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Humans have the tendency to commit to a single interpretation of what has caused some observed
evidence rather than considering all possible alternatives. This tendency can explain various forms of
biases in cognition and perception. However, committing to a single high-level interpretation seems
short-sighted and irrational, and thus it is unclear why humans are motivated to use such strategy. In a
first step toward answering this question, we systematically quantified how this strategy affects estima-
tion accuracy at the feature level in the context of 2 common hierarchical inference tasks, category-based
perception and causal cue combination. Using model simulations, we demonstrate that although estima-
tion accuracy is generally impaired when conditioned on only a single high-level interpretation, the
reduction is not uniform across the entire feature range. Compared with a full inference strategy that
considers all high-level interpretations, accuracy is only worse for feature values relatively close to the
decision boundaries but is better everywhere else. That is, for feature values for which an observer has
a reasonably high chance of being correct about the high-level interpretation of the feature, a full
commitment to that particular interpretation is advantageous. We also show that conditioning on an
preceding high-level interpretation provides an effective mechanism for partially protecting the evidence
from corruption with late noise in the inference process (e.g., during retention in and recall from working
memory). Our results suggest that a top-down inference strategy that solely relies on the most likely
high-level interpretation can be favorable with regard to late noise and more holistic performance metrics.

Keywords: hierarchical models, top-down inference, model selection, self-consistency, holistic loss

function

Cognitive tasks typically require the brain to perform some form of
statistical inference based on uncertain evidence and a learned statis-
tical (generative) model of the task (Helmholtz, 1867; Jaynes, 2003;
Lee, 2015; Lee & Mumford, 2003). Previous work has shown that the
formalism of Bayesian statistics often provides an accurate descrip-
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tion of human behavior in a broad range of tasks associated with
perception (Knill & Richards, 1996), cognitive reasoning (Griffiths,
Chater, Kemp, Perfors, & Tenenbaum, 2010), economic decision-
making (Summerfield & Tsetsos, 2012), and motor control (Wolpert,
2007). Furthermore, mental disorders such as autism and schizophre-
nia have been directly linked to specific computational deficiencies of
this inference process (Jardri & Deneve, 2013; Lieder et al., 2019).
Except for simple estimation and decision tasks (Ernst & Banks,
2002; Kording & Wolpert, 2004; Stocker & Simoncelli, 2006), the
generative models of these inference processes are hierarchical. Ob-
ject recognition is one example of a hierarchical inference task where,
at the top of the hierarchy, object categories are defined as specific
distributions over some lower-level feature representation potentially
across multiple levels of feature integration. Noisy observations at the
lowest feature level then allow to infer the corresponding object
category by inverting the hierarchical generative model (Kersten,
Mamassian, & Yuille, 2004). Various studies have shown that in such
tasks humans seem to fully integrate all information in the hierarchical
generative model from bottom to top. These studies include models of
human judgments of sameness (Van den Berg, Vogel, Josic, & Ma,
2012), of stimulus transparency (Hedges, Stocker, & Simoncelli,
2011), or causal stimulus structure (Kording et al., 2007).
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More interesting and controversial behavior has been observed
in tasks that require inference at the feature rather than the top
level. In these cases, the hierarchical generative model represents
a hypothesis of what caused the feature, and thus ultimately the
observed evidence (see Figure 1a). Full inference dictates that in
order to infer the value of the feature, an observer should consider
all possible generative hypotheses (e.g., categorical assignments)
and weigh them according to how probable they are given the
observed evidence (Figure 1b). This strategy is known as optimal
model evaluation (Draper, 1995), or Bayesian model averaging
(Hoeting, Madigan, Raftery, & Volinsky, 1999), and has been
considered a rational account for human behavior in various per-
ceptual and cognitive reasoning tasks (e.g., Anderson, 1991;
Duffy, Huttenlocher, & Crawford, 2006; Gritfiths et al., 2010;
Khnill, 2003, 2007; Koérding et al., 2007).

However, results of several studies suggest that model averaging
is not a general inference strategy. For example, it has been long
known that human subjects tend to consider only a single category
(model selection) rather than all possible categories when perform-
ing category-based induction or prediction of a feature value
(Chen, Ross, & Murphy, 2016; Hayes & Newell, 2009; Lagnado &
Shanks, 2003; Murphy & Ross, 1994, 2005; Newell, Paton, Hayes,
& Griffiths, 2010). More recent results suggest that model selec-
tion is also prevalent in low-level perceptual tasks. For example,
by making a category assignment a subject’s subsequent percep-
tual estimate of a low-level stimulus feature (e.g., motion direc-
tion; Jazayeri & Movshon, 2007; Zamboni, Ledgeway, McGraw,
& Schluppeck, 2016 or visual orientation; Fritsche & de Lange,
2019; Luu & Stocker, 2018) is biased toward the assigned category
on a per trial basis. This also matches recent results showing that
postdecision confidence reports overemphasize information support-
ing a decision (Peters et al., 2017). These choice-induced biases can
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Full inference

be thought of as a form of consistency (Brehm, 1956) or confirmation
bias (Nickerson, 1998) where the perceptual estimate aligns with and
confirms the chosen category (Bronfman et al., 2015; Talluri, Urai,
Tsetsos, Usher, & Donner, 2018). Importantly, these biases are not
dependent on subjects making an explicit, overt choice about a high-
level interpretation; similar biases are observed in tasks that did not
require an explicit categorical choice (Ding, Cueva, Tsodyks, & Qian,
2017; Wu, Lu, & Yuille, 2009; Zamboni et al., 2016), indicating that
committing to a high-level interpretation may be a quite common
inference strategy.

