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Abstract The Princeton environment-dependent probabilistic tropical cyclone (PepC) model is
developed for generating synthetic tropical cyclones (TCs) to support TC risk assessment. PepC consists of
three components: a hierarchical Poisson genesis model, an analog-wind track model, and a Markov
intensity model. The three model components are dependent on environmental variables that vary with the
climate, including potential intensity, advection flow, vertical wind shear, relative humidity, and
ocean-cooling parameters. The present model is developed for the North Atlantic Basin. The three model
components and the integrated model are verified against observations using out-of-sample testing. The
model can generally capture the TC climatology and reproduce statistics of TC genesis, movement, rapid
intensification, and lifetime maximum intensity, as well as local landfall frequency and intensity. It can be
coupled with climate models and TC hazard models to quantify TC-related wind, surge, and rainfall risks
under various climate conditions. The modeling framework can be further improved when more relevant
environmental variables are identified and become available in climate model outputs.

Plain Language Summary The Princeton environment-dependent probabilisitic tropical
cyclone model (PepC) is developed to generate synthetic tropical cyclones (TCs). The PepC has three
components: a genesis model that simulates the time and location of a storm's formation, a track model that
simulates the storm’'s movement over the ocean, and an intensity model that simulates the storm's maximum
wind speed evolving along the track. We evaluate PepC's performance by comparing simulated TCs with
historical records in the North Atlantic Basin. Our results show that under the current climate, simulated
TCs from PepC match well with observations in many aspects, including wide TC counts and local
landfall intensity. As all of its three model components are dependent on environmental variables that vary
with the climate, PepC is able to generate synthetic storms under various climate conditions. The
synthetic TCs generated from PepC can be applied to quantify TC-related wind, surge, and rainfall risks in a
changing climate.

1. Introduction

Tropical cyclones (TCs) are among the most deadly and destructive natural phenomena in the world.
Accounting for 17% of the total number of billion-dollar weather and climate disasters, TC caused more than
50% of the total damages, according to Smith and Matthews (2015) in a study of U.S. climate disasters in
1980-2013. Continuously improving our understanding of TC-related hazards and risk under current and
future climates is of great importance.

There are two general approaches to assess TC hazards (i.e., extreme winds, heavy rainfall, and storm surges)
and risk. Local models estimate TC hazards at a specific location of interest based on historical TCs that
affected the region or larger synthetic TC datasets generated based on those historical TCs (Irish &
Resio, 2013; Jagger et al., 2001; Mumane et al., 2000; Tolwinski-Ward, 2015). These site-specific models per-
form relatively well in regions with high TC activity but are not accurate when historical data are limited
(Hall & Jewson, 2008). To overcome the data limitation at the local scale, basin-wide models make use of
all historical storms in the ocean basin to generate synthetic TCs from genesis to lysis over the entire basin
(Vickery et al., 2000). Specifically, a basin-wide model may include three components: a genesis model that
simulates the temporal and spatial variation of TC formation, a track model that propagates the generated
storms, and an intensity model that estimates the intensity evolution along the storm track. The storm is con-
sidered dissipated if its intensity is lower than a given threshold.
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Ideally, the generated synthetic TCs are fully dependent on the storm environment so that they vary
consistently with the change of the climate conditions. However, most synthetic TC models currently in
use are largely climate invariant. James and Mason (2005) generate storms based mostly on historical storm
properties. Hall and Jewson (2007) simulate storm tracks using near-neighbor historical information.
Vickery et al. (2000, 2009) simulate storms using mainly storm predictors plus limited environmental
variables such as sea surface temperature (SST), and the model coefficients depend on (historical) storm
locations. These models are not suitable for risk assessment under a changing climate. More recent models
have started to include environmental dependence by adding large-scale environmental predictors, such as
El Nino-Southern Oscillation (ENSO) indices. The genesis and track components of the model developed by
Yonekura and Hall (2011) are dependent on ENSO indices. Though such a model can better capture the
effect of ENSO state on TC seasonality, the large-scale indices have limited capability in reproducing local
variations. Yonekura and Hall (2014) improved their genesis component by introducing local SST as an
environmental predictor.

The statistical-deterministic model developed by Emanuel et al. (2008) has become a principle method that
can generate large numbers of synthetic TCs at the basin scale driven by comprehensive local climate
conditions. The model applies a random seeding method to initiate the storm, a beta and advection model
(BAM) based on local winds to propagate the storm, and a deterministic Coupled Hurricane Intensity
Prediction System (CHIPS; Emanuel et al., 2004) model to estimate the storm intensity based on local
thermodynamic state of the atmosphere and ocean. The model has been widely applied to assess TC wind
(Yeo et al., 2014), rainfall (Emanuel, 2017), and storm surge (Marsooli et al., 2019) hazards and TC economic
losses (Mendelsohn et al., 2012), under current and future projected climate conditions. More recently, Lee
et al. (2018) developed a synthetic TC model that also depends on the local environment but is based purely
on statistical modeling. In this model, the genesis formation is simulated on regular grids over the ocean
basin based on a Poisson regression on the TC genesis index (TCGI; dependent on absolute vorticity, relative
humidity, relative SST, vertical wind shear, and storm location) developed by Tippett et al. (2011), the storm
is propagated based on a revised BAM with the beta drift dependent on the storm location, and the storm
intensity is estimated based on a multiple linear regression on environmental (potential intensity, wind
shear, relative humidity) and storm (current intensity, previous-step intensity change, and translation speed)
variables plus a stochastic error term (Lee et al., 2015, 2016a).

