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Abstract: The increasing availability of high-dimensional, fine-grained data about human behaviour, gathered from
mobile sensing studies and in the form of digital footprints, is poised to drastically alter the way personality psychol-
ogists perform research and undertake personality assessment. These new kinds and quantities of data raise impor-
tant questions about how to analyse the data and interpret the results appropriately. Machine learning models are
well suited to these kinds of data, allowing researchers to model highly complex relationships and to evaluate the
generalizability and robustness of their results using resampling methods. The correct usage of machine learning
models requires specialized methodological training that considers issues specific to this type of modelling. Here,
we first provide a brief overview of past studies using machine learning in personality psychology. Second, we illus-
trate the main challenges that researchers face when building, interpreting, and validating machine learning models.
Third, we discuss the evaluation of personality scales, derived using machine learning methods. Fourth, we highlight
some key issues that arise from the use of latent variables in the modelling process. We conclude with an outlook on
the future role of machine learning models in personality research and assessment. © 2020 The Authors. European
Journal of Personality published by John Wiley & Sons Ltd on behalf of European Association of Personality

Psychology
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Over the past decade, a number of technological develop-
ments have allowed researchers to devise a range of new
methods for collecting data in personality science. In partic-
ular, advances in consumer electronics (e.g. smartphones
and wearables) and the subsequent development of mobile
sensing methods (see Harari et al., ) have facilitated the lon-
gitudinal in vivo collection of highly detailed multidimen-
sional data on behaviours and situations (Harari et al.,
2016, 2018; Miller, 2012). In addition, behavioural residue
harvested from websites and online social media platforms
has proven to be a valuable source of data on behaviour
linked to personality traits (Gosling & Mason, 2015; Wilson
et al., 2012).

Alongside these advances in the collection and availabil-
ity of such data, progress has also been made in the analytic
methods that can be used to model these complex data. In
particular, a multitude of new algorithms are available that
use existing data to make predictions about new unseen
data, to discover patterns, or to find groups of similar cases.
This process is often referred to as machine learning (ML),
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which is just an umbrella term for a heterogeneous scientific
field consisting of specialized sub-divisions like predictive
modelling, statistical learning or supervised learning, rec-
ommender systems, and unsupervised learning. ML has
catalysed the development of an astonishing array of techno-
logical advancements across many research fields, ranging
from computer vision (Krizhevsky et al., 2017) and natural
language processing (Devlin et al., 2018) to the prediction
of acute kidney injury (Tomasev et al., 2019). Those break-
throughs have directly fuelled many practical applications
such as autonomous vehicles (e.g. Waymo), personalization
and recommender systems (e.g. Spotify and Netflix), and
live translation of languages (e.g. DeepL and Google
Translate). It is becoming increasingly clear that ML also
has the potential to transform research and assessment in
personality psychology. Many ML algorithms hold the ad-
vantage over classical approaches that they can handle vast
datasets, including thousands of predictor variables, without
succumbing to collinearity issues and violations of model
assumptions. Moreover, it is possible for ML algorithms
(when trained correctly) to recognize patterns in datasets of
which humans are unaware and cannot even perceive. In
the best-case scenario, the use of ML methods could lead
to better, more objective, and automated personality assess-
ments. However, past experiences have demonstrated that
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much can go wrong in the application of ML when used for
profiling or characterizing individuals (e.g. Grothoff &
Porup, 2016).'

Thus, to effectively and safely use ML, researchers must
first understand the basic principles of these methods. Here,
we first provide a brief overview on how ML methods are
currently used in personality psychology. Second, we discuss
the main challenges that researchers face when using ML
models in personality psychology. In particular, we empha-
size important mechanisms that need to be understood to ad-
equately build, interpret, and validate these methods and to
critically evaluate the work of others. Most of these chal-
lenges are familiar to statisticians and ML engineers, yet
are rarely addressed in articles targeted at applied
researchers.”Third, we discuss the evaluation of personality
scales, derived using ML methods, with regard to validity, re-
liability, and generalizability. Fourth, we highlight some key
issues that arise from the use of latent variables in ML. Fi-
nally, we provide an outlook on the future use of ML
methods in personality research and assessment.

MACHINE LEARNING IN PERSONALITY
PSYCHOLOGY

Machine learning has been used in the private sector (e.g. to
predict credit default) and in other disciplines (e.g. engineer-
ing) for many years, but applications in psychology are still
rare. To date, just a handful of studies have used ML methods
in the analysis of personality-relevant data, primarily focus-
ing on the prediction of personality traits from different types
of digital behavioural records (for a review, see Bleidorn &
Hopwood, 2018). Recent reviews provide summaries of
these and similar studies (Azucar et al., 2018; Settanni
et al., 2018), so here we provide only a brief overview of
the literature. Essentially, the research using ML models in
personality falls into one of three categories, which we sum-
marize as follows.

First, ML models have been used to predict individuals’
Big Five personality traits from a wide range of data sources;
these sources include digital footprints from social media
platforms (e.g. Facebook Likes and status updates, Kosinski
et al., 2013; Youyou et al., 2015), language samples (Park
et al., 2015; Schwartz et al., 2013), spending records
(Gladstone et al., 2019), music preferences (Nave et al.,
2018), and mobile sensing data (Chittaranjan et al., 2013;
De Montjoye et al., 2013; Hoppe et al., 2018; Monsted
et al., 2018; Schoedel et al., 2018; Stachl et al., 2019; W.
Wang et al., 2018). More recently, researchers have started
to apply unsupervised ML methods to identify other

"This report describes how questionable training data were used in a random
forest model to label Pakistani citizens as possible targets for drone strikes,
directed at terrorists. We discuss this topic in detail in the section on the fair-
ness of machine learning models.

%A detailed description of how ML models work is beyond the scope of this
article, so we point readers interested in learning more to the excellent intro-
ductory (James et al., 2013; Yarkoni & Westfall, 2017) and advanced re-
sources on the topic (Efron & Hastie, 2016; Hastie et al., 2009). For a
detailed treatment of construct validity in the context of ML, we point
readers to Bleidorn and Hopwood (2018).
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psychological constructs in digital data (Eichstaedt et al.,
2018; Eisenberg et al., 2019; Schoedel et al., ).

Second, ML methods have been used to address method-
ological questions. For example, some studies have com-
pared the relative effectiveness of using aggregated scale
scores versus item-level data to predict life outcomes
(Seeboth & Mbottus, 2018; Zweck et al., 2019), task perfor-
mance, and self-report data (Eisenberg et al., 2019).

The third area in which ML approaches have been ap-
plied to personality data is the personalization of products
and services through recommender systems. Personalization
refers to the usage of information about the users of a system
to adapt the functionalities or characteristics of the product or
service to achieve a certain goal (e.g. Tkalcic et al., 2016,
product recommendations on Amazon to facilitate purchase
decisions). These adaptations are based on either the similar-
ity of the user or objects to other users and objects (e.g. sug-
gesting products based on similar products or based on
purchases of users who also bought that product) or on pre-
dictive models (Aggarwal, 2016). A major motivation behind
personalization is to reduce the amount of information with
which a user is confronted by providing stimuli that are more
suitable to the user’s individual needs and interests (e.g. au-
tomatically rank movies by personal preference).

Personalization can be used to improve the usability and
attractiveness of a product, a service, or a message, resulting
in increased usage, higher satisfaction, loyalty, and accep-
tance. For example, the personalization of online advertise-
ment campaigns can lead to more revenue and
click-through rates (Boerman et al., 2017). The basic argu-
ment for the use of personality in recommender systems is
that personality traits are known to be closely associated with
individual differences in behaviour (e.g. Harari et al., 2019;
Jackson et al., 2010; Stachl et al., 2019) and preferences
(Nave et al., 2018; Randler et al., 2017; Youyou et al.,
2015). Hence, adapting systems to user personality is an
intuitive way to increase a system’s attractiveness.
Personality-based adaptions can be used to provide personal-
ized visualizations (Schneider et al., 2017), to suggest music
(Hu & Pu, 2010), and even to change the overall diversity of
a recommender system itself (Wu et al., 2013). Most impres-
sively, personality-based targeting has been shown to in-
crease the effectiveness of marketing campaigns, leading to
higher sales for personality-congruent advertisements (Matz
et al., 2017).

Such personalization-based recommender systems have
recently gained popularity as a result of the success of the ef-
forts described earlier to predict personality from digital foot-
prints (Settanni et al., 2018; Youyou et al., 2015), text (Park
et al., 2015; Schwartz et al., 2013), and mobile sensing data
(Stachl et al., 2019). It is valuable to compute users’ person-
ality scores because recommender systems often suffer from
a lack of valid constructs on which to base their recommen-
dations. Personality traits could solve this ‘cold start’ prob-
lem by using scientifically validated, relatively stable latent
dimensions of individual differences as the basis of personal-
ization systems (Hu & Pu, 2011). Comprehensive reviews of
personality-based personalization and recommender systems
can be found in Aggarwal (2016), Tkalcic et al. (2016), and
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Volkel et al. (2019). Personality psychologists are well
placed to contribute to this active area of research.