As first proposed (Stocker & Simoncelli, 2007), and refined and
validated more recently (Luu & Stocker, 2018), the behavioral
biases in above examples are remarkably well described by a
conditioned Bayesian observer model. The model assumes that
feature inference is a sequential process: First, an observer selects
the most probable hypothesis given the evidence, and then infers
the feature value conditioned only on the chosen hypothesis (Fig-
ure 1c). The conditioned Bayesian observer model assumes that
the observer uses less of the available information as it discards
posterior probability information by committing to only one hy-
pothesis. Thus, the general notion is that the conditioned observer
performs worse at the feature level than a rational observer that
integrates over all possible (high-level) hypotheses. However, a
detailed quantitative analysis of how the conditioned inference
strategy affects inference accuracy at the feature level has been
missing. Such analysis is crucial for understanding the advantages
and disadvantages of different inference strategies and, ultimately,
to uncover the motivation for why humans tend to commit to a
single high-level interpretation.

We set out to fill this gap by systematically assessing how
performance is affected by applying a conditioned inference strat-
egy. We quantitatively compared its performance with the perfor-

c Conditioned inference

Figure 1.

Feature inference in hierarchical generative models. (a) Graphical model that represents the generic

lass of hierarchical models we consider. Sensory measurement rm is assumed to be a noisy sample of the feature
alue 0, which itself is drawn from a high-level generative hypothesis H. Based on an observed value of m we
onsider two inference strategies: (b) Full inference. This strategy requires the observer to marginalize over all
bossible high-level hypotheses when inferring 6. (c) Conditioned inference. This strategy consists of two steps.
irst, the observer infers and commits to the most likely hypothesis H based on the sensory measurement 1.
bubsequently, the observer infers the feature value conditioned only on the committed hypothesis H. See the
pnline article for the color version of this figure.
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BENEFITS OF COMMITMENT IN HIERARCHICAL INFERENCE 3

mance of a full inference strategy for two simple but common
hierarchical inference tasks, category-based perception and causal
cue combination. Using simulations we characterized the relative
estimation accuracy over a range of different generative model
parameters. We show that although a full inference strategy is
always globally optimal given the same amount of information,
there are distinct local regimes where conditioned inference is
better. Our results provide the necessary quantitative analysis for
the discussion of different inference strategies and why humans
may apply one and not the other.

Inference in Hierarchical Generative Models

We focus on the task of inferring the value of a feature 6 based
on uncertain sensory evidence m (measurement). We assume that
6 is embedded in a probabilistic hierarchical generative model that
can be expressed with a directed graph as shown in Figure 1a. The
hierarchical component of the model “above” 6 represents a high-
level generative hypothesis H about how potential values of 6 are
generated. A simple example for such a hypothesis is the associ-
ation of 6 with a particular category. More elaborate high-level
hypotheses may include different structural assumptions (i.e., dif-
ferent graphs) that capture different contextual or causal depen-
dencies (Battaglia, Hamrick, & Tenenbaum, 2013; Kemp & Te-
nenbaum, 2008; Kording et al., 2007). However, our analysis is
agnostic to the specific form of H as it only assumes that the
feature 6 is at the bottom of the hierarchy, and that sensory
evidence m only directly depends on 6 and not the rest of the
hierarchy.

We consider two different inference strategies. The full infer-
ence strategy marginalizes over all possible high-level hypotheses
when inferring the feature (Figure 1b). With this strategy the
posterior over 6 becomes a weighted sum
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p(O|m) = 2 p(0|m, H)p(H;|m) (full inference), 1)

with weights given by the posterior probability of each hypothesis
given the evidence, p(H,|m).

In contrast, the conditioned inference strategy represents a se-
quential inference process (Luu & Stocker, 2018; Stocker & Si-
moncelli, 2007): First, a hypothesis H is selected according to the
posterior probability p(H |m) (here, the hypothesis with maximal
posterior probability), and then the posterior over 6 is computed
conditioned on the observed evidence m and the chosen hypothesis
H (Figure 1c). The chosen hypothesis imposes a conditioned prior
po] fAI(m)) that, unlike in the full inference strategy, depends on
the sensory evidence m and thus is potentially different in each
trial. Accordingly, the posterior probability for this second strategy
can be written as
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p(()lm,I:I) o p(mlﬂ)p(elf}) (conditioned inference). (2)

In the following we compare the performance of these two
strategies in estimating 0. For reasons of simplicity we limit our
batures 0.

||
| pdfelement Analysis at the Feature Level

The Trial Version obabilities Equations 1 and 2 and assuming a

ion (L,-norm), we derived optimal estimators

for the feature value O(m) under each inference strategy, and
computed their relative expected estimation error. We applied this
error analysis to two well-known examples of hierarchical infer-
ence, category-based perception and causal cue combination, and
systematically investigated the relative performance of the two
strategies for different levels of sensory uncertainty and additional
(late) processing noise.

Example 1: Category-Based Perception

With category-based perception we refer to the task of estimat-
ing the value of a low-level feature that is associated with multiple
high-level categories. The category association typically biases the
perceptual estimate at the feature level (Feldman, Griffiths, &
Morgan, 2009; Huttenlocher, Hedges, & Vevea, 2000). Category-
based perception assumes the simplest hierarchical generative
model possible where the hypothesis H is represented by a single
node C reflecting the categorical assignment of feature 6 (Figure
2a). The generative process first involves the selection of a cate-
gory C based on a categorical prior p(C); for simplicity, we
consider two possible categories C € {C,, C,} (see the Appendix
for the case of three categories). A feature value 0 is then sampled
from the categorical feature prior p(8|C). Finally, sensory evi-
dence m is sampled from the conditional probability p(m|6). We
explicitly allow the possibility that late noise may deteriorate sensory
evidence m, for example, due to retention in working memory. We
refer to the deteriorated sensory evidence as m” distributed according
to p(m”|m). The specific description of the priors and conditional
probabilities is provided in Figure 2 and its caption.