Following Emanuel et al. (2008) and Lee et al. (2018), we develop a new climate-dependent probabilistic TC
model. The new model is called PepC, short for Princeton environment-dependent probabilistic tropical
cyclone model. PepC consists of three components: a hierarchical Poisson genesis model, an analog-wind
track model, and a Markov intensity model. The genesis model is developed based on a Poisson regression
on four environmental variables: the potential intensity, relative humidity, wind shear, and absolute
vorticity. Unlike Lee et al. (2018), the Poisson regression and genesis simulation are performed on clustering
grids (formed based on the variation of the environmental variables), to avoid the zero-inflation problem
associated with regressing sparse genesis data on a regular grid. The analog-wind track model determines
the storm track based on local in situ wind as well as historical track patterns, to overcome the regression
challenge induced by the naturally large variations and uncertainties of local winds. The intensity
component developed in our previous work, the Markov environment-dependent hurricane intensity model
(MeHiM; Jing & Lin, 2019), lets the storm evolve among different states (i.e., slow, moderate, and rapid) of
intensity change as a response to the change of environmental variables (potential intensity, relative
humidity, wind shear, and an ocean feedback parameter), lifting the basic assumption of a linear model that
the response of intensity change to the environmental change is homogenous. These changes/improvements
of the model components over previous methods may help better capture TC frequency and interannual
variability, track patterns and variations, and intensity extremes associated with rapid intensification,
supporting improved TC hazard and risk analysis.

To verify the performance of PepC, we first evaluate each model component and then the integrated model-
ing system, by comparing observed and simulated TC climatology over the North Atlantic (NA) basin. As the
genesis model simulates local counts based on local environmental parameters, we examine whether the
model can reproduce basin-wide interannual, seasonal, and spatial distributions of observed genesis. Also,
we evaluate if the track model can reproduce observed distribution of track density over the basin and land-
fall frequency along the Mexico and U.S. East and Gulf coastlines. Then, we couple the intensity component
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(MeHiM, evaluated in Jing & Lin, 2019) with the genesis and track components and investigate if the
integrated TC model PepC can capture the statistics of rapid intensification, lifetime maximum intensity,
and landfall frequency and intensity.

This paper is organized as follows. Following this introduction, section 2 describes the data used in this
work. section 3 describes the development of the genesis and track components and briefly introduces the
recently developed TC intensity model. section 4 describes the integrated TC model PepC. section 5 provides
discussions, and section 6 summarizes the main findings of the study.

2. Data

The genesis and intensity components are developed based on historical records from 1979 to 2014 in the NA
basin, while the track component is developed based on historical records from 1979 to 2014 as well as 1948
to 1979 (to generate analog track information). The TC dataset is taken from the IBTrACS WMO archive
(Knapp et al., 2010). It includes for each storm 6-hourly latitude and longitude positions and 10-minute
maximum sustained wind speeds at 10 m above the sea surface, which are used to calculate the storm's
current intensity change (DV), previous-step intensity change (DVp), and current intensity (V).

The atmospheric variables are derived from the ERA-Interim Reanalysis with a resolution of 0.75° X 0.75°
produced by the European Centre for Medium-Range Weather Forecasts (ECMWF; Dee et al., 2011).
Storm's potential intensity, PI, is theoretically derived following Emanuel (1995, 1988) and Bister and
Emanuel (1998, 2002). The mid-level relative humidity, RH, is computed as the averaged relative humidity
in the layer between 500 and 700 hPa within the 500- to 800-km annulus around the storm center. The
low-level relative vorticity is defined as the vorticity at 850 hPa, averaged over the 200- to 800-km annulus
around the storm center. The absolute vorticity, VO, is computed as the sum of relative vorticity and the
vorticity of the earth. The deep layer vertical wind shear, SHR, is defined as the difference between
the 850- and 200-hPa level winds, averaged over the 200- to 800-km annulus around the storm center. The
850- and 250-hPa level winds used in the track model are also averaged over the 200- to 800-km annulus
around the storm center. In addition to atmospheric variables, an ocean feedback parameter (OCN),
developed by Schade and Emanuel (1999) based on numerical modeling, is used to represent the ocean's
negative impact on storm intensification. The OCN is dependent on storm'’s translation speed, ocean mixed
later depth, and thermal stratification below the ocean mixed layer. The ocean's salinity and potential
temperature are taken from the Ocean Reanalysis System 4 (ORAS4; Balmaseda et al., 2013).