In addition to the three domains of research noted earlier,
a number of patterns can be discerned in the literature. One
pattern concerns differences in the methods used by different
disciplines; most psychological studies have used regularized
linear regression models (e.g. LASSO) in their analyses
(Eisenberg et al., 2019; Kosinski et al., 2013; Park et al.,
2015; Schoedel et al., 2018; Schwartz et al., 2013; Settanni
et al., 2018; Youyou et al., 2015), but research in computer
science has tended to use more flexible, non-linear algo-
rithms (Chittaranjan et al., 2013; De Montjoye et al., 2013;
Monsted et al., 2018; W. Wang et al., 2018).

Another striking pattern in the literature is the lack of
connection between the work being performed in computer
science and that being performed in psychology. In general,
researchers in computer science and human—computer inter-
action were quicker than those in psychology to apply ML
methods to the task of personality prediction. In fact, auto-
mated personality detection has emerged as its own separate
field (Majumder et al., 2017; Mehta et al., 2020), in which
the psychological literature is only cited with respect to the
personality inventories that are used as target variables. As
noted by Mensted et al. (2018), some work coming out of
this new field suffers from small, unrepresentative samples
and questionable modelling practices (e.g. model overfitting,
Chittaranjan et al., 2013; De Montjoye et al., 2013; W. Wang
et al., 2018), which can undermine the validity and general-
izability of their models.

To avoid a repetition of these problems in personality
psychology, we use the present article to call for improve-
ments in the training, application, reporting, and review of
ML methods. To that end, we present a series of points to
consider in setting best practices for the application of ML
methods in personality psychology. To illustrate these points,
we ground our discussion in examples taken from our own
work on personality sensing (see Harari et al., ). Specifically,
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Personality machine learning

we draw on a study that applied ML methods to predict
self-reported personality traits on the basis of mobile sensing
data collected from smartphones (Stachl et al., 2019). This
application is an example of supervised machine learning
(also called predictive modelling or statistical learning), in
which a statistical model is estimated (trained) to predict a
criterion variable (fargef) based on several predictor vari-
ables (features). We focus on supervised ML, because it is
currently the dominant method being used in psychological
applications. Thus, the terms ML and predictive modelling
will be used interchangeably throughout the remainder of
this article. Figure 1 outlines central steps when performing
a prototypical supervised machine learning study in person-
ality psychology; the flowchart serves as a visual guide to
how all topics discussed throughout the paper fit into the pro-
cess of building, evaluating, and interpreting ML models in
practice.

OPEN DATA, MATERIALS, AND CODE

Throughout the paper, we use data from the PhoneStudy mo-
bile sensing dataset (Stachl et al., 2019). The dataset includes
self-reported Big Five personality scores aggregated at the
domain (5) and facet (30) levels, 1859 variables tapping
real-world behaviour, and demographics (i.e. gender, age,
and education). The Big Five personality traits were mea-
sured with the Big Five Structure Inventory (BFSI,
Arendasy, 2009). The behavioural variables consist of a wide
range of aggregated measures, obtained from smartphone
sensing in the wild (e.g. calling behaviour and app usage).
More information about this dataset can be found in Stachl
et al. (2019). All data, materials, and code are available in
the project’s repository at https://osf.io/j9yrw/. To demon-
strate the ML tools, we use packages from the extensive
mlir universe in R (e.g. Binder, 2018; Bischl et al., 2016;
Casalicchio et al., 2019; Molnar et al., 2018).
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Figure 1.

Schematic illustration of central steps in a prototypical supervised machine learning study in personality psychology. Underlined points are discussed

in specific sections in this paper. Figure available at https://ost.i0/j9yrw/, under a CC-BY4.0 license. [Colour figure can be viewed at wileyonlinelibrary.com]
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BUILDING SUPERVISED MACHINE LEARNING
MODELS

Feature engineering

After data cleaning, one of the most important and most dif-
ficult steps in building ML models is constructing the predic-
tor variables. These features are mostly summary statistics
that capture different aspects of certain variables like central
tendency or variation (e.g. mean number incoming calls per
day and entropy in app usage) and can be used in models to
predict outcome variables (e.g. extraversion levels). Con-
structing features is necessary, either because most models
cannot work on the raw data (e.g. time stamped event data)
or because the raw data are not meaningful and lead to infe-
rior predictive performance (e.g. individual smartphone apps
are not used frequently enough by the majority of participants
and need to be categorized, Stachl et al., 2017). Some ML al-
gorithms automatically compute transformed features. For
example, the kernel functions in Support Vector Machines
perform non-linear transformations to predictor variables
(Cortes & Vapnik, 1995; James et al., 2013). Improving the
feature engineering is often more important than testing yet
another predictive algorithm (Kuhn & Johnson, 2013,
2020). Accordingly, feature engineering is a crucial part of
the iterative modelling process in ML (Kuhn & Johnson,
2020), and an increasing number of specialized R packages
are available for this task (Au, 2019; Roque & Ram, 2019).
In feature engineering, domain scientists (i.e. personality
researchers in the present case) can contribute tremendously
to the success of a predictive model. In the case of personal-
ity psychology, this step involves ‘translating’ extant knowl-
edge or assumptions from past research into predictor
variables that contain variation in relation to a previously re-
ported finding (e.g. frequency of communication app usage
in Stachl et al. 2019; which was informed by Montag et al.
2015). Deriving features from the psychological literature is
particularly valuable but does not preclude the inclusion of
additional features that have not been previously reported.
While unintuitive features (e.g. entropy of app usage, Stachl
et al., 2019) can make it harder to understand the results, they
can also boost the predictive performance of the model and,
if they turn out to be predictive, can generate new hypotheses
for consideration in future confirmatory research (cf. data
mining). However, too many additional, uninformative pre-
dictors can also lower the model’s performance for some al-
gorithms, so it is reasonable to favour features that will
contribute useful information to the model. The usefulness
of a feature can be determined by trying out different feature
sets and selecting the best one or using dimensionality reduc-
tion techniques (e.g. via principal component analysis); this
process might seem counterintuitive to researchers coming
from the classical modelling culture. So it is important to
keep in mind the slightly different philosophy of the ML
modelling culture, namely, to create a model that achieves
optimal prediction performance on new data (Breiman,
2001b). To avoid the overestimation of model performance,
decisions about the selection of important features must

© 2020 The Authors. European Journal of Personality published by

happen within the resampling process of the model. This is-
sue is further discussed in the Nested resampling section.

Overfitting and underfitting

Personality psychologists are most familiar with using classi-
cal linear models to describe or ‘explain’ some variable of in-
terest (Shmueli, 2010). In this approach, model quality is
usually evaluated by how much variance in the criterion var-
iable can be explained by the predictor variables in a dataset
(i.e. ‘in-sample’R?) and whether diagnostics of residuals sug-
gest that distributional assumptions of the model are met
(Breiman, 2001b; Fox, 1991). In contrast, the primary ques-
tion for the evaluation of supervised ML models is how well
new, unseen data points can be predicted based on a model
that has been estimated on a given dataset (Breiman,
2001b). Some scholars argue that this approach to modelling
more directly resembles a central goal of empirical science:
building models that can make predictions about yet un-
known cases (Yarkoni & Westfall, 2017). Recently, re-
searchers have also started to consider additional criteria for
evaluating ML models (e.g. simplicity of a model, Molnar
et al., 2019).

Whenever ML models are adopted by a new discipline,
the first wave of publications is often plagued by a major is-
sue (Saeb et al., 2017; Varma & Simon, 2006): overly opti-
mistic estimates of predictive performance for applied
models. As noted earlier, this issue has affected personality
science too (Mensted et al., 2018). A common challenge in
ML is models that are overfitted to the specific characteristics
of a single dataset (Cawley & Talbot, 2010). Overfitting oc-
curs when a model incorporates random variation in a given
dataset, that is not caused by the underlying, true relationship
between predictors and criterion variables. The overfitted
model only ‘memorizes’ the specific data points, rather than
to capture the true underlying signal. This issue leads to
models that are not descriptive of the data generating process
in the population, so their predictive performance suffers
when applied to new data, generated by the same process.
Overfitting is particularly problematic in small samples and
when using overly flexible models. Overly flexible models
are said to have high variance, implying that model predic-
tions could vary considerably when training the same algo-
rithm on different samples from the same population. Some
model classes like polynomials or decision trees can suffer
from high variance in prediction, if they are not adjusted to
reduce flexibility (e.g. by pruning decision trees).