Estimate Distributions

Given the generative model, we can now express an optimal
estimate é(m) of the feature value for both inference strategies. The
full inference strategy (Figure 1b) marginalizes over all possible
categories, resulting in the posterior distribution

pO[m) < p(m| O)E pO1C)p(Cy) = p(m|6)p(6). 3

Minimizing mean squared-error (i.e., minimizing L, loss) we
find the optimal estimator according to the full inference strategy
as

b,0m) = [0 p(o1m). @)

The conditioned inference strategy (Figure 1c) first chooses the
most probable category based on the sensory evidence m according
to

Cim) = argmax p(Clm), (5)

where the posterior is defined as p(C|m) o= p(C) fep(m [0)pO]C).
Then, the posterior over 6 is computed conditioned on the chosen
category C(m), thus

(8 m, Cm))  p(m | 0)p(B | C(m)). (6)

Finally, the optimal estimator under this strategy is

6.0n, Com)) = [ 6 p(@1m, Com). )
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Figure 2. Hierarchical generative model of category-based perception, and the predicted estimate distributions
for both inference strategies. (a) Generative model. For reasons of simplicity we make the following assump-
tions: Feature value 6 belongs to one of two categories C € {C,, C,} with equal prior probabilities p(C);
Categorical feature priors p(0 | C;) are assumed to be Gaussians with identical standard deviations but different
means, V(e = =3, 0. = 3); Sensory evidence m is a noisy sample of 6 according to additive Gaussian noise
with standard deviation o,. Late additive Gaussian noise (c,,) may further deteriorate the sensory measurement
m leading to m”. (b) Estimate distributions according to either full (left) or conditioned inference (right). In each
panel, vertical cross-sections represent the estimate distribution p(é | 6). Distributions show a characteristic
bimodal pattern across the category boundary for the conditioned inference strategy. Top panels show distri-
butions without late noise (o, = 2, g,, = 0); bottom panels show distributions with late noise (o, = 2, o,, =
3). Units of the feature are arbitrary throughout the paper as our analysis is not limited to a specific feature.

For both strategies the optimal estimator represents a monotonic
mapping between the evidence and the estimate. Thus, we can obtain
the estimate distributions p(éfl 0) and p(0.10) with a change of
variable and the corresponding density transformation for the mea-
surement distribution p(m | 0), replacing m with the estimate 6 () and
6.(m) according to Equations 4 and 7, respectively. This is computed
numerically. Figure 2b shows the resulting distributions for both
strategies given the specific parameter settings of our generative
model. Note that the estimate distributions fundamentally differ; the
conditioned inference strategy exhibits a characteristic bimodal dis-
tribution for 6 values close to the category boundary, which matches
a range of experimental results (Jazayeri & Movshon, 2007; Luu &
Stocker, 2018; Zamboni et al., 2016).
possibility that late noise may further deterio-
e m (e.g., due to retention in working memory;
s, 2018), we update the formulations of the
ccordingly. We compute the optimal estimate
istribution for the full inference strategy as
quations 3 and 4) but replace p(m | 0) with
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pon*10)= [ pon* [myp(m] 0) (®)

where m” represents the corrupted sensory evidence. Note, we
assume that late noise affects feature estimation but not the selec-
tion of the category C which remains as above (Equation 5). The
optimal feature estimator, however, changes to

b.m*.C)= [ 6 p@Im*.0), )

where p(0 | m*, é)OCp(m* 1 6)p(6 | é‘) By a change of variable in
p(m* 10, C) substituting m* with the estimate §(m*, C), we find
p(016, C). The estimate distributions are obtained as

p®16) =2 p(®16, O)p(C10),
C

(10)

where p(é |0) = fm p(é | m)p(m | 8). Figure 2b shows the estimate
distributions given the feature value for full and conditioned in-
ference for no and moderate levels of late noise (additive Gaussian,
a,,)-
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Relative Accuracy of Full Versus Conditioned Inference

Having defined the optimal estimate distributions for both the full
and the conditioned inference strategy, we next performed a system-
atic quantitative comparison between the estimation accuracy for
various model parameters. We defined relative accuracy as the ratio
between the expected estimation errors for both inference strategies.
Because the optimal estimators were derived with regard to a qua-
dratic loss function (L,-norm), we accordingly defined the expected
estimation error as the mean squared-error (MSE). We computed
relative accuracy both locally (i.e., for both strategies we computed
the MSE for each 6 separately as MSE(6) = f() p(616)(6 — 0)* and
then took the ratio), as well as globally (i.e., we marginalized the local
error over the total distribution of feature values MSE = f@ MSE
(6)p(6) and then took the ratio).

First, we assumed overlapping categorical feature priors p(0 | C, ,)
(Figure 3a). Local relative accuracy with and without late noise is
shown in Figure 3b. Both curves show a similar, characteristic shape.
For 6 values close to the category decision boundary, the full infer-
ence strategy provides better estimates. However, for 6 values that are
farther away from the category decision boundary, the conditioned
inference strategy consistently outperforms the full inference strategy.
The advantage of the conditioned inference strategy is amplified if we
further assume that late noise corrupts the inference process. The
distance from the category boundary at which the conditioned infer-
ence strategy starts to provide superior estimates corresponds to a
certain probability level of making the correct categorical assignment
c (Figure 3c). It demonstrates that for feature values for which the
observer has a reasonably high chance of correctly inferring the
category (e.g., in this case a probability correct of p = .81 if there is
no late noise) the conditioned inference strategy outperforms the full
inference strategy. As expected, global relative accuracy for the con-
ditioned inference strategy is always inferior to the full inference
strategy if there is no late noise (Figure 3d). This is because the
benefits of the full inference strategy for 6 values around the decision
boundary make up for the deficits at 6 values outside of that range.
The situation changes, however, if substantial late noise (o,,,) impacts
the inference process. In this case the conditioned strategy can also
globally outperform the full inference strategy (Figure 3d).

