points in the same bucket
as ¢ is at distance at most (1 4 €)r from ¢. This construction can also be repeated a
sufficient number of times in order to guarantee success with high probability.

The idea of bucketing can also be viewed as an implicit ordering on the randomly
projected point set by ordering points lexicographically according to the k coordinates.
In this sense, the query algorithm can be viewed as locating ¢ within each of the
orderings, and comparing ¢ to similar points nearby in each ordering. From this
perspective, every locality-sensitive ordering can be viewed as an LSH scheme. Indeed,
for a given query point ¢, the approximate nearest neighbor to ¢ can be found by
inspecting the elements adjacent to ¢ in each of the locality-sensitive orderings and
returning the closest point to ¢ found (see Theorem 4.7).

Of course, the main difference between the two schemes is that for every fixed &,
the number of “orderings” in an LSH scheme is polynomial in both d and n. While for
locality-sensitive orderings, the number of orderings remains exponential in d. This
trade-off is to be expected, as locality-sensitive orderings guarantee a much stronger
property than that of an LSH scheme.

Ezxtension of locality-sensitive orderings to other norms in Euclidean space. The
Ly-norm, for p > 1, of a vector x € R? is defined as ||z, = (|z1|” + -+ |zal?) 7.
The Ly-norm, or maximum norm, is defined as ||z]|oc = max(|z1],...,|2.]).

The result of Theorem 3.10 also holds for any L,-norm. The key change that is
needed is in the proof of Lemma 3.7: For any two points s,t € [0,1)?, there exists
a shift v such that s + v and ¢ + v are contained in a quadtree cell of side length at
most 2(D+1) ||s — ¢/, This extension follows easily from the proof of the Lemma (see

Appendix A.2). Theorem 3.10 then follows by adjusting € by a factor of 2(D+1)d"/? in
the last step, implying that the number of orderings will be O(d*+1/7)?(1/e%)log(1/e).
(For the Lo,-norm, € only needs to be adjusted by a factor of 2(D + 1).)

Eatension of locality-sensitive orderings for doubling metrics. An abstraction of
low-dimensional Euclidean space, is a metric space with (low) doubling dimension.
Formally, a metric space (M, d) has doubling dimension X if any ball of M of radius
r can be covered by at most 2* balls of half the radius (i.e., 7/2). It is known that
R? has doubling dimension O(d) [37]. We point out that locality-sensitive orderings
still exist in this case, but they are less constructive in nature, since one needs to be
provided with all the points of interest in advance.

For a point set P C M, the analogue of a quadtree for a metric space is a net tree
[21]. A net tree can be constructed as follows (the construction algorithm described

This manuscript is for review purposes only.

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

421

422
423
424
425
426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

ON LOCALITY-SENSITIVE ORDERINGS 11

here is somewhat imprecise): The root node corresponds to the point set P C M.
Compute a randomized partition of P of diameter 1/2 (assume P has diameter one),
and for each cluster in the partition, create an associated node and hang it on the
root. The tree is computed recursively in this manner, at each level i computing a
random partition of diameter 27%. The leaves of the tree are points of P.

As with quadtrees, it is possible during this randomized construction for two
nearby points to be placed in different clusters and be separated further down the tree.
If ¢ = d(p, q) for two points p, q € P, then the probability that p and ¢ lie in different
clusters of diameter 7 = 27% in the randomized partition is at most O((¢/r)logn)
[15]. In particular, for r =~ 1/(¢logn), the probability that p and ¢ are separated is at
most a constant. If we want this property to hold with high probability for all pairs of
points, one needs to construct O(logn) (randomly constructed) net trees of P. (This
corresponds to randomly shifting a quadtree O(logn) times in the Euclidean setting.)

Given such a net tree T, each node has I = 29V children. We can arbitrarily
and explicitly number the children of each node by a distinct label from [I]. One
can define an ordering of such a tree as we did in the Euclidean case, except that
the gap (in diameter) between a node and its children is O(e/logn) instead of e.
Repeating our scheme in the Euclidean case, this implies that one would expect to
require (¢~ logn)°™) orderings of P.