Underfitting can also be problem; it occurs when an in-
flexible model is not able to account for the true complexity
(e.g. non-linear effects and interactions) in the data and there-
fore cannot represent the systematic variance. Inflexible
models (e.g. linear models with a low number of predictors)
are said to have a high bias: some model predictions are
wrong in a systematic way that is independent of the specific
sample.*Similar to overfitting, underfitting causes lower pre-
dictive performance on new data than an adequately flexible

*Note that this is not the same /header in the “Biased Models and Hidden
Feedback Loops” section.
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model could achieve. The general goal in supervised ML is
to achieve a good ‘bias-variance trade-off’, which means
finding a model in which the interplay of bias and variance
leads to the best possible predictive performance.

The basic principles behind model overfitting and
underfitting are visually presented in Figure 2. Three differ-
ent models are fitted to training data (black dots) and evalu-
ated on new test data (white dots). In terms of model
flexibility, the green function represents a simple linear re-
gression model, the orange function represents a fifth degree
polynomial, and the blue function represents a ninth degree
polynomial. For this simulated example, we also know the
true (data generating) function in the population, indicated
by the dotted line. The plot shows that the orange model ap-
proximates the true function more closely compared with the
others and its predictions have the highest predictive perfor-
mance on the test data (R, =0.94). The blue model shows
overfit by interpolating all observations from the training
data and has a lower predictive performance on the test data
(thest: 0.79). Clearly, the linear (green) model underfitted the
training data because it was not able to account for the com-
plex (non-linear) pattern. It has the lowest prediction perfor-
mance on the test data in this example (R?,,=0.50).

As noted by Yarkoni and Westfall (2017), the best guard
against overfitting is the use of larger samples. However,
large samples do not guard against underfitting because in-
flexible models will stay inflexible, no matter how much data
are used to fit them. The true function in the population is un-
known, and visual inspection of the fitted function is not pos-
sible in higher dimensions. So, in practice, we cannot detect
improper models in an intuitive way, as in the example given
earlier. The best approach to address underfitting is to test
different models and to select the one with the best predictive
performance on new, unseen data (e.g. high accuracy or low
error). One important meta strategy for building algorithms
with high predictive performance in many applied settings
is to use ensemble models, which combine several simple
models like decision trees to achieve a good bias-variance
trade-off. In random forests, a good trade-off is achieved by
reducing the high variance of deep trees, while gradient
boosting reduces the high bias of shallow trees (see Breiman,
2001a; Friedman, 2001, for a detailed discussion of these
methods).

L flexibility too low
- - flexibility optimal
flexibility too high

target
00 02 04 06 08 1.0
2

- population O,
® training set ©
O testset

0.0 0.2 0.4 0.6 0.8 1.0
feature

Figure 2. Schematic illustration of overfitting and underfitting based on
three simulated models that use the same feature but have different model
flexibility. Figure available at https://osf.io/j9yrw/, under a CC-BY4.0
license. [Colour figure can be viewed at wileyonlinelibrary.com] [Colour
figure can be viewed at wileyonlinelibrary.com]
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Personality machine learning

Nested resampling

Our overfitting example demonstrates why predictive perfor-
mance estimates based on the training data (e.g. in-sampleR?)
should not be used to estimate the predictive performance on
new observations. Instead, resampling methods like 4-fold
cross-validation (Kohavi, 1995) should be used to repeatedly
split the given dataset into a training set (on which the algo-
rithm is trained) and a test set (on which predictions from the
model built on the training set are used to compute an esti-
mate of predictive performance). Unfortunately, this simple
resampling strategy is not enough to prevent overly optimis-
tic performance estimates in more complex modelling set-
tings (Saeb et al., 2017; Varma & Simon, 2006).

To obtain realistic estimates of the predictive perfor-
mance on new data, any decisions regarding the modelling
process that are based on information from the complete
dataset (training and test data combined) must be repeated
in the resampling scheme (i.e. nested resampling, Bischl
et al., 2012; Varma & Simon, 2006). Common steps that
are mistakenly performed on the complete dataset and not
properly handled within resampling include variable selec-
tion (e.g. based on pairwise correlations between the criterion
and the predictor variables), the reduction of the dimension
of the predictor space (e.g. principal component analysis),
or the setting of hyper-parameters in ML algorithms (e.g.
the learning rate in gradient boosting, Friedman, 2001). Con-
sistent with the observations of Mensted et al. (2018), we
have also encountered multiple instances of these mistakes
in reviews and published papers. In the following example
of variable selection, we show how the lack of resampling
can lead to overly optimistic performance estimates.

To illustrate this issue, we predicted self-reported extra-
version scores by using 1821 mobile sensing derived features
in a random forest model (Table 1). In the first attempt, we
used the complete dataset to select the 10 features with the
highest correlation with the extraversion score. Using only
these, we trained and evaluated this model on the same data.
In-sample fits are often reported in publications in psychol-
ogy and can be dangerously optimistic estimates of how well
a model would generalize to new data (Yarkoni & Westfall,
2017). In our example, the flexible random forest yielded
an in-sample value of R*=0.16. In the second attempt, we
not only used resampling (10 times repeated 10-fold cross-
validation) but also embedded the variable selection proce-
dure in the resampling process (Bischl et al., 2012; Varma

Table 1. Performance overestimation in variable selection

R MSE
M SD M SD
In-sample performance 0.16 0.46
Nested resampling 0.04 0.10 0.52 0.09

Note: In-sample performance: variable selection based on Pearson correla-
tions prior to model fitting and evaluating performance based on the training
data. Nested resampling: variable selection embedded within 10 times re-
peated 10-fold cross-validation. Mean and standard deviation of R? and
MSE were computed across folds.
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& Simon, 2006). This procedure resulted in a lower, but
much more realistic estimate of the model’s predictive per-
formance (R2,=0.04; R3,=0.10).

Even when using nested resampling, overly optimistic es-
timates can be generated when the best-performing algorithm
is selected post hoc based on performance estimates. After
trying out a large enough number of different algorithms,
one might work better than others in a given dataset but does
so only due to chance. A possible solution is the implemen-
tation of an additional resampling loop for the ML algo-
rithms or a thorough inspection of the performance
variability during resampling.

Performance measures

An issue related to the correct computation of realistic perfor-
mance estimates with (nested) resampling is how to quantify
predictive performance. When comparing a set of predictions
y, for observations i= 1,..., n with their respective observed
criterion values y;, the so-called performance measure de-
fines what is meant by good predictions. In regression set-
tings like the example earlier, the default measure in ML is

1
the mean squared error, MSE = -7 | (y; — ¥,)*. In many
n

studies conducted by social scientists, the coefficient of de-
i _fi)zz, with Ty = Z?:Ji, is
Yiai— ) n

reported instead, probably due to perceived familiarity with
classical linear regression. In contrast to the MSE, which de-
pends on the unit of the criterion variable,R” is a normalized
measure with a value of one when all predictions are identi-
cal to their observed criterion values, and the natural baseline
of zero, resulting when the mean criterion value would be
used as a constant prediction. However,R* can also take on
negative values, when evaluated on test observations that
were not used to train the model. Such negative values are
not an anomaly of the measure. Negative R? indicates that
the model makes worse predictions than a simple model with
constant mean prediction, illustrating the important notion
that overfitted ML models can do far worse than a simple
guess at the mean value that ignores all predictor variables.
In our own experience, negative R” is a frequent reality when
applying flexible models to small datasets in personality sci-
ence (Pargent & Albert-von der Gonna, 2018; Schoedel
et al., 2018). Apart from publication bias, one reason why
such negative values rarely appear in publications might be
that some researchers do not use the aforementioned formula
but compute the squared Pearson correlation between the
predictions and the observed criterion values (Schwartz
et al., 2013). Unfortunately, these measures again diverge
when predictions are computed on test data. In contrast to
the general R?, which can be roughly thought of as a normal-
ized version of the MSE, the squared Pearson correlation is a
special linear rank measure. The Pearson correlation between
predictions and observed criterion values, which is reported
in a substantial number of publications (e.g. Gladstone
et al., 2019; Youyou et al., 2015), mainly captures whether
observations with higher values in the outcome also receive

termination R> =1 —
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higher predictions and vice versa. It only weakly reflects
how much the predicted scores differ from the observed cri-
terion values. An almost perfect correlation can be found
even when predictions are off in absolute terms by a large de-
gree. Note that in overfitted models with negative general R?,
the correlation between predictions and true outcome values
can also be negative. However, squaring the correlation with-
out the consideration of negative values would mistakenly
suggest satisfactory performance in situations when the true
performance is in fact lower.