We also compared estimation accuracy for nonoverlapping prior
distributions (Figure 3e—h) that correspond to the estimation tasks
used in some previous studies (Jazayeri & Movshon, 2007; Luu &
Stocker, 2018; Zamboni et al., 2016), as well as priors that lead to
multiple categorical decision boundaries (Figure 3i—k) such as when
the two category distributions share the same mean but differ in their
spread (Berg et al., 2012; Qamar et al., 2013). The general pattern
throughout all these examples is that the advantage of the full infer-
ence strategy in estimation accuracy is limited to feature values close
to the optimal decision boundaries; that is for feature values for which
the decision-maker has the highest probability of making a categorical
assignment error. Outside of these ranges the conditioned inference
strategy performs better. This is further confirmed by cases where the
optimal decision boundaries move, for example, due to changes in the
bility p(C) (see Appendix Figure A2).
our accuracy analysis in the main paper for the
squared-error (i.e., the L, norm), we explored
ed symmetric error metrics as well. We found
ts of our analysis qualitatively generalize (see
3).

Example 2: Causal Cue Combination

Our second example is often referred to as causal cue combi-
nation (Kording et al., 2007). When tasked to estimate the un-
known value of a feature, human observers correctly combine
different sensory cues if the cues are in sufficient agreement with
the interpretation that they originate from the same feature value
(Alais & Burr, 2004; Butler, Smith, Campos, & Biilthoff, 2010;
Ernst & Banks, 2002; Fetsch, Turner, DeAngelis, & Angelaki,
2009; Jacobs, 1999). However, human observers do not integrate
cues that are inconsistent with such interpretation (cue conflict)
and thus signal different underlying feature values (Roach, Heron,
& McGraw, 2006; Wallace et al., 2004).

This integration versus segregation distinction can be modeled
within the generative hierarchical framework discussed here (Figure
la). However, different from the category-based perception example,
the hypotheses now represent two different causal structures (Figure
4a): Either the cues m, , represent evidence of a single feature 6 and
thus should be combined (common cause hypothesis), or they repre-
sent two different features 0, ,, in which case they should be treated
independently (independent causes hypothesis). The full inference
strategy for estimating the feature values considers both structural
hypotheses S € {S,, S,} according to their posterior probabilities
when inferring the posterior density over the features p(6,, 6, |m,,
m,). In contrast, the conditioned inference strategy first commits to an
interpretation S of the most probable structural hypothesis based
on the observed sensory evidence, and then computes the pos-
terior density over the feature values conditioned only on the
chosen structure, thus p(8,, 0, | m,, m,, S).

Feature Estimation

According to the hierarchical generative model shown in Figure
4a we can define the optimal estimator under each inference
strategy. For § = S, (common cause), the corresponding posterior
distribution at the feature level is

P01, =01my,my, Sy) = p(m;, my | 0)p(015)). (11)

For § = S, (independent causes), the posterior distribution
changes to

(0,0, my, my, S5) o p(my 10,)p(m, 1 0,)p(01,0,15,).  (12)

With a full inference strategy, we compute the total posterior as
the average posterior under both hypotheses (Equations 11 and 12)
weighted by the posterior probability of each hypothesis, thus

POy, 031my, my) = Ep(el, 0, 1my, my, SHp(S;1my, my).
(13)
The posterior p(S|m,, m,) for the two hypothesis is
p(S = Sy Imy.my) = [ plmy.my | 0)p(61S)p(S) — (14)
and

pS = Sylmyum [\ [ pm 10p(ms 0,101, 05 S (S5,

15)
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respectively. As in our first example, we define the optimal esti- With the conditioned inference strategy we first infer the most
mate of the feature vector [0,, 6,] with regard to the L,-norm probable causal structure,

Whlch' corresponds to the gxpectatlon over the total posterior .§'=argmax p(SImy, my), a7
Equation 13 (mean of posterior), thus S

with p(S|m,, m,) as defined by (Equations 14 and 15). The

(01, 0,) = E[0y, 05, m,]. (16)  optimal estimate of the feature vector is again the expectation over
a b d_ MSE ratio favors  _
A ZZ No late noise Condltloned FU”
= I =" —_— ;
C C Late noise | A |
D L y 2 LE 1.9 40.4 0.7 1 1.3 1.6 192225
I 16
= . g
2 & | S| 13
2 i 8 3
Z -10 5 0 5 10 o
= = !
3 c 2o ¢ 20
25 FONRE i@ ©
=2 S os N|go7
£ = ==
= 9 = 06
T s Q o 1
o 2 O 04 s
L Qe 3
S .z = o Yo ooal 0
£z 10 5 0 5 10 -10 5 0 5 10 0 1
gz 6 ¢
3 2 e f o5, h
< 01 ' 02 2.2
—
191
3 O 4-
52 >
&z = 3-
S o
S 3 10 5 0 5 10
9
=i )
23 = b 0 o
£ 2 o 08
Q —
B s = 06 . |
< 5 Q
o= O 04
EJ Zj <9/ 0.2
20 0 0
S o & 10 5 0 5 10 0 1 2 3 4
23 0
Tm
Q£ . .
£z i J I
32 O
- — | |
= | |
& E I | 4
I I
)
=H C2 .
5 0 5 10 15
& 20
1
| 0
. pdfelement 5 0 5 10 15 0 1

The Trial Version
Figure 3 (opposite)




d publishers.

ation or one of its alli

ocument is copyrighted by the American Psycho

cle is

a pdfelement

The Trial Version

>
)
)

=
(]

=
(7]

BENEFITS OF COMMITMENT IN HIERARCHICAL INFERENCE 7

the posterior distributions; however, now conditioned on S as well,
thus

(01, 6,) = E[6,, 8, my, my, S1, (18)

where the posterior is given as in Equations 11 and 12, according
to S.