This requires having all the points of P in advance, which is a strong assumption
for a dynamic data structure (as in some of the applications below). For example,
Gottlieb and Roditty [19] show how to maintain dynamic spanners in a doubling
metric, but only assuming that after a point has been deleted from P, the distance
between the deleted point and a point currently in P can still be computed in constant
time.

4. Applications.

4.1. Bichromatic closest pair. Given an ordering ¢ € II*, and two finite sets
of points R, B in R%, let Z = Z(o, R, B) be the set of all pairs of points in R x B
that are adjacent in the ordering of R U B according to 0. Observe that inserting or
deleting a single point from these two sets changes the contents of Z by a constant
number of pairs. Furthermore, a point participates in at most two pairs.

LeEMMA 4.1. Let R and B be two sets of points in [0,1), and let € € (0,1) be a
parameter. Let o € TIT be a locality-sensitive ordering (see Theorem 3.10). Then, one
can maintain the set Z = Z(o, R, B) under insertions and deletions to R and B. In
addition, one can maintain the closest pair in Z (under the Euclidean metric). Each
update takes O(dlognlog(1l/e)) time, where n is the total size of R and B during the
update operation.

Proof. Maintain two balanced binary search trees Tr and T storing the points
in R and B, respectively, according to the order o. Insertion, deletion, predecessor
query and successor query can be implemented in O(dlog(1/e)logn) time (since any
query requires O(logn) comparisons each costing O(dlog(1/¢)) time by Lemma 3.9).
We also maintain a min-heap of the pairs in Z sorted according to the Euclidean
distance. The minimum is the desired closest pair. Notice that a single point can
participate in at most two pairs in Z.

We now explain how to handle updates. Given a newly inserted point r (say a
red point that belongs to R), we compute the (potential) pairs it participates in, by
computing its successor r’ in R, and its successor b’ in B. If r <, b’ <, r’ then the
new pair b’ should be added to Z. The pair before r in the ordering that might use

This manuscript is for review purposes only.

463
464
465
466
467
468
469
470

471

472

473
474
475
476
477
478
479
480
481
482

483

484
485

12 T. M. CHAN, S. HAR-PELED, AND M. JONES

r is computed in a similar fashion. In addition, we recompute the predecessor and
successor of r in R, and we recompute the pairs they might participate in (deleting
potentially old pairs that are no longer valid).

Deletion is handled in a similar fashion—all points included in pairs with the
deleted point recompute their pairs. In addition, the successor and predecessor (of
the same color) need to recompute their pairs. This all requires a constant number
of queries in the two trees, and thus takes the running time as stated. 0

THEOREM 4.2. Let R and B be two sets of points in [0,1)%, and let e € (0,1/2] be
a parameter. Then one can maintain a (1+¢)-approzimation to the bichromatic closest
pair in R x B under updates (i.e., insertions and deletions) in Oq(lognlog?(1/¢)/e?)
time per operation, where n is the total number of points in the two sets. The data

structure uses Og(nlog(1/¢)/e?) space, and at all times maintains a pair of points r €
R, b€ B, such that ||r — b|| < (14 ¢)d(R, B), where d(R, B) = min,cr e ||r — b

Proof. We maintain the data structure of Lemma 4.1 for all the locality-sensitive
orderings of Theorem 3.10. All the good pairs for these data structures can be main-
tained together in one global min-heap. The claim is that the minimum length pair
in this heap is the desired approximation.

To see that, consider the bichromatic closest pair » € R and b € B. By Theo-
rem 3.10 there is a locality-sensitive ordering o, such that the interval I in the ordering
between r and b contains points that are in distance at most £ = ¢ ||r — b|| from either
r or b. In particular, let P, (resp., P,) be all the points in [in distance at most ¢ from
r (resp., b). Observe that P. C R, as otherwise, there would be a bichromatic pair
in Pg, and since the diameter of this set is at most ¢, this would imply that (r,b) is
not the closest bichromatic pair—a contradiction. Similarly, P, C B. As such, there
must be two points b’ € B and v’ € R, that are consecutive in o, and this is one of
the pairs considered by the algorithm (as it is stored in the min-heap). In particular,
by the triangle inequality, we have

I =Vl < lr" =l + llr = bl + 1o = V|| < 20+ [|Ir — bl < (14 2¢) [|r — b

The theorem follows after adjusting ¢ by a factor of 2.]