The point that the correlation between predictions and ob-
served criterion values does only register ranks should not
imply that this property is not useful. In contrast, we would
argue that there might be many practical applications in per-
sonality science where only the ranks matter. One example is
recruiting, where a company might primarily be interested in
the best applicants and not in how much they differ. The
same might be true when personality assessments are used
in personalized products and marketing services (Matz
et al., 2017); in such cases, natural rank measures like the
Spearman correlation or Kendall’s 7 coefficient might be
most appropriate. Intuitively, ranking observations is a differ-
ent and often a much easier task than accurate predictions in
an absolute sense. Relying too heavily on absolute measures
like the general R?, the MSE, or more robust versions like the
mean absolute error (MAE) might lead researchers to ignore
models that are actually more suitable in practice. With an in-
creasing adoption of ML methods in personality science, jus-
tifying which performance measures should be used to
determine which models are best suited will be highly rele-
vant. This requires personality scientists to be familiar with
the practical consequences of choosing a certain performance
measure.

In (binary) classification scenarios, where the criterion
variable is a discrete factor variable, different challenges
arise. The simplest performance measure here is the mean
misclassification error, which is equal to the relative fre-
quency of incorrect predictions. Unfortunately, this standard
measure can be misleading in settings with imbalanced clas-
ses and also heavily depends on the concrete probability
threshold, which is used to transform estimated class proba-
bilities into predictions (Kuhn & Johnson, 2013). Alterna-
tively, one can monitor and compare two performance
measures (e.g. sensitivity and specificity) or use combined
measures like F1 or the area under the curve (AUC). Mea-
sures independent of probability thresholds are the brier
score or the AUC (for a comparison of different measures,
see Ferri et al., 2009).*

Researcher degrees of freedom

The careful use of ML methods, as described earlier (e.g.
nested resampling), somewhat guards against drawing false
conclusions from data (Yarkoni & Westfall, 2017). However,
we want to emphasize that more general principles of good
scientific practice still apply too; personality scientists will,

“Most performance measures are easily adapted for multiclass classification,
in which the criterion variable has more than two distinct values.
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now more than ever, need large and representative samples to
profit from the high flexibility of ML models and to obtain
more precise performance estimates. Thanks to the new
methods for gathering data (e.g. digital footprints and sens-
ing data), obtaining large, diverse samples should be viable.
In fact, personality researchers may soon be faced with the
problem of how to deal with big datasets and data streams
(Domingos & Hulten, 2000; Katal et al., 2013).

Correctly evaluated predictive models will provide more
realistic estimates of how well the models generalize to
new data. These realistic estimates could have the effect of
drastically reducing many previously reported effect sizes
to zero (Yarkoni & Westfall, 2017), as was the case in our il-
lustration in the section on overfitting and underfitting. These
lowered effect size estimates might create dangerous incen-
tives to enhance reported performance by the use of re-
searcher degrees of freedom (Sculley et al., 2018).

Even in the application of classical statistical analyses
(Wicherts et al., 2016), researchers must make many analytic
decisions; however, in the application of ML models, re-
searchers have many times more decisions to make (e.g. in
the selection of algorithm implementation, hyper-parameter
settings, and resampling strategy, Pargent & Albert-von der
Gonna, 2018). Therefore, more intensive and overarching ef-
forts in open science practices will be necessary to ensure the
integrity of findings from ML studies. These efforts should
include the pre-registration of research and a clear labelling
of exploratory versus confirmatory research (Jaeger &
Halliday, 1998). Most importantly, the complete transpar-
ency of code and data (whenever publishing the data is pos-
sible) should be a requirement for ML analyses (Sculley
et al., 2018). Finally, reporting standards for the use of ML
models in psychological science should be improved. For ex-
ample, details should be provided regarding the algorithms
used (including the R or Python package), the exact type of
resampling including fold aggregation procedure (e.g.
pooling, mean, and median), and at least two different perfor-
mance measures (a relative measure and an absolute mea-
sure). Also, as shown by Schoedel et al., , the exact way in
which pre-processing was performed (e.g. imputation, trans-
formations, variable selection, and whether it was performed
within resampling or prior to it) should be made transparent.

Classification versus regression

One debatable way for researchers to boost the reported per-
formance of ML models is by using classification instead of
regression methods. In the analysis of our data reported ear-
lier, we fitted a regression random forest, thus predicting con-
tinuous values for the outcome variable extraversion.
However, a lot of work in personality computing has focused
on predicting classes (i.e. ‘low’ vs. ‘high’) of personality
traits, rather than continuous trait scores (Chittaranjan et al.,
2013; De Montjoye et al., 2013; Majumder et al., 2017;
Monsted et al., 2018). This decision to focus on classes can
pose a problem when the rationale for creating discrete clas-
ses is not fully transparent. In binary classification, the two
classes are often generated around some fixed central ten-
dency estimate (e.g. median), obtained from the sample
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under investigation (e.g. Chittaranjan et al., 2013). In some
cases, an arbitrary dividing point is used (e.g. determine that
the midpoint of a five-point rating scale is assigned to the
‘low’ vs. the ‘high’ class), leaving open the possibility that
the decision was made to maximize reported performance.’

Classification problems are sometimes favoured over the
prediction of continuous trait scores because they seem more
intuitive and might suggest above chance performance in
cases where regression models have not been successful.
From a social science perspective, artificially constructed
classification models have impeded theoretical progress for
two main reasons: first, past research indicates that the distri-
bution of trait scores in a population tends to be roughly
Gaussian, such that most individuals will fall to the central
tendency estimate of the scale (Schmitt et al., 2007). Hence,
binary classification arbitrarily ‘forces’ a high/low distinction
upon individuals with trait scores very close to the median,
implying a greater separation between subjects than actually
exists. Every measurement (i.e. individual personality score
from a questionnaire) is error-prone, and the observed crite-
rion values of each individual (value on the latent variable)
may be close to but not exactly equal to the measured value.
Hence, splitting a (normally distributed) sample at the me-
dian or mode will naturally result in the highest number of
misclassifications due to measurement error. Therefore, the
goal of automatically predicting personality trait scores in
new data is made difficult, because the model is trained to
classify traits based on a threshold that is likely to be idiosyn-
cratic to the training dataset. A cut-off based on a large nor-
mative sample could be used instead. Second, comparing
predictive performance across studies is very difficult when
one study performed classification and the other performed
regression, because performance measures from both settings
cannot be easily compared. When classification is necessary
to achieve satisfactory performance, this should be made
transparent in the paper, and the data should be made avail-
able, so that other researchers are at least able to compute re-
gression performance metrics themselves.

INTERPRETATION OF MACHINE LEARNING
MODELS

Predictive models are often roughly separated into good for
prediction (e.g. algorithmic, non-linear models like random
forests) and good for explanation categories (e.g. classical,
stochastic models like linear regression, Breiman, 2001b).
Classical stochastic models come with a series of assump-
tions about the data generating process (e.g. linearity and
homoscedasticity). Within the specific frame of these as-
sumptions, predictions and model parameters have useful in-
terpretations, and it is (relatively) intuitive to understand the
assumed functional relationship. For example, it might be
possible to mentally grasp a regression hyperplane, which
is defined by a simple linear equation.

SWhen non-binary classification is used, the authors typically classify users
based on the magnitude of the ordinal personality trait scale (De Montjoye
et al., 2013; Monsted et al., 2018).
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However, a big downside of linear models is that real-
ity has more than once proven to be complex and is often
non-linear (Benson & Campbell, J. P., 2007; Cucina &
Vasilopoulos, 2005; Stachl et al., 2019). In prediction-focused
benchmark experiments, linear models often perform worse
than more flexible algorithms. Algorithmic models can reflect
more complex patterns in data but generally lack directly
interpretable parameters. For example, there is no simple
equation, which can be written down to describe the algorithmic
procedure by which a random forest computes its predictions.
Especially for ensemble models and deep neural networks,
there is no straightforward picture of which functional
relationship has been learned by the model. By refraining from
restrictive assumptions about the data generative process,
algorithmic models are trading in their out-of-the-box
interpretability for an increase in prediction performance.

Machine learning sometimes has a bad reputation be-
cause of the limited interpretability of such black box
models. If you asked personality scientists whether they
would prefer predictive or interpretable models, the answer
would probably be ‘all of the above’. This desire for inter-
pretability triggered the development of new methods to
extract useful information from the black boxes’ inner work-
ings. In this section, we provide short summaries of some
model-agnostic methods and provide some suggestions for
how they could be used; for readers wanting more extensive
information, we refer them to the comprehensive Interpret-
able Machine Learning book (Molnar, 2019), as a good
starting point. We also highlight that an alternative strategy
to explaining black box models, which we do not discuss fur-
ther, is to search for interpretable models with comparable
predictive performance (Rudin, 2019).