For both strategies, the estimate distributions, p(f;, 8, | 6;, 6,),
are obtained by marginalizing over the measurement distributions
p(my, my | 05, 0,). Figure 4b shows the estimate distributions for 6,
for both strategies with setting 6, = 0, equal structural priors
p(S =S, ,) = 0.5, and Gaussian distributed feature values 0, , and
measurement distributions (see figure/caption for details). Distri-
butions with and without late noise are shown where late noise was
again assumed to be additive, independent Gaussian noise.

Unlike in the category-based perception example, the resulting
estimate distributions for both inference strategies are very similar
given the chosen model parameters. Plotting the difference in distri-
bution density (Figure 4c), however, shows that the estimates are
more veridical for the full inference strategy for values of 6, close to
0,, whereas the conditioned strategy leads to more veridical estimates
for conditions where there is a substantial cue conflict, that is, 6, # 6,.

Comparing Estimation Accuracy of Full Versus
Conditioned Inference Strategy

Similar to the previous example, we analyzed the relative estima-
tion accuracy of the two inference strategies by computing both the
local MSE (as a function of 6, ,) as well as the global MSE (integral
over all 0, ,). Results are shown in Figure 5. For feature value pairs
(0,, 6,) that may support both the common and the independent
source hypotheses, full inference outperforms conditioned inference
(Figure 5c). For feature values, however, that clearly favor one struc-
tural interpretation over the other, the conditioned inference strategy is
beneficial. The relative accuracy comparison is shown in Figure 5d. It
is similar to the category based perception example. In situations
where there is a reasonably high probability that the observer is
correct in the high-level interpretation, conditioned inference proves
to be the better strategy. This advantage is further amplified if late
noise affects feature inference (Figure Se).

Performance as a Function of Sensory Measurement

So far, we have looked at the performance ratio as a function of
the feature value 0. Alternatively, however, we can analyze per-
formance from the observer’s perspective as a function of the

sensory signal m”*. Assuming that m" is the only trial-specific
information available to the observer at the time of estimation, we
computed the relative estimation accuracy of the two inference
strategies as a function of m™ rather than the feature value 6.
Because every m”* corresponds to an estimate O(m*) for each
strategy according to Equations 4 and 9, respectively, we can
calculate the MSE ratio between the two estimates averaged across
all potential 6 values that could have generated m" according to
p(6]m”). We show this analysis for the category-based perception
example with overlapping categories (see Figure 3a) but the results
are general.

Without memory noise the MSE ratio is consistently in favor of
the full inference strategy for all values of m™ (Figure 6a). This is
expected and reflects the fact that the full inference strategy is
optimal. However, if memory noise starts to corrupt the sensory
measurement conditioned inference performs increasingly better
up to the point where it globally outperforms full inference. The
trade-off in accuracy between the two strategies is limited to
values of m” close to the decision boundaries. This becomes even
clearer when we separately analyze relative accuracy based on
whether é(m) was correct or not: conditioned inference is always
better than full inference for trials with correct é(m) (Figure 6b)
and is always worse for trials with incorrect é(m) regardless of the
specific noise conditions (Figure 6¢), with the biggest differences
occurring for m™ values close to the decision boundary.

Trial by Trial Strategy Selection

In principle, an observer could decide on each trial whether to
use conditioned or full inference, therefore potentially combining
the best of both worlds. Without memory noise, however, there is
no benefit in strategy switching because full inference is always
optimal in terms of MSE. Even with memory noise, our results rule
out any active decision strategy to improve overall accuracy that
only has access to the measurement m™; there is no clear corre-
spondence between being correct in the high-level interpretation
(Figure 6d) based on m™ and a potential performance advantage of
one over the other strategy (Figure 6a).

Yet, because the estimation accuracy becomes quickly indistin-
guishable for measurements farther away from the decision bound-
ary, an active strategy could abandon full inference and switch to
the computationally simpler conditioned inference strategy for m”
for which there is only a small chance of an incorrect high-level
interpretation; essentially not bothering to consider a high-level
interpretation that only has a small probability to be correct be-

Figure 3 (opposite). Relative estimation accuracy for conditioned and full inference in category-based perception. (a) Overlapping categorical feature
priors (Gaussians: p- = =3, 0. = 3). The categorical prior p(C) is symmetric. The dashed line indicates the optimal decision boundary for making a
category assignment. (b) Relative accuracy (MSE(0) ratio) for the two strategies as a function of 6 assuming Gaussian sensory noise (o, = 2) and late noise
either absent (light color) or present (Gaussian: ¢,, = 3, dark color). While worse for values close to the decision boundary, the conditioned inference

online article for the color version of this figure.