Remark. In the word RAM model, for integer input in {1,...,U}?, the update
time can be improved to Og4((loglog U)log?(1/¢)/e?) expected, by using van Emde
Boas trees [36] in place of the binary search trees (and the min-heaps as well). With
standard word operations, we may not be able to explicitly map each point to an
integer in one dimension following each locality-sensitive ordering, but we can still
simulate van Emde Boas trees on the input as if the mapping has been applied. Each
recursive call in the van Emde Boas recursion focuses on a specific block of bits of each
input coordinate value (after shifting); we can extract these blocks, and perform the
needed hashing operations on the concatenation of these blocks over the d coordinates
of each point.

4.2, Dynamic spanners.

DEFINITION 4.3. For a set of n points P in R? and a parameter t > 1, a t-
spanner of P is an undirected graph G = (P, E) such that for all p,q € P,

lp—qll <da(p,q) < tllp—dql,

where da(p, q) is the length of the shortest path from p to q in G using the edge set
E.

This manuscript is for review purposes only.

486
487
488
489
490
491
492
493
494
495
496
497
498
499

ot

9
o
= o

ot

oo o o o O
S Ok WwN

e =)
DN = O O

o Ot Ut Ot Ot Ot gt v Ov Ot Ot Ot Ut
<
co

P
s w

(S8
—
ot

ON LOCALITY-SENSITIVE ORDERINGS 13

Using a small modification of the results in the previous section, we easily obtain
a dynamic (1 + €)-spanner. Note that there is nothing special about how the data
structure in Theorem 4.2 deals with the bichromatic point set. If the point set is
monochromatic, modifying the data structure in Lemma 4.1 to account for the closest
monochromatic pair of points leads to a data structure with the same bounds and
maintains the (1 + ¢)-approximate closest pair.

The construction of the spanner is very simple: Given P and ¢ € (0,1), maintain
orderings of the points specified by IIT (see Theorem 3.10). For each o € I, let
E, be the edge set consisting of edges connecting two consecutive points according
to o, with weight equal to their Euclidean distance. Thus |E,| = n — 1. Our spanner
G = (P, E) then consists of the edge set E = |, <+ Eo-

THEOREM 4.4. Let P be a set of n points in [0,1)? and ¢ € (0,1/2]. One can
compute a (1 + ¢)-spanner G of P with Oq(nlog(1/c)/e?) edges, where every ver-
tex has degree O4(log(1/¢)/e?). Furthermore, a point can be inserted or deleted in
O4(lognlog®(1/e)/e?) time, where each insertion or deletion creates or removes at
most Oq(log(1/e) /) edges in the spanner.

Proof. The construction is described above. The same analysis as in the proof of
Theorem 4.2 implies the number of edges in G and the update time.

It remains to prove that G is a spanner. By Theorem 3.10, for any pair of points
s,t € P, there is a locality-sensitive ordering o € I, such that the o-interval [s,t)
contains only points that are in distance at most ¢||s — t|| from either s or t. In
particular, there must be two points in s’,# € P that are adjacent in o, such that one
of them, say s’ (resp., ') is in distance at most ¢ ||s — ¢|| from s (resp., t). As such,
the edge s’'t’ exists in the graph being maintained.

This property is already enough to imply that this graph is a (1 + ce)-spanner for
a sufficiently large constant c—this follows by an induction on the distances between
the points (specifically, in the above, we apply the induction hypothesis on the pairs
s, and t,t'). We omit the easy but somewhat tedious argument—see [5] or |20,
Theorem 3.12] for details. The theorem follows after adjusting e by a factor of ¢. 0O

4.2.1. Static and dynamic vertex-fault-tolerant spanners.

DEFINITION 4.5. For a set of n points P in R? and a parameter t > 1, a k-
vertex-fault-tolerant t-spanner of P, denoted by (k,t)-VFTS, is a graph G =
(P, E) such that

(i) G is a t-spanner (see Definition 4.3), and

(i) For any P’ C P of size at most k, the graph G\ P’ is a t-spanner for P\ P’.