Variable importance measures

Several methods have been developed to better understand
how predictions in ML models are made (Doshi-Velez &
Kim, 2017; Guidotti et al., 2018). As explained by Yarkoni
and Westfall (2017), the importance of single predictors or
groups of predictors can be assessed by comparing the pre-
dictive performance of models trained with and without
them. These analyses are computationally demanding for
large predictor sets, so variable importance measures have
been developed to approximate them. One generic metric is
permutation importance. It was originally proposed by
Breiman (2001a) for random forest models, but the method
is in fact model agnostic (Fisher et al., 2018). The principle
behind permutation importance is relatively straightforward:
values in the variables of interest are shuffled across observa-
tions (i.e. permuted) before prediction. The greater the de-
cline in predictive performance in comparison with
predictions with the original unshuffled version of the vari-
able, the higher the importance of it. However, unlike stan-
dardized p-coefficients from linear regression models,
permutation importance estimates do not represent the
unique contribution of predictor variables under the assump-
tion that all other predictor variables remain constant. Rather,
this metric quantifies the marginal impact of a predictor in-
cluding interactions with all other predictors in the model.
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In the case of correlated predictors, this procedure can reduce
the indicated importance of inter-correlated variables in com-
parison with a model that would contain only one of those
predictors (Nicodemus et al., 2010).°Hence, depending on
the research question, it might be useful to also consider al-
ternative measures of variable importance with a conditional
interpretation (Strobl et al., 2008). Note that the calculation
of variable importance measures can be performed on inde-
pendent test data or on the complete dataset. Especially in
small samples, the latter approach can lead to unrealistic re-
sults. For a more extensive discussion of this unsolved issue,
see Molnar (2019).”

Getting back to personality psychology, we fitted another
random forest model to predict extraversion scores with a
subset of the predictor variables (communication-related var-
iables). We then calculated permutation importance measures
for these variables. In Figure 3, predictor variables are ranked
by their permutation importance (loss in mean
absolute error). For example, the variable daily mean number
of phone ringing events (daily_mean_num_call_ring) seems
particularly important in this model. These estimates can be
used in personality science to (i) compare the model with
theoretical assumptions (see Evaluation of Machine
Learning-Based Personality Scales section on the evaluation
of machine learning models), (ii) create starting points for the
extension of existing theories, and (iii) generate new hypoth-
eses for future research.

Visualizations of predictor effects

To better understand the influence of predictors on the pre-
dictions of a criterion, it can be helpful to visualize the mar-
ginal effects in a plot. Partial dependence plots (Friedman,
2001), individual conditional expectation plots (ICE;
Goldstein et al., 2015), and accumulated local effect plots
(ALEs Apley, 2016) are common methods to achieve this.
Partial dependence plots cannot handle correlated predictors
very well, which is why we use ALE plots in our example.
Figure 4 displays the importance of the daily mean number
of outgoing calls in a predictive model for the personality
trait extraversion. Unlike variable importance measures, the
plot shows how predictions of the outcome variable (extra-
version) change with regard to regions of the predictor vari-
able. For our example, the plot suggests that predicted
extraversion increases up to a mean number of about three
outgoing calls per day.®The visualization therefore provides
additional information beyond variable importance measures
and can help researchers understand how exactly the predic-
tor variables and the criterion variable are theoretically
related.

Research in personality psychology is focused on the un-
derstanding and predicting of systematic differences in

“This phenomenon is also known from classical regression and structural
equation models (McFatter, 1979).

“For the sake of completeness, we included syntax to compute permutation
importance based on both the complete and test data in the project’s reposi-
tory at https://osf.io/j9yrw/.

8Note the minuscule effect size of this single predictor variable. The first and
third quartiles of the extraversion variable are Q) = —0.52 and Q5 =0.50.
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Figure 3. Permutation variable importance. Importance measures were obtained with 10 repetitions. Measure is reduction in mean squared error. More infor-
mation on the displayed variables can be found in Stachl et al. (2019). Figure available at https://osf.io/j9yrw/, under at a CC-BY4.0 license. [Colour figure can

be viewed at wileyonlinelibrary.com]
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Figure 4. ALE plot visualizing the change in mean predicted values of ex-
traversion with regard to the daily mean number of outgoing calls. Figure
available at https://osf.io/j9yrw/, under a CC-BY4.0 license

individuals’ mental and cognitive states, traits, the related
processes that cause these differences, and their variation
across time and situations (personality dynamics Funder,
2006; Rauthmann et al., 2015). As demonstrated in Figures
3 and 4, variable importance and ALE plots can help re-
searchers quantify and visualize the impact of features in pre-
dictions of flexible, non-linear models. Researchers using
ML methods in personality psychology should report vari-
able importance and predictor effects in addition to measures
of predictive performance. They are not equivalent to param-
eters from stochastic models but enrich reports of successful
predictive models with information about how these models
work and what information the predictions are based on. This
information not only helps to make psychology a more
data-focused and prediction-focused science (Yarkoni &
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Westfall, 2017) but also extend and challenge our knowledge
about existing theoretical constructs, such as behavioural
manifestations of personality traits (Stachl et al., 2019). More
broadly, the scientific investigation of natural phenomena has
traditionally been viewed as a strictly deductive process, dic-
tated by the rigorous testing of pre-specified hypotheses. In
contrast to this view stands the inductive approach to scien-
tific reasoning: the data-driven creation of knowledge in a
bottom-up process. The high dimensionality of new types
of data and the fact that for many traceable behaviours no a
priori hypotheses exist render a purely deductive scientific
approach unsuitable in many cases or at least inefficient. A
more iterative and alternating process between inductive
and deductive scientific practices has been called for
Mahmoodi et al. (2017). Using ML algorithms together with
methods of model interpretation could help to complete the
circle between prediction and explanation in personality psy-
chology (Shmueli, 2010).

FAIRNESS OF MACHINE LEARNING MODELS

In addition to helping with theory development, increasing
the interpretability of ML methods can also help make
personality psychology more relevant in practical contexts.
As noted earlier, many flexible ML models can be
difficult to understand. However, using these models for
personality-based personnel assessment in organizations will
require a good understanding of how the applied models
make decisions and which information they use to do so.
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This step is necessary to avoid algorithmic discrimination
(Kusner & Loftus, 2020; Sweeney, 2013), to comply with le-
gal requirements (Goodman & Flaxman, 2016), and to de-
cide whether an algorithm uses only the ‘right’ information
for its predictions to arrive at decisions that are fair. When
ML models are treated as black boxes and little to no atten-
tion is paid to the construction and inner workings of the
models, unwanted information can make its way into the pre-
dictions. For example, a model that aims to classify pictures
into huskies and wolves could have high accuracy while
only looking for the presence of snow in the pictures
(Ribeiro et al., 2016). Furthermore, the information used in
ML models can become outdated over time, and the
predictiveness of once impactful variables can deteriorate.
For example, how people’s online behaviour is related to per-
sonality might be changing over time as different things be-
come trendy (Kosinski et al., 2014). Hence, the initial and
continuous validation of a model’s functionality is crucial
for its application in practical settings. Model validation
can be intricate and has often been neglected in applied ML
contexts, often with serious consequences (Dastin, 2018).
However, model validation is extremely relevant for the ap-
plication of ML in the field of personality psychology. Most
studies using ML in personality research have not focused on
the analysis of the inner workings of their models (see
Settanni et al., 2018). Thus, in the following sections, we dis-
cuss two key aspects of model validity (concept drift and
biases), and we highlight their importance through examples.

Concept drift in machine learning models

Personality science could benefit a great deal from using in-
terpretable ML methods in research as well as in practical ap-
plications like personnel selection. However, it is not certain
that the performance of a trained model will remain constant
during its lifecycle. This phenomenon is called ‘concept
drift’ and describes how the prediction error of a trained
model increases over the application period of the model,
possibly without being noticed. In the case of personality as-
sessment, an example could be the progressively decreasing
accuracy of a model predicting personality scores. This de-
creased accuracy could, in turn, lead to unfavourable conse-
quences in practice (e.g. declining effectiveness of some
recruitment process). Lu et al. (2018) describe a range of dif-
ferent types of drift, such as gradual, but also sudden, and re-
curring drifts.

What are the possible reasons for such a decline in pre-
dictive accuracy? Technology and culture are evolving at a
rapid pace such that the purpose of technical devices and
the way we interact with them are constantly changing. Con-
sequently, the information structure in the data resulting from
such measurement devices is also changing. If variables from
mobile sensing are used as features in ML models and the
personality-related information embedded in these digital re-
cords changes over time, predictions of the model might
gradually drift. For example, the type of apps that extraverted
people use might change over time. Thus, performance dete-
riorates if the model is not retrained at appropriate intervals.
Slow and gradual drifts are particularly likely to go unnoticed
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(Baena-Garcia et al., 2006). These changes can be particu-
larly impactful if the direct relationship with the criterion is
affected. For example, Matz et al. (2017) speculated that ‘lik-
ing’ the TV series Game of Thrones on a social network in
2017, when it had been established in mainstream culture,
might be differentially indicative of individual personality
traits like openness to experiences, compared with having
‘liked’ it during its first season. The start of the final season
in 2019, which was received with mixed feelings by the
fanbase, might mark another concept drift in likes.