provide perior estimates for feature values further away. (c) The probability for making a correct categorical assignment C of the model observer.
d (c) indicate probability correct for feature values beyond which conditioned inference provides more accurate estimates. These
prrespond to a fixed value but depend on the parameter of the generative model such as the categorical feature prior (see also the
d) Global MSE ratio as a function of o, and o,,. Blue shades represent conditions for which conditioned inference outperforms full
ndicate the opposite. The two dots correspond to the two conditions shown in (b). (e—h) Same analysis for nonoverlapping box prior
Gaussian prior distributions with identical mean (o = 0) but different standard deviations (o, = 1.5, 0, = 6). MSE = mean
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For reasons of simplicity we assume the structure prior p(S) to be equal, and the prior over feature values to be
normally distributed: MO, o, = 4) for S, and NV qg ], 2 = [106 106 ]) for S,. Furthermore, we also assume the
observed sensory measurements to be independent samples drawn from Gaussian distributions A(6,,, o). (b)
Estimate distributions for the full and the conditioned inference strategy, either without (top row) or with late noise
(bottom row; Gaussian M(m, o,,)). Each vertical cross-section represents the estimate density p(6; | 6,, 6, = 0) with
o, = 2 and late noise o, either 0 or 3. (c) Difference of the estimate distributions in (b). For 6, values substantially
different from 6, = 0, conditioned inference produces more veridical estimates than full inference.
- gain in accuracy is negligible. Theoretically, strategy to achieve better estimation accuracy. The important as-
N pdfelemeht ssibility that a metacognitive process that has sumption, however, is that the additional information can only be
information about the correctness of the high- used to compute a confidence signal but not to infer the feature
The Trial Version (Fleming & Daw, 2017; Mamassian, 2016), values. The potential impact of metacognition in strategy selection

le the selection of the appropriate inference remains a topic for future investigations.



BENEFITS OF COMMITMENT IN HIERARCHICAL INFERENCE 9

a ~ b 92 d 92
p(S correct) 0 5 0o 5 -0 w s o s 10
; 1 _ 25
2 No late noise
0.8 ) — i
08— . » . Late noise
B S
D o6 & 18
0.6 % °
©
04 o 04 Mk
. <CQ w| c
= 2] RS]
0.2 & 02 = ko)
c
@]
O
0 0 0.4
2 -10 0 5 10 10 -5 0 5 10
2 01 61
B c . . e
5 No late noise Late noise
= \— g 2° N 4
s S 22 10 10 b
= N
=z L W19 R
o 2 1.6 3
g S 5 5
N a 1.3 X
- N\ .
5 8 1 & o 0 S & 20 )
= © g 3
W c
o|S W%’ 5 & 1
== §
c AN
o) -10 -10 S
vO Moy > 0
-10 -5 0 5 10 -10 -5 0 5 10 0 1 2 3 4
91 91 Om

Discussion

We presented an extensive quantitative analysis of how a con-
ditioned inference strategy affects the accuracy with which an
observer is able to estimate low-level features. Using model sim-
ulations, we show that although overall optimal, considering all
possible high-level interpretations does not consistently provide
better accuracy across the entire range of feature values. Commit-
ting to a single interpretation is actually the better strategy for
hich the observer has a reasonably high chance
their high-level interpretation. That is, the
ned inference is limited to a relatively small
cature values that correspond to the decision
high-level interpretations (e.g., the category
performance pattern is general and robust to

a pdfelement
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Figure 5. Relative performance between conditioned and full inference for causal cue combination. (a)
Probability of making a correct structural assignment $ as a function of feature values. When 0, and 0, are far
apart, they most likely represent independent sources, whereas when they are close, a common source is more
plausible. (b) Cross-section through the probability density surface in (a) along the off-diagonal (dashed line).
(c) Relative performance in estimating 6, and 0, (ratio of net MSE) for sensory noise o, = 2 and no (o,, = 0)
or moderate late noise (o,, = 3). Blue indicates feature values for which conditioned inference outperforms full
inference. These blue values correspond to a regime where decisions about S are relatively certain as shown in
(a). Red indicates feature values for which full inference is better. With late noise, the benefits of conditioned
inference are amplified. (d) Local relative MSE along the off-diagonal 6, = —0, (dashed lines in (c)).
Conditioned inference outperforms full inference when the observer is relatively certain that 6, and 6, come from
independent sources (dashed lines in (b)). (e) Global MSE ratio as a function of sensory (o) and late noise (a,,).
MSE = mean squared-error. See the online article for the color version of this figure.

variations of the considered hierarchical models such as the dis-
tributions and number of categories as well as other symmetric
error metrics (see the Appendix).

The pattern suggests a potential explanation for why humans
apply a conditioned inference strategy. While we focused our
analysis on comparing inference accuracy only at the feature level
(i.e., a loss function only including 6), human cognition is a
holistic process that involves simultaneous and cojoint inference
processes at all hierarchical levels. Thus, it is likely that human
inference strategies have evolved with regard to error metrics that
are jointly defined across all levels of a hierarchical representation.
For example, in the case of category-based perception (see Figure
2a), such error metric would include not only errors at the feature
but also at the category level. Furthermore, one can easily make
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the case that consistency across the hierarchy is important: Errors
at the feature level become irrelevant if at the same time the
category assignment of the feature is already wrong (i.e., “Why
bother about making an error at the low level if inference is wrong
at the top level?”). As we have shown, conditioned inference
globally outperforms full inference under such hierarchical error
metric (Figure 6b).