A (k,1+¢)-VFTS can be obtained by modifying the construction of the (1 + ¢)-
spanner in Section 4.2. Construct a set of locality-sensitive orderings IIT. For each
o € IIT and each p € P, connect p to its k + 1 successors and k + 1 predecessors
according to o with edge weights equal to the Euclidean distances. Thus each ordering
maintains O(nk) edges and there are O(|II*| kn) = O4(knlog(1/€)/c?) edges overall.
We now prove that this graph G is in fact a (k, 1+ ¢)-VFTS.

THEOREM 4.6. Let P be a set of n points in [0,1)¢ and € € (0,1/2]. One can
compute a k-vertez-fault-tolerant (1 + ¢)-spanner G for P in time

Oua((nlognlog(1/e) + kn)log(1/e)/?).

The number of edges is Oq(knlog(1/¢)/e?) and the mazimum degree is bounded by
Oa(klog(1/c)/e?).

This manuscript is for review purposes only.

[SA L S, BTN
N = OO

ST IS NS S

ot
=~ w

ot ot
(&3

ot Ot QOu Ot Ut
[SAEe
- O

ot
oo

[e R e e B e N A
DY TG W= OO

PSSR BN R =
W N = o B &

SRS IS SN IS BES TS B SIS TS S, SN, B, S, S)
>
=3

=
ot

576
577
578
579
580

14 T. M. CHAN, S. HAR-PELED, AND M. JONES

Furthermore, one can maintain the k-vertez-fault-tolerant (1+¢)-spanner G under
insertions and deletions of points in Og4((lognlog(1/e) + k)log(1/e)/e?) time per
operation.

Proof. The construction algorithm, number of edges, and maximum degree follows
from the discussion above. So, consider deleting a set P’ C P of size at most k from
G. Consider an ordering o € II™ with the points P’ removed. By the construction of
G, all the pairs of points of P\ P’ that are (now) adjacent in ¢ remain connected by
an edge in G\ P’. The argument of Theorem 4.4 implies that the remaining graph is
spanner. We conclude that G\ P’ is a (1 + €)-spanner for P\ P’.

As for the time taken to handle insertions and deletions, one simply maintains the
orderings of the points using balanced search trees. After an insertion of a point to one
of the orderings in O(lognlog(1/¢)) time, O(k) edges have to be added and deleted.
Therefore inserting a point takes O((lognlog(1/e) + k) [ITT|) = Oq((log nlog(1/e) +
k)log(1/e)/e?) time total. Deletions are handled similarly.

The total construction time follows by inserting each of the points into the dy-
namic data structure. |

4.3. Dynamic approximate nearest neighbors. Another application of the
same data structure in Theorem 4.2 is supporting (14¢)-approximate nearest neighbor
queries. In this scenario, the data structure must support insertions and deletions of
points and the following queries: given a point ¢, return a point ¢ € P such that
llg =t < (1 + &) minpep [lg — pl.

THEOREM 4.7. Let P be a set of n points in [0,1)%. For a given ¢ € (0,1/2],
one can build a data structure using Og(nlog(1/¢)/e?) space, that supports insertion
and deletion in time Og(lognlog?®(1/e)/e%). Furthermore, given a query point q €
[0,1)¢, the data structure returns a (1 + €)-approzvimate nearest meighbor in P in
O4(lognlog®(1/e)/e?) time.

Proof. Maintain the data structure of Lemma 4.1 for all locality-sensitive order-
ings of Theorem 3.10, with one difference: Since the input is monochromatic, for each
locality-sensitive ordering o € IIT, we store the points in a balanced binary search
tree according to 0. The space and update time bounds easily follow by the same
analysis.

Given a query point ¢ € [0,1)¢, for each of the orderings the algorithm inspects
the predecessor and successor to gq. The algorithm returns the closest point to ¢
encountered. We claim that the returned point p is the desired approximate nearest
neighbor.

Let p* € P be the nearest neighbor to ¢ and ¢ = ||g—p*||. By Theorem 3.10, there
is a locality-sensitive ordering o € I such that the o-interval I = [p*,q) contains
points that are of distance at most €/ from p* or ¢ (and this interval contains at least
one point of P, namely, p*). Note that no point of P can be at distance less than
el to q. Thus, the point p € P adjacent to g in [is of distance at most ef from p*.
Therefore, for such a point p, we have ||p — ¢ < ||p — p*|| + [[p* — ¢l < (1 +¢)¢.