Over the years, mobile phone usage has undergone steep
and continuous change. Originally, mobile phones were
mostly used for calls on the go, but now modern smartphones
serve as powerful mobile computers offering a vast range of
functionalities. Forms of communication have become more
diverse, and the resulting digital records and their importance
for predicting personality have changed. For example, calls
and text messages are increasingly being replaced by audio
and video messages, managed by various apps (Lu et al.,
2018). This drift can be demonstrated in the mobile sensing
data from the PhoneStudy project. In Figure 5, the frequency
of some communication-related variables are plotted by the
year of collection (study 1: 2014/15, n=137, study 2:
2015/16, n=248, study 3: 2017/18, n=279; Stachl et al.,
2019). The data suggest that from 2014 to 2018, the daily
mean number of outgoing and incoming text messages de-
creased whereas the daily mean number of communication
and social media app usage increased. Furthermore, the
Spearman correlations between extraversion and the daily
mean number of messaging app usage decreased from
ry=0.24,Clys0,=[0.08, 0.39] in study 1, to »,=0.14,Clys0,=
[0.01, 0.26] in study 2, and r,=0.14Clys5.,=[0.03, 0.26] in
study 3. This effect illustrates how the predictive perfor-
mance of models trained in 2014 using these data might de-
teriorate over time. Note that the descriptive tendency shown
in this pedagogical example could also be caused by other
factors so we discourage any substantive generalizations,
based on these findings.

The changing relevance of input variables poses a chal-
lenge for (interpretable) ML applications in personality sci-
ence. The formulation of persistent theories is often the
primary goal in personality, so future research should address
the question of how models based on rapidly changing tech-
nological indicators can become more robust against changes
in digital behaviours. Several approaches have been pro-
posed, such as implementing a control mechanism in terms
of a wrapper or an online algorithm (Baena-Garcia et al.,
2006; Gama & Castillo, 2006). These incremental
rule-based models use decision rules to directly detect a drift
in the incoming data stream (Deckert, 2013). Most methods
compare the performance of a single model on different time
windows and adapt the model when the change in error rate
passes a threshold (Lu et al., 2018), but Klinkenberg (2005)
proposed selecting the best-performing model each time the
drift control is implemented.

One possible way to overcome the problem of drift might
be to group single events into categories, such as ‘messages’,
regardless of messages’ form (text or voice) or content. We
suggest that researchers invest time and effort to finding
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persistent and stable digital behavioural dimensions when
working on theoretical models in personality psychology.
However, if the primary goal is the application of ML models
(e.g. in personality assessment), we need to be ready to take
into account the changes in human behaviour in a rapidly
evolving digitized world.

Similar to the process by which people naturally update
and improve their personality inferences about others over
time, there might come a paradigm shift, from fixed models
that only work well at a given point in time to continuously
learning models that are frequently re-evaluated and
retrained when the performance deteriorates (Gonfalonieri,
2019). Of course, this issue is not unique to ML models;
the meaning of traditional questionnaire items (e.g. ‘I like go-
ing dancing in the ballroom” vs. ‘I like going dancing at
nightclubs’ as an assumed indicator for extraversion) also
changes over time. However, we assume that in many cases,
the life expectancy of meaningful questionnaire items will be
higher than that of indicators from digital data.

Biased models and feedback loops

In some cases, concept drift can be caused by the model it-
self; so-called (hidden) feedback loops are a particular aspect
of applying ML models that are iteratively trained as new
data are being gathered (cf. online-learning). These loops oc-
cur when the application of an algorithm has an effect on the
data they are fed to learn from. They can cause simple bugs,
like a font that keeps expanding endlessly (Sculley et al.,
2014), but may also cause serious harm in situations where
social inequalities are deepened by an algorithm that uses
them as features (Kusner & Loftus, 2020). An interesting ex-
ample is the set of models that send the police to areas where
the most crimes are reported, leading to even more crimes
being reported (because there are so many police units to
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report them), resulting in yet more units sent to this area,
and so on (see Lum & Isaac, 2016).

Hidden feedback loops can pose a grave danger to the
benefits of predictive models. Therefore, algorithmic trans-
parency is essential, which is reflected in calls for a rigorous
science of interpretable ML (Doshi-Velez & Kim, 2017)
and to ensure that ML models are aligned with human values
(Irving & Askell, 2019). Fair machine learning has grown as
an important research field dedicated to dealing with the un-
wanted effects of algorithms, whether they are of an ethical,
financial, or scientific nature (see Chouldechova & Roth,
2018). Hidden feedback loops are important here because
they are concerned with differential effects of algorithms on
sub-populations or underrepresented groups (Liu et al.,
2018), which are often discriminated against. In October
2018, news outlets reported that the online-retailer Amazon
Inc. abandoned a project on using ML in their hiring process,
when serious discrimination against women was discovered
in an algorithm trained on texts from resumes of previously
successful employees at the company (Dastin, 2018). Inves-
tigators noticed that the algorithm learned that many current
and past employees had male first names and consequently
used that information for the selection of prospective em-
ployees. If such an algorithm would be applied, even more
men would be employed, which could lead to a working en-
vironment in which female employees are considered even
less effective, thereby further strengthening the bias in later
iterations of the model. In personality psychology, dangerous
feedback loops could also arise in the context of proposed
policy changes targeted at altering citizens’ personalities
based on research on the effectiveness of personality inter-
ventions (Bleidorn et al., 2019). For example, individual per-
sonality trait levels could be used for personalization efforts
in adaptive systems. People with low predicted scores in ex-
traversion could be exposed to content that would increase
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system usage (e.g. screen time), but doing so would also de-
crease social interaction (e.g. highly immersive single player
games). Consequently, this intervention could cause even
lower predicted scores in extraversion.

Moreover, even if a sensitive factor (e.g. gender or race)
is eliminated from the training data, it is not guaranteed that
a new model will produce unbiased predictions. The re-
moved information can often be inferred based on a combi-
nation of harmless features (Ingold & Soper, 2016). Often,
the only reliable option to ensure the absence of bias is to ex-
plicitly compare the predictions for meaningful groups of ob-
servations (e.g. comparing the predictions for male and
female applicants). Recently, researchers in artificial intelli-
gence have realized that psychologists and other social scien-
tists with an expertise in experimental design could play an
important role in monitoring ML models experimentally (Ir-
ving & Askell, 2019). Based on effective new methods for
interpretable ML, this could ensure that important ethical
constraints and requirements are met. Naturally, in applica-
tions like personnel selection, this experimental process
would require a detailed understanding of human psychology
and personality assessment; personality psychologists would
be well placed to contribute their knowledge about individual
differences to this process.

Personality psychologist might encounter ethically prob-
lematic applications of ML sooner than expected. Overly op-
timistic claims about the success of ML models in predicting
personality (Mensted et al., 2018) have already given rise to
an ever-growing number of IT start-ups. These start-ups sell
the promise of predicting just about any outcome of interest,
including individual personality trait levels. Past research in-
deed suggests that personality prediction might be possible to
some degree (Park et al., 2015; Schwartz et al., 2013), but for
many commercial products, it is unclear how well these sys-
tems actually work and whether they have been tested
against the problematic biases described earlier. A recent ex-
ample of a commercial psychological test that promises to
predict job-relevant characteristics (including personality
traits like emotional stability, sense of responsibility, and
goal orientation) is the PRECIRE JobFit; all predictors are
based on speech samples from an automated phone inter-
view. By publishing an official test review (Schmidt-Atzert
et al., 2019), the Testkuratorium of the German Psychologi-
cal Society might have inadvertently legitimized the use of
the test in personality assessment and recruiting. Although
the method received a comparably bad rating in the review,
this could be problematic, because the manual did not report
sufficient information on the applied ML algorithms and on
how their performance was evaluated. Based on the informa-
tion in the review, none of the dangers of bias outlined in this
section seem to be addressed by the manual (which is also
not publicly available). We hope this example will lead to a
discussion on the general evaluation process of psychometric
tests (i.e. transparency), with special considerations for
ML-based tests. If personality psychologists remain unfamil-
iar with basic ML principles, our discipline will be poorly
placed to advice industrial partners about which assessment
tools should be used in responsible recruiting practices and
about the advantages and disadvantages of the new methods.