We also showed that a conditioned inference strategy becomes
increasingly favorable when late noise corrupts the sensory signal
m. The underlying assumption we made is that due to its discrete
nature (binary in the simplest case) the commitment to the most
likely high-level interpretation is a signal robust to late noise. The
signal maintains information about the original (uncorrupted) sen-
sory measurement m that the conditioned inference strategy then
can exploit during feature inference. Note that the global perfor-
mance advantage of conditioned inference under late noise condi-
tions is due to this extra information. As we can show, a full
inference strategy that also has access to the commitment signal
C (m) once again globally outperforms conditioned inference under
all noise conditions (see Appendix Figure A4). However, adding
the signal this way comes with additional costs as it requires an
update of the generative model with additional probabilistic infor-
mation. This information is analog and thus it is questionable
whether this strategy is robust to late noise. In contrast, condi-
tioned inference provides a simple and robust way to exploit some
of the information about the original measurement m contained in
the commitment é(m) later during the feature inference process.
However, improved accuracy is not the only advantage. We have
recently shown that conditioned inference intrinsically avoids in-
consistencies of the representations across the hierarchy that may
ise conditions (Luu & Stocker, 2018), and thus
hanism to avoid states of cognitive dissonance
inger, 1957).
regard to late noise also have implications for
of working memory formation and recall, and
brence tasks that evolve over time (Gold &

@
=
©
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Figure 6. Estimation accuracy as a function of the sensory measurement. (a) Expected relative estimation
accuracy (MSE ratio) as a function of the sensory measurement m™ for different late noise conditions with
sensory noise o, = 2. Under no late noise (m" equals m for o,, = 0), the full inference strategy is always better.
We can separately compute relative accuracy for trials in which the high-level categorical interpretation C was
either (b) correct or (c) incorrect. The total relative estimation accuracy in (a) is the sum of the curves in (b) and
(c), weighted by the probability of c being correct/incorrect (shown in (d)). For correct trials only, conditioned
inference always provides better estimation accuracy even under no late noise conditions. MSE = mean
squared-error. See the online article for the color version of this figure.

Stocker, 2017). In fact, conditioned inference can predict some of
the memory biases that have been reported in the recall of color
(Bae, Olkkonen, Allred, & Flombaum, 2015) or other low-level
visual features (Ding et al., 2017; Luu, Qiu, & Stocker, 2017). It
provides a normative motivation for memory biases and poten-
tially other similar forms of confirmation biases (Lange, Chattoraj,
Beck, Yates, & Haefner, 2019; Talluri et al., 2018).

Our analysis focused on performance accuracy and did not
consider potential differences in terms of computational and rep-
resentational resource constraints. Naturally, cognitive and percep-
tual inference processes are subject to such constraints, promoting
inference strategies that are commonly referred to as bounded
rationality (Gershman, Horvitz, & Tenebaum, 2015; Simon, 1984).
Conditioned inference seems a far simpler and computationally
less costly strategy than full inference as it does not require
marginalization over all potential high-level hypotheses. Further-
more, under many conditions marginalization over all high-level
hypotheses is computationally infeasible. Previous studies have
suggested that under these conditions humans may apply sampling
procedures to approximate full inference (Sanborn, Griffiths, &
Navarro, 2010; Vul, Goodman, Griffiths, & Tenebaum, 2014).
While formally related— conditioned inference can technically be
considered a 1-particle/1-sample particle filter (Brown & Steyvers,
2009)—these sampling models are conceptually quite different as
they are intended to approximate full inference. They are averag-
ing models (using samples rather than full distributions) and thus
they behave and perform naturally much closer to the full rather
than the conditioned inference model discussed here. Future work
will be needed to investigate in more detail the overall benefits (or
drawbacks) of a conditioned inference strategy with regard to
hierarchical error metrics and other costs such as computational
and representational complexity. This is of particular interest in
light of the ongoing discussion about optimality in human percep-
tion and cognition (Rahnev & Denison, 2018; Stocker, 2019).

Finally, given that many inference problems are of the general
hierarchical type considered here, conditioned inference strategies
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may be more ubiquitous than we recognize at the moment. Thus
our results may have implications far beyond the particular exam-
ples we discussed here. The problem is that conditioned inference
does not always lead to clearly identifiable behavioral signatures
such as the bimodal estimate distributions in category-based per-
ception (Figure 2b). In some cases behavioral effects may be small
and difficult to extract from experimental data as in the case of
causal cue combination (Figure 4b, 4c). Other candidates for
conditioned inference are context-dependent perceptual tasks
where different contextual interpretations represent the different
high-level hypotheses. Examples include tilt estimation of textured
surfaces with competitive priors (Knill, 2003), orientation estima-
tion affected by center-surround integration or segmentation
(Coen-Cagli, Kohn, & Schwartz, 2015; Qiu, Kersten, & Olman,
2013; Schwartz, Sejnowski, & Dayan, 2009), lightness perception
affected by perceived surface curvature (Knill & Kersten, 1991),
or the perceived brightness of a gray patch depending on its spatial
context (Adelson, 1993). A detailed quantitative modeling ap-
proach will allow us to determine the extent to which conditioned
inference is a ubiquitous and general inference mechanism of the
human brain.
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Appendix

Category-Based Perception

The analysis in the main text is limited to comparing optimal
estimators under a L,-norm loss function (MSE estimates) and
symmetric top-level priors for two categories. In order to probe the
generality of our results, we extended our comparison to estimators
according to a L,-norm loss function (measured with regard to
absolute error, correspondingly) as well as for asymmetric cate-
gory priors p(C) and multiple categories (for L,-norm). In addition,
we considered a full inference strategy with knowledge of (:‘(m)
under late noise conditions (effectively, bottom-up conditioning),
and compared it with the top-down conditioned inference.