The final query time follows from the time taken for these predecessor and suc-
cessor queries, as in the proof of Lemma 4.1.]

5. Conclusion. In this paper, we showed that any bounded subset of R? has a
collection of “few” orderings which captures proximity. This readily leads to simplified
and improved approximate dynamic data structures for many fundamental proximity-
based problems in computational geometry. Beyond these improvements, we believe
that the new technique could potentially be simple enough to be useful in practice,

This manuscript is for review purposes only.

590

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

ON LOCALITY-SENSITIVE ORDERINGS 15

and could be easily taught in an undergraduate level class (replacing, for example,
well-separated pair decomposition—a topic that is not as easily accessible).

We expect other applications to follow from the technique presented in this paper.

For example, recently Buchin et al. [4] presented a near linear-sized construction
for robust spanners. The idea is to build a robust spanner in one dimension, and
then obtain a robust spanner in higher dimensions by applying the one-dimensional
construction using the locality-sensitive orderings.

Acknowledgments.. The authors thank the anonymous referees for their detailed

and useful comments.

[9]
(10]

[11]

(12]

REFERENCES

B. AvspacH, The wonderful Walecki construction, Bull. Inst. Combin. Appl., 52 (2008), pp. 7—
20.

S. ARORA, Polynomial time approximation schemes for Euclidean TSP and other geometric
problems, J. Assoc. Comput. Mach., 45 (1998), pp. 753-782, https://doi.org/10.1109/sfcs.
1996.548458.

M. W. BERN, Approzimate closest-point queries in high dimensions, Inform. Process. Lett.,
45 (1993), pp. 95-99, https://doi.org/10.1016,/0020-0190(93)90222-U.

K. BucHIN, S. HaArR-PELED, AND D. OLAH, A spanner for the day after, in Proc. 35th
Int. Annu. Sympos. Comput. Geom. (SoCG), vol. 129 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2019, pp. 19:1-19:15, https://doi.org/10.4230,/LIPIcs.
S0C@G.2019.19.

P. B. CaLrLanan anD S. R. Kosaraju, Faster algorithms for some geometric graph problems
in higher dimensions, in Proc. 4th ACM-SIAM Sympos. Discrete Alg. (SODA), V. Ra-
machandran, ed., ACM/SIAM, 1993, pp. 291-300.

T. H. Cuan, M. L1, L.. NING, AND S. SorLoMoON, New doubling spanners: Better and simpler,
SIAM J. Comput., 44 (2015), pp. 37-53, https://doi.org/10.1137/130930984.

T. M. CHAN, Approximate nearest neighbor queries revisited, Discrete Comput. Geom., 20
(1998), pp. 359-373, https://doi.org/10.1007/PL00009390.

T. M. CHaN, Closest-point problems simplified on the RAM, in Proc. 13th ACM-SIAM Sym-
pos. Discrete Alg. (SODA), STAM, 2002, pp. 472-473, http://dl.acm.org/citation.cfm?id=
545381.545444.

T. M. CuaN, A minimalist’s implementation of an approzimate nearest neighbor algorithm
in fized dimensions. http://tmc.web.engr.illinois.edu/sss.ps, 2006.

T. M. Cuan, Well-separated pair decomposition in linear time?, Inform. Process. Lett., 107
(2008), pp. 138141, https://doi.org/10.1016/j.ipl.2008.02.008.

T. M. CHaAN, S. HArR-PELED, aAND M. JoNEs, On locality-sensitive orderings and their appli-
cations, in 10th Innovations in Theo. Comput. Sci. (ITCS), 2019, https://doi.org/10.4230/
LIPIcs.ITCS.2019.21.

T. M. CHAN AND D. SkrREPETOS, Dynamic data structures for approrimate Hausdorff distance
in the word RAM, Comput. Geom. Theory Appl., 60 (2017), pp. 37—44, https://doi.org/
10.1016/j.comgeo.2016.08.002.

A. Czumal anNp H. Zuao, Fault-tolerant geometric spanners, Discrete Comput. Geom., 32
(2004), pp. 207-230, https://doi.org/10.1007/s00454-004-1121-7.