© 2020 The Authors. European Journal of Personality published by

EVALUATION OF MACHINE LEARNING-BASED
PERSONALITY SCALES

At the moment, most applications of ML methods in person-
ality research are models trained on new types of indicators
(e.g. smartphone logging data) to predict scores from
established personality inventories (e.g. the BFSI). Bleidorn
and Hopwood (2018) review and evaluate early studies from
this line of research, which they call Machine Learning Per-
sonality Assessment. They raise the important question of
how personality scales derived from this framework should
be evaluated by the scientific community. Bleidorn and Hop-
wood (2018) recommend directly transferring Cronbach and
Meehl’s (1955) familiar construct validity framework to the
validation of ML-based personality scales. To determine
what role the construct validation framework should play, it
is important to consider the intended goal and use-case of a
newly constructed psychometric scale. If the predictions of
an ML-based personality scale are to be used as real mea-
sures of a latent variable from classical or probabilistic test
theory, with the main difference being that the indicators
come from some digital device instead of a questionnaire,
then the ML-based scale should be evaluated using criteria
similar to those used for traditional scales (i.e. construct val-
idation). However, there are also applications for which the
ML-based scale is trained directly on a concrete criterion
(e.g. job fit), instead of predicting a questionnaire score; in
such cases, classical psychometric properties should play
only a secondary role, and the potential of the ML-based
scale should not be restricted by holding the scale to the stan-
dards required of a traditional questionnaire-based scale. The
following psychometric properties play a different role for
ML-based scales.

Convergent and discriminant validity

Probably the most important criterion for assessing the qual-
ity of an ML-based personality scale is its performance in
predicting the personality questionnaire it has been trained
to predict. Adopting the traditional construct validation
framework, Bleidorn and Hopwood (2018) describe this per-
formance as convergent validity. However, it is important to
distinguish between correlations with the primary target var-
iable in a supervised ML task and correlations with external
measures of the target construct (usually a different question-
naire) that the model was not explicitly trained to predict.
High correlations with convergent external measures are
much more impressive and are differentially informative
about the usefulness of the scale. This distinction becomes
even more important considering that ML with multiple out-
puts allows researchers to optimize the performance with re-
gard to more than one target variables.”The same strategy
could also be used to modify the model’s loss function to ex-
plicitly discourage associations with constructs expected to
be distinct from the measured construct of interest (akin to

“See Tomasev et al. (2019) for a current example with several secondary tar-
gets, whose addition led to a significant increase in predictive performance
for the primary target.
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promoting discriminant validity in the classical construct va-
lidity framework). However, this option should be used with
care because low correlations with theoretically distinct con-
structs should not, by themselves, be considered a measure of
quality. For example, there could be cases in which personal-
ity science proposes constructs that are not distinct at all,
when evaluated on an empirical basis that is not biased by
the subjective process of item construction in classical tests.
To account for these unique opportunities of ML-based
scales, we propose that the terms internal convergent validity
and internal discriminant validity be used to refer to correla-
tions of model predictions with target variables included into
the loss function during training and that external convergent
validity and external discriminant validity be used to refer to
the traditional correlations with external constructs, which
were not considered during training.

Reliability and generalizability

Reliability refers to the amount of variance in the true scores
of a test in relation to its total variance. The variance of the
true score can only be determined by observing repeated test
administrations across different instances like time or (sub-
sets of) items. Measures of internal consistency like
Cronbach’sa (Cronbach, 1951) should not be used for
ML-based personality scales because (i) those measures esti-
mate the reliability of the sum score of individual indicators,
which is not how the actual predictions are computed for ML
models (e.g. random forests) and (ii) we do not expect all
variables in ML-based personality scales to be exchangeable
indicators for a single latent variable. We agree with Bleidorn
and Hopwood (2018) that estimates of retest reliability can
and should be computed for ML-based personality scales.
This procedure is quite straightforward for predictive models
with features that are based on aggregated statistics (e.g. av-
erage call frequency per day) and does not even require addi-
tional data collection; for example, for a model predicting
personality with social media language, Park et al. (2015) re-
port correlations between predictions based on text from dif-
ferent time intervals. We know from classical test theory, that
the correlation between test repetitions can be interpreted as
reliability only if the parallel measurement model holds
(Steyer, 2001). Whenever more than two test repetitions
can be computed as in Park et al. (2015), structural equation
modelling should be used to (i) test whether predictions from
different time intervals can be considered unidimensional in-
dicators of a common latent variable, (ii) compare different
measurement models, and (iii) use the appropriate reliability
measure for a model with appropriate fit.

Generalizability takes reliability one step further by fo-
cusing on the adequacy of the model in new contexts
(Bleidorn & Hopwood, 2018). As we have noted in this pa-
per, ML research, with its heavy focus on out-of-sample per-
formance, experimentally testing model predictions for
hidden bias, and continuously validating models during their
lifecycle, could be an excellent role model for psychological
science (Yarkoni & Westfall, 2017). Those principles should
be embraced for both ML-based personality scales and tradi-
tional ones.

© 2020 The Authors. European Journal of Personality published by
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Content validity and factorial validity

Bleidorn and Hopwood (2018) propose using expert ratings
to determine which predictor variables are in line with per-
sonality theory and using only those ratings to train
ML-based personality scales. We agree that effective feature
engineering is usually based on theoretic knowledge of per-
sonality constructs, but we do not think that a theoretic and
intuitive interpretation of features should be a necessity. In
fact, one of the biggest potentials of ML-based personality
scales is their capacity to reflect a more realistic structure
of human personality that is most certainly more complex
than models currently used in personality research. Hence,
we are concerned that an over-reliance on traditional notions
of content validity could be detrimental to the ultimate per-
formance of new innovative scales.

Similarly, the sole examination of the linear factor struc-
ture of ML-based personality scales (Bleidorn & Hopwood,
2018) might fall short of realizing the full potential of these
methods. We agree that this approach could be a useful appli-
cation of interpretable ML to explain model predictions;
however, an intuitively interpretable factor structure should
not be a necessary psychometric property of a personality
measure, particularly if it has been deliberately designed to
optimize internal convergent validity to detect the potentially
complex non-linear structure of digital indicators of person-
ality. Thus, when the primary goal is to construct scales with
a well-defined structure from theory-derived interpretable
indicators, psychometric models that can incorporate
non-linear interactions between person covariates (e.g.
Brandmaier et al., 2013) might be a more suitable framework
compared with classical ML models.

MACHINE LEARNINGWITH LATENT VARIABLES

In contrast to the usage of ML in many areas, applications in
psychological research face the unique challenge of latent
variables (e.g. personality traits) that cannot be measured di-
rectly. Psychometric models are commonly used to infer
these latent variables from indirect indicators like question-
naire items. All well-established personality models currently
rely on questionnaire data to measure human personality.
Consequently, when using ML in personality research and
assessment, two common scenarios arise: in ML models, per-
sonality constructs are used either as criterion variable or as
predictor variables. We will discuss important implications
of both settings.

Personality constructs as criterion variables

As noted earlier, personality constructs are often predicted
based on potentially interesting predictor sets (Settanni
et al., 2018). In this scenario, a single numeric descriptor of
individual personality scores is used as the criterion variable
in a supervised ML task. The simplest and most frequently
used measures are the arithmetic mean or sum score of the
complete set of items of the personality questionnaire, which
are theorized to measure the dimension of interest (e.g.
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Youyou et al., 2015). However, this simple approach ignores
the error inherent to psychological measurements. Since the
development of Spearman’s (1904) famous formula of cor-
rection for attenuation, scholars have been aware that simple
correlations between manifest test scores will underestimate
the true association between the presumably underlying
latent variables. With substantial amounts of measurement
error contaminating most psychological measures, this dis-
crepancy can become quite large. Thus, using the sum score
as the criterion can lead to serious underestimation of the per-
formance theoretically possible by an ML model.

One solution to this problem that takes measurement er-
ror into account is to instead use trait estimates from a psy-
chometric model (instead of sum scores) as the criterion.
Stachl et al. (2019) implemented this solution, using esti-
mates from a partial credit model (Masters, 1982), which is
the item response model that was used in the normative sam-
ple of the BFSI (Arendasy, 2009). The general strategy of
substituting a manifest criterion variable in ML by the output
of a theoretically crafted statistical model is not uncommon
and has already been used in numerous applications (e.g.
Hothorn & Jung, 2014).