More Than Two Categories

Relative estimation accuracy exhibits the same pattern if the
high-level interpretation consists in deciding among more than two
potential categorical assignments. Figure A1 shows an example for
three different categories and their categorical prior distributions
(Figure Ala). As with two categories, accuracy deficits of condi-
tioned inference are limited to feature values close to the decision
boundaries whereas accuracy is better everywhere else when com-
pared with a full inference strategy (Figure Alb). If sufficient late
noise is corrupting the sensory evidence, conditioned inference
globally trumps a full inference strategy that does not have access
to the committed high-level interpretation (:‘(m) (Figure Ald).

Asymmetric Category Priors

We also explored the scenario that one category was more likely
than the other, i.e., the case p(C, ,) = [0.2, 0.8]. Figure A2 shows
the results for both overlapping and non-overlapping categories.
With unequal category priors, the psychometric curves p(é | 6) are
shifted away from the categorical boundary (e.g., p(C,|90) is
shifted away from the more prevalent category C,). Compared
with the equal prior case, the pattern of local relative accuracy
maintains, although it is also shifted (Figure A2b, f). The asym-
metric categorical priors exaggerate the differences between pos-
teriors p(C, | m) and p(C, | m) making full inference act more like
conditioned inference. The differences in terms of the performance
between the two strategies are consequently reduced. In the ex-
treme case where p(C, ,) = [0, 1] (only one category is possible),
the two strategies are functionally identical.

Minimizing L1-Norm Loss

Using the same generative model and model parameters as in
the main text (Figure 2a) we formulated optimal estimators for
each inference strategy as the median of the posterior distributions
Equations 3 and 6, respectively, and performed the same accuracy
comparison as in the main text with regard to absolute error. As
shown in Figure A3, the results are qualitatively quite similar to
the L,-norm case (Figure 3).

Full Inference With Knowledge of é(m) Under Late
Noise Conditions

Full inference can also benefit from knowledge of (:‘(m). How-
ever, in contrast to the conditioned inference strategy it does not
consider é‘(m) a correct high-level interpretation but rather a
constraint on the potential values of m. Such bottom-up condition-
ing requires an update of the generative model as shown in Figure
Ada. Specifically, it defines a likelihood function p(é(m) | m) over
m that is binary (i.e., in the simplest case a step-function) such that
it is one for all values of m that are consistent with the given C
(m) and zero otherwise. We analyzed the estimation accuracy of
such full inference strategy with knowledge of C (m) for the case of
category-based perception with overlapping categories (Figure 3a).
While the local MSE ratio is similar to before (see Figure 3c)
overall performance is indeed in favor of the modified full infer-
ence strategy, independent on the amount of late noise (Figure
Adc).

Note that bottom-up conditioning increases the complexity of
the inference problem as it requires an update of the generative
model with additional probabilistic information about m (Figure
A4a). The additional information essentially reflects the values of
the optimal decision boundaries, which are analog quantities and
likely not robust to late noise.

Causal Cue Combination: Different Feature Prior

We analyzed the causal cue combination example for the case of
an approximately uniform categorical feature prior (o, = 100).
The relative performance pattern is qualitatively similar compared
with the example in the main text (Figure AS).

(Appendix continues)
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Figure Al. Estimation accuracy for three possible categorical assignments. The panels are similarly organized
and labeled as in Figure 3. (a) Categorical feature priors multiplied with the categorical prior for illustration
purposes. (b) Local performance comparison between conditioned and full inference. Benefits of conditioned
inference emerge where there is reasonably high probability for committing to the correct category. (c)
Psychometric curve indicating the probability of assigning 6 to the correct category. (d) Global MSE ratio as a
function of sensory (o) and late noise (c,,). The two dots correspond to the two noise conditions shown in (b).
MSE = mean squared-error. See the online article for the color version of this figure.
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Figure A2. Estimation accuracy for asymmetric category priors. The panels are similarly organized and labeled
as in Figure 3. (a) Categorical feature priors multiplied with the categorical prior for illustration purposes. (b)
Local performance comparison between conditioned and full inference. Larger benefits are seen when there is
reasonable evidence for committing to the less prevalent category. (c) The probability for making a correct
categorical assignment C. (d) Global MSE ratio as a function of sensory (o) and late noise (o,,). (e—h) Same
as (a—d) for nonoverlapping categorical feature priors. MSE = mean squared-error. See the online article for the
color version of this figure.
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= regard to a L,-norm loss function. Accuracy comparison is correspondingly assessed in terms of L,-norm loss
Q (absolute error). Panels correspond to panels in Figure 3. All other parameters were identical to the example in
c the main text. MSE = mean squared-error. See the online article for the color version of this figure.
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Figure A4. Full inference with knowledge of é(m). (a) Graphs for both inference strategies. Conditioned
inference (top-down) is the simplest way to extract some of the original sensory measurement information m
stored in the categorical interpretation é(m) (and thereby protected from corruption by late noise) during the
feature inference process. Provided with the same information, one can formulate a modified full inference

strategy where the category choice é’(m) serves as a bottom-up conditioning constraint on m. Note, however, that
this requires the generative model to be updated with analog information about the decision boundaries. (b)
Relative local accuracy between the modified full inference strategy and the conditioned inference strategy
shows slightly different behavior compared with the original comparison under late noise (Figure 3b). (c)
Bottom-up conditioning allows the full inference strategy to perform globally better for all noise conditions.
MSE = mean squared-error. See the online article for the color version of this figure.
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Figure A5.  Simulations of causal cue combination with approximately uniform feature prior (o, = 100). (a, b)
Estimate distributions and their differences between the two strategies (c—g). Relative MSE accuracy. Panels
correspond to panels in Figure 5. MSE = mean squared-error. See the online article for the color version of this
figure. (Figure continues on next page.)
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