D. EprpsSTEIN, Dynamic Fuclidean minimum spanning trees and extrema of binary functions,
Discrete Comput. Geom., 13 (1995), pp. 111-122, https://doi.org/10.1007/bf02574030.

J. FAKCHAROENPHOL, S. Rao, anD K. TAawwaRr, A tight bound on approzimating arbitrary
metrics by tree metrics, J. Comput. Sys. Sci., 69 (2004), pp. 485-497, https://doi.org/10.
1016/j.jcss.2004.04.011.

U. FEIGE aAND R. KRAUTHGAMER, Stereoscopic families of permutations, and their applica-
tions, in Proc. 5th Israel Symp. Theo. Comput. and Systems (ISTCS), IEEE Computer
Society, 1997, pp. 85-95, https://doi.org/10.1109/ISTCS.1997.595160.

M. L. FrReEpDMAN AND D. E. WILLARD, Surpassing the information theoretic bound with fusion
trees, J. Comput. Sys. Sci., 47 (1993), pp. 424-436, https://doi.org/10.1016,/0022-0000(93)
90040-4.

L. GortLiEB AND L. Robpirty, Improved algorithms for fully dynamic geometric spanners
and geometric routing, in Proc. 19th ACM-SIAM Sympos. Discrete Alg. (SODA), 2008,
pp. 591-600, http://dl.acm.org/citation.cfm?id=1347082.1347148.

This manuscript is for review purposes only.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

691

692
693
694

695

696

(28]

29]

30]

31]

T. M. CHAN, S. HAR-PELED, AND M. JONES

. GorTLIEB AND L. Robrirry, An optimal dynamic spanner for doubling melric spaces, in

Proc. 16th Annu. Euro. Sympos. Alg. (ESA), 2008, pp. 478-489, https://doi.org/10.1007/
978-3-540-87744-8 40.

. HAr-PELED, Geometric Approzimation Algorithms, vol. 173 of Math. Surveys & Mono-

graphs, Amer. Math. Soc., Boston, MA, USA, 2011, https://doi.org/10.1090/surv/173.

. HArR-PELED AND M. MENDEL, Fast construction of nets in low dimensional metrics, and

their applications, STAM J. Comput., 35 (2006), pp. 1148-1184, https://doi.org/10.1137/
S50097539704446281.

. S. HocaBaumMm AND W. Maass, Approzimation schemes for covering and packing problems

in image processing and VLSI, J. Assoc. Comput. Mach., 32 (1985), pp. 130-136, https:
//doi.org/10.1145/2455.214106.

. Horm, E. ROTENBERG, AND C. WULFF-NILSEN, Faster fully-dynamic minimum spanning

forest, in Proc. 23rd Annu. Euro. Sympos. Alg. (ESA), N. Bansal and 1. Finocchi, eds.,
vol. 9294 of Lect. Notes in Comp. Sci., Springer, 2015, pp. 742-753, https://doi.org/10.
1007/978-3-662-48350-3 62.

. INnDYK AND R. MoTwaNIi, Approzimate nearest neighbors: Towards removing the curse of

dimensionality, in Proc. 30th ACM Sympos. Theory Comput. (STOC), 1998, pp. 604-613,
https://doi.org/10.1145/276698.276876.

. KameL anp C. Favroutsos, On packing R-trees, in Proc. 2nd Intl. Conf. Info. Knowl.

Mang., B. K. Bhargava, T. W. Finin, and Y. Yesha, eds., ACM, 1993, pp. 490-499, https:
//doi.org/10.1145/170088.170403.

Kapoor anD X. Li, Efficient construction of spanners in d-dimensions, CoRR,
abs/1303.7217 (2013).

. Levcorouros, G. NarasiMHAN, aND M. H. M. Swmip, Efficient algorithms for con-

structing fault-tolerant geometric spanners, in Proc. 30th ACM Sympos. Theory Com-
put. (STOC), J. S. Vitter, ed., ACM, 1998, pp. 186-195, https://doi.org/10.1145/276698.
276734.

. Liao, M. A. L6prEz, aND S. T. LEUTENEGGER, High dimensional similarity search with

space filling curves, in Proc. 17th Int. Conf. on Data Eng. (ICDE), 2001, pp. 615-622,
https://doi.org/10.1109/ICDE.2001.914876.