One problem of this more sophisticated strategy is that
the ML model is unaware of the estimation error of the psy-
chometric model that generated the latent trait estimates. This
problem can be solved by integrating the psychometric mea-
surement model into the ML algorithm that is used to make
the predictions. Consider that simple item response models
like the Rasch model are in fact generalized linear models
(Biirkner, 2019). Hence, the models could be incorporated
in artificial neural networks (Goodfellow et al., 2016), which
include generalized linear models as a special case. Yeung
(2019) recently demonstrated the viability of this procedure,
employing the Rasch model as an output function in a deep
neural network in the context of knowledge tracing (i.e.
predicting which questions are solved by participants in mas-
sive online courses, Hernandez-Blanco et al., 2019)."°

The correction for attenuation formula, which is used in
many ML applications in personality science (e.g. Gladstone
et al., 2019; Youyou et al., 2015), implies that using manifest
sum scores as criterion variable leads to underestimation of
predictive performance. However, overestimation is also
possible when systematic method bias is contained in the
psychological measurements. There is a huge psychometric
literature suggesting that questionnaire responses contain
not just trait information but are also consistently influenced
by response styles (Jackson & Messick, 1958), which are sta-
ble trait-like individual differences in how people use the re-
sponse categories of a questionnaire (Wetzel et al., 2016). If
these response styles are correlated with the psychological
trait of interest, which has been suggested by some empirical
studies (Naemi et al., 2009; Zettler et al., 2016), flexible ML
algorithms might inadvertently model these tendencies. This
would pose a big problem because ML models would then
also predict this method bias instead of predicting just the

19Similar to Mehta et al. (2020), the knowledge tracing literature serves as an
example of a task traditionally located in educational psychology that is now
increasingly solved with state-of-the-art ML technology (Piech et al., 2015).
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latent personality trait they are supposed to predict. With in-
creasing amounts of data, overly optimistic performance esti-
mates of ML models might be even more confounded by
method bias than classical modelling approaches. Thus, the
possibility that personality scores might not be unidimen-
sional and might contain method bias should always be con-
sidered before using the correction for attenuation formula to
adjust predictive performance in ML.

Personality constructs as predictor variables

A slightly different situation arises when psychological con-
structs are used as predictor variables in ML analyses. Here,
the problem is not that the performance estimates might be
biased but that it might be possible to increase predictive per-
formance by clever feature engineering. When using person-
ality measurements from questionnaires as predictors, an
important question is which degree of aggregation should
be used in the analyses. In personality psychology, this is
sometimes referred to as the fidelity-bandwidth dilemma
(Cronbach & Gleser, 1957; Hogan & Roberts, 1996). One
theoretical approach to explaining and dealing with the phe-
nomenon is Brunswik’s (1956) lens model, which describes
the aggregation and disaggregation of indicators to predict
psychological constructs of different granularity. Many psy-
chologists would naturally use the domain sum scores based
on the item responses as predictors because this practice re-
flects their psychometric methods training. However, many
ML algorithms can handle multiple predictor variables si-
multaneously. Hence, each item could be used as a separate
predictor (for a demonstration, see Pargent & Albert-von
der Gonna, 2018). The aggregation of item scores also in-
volves some loss of information, so their individual use
could lead to better predictions; supporting this idea, some
recent studies have found small but consistent increases in
predictive performance when using items instead of sum
scores (Seeboth & Mbottus, 2018; Zweck et al., 2019).

Not computing summary statistics delegates the task of
separating true signal and noise from the practitioner to the
ML algorithm. Instead of weighting predictors based on
some theoretical measurement model (i.e. the sum score as
the simplest example), the ML model learns appropriate
weights based on the data. This procedure might yield supe-
rior results when sample sizes are large enough, but the
model-based approach might be more effective if the sample
is small. Similar to the setting with personality constructs as
criterion variable, the use of trait estimates from psychomet-
ric models as predictors might be a useful strategy. We have
already noted that systematic method bias in questionnaires,
such as response styles, can be meaningfully associated with
the criterion variable. Thus, combining psychometric model-
ling of method bias (e.g. Bockenholt & Meiser, 2017; Jin &
Wang, 2014; Tutz et al., 2018) with flexible ML algorithms,
capable of modelling non-linear effects and interactions,
might even allow us to use the peculiarities of psychological
measurements to increase predictive performance. Prelimi-
nary attempts to include separate indicators of participants’
extreme response styles have not been successful (Pargent,
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2017), but similar strategies might still have an impact in dif-
ferent settings or in larger samples.

In the context of supervised ML, strategies to transform
the original item responses into more meaningful indicators
of psychological constructs would be considered feature en-
gineering. In the last decade, deep learning (Goodfellow
et al., 2016) has emerged based on the promise of creating
models that can perform effective feature engineering auto-
matically, when fed with huge quantities of data. So psychol-
ogists may benefit from collaborations with deep learning
specialists to develop neural network architectures, specifi-
cally designed for the special properties of psychological
questionnaire items. Unfortunately, most current datasets in
psychology are much too small for deep learning models to
be effective. However, the ML community has developed
methods of unsupervised learning to find meaningful struc-
tures, based on large datasets in which the criterion variable
of interest is not included. The structure is then transferred
to models trained on the smaller datasets in which the crite-
rion is available. This is a common strategy in computer
vision or natural language processing, where networks
trained on gigantic datasets can be reused in new applications
(e.g. Devlin et al., 2018). In psychological research, Y. Wang
and Kosinski (2018) were probably the first to use such a
strategy, by training a neural network on a large dataset of fa-
cial images and employing the trained model in a second step
to predict sexual orientation in a smaller, carefully collected
lab dataset. The same method could also be applied to big
datasets of traditional questionnaire data like the Big Five
Project“or the Attitudes, Identities, and Individual Differ-
ences Study (Hussey et al., 2019).

Among other ML methods, deep auto-encoders could be a
promising method for extracting a general structure of per-
sonality factors (see Goodfellow et al., 2016, for a description
of the method and Liu & Zhu, 2016, for a rare psychological
application of auto-encoders). Auto-encoders can be thought
of as a highly non-linear variant of principal component anal-
ysis. The complex representations of personality dimensions
resulting from such models could then be applied to smaller
datasets, which include the same personality questionnaire
on which the auto-encoder has been trained, but would addi-
tionally include new criterion variables of interest.

OUTLOOK AND CONCLUSION

In this article, we have discussed a number of important
methodological challenges and highlighted some potential
pitfalls that need to be considered in the application of ML
models. Nevertheless, we are convinced that central ML con-
cepts, such as resampling, out-of-sample error evaluation
(e.g. via cross-validation), and methods of interpretable ML
(e.g. ALE plots), can contribute to the robustness and gener-
alizability of studies in personality psychology. In particular,
we see two primary ways in which ML methods will play a
decisive role in personality research and assessment in the
near future.

https://www.thebigfiveproject.com.
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First, ML methods will act as a useful addition to the re-
searcher’s toolbox of methods. Along with the advent of
large, fine-grained datasets, ML will help researchers handle
their complexity and high dimensionality. Unregularized lin-
ear models will quickly reach their limits due to factors such
as multicollinearity, but more flexible models are capable of
using complex data to make predictions. If evaluated cor-
rectly, ML methods can also show which variables provide
the most predictive value, informing the development and
validation of theories in personality psychology; methods
of interpretable ML should play a particularly important role
in this process. Using a process of continuous refinement,
large numbers of digital and behavioural indicators could
be used to predict a wide range of personality traits. The most
predictive indicators could then be used after new data are
collected to build an updated model, contributing to the cre-
ation of more cumulative knowledge in the discipline
(Eisenberg et al., 2019). The use of ML models will also
make it easier to compare new studies to research from other
disciplines (assuming the precautions noted earlier heeded,
such as correct categorization and stable information content
of predictor variables). For example, a lot of work in the
areas of human—computer interaction, computer science,
and engineering have used ML models to investigate human
behaviour in relation to the use of technology (Baeza-Yates
et al., 2015; Eiband et al., 2019). Interdisciplinary research
on personality could be vital to achieve technological break-
throughs with high societal impact.

Second, ML methods could allow insights from personal-
ity psychology to be translated to practical applications in a
more reliable way. We have seen how cross-validated models
can provide a more realistic estimate (in contrast to in-sample
fit statistics) of how well the predictiveness of models is likely
to generalize to new data; the high prevalence of
cross-validation in industrial projects, where big money is
lost if models do not actually perform and scale, might be an-
other clue to its effectiveness. Hence, generalizing models
(even with small effects) could increase the relevance of per-
sonality psychology in applied contexts. Relatedly, psycholo-
gists will be confronted with the situation that in practice,
predictions can often be made without the availability of an
explanation and beyond the context of an established theory
(Yarkoni & Westfall, 2017). In other areas such as natural lan-
guage processing, genetics, or bioinformatics, this practice
has led to the successful development of models and indi-
rectly to generating new scientific insights (Shmueli, 2010).

The usage of ML methods in psychological research is
expected to increase sharply in the near future and cutting
edge applications of ML will require collaborations with data
scientists. So it will be necessary for researchers in personal-
ity psychology to equip themselves with both the terminol-
ogy and the methodology of ML. At the same time,
personality psychologists are well placed to play a decisive
role in the prospective development of fair and understand-
able ML methodologies (Irving & Askell, 2019) that respect
that personality constructs are latent variables. Knowledge of
these methods will pave the way for a fruitful implementa-
tion of ML models in the field of psychological research
and is set to lead to a better understanding of personality.
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