. Lukovszki, New results of fault tolerant geometric spanners, in Proc. 6th Workshop Alg.

Data Struct. (WADS), F. K. H. A. Dehne, A. Gupta, J. Sack, and R. Tamassia, eds.,
vol. 1663 of Lect. Notes in Comp. Sci., Springer, 1999, pp. 193-204, https://doi.org/10.
1007/3-540-48447-7 20.

. Lukovszki, New results on geometric spanners and their applications, PhD thesis, Univer-

sity of Paderborn, Germany, 1999.

. M. MortoN, A computer oriented geodetic data base and a new technique in file sequenc-

ing, tech. report, IBM, Ottawa, Ontario, March 1966, https://domino.research.ibm.com/
library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39.

Peano, Sur une courbe, qui remplit toute une aire plane, Mathematische Annalen,
36 (1890), pp. 157-160, https://doi.org/10.1007/BF01199438, https://doi.org/10.1007/
BF01199438.

. Roprrry, Fully dynamic geometric spanners, Algorithmica, 62 (2012), pp. 1073-1087, https:

//doi.org,/10.1007 /s00453-011-9504-7.

. SAGAN, Space-filling curves, Universitext Series, Springer-Verlag, 1994, https://doi.org/10.

1007/978-1-4612-0871-6, https://books.google.com/books?id=gUfvAAAAMAAIJ.

. SoLOMON, From hierarchical partitions to hierarchical covers: Optimal fault-tolerant span-

ners for doubling metrics, in Proc. 46th ACM Sympos. Theory Comput. (STOC), D. B.
Shmoys, ed., ACM, 2014, pp. 363-372, https://doi.org/10.1145/2591796.2591864.

[36] P. van EmMDE Boas, Preserving order in a forest in less than logarithmic time and linear space,

Inf. Process. Lett., 6 (1977), pp. 80-82, https://doi.org/10.1016,/0020-0190(77)90031-X.

[37] J.-L. VERGER-GAUGRY, Covering o ball with smaller equal balls in R™, Discrete Comput.

[0,..

Geom., 33 (2005), pp. 143-155, https://doi.org/10.1007 /s00454-004-2916-2.

Appendix A. Proofs.

A.1. Proof of Lemma 3.1. Restatement of Lemma 3.1. For n elements
.,n — 1}, there is a set O of [n/2] orderings of the elements, such that, for all

1,7 €40,...,n— 1}, there exists an ordering o € O in which i and j are adjacent.

Proof. As mentioned earlier this is well known [1]. Assume n is even, and consider

the clique K, with its vertices vg, ..., v,_1. The edges of this clique can be covered

This manuscript is for review purposes only.

ON LOCALITY-SENSITIVE ORDERINGS 17

Figure A.1: For n even, a decomposition of K, into n/2 Hamiltonian paths.

by n/2 Hamiltonian paths that are edge disjoint. Tracing one of these path gives rise
to one ordering, and doing this for all paths results with orderings with the desired
property, since edge v;v; is adjacent in one of these paths.

To get this cover, draw K, by using the vertices of an n-regular polygon, and
draw all the edges of K, as straight segments. For every edge v;v;41 of K, there are
exactly n/2 parallel edges with this slope (which form a matching). Let M; denote
this matching. Similarly, for the vertex v;, consider the segment v;v; /2 (indices are
here modulo n), and the family of segments (i.e., edges) of K,, that are orthogonal
to this segment. This family is also a matching M/ of size n/2 — 1. Observe that
o; = M; U M/ forms a Hamiltonian path, as shown in Figure A.1. Since the slopes
of the segments in M; and M/ are unique, for i = 0,...,n/2 — 1, it follows that
00,...,0,/2—1 are an edge-disjoint cover of all the edges of K,, by n/2 Hamiltonian
paths.

If n is odd, use the above construction for n+ 1, and delete the redundant symbol
from the computed orderings. O

A.2. Proof of Lemma 3.7 (shifting). For two positive real numbers x and y,
let

xhy=x—ylz/y].

The basic idea behind shifting is that one can pick a set of values that look the “same”
in all resolutions.

LEMMA A.l. Let n > 1 be a positive odd integer, and consider the set
X = {i/n]i=0,...,n—1}. Then, for any a = 27 where £ > 0 is inte-
ger, we have that X %o = {i/n%a|i=0,...,n—1} is equal to the set aX =
{ai/n|i=0,...,n—1}.

Proof. The proof is by induction. For £ = 0 the claim clearly holds. Next, assume
the claim holds for some ¢ > 0, and consider ¢ = i 4+ 1. Setting m = (n — 1)/2 and
A = 27%/n, we have by induction (and rearrangement) that

X%27"=27X ={0,A,...,2mA}
={0,(m+ 1A, A, (m+2)A,2A,...,(m+m)A, mA}.

This manuscript is for review purposes only.

741

742
743

745
746
747
748
749

18 T. M. CHAN, S. HAR-PELED, AND M. JONES

Setting § = A/2 =271 /n we have

X%27 = (X w2 w27t

={0,(m+ 1A, A, (m+2)A,2A, ..., (m+ A, A, ..., (m+m)A,mA}y %2~
={0,2(m + 1)6,26,2(m + 2)8,46, . .., 2(m + §)J, 256, ..., 2(m +m)s,2mds} %27+
= {0, 5,26, 36,46,..., (25 —1)3, 246, ..., (2m — 1)5,2md},

since (2m +1)6 =nd =27 and 2(m +)0 %27 = (2m+ 1425 — 1)5 %271 =
(2 —1)d,for j=1,...,m. d

Restatement of Lemma 3.7. Consider any two points p,q € [0,1)%, and let T be
the infinite quadtree of [0,2)%. For D = 2[d/2] and i = 0,...,D, let v; = (i/(D +
1),...,i/(D +1)). Then there exists an i € {0,..., D}, such that p+ v; and q¢ + v;
are contained in a cell of T with side length < 2(D + 1) ||p — ¢/|.

Proof. We start with the assumption that d is even (this assumption will be
removed at the end of the proof). Let ¢ € N, such that for o = 27¢, we have

(d+1)p—dqll <a<2(d+1)|p—q|.

For 7 € [0,1], let G 4 7 denote the (infinite) grid with side length « shifted by the
point (7,...,7).

Let X = {i/(d+1)]|i=0,...,d} be the set of shifts considered. Since we are
shifting a grid with side length «, the shifting is periodical with value «. It is thus
sufficient to consider the shifts modulo a.

Let p = (p1,...,pa) and ¢ = (q1,...,qq). Assume that p; < ¢;. A shift 7 is bad,
for the first coordinate, if there is an integer 4, such that p; < 7+ i < g1. The set
of bad shifts in the interval [0, a] is

Bi={(p1,q1) +ia |ie€Z}N[0,a]

The set Bj is either an interval of length |p; — q1| < [lp —¢q| < «/(d + 1), or two
intervals (of the same total length) adjacent to 0 and «. In either case, By can
contain at most one point of aX = X % «, since the distance between any two values
of aX is at least a/(d + 1), by Lemma A.1.

Thus, the first coordinate rules out at most one candidate shift in X % «. Repeat-
ing the above argument for all d coordinates, we conclude that there is at least one
shift in aX that is good for all coordinates. Let 8 = ai/(d+ 1) € aX this be good
shift. Namely, p and g belong to the same cell of G + 5. The final step is to observe
that shifting the points by —/3, instead of the grid by distance § has the same effect
(and —8 %« € aX), and as such, the canonical cell containing both p and ¢ is in the
quadtree T as desired, and the side length of this cell is a.

Finally, if d is odd, replace d by d + 1 in the above proof. This results in a set of
d+2=2[d/2] + 1= D + 1 shifts. O

This manuscript is for review purposes only.

	Preface
	Introduction
	Locality-sensitive orderings
	Grids and orderings
	-Quadtrees
	Comparing two points according to an -ordering
	The result
	Discussion

	Applications
	Bichromatic closest pair
	Dynamic spanners
	Static and dynamic vertex-fault-tolerant spanners

	Dynamic approximate nearest neighbors

	Conclusion
	References
	Appendix A. Proofs
	Proof of [lemma:many:orderings]Lemma 3.1
	Proof of [lemma:shifting:works]Lemma 3.7 (shifting)