In this work, the genesis component is developed to predict TC formation based on PI, SHR, VO, and RH.
The track component is developed to predict TC movement based on local winds and analog predictors
formed by historical track patterns. In MeHiM, DV is estimated based on six variables: DVp, V, PI, SHR,
RH, and OCN.

3. Model Components

3.1. Genesis

The genesis model component determines how many storms form in a year and where they originate over
the ocean basin. Previous genesis models may be roughly classified into two categories. In the first category,
the genesis rate and origination rely little on environmental variables. Hall and Jewson (2007) determines
the TC annual rate by sampling from a Poisson distribution based on historical records. Vickery
et al. (2000, 2009) simulate the annual rate similarly but from a fitted negative binomial distribution. In both
models, the starting position and time of the storms are directly sampled from the historical data. The
genesis component of the statistical-deterministic model of Emanuel et al. (2008) initiates storms by random
seeding, assuming a uniform distribution of storm formation. The initiated storms are then selected by the
track and intensity models, and the annual rate is calibrated with the observation.

The second category includes multiple TC genesis indices based on large-scale environmental parameters.
Gray's TC genesis theory (Gray, 1975) showed that the temporal and spatial variability of genesis is related
to a limited number of large-scale environmental predictors, among which the low-level relative vorticity,
vertical wind shear, ocean thermal energy, and mid-level humidity are of great importance. Based on these
findings, Emanuel and Nolan (2004) introduced a genesis index, the genesis potential index (GPI), which is
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an empirical function of PI, SHR, VO, and RH. They further proposed a revised GPI, which is dependent on
entropy deficit (Emanuel et al., 2008) other than RH, based on theoretical and modeling considerations
(Emanuel, 2010). Tippett et al. (2011) developed the TCGI describing the annual expected storm number
as the exponential of a linear combination of SHR, VO, RH, relative SST, and a location term. Menkes
et al. (2011) showed that, compared with Gray's genesis index and GPI, TCGI has less bias and a better fit
to the observations at the seasonal scale. The TCGI can be directly applied as the mean of an assumed
(nonhomogenous) Poisson process of storm formation, which Lee et al. (2018) have adopted to simulate
synthetic TC genesis.

Although dependent on environmental variables and applicable for climate change studies, TCGI, as well as
other TC genesis indices, has limitations in simulating the accurate number of storms on both seasonal and
interannual scales. According to a recent study comparing the TC genesis indices, all indices tend to overes-
timate cyclogenesis during unfavorable seasons and strikingly underestimate the amplitude of interannual
variability (Menkes et al., 2011). Also, almost all indices tend to have an equatorward bias in predicting
the cyclogenesis areas, though this error can be greatly reduced by using a “clipped” vorticity in TCGI
(Menkes et al., 2011). Considering these limitations, we build a new climate-dependent TC genesis model
particularly focusing on the model's ability to capture the temporal and spatial variations of storm genesis.
3.1.1. Model Developments

Similar to Tippett et al. (2011) and Lee et al. (2018), we apply a Poisson framework to model TC genesis on a
local grid scale (rather than on the basin scale). The Poisson framework assumes that the forming TCs are
conditionally independent (given the climate environment), and one storm would not affect the other.
Though special cases exist when storms appear to be close together at the same time or even collide, these
events are rare and not well understood (Schenkel, 2016). Given Poisson-distributed TC genesis, the annual
count of storms over the basin is theoretically Poisson distributed, which was shown to be approximately
consistent with observational data (Rumpf et al., 2007, 2009). In addition, TC landfall theoretically follows
a Poisson process, which is also consistent with observations (Lin et al., 2012). Under the Poisson
framework, the expected number of TC genesis events is log-linearly dependent on the climate variables:

IOg(TCGR) =b+ bvoVO + bSHRSHR + bRHRH + prPI, (1)

where TC genesis rate (TCGR) represents the expected number of storms in a grid cell. VO, SHR, RH, and PI
are grid-averaged monthly mean absolute vorticity at 850 hPa, vertical wind shear between the 850 and
200 hPa levels, relative humidity at 600 hPa, and potential intensity, respectively. Unlike Tippett et al. (2011)
and Lee et al. (2018) using relative SST, we select the more comprehensive PI as the thermodynamical
variable, which is also consistent with the intensity component of PepC. Also, we remove the location term
used by Tippett et al. (2011) and Lee et al. (2018), so that the model contains only physical climate variables
and does not depend on historical genesis locations. We select RH to represent the dependence on water
vapor, and we discuss the effect of the variable selection between RH and another humidity variable, the
entropy deficit, in Section 4.

A more significant difference from the TCGI model in Tippett et al. (2011) and Lee et al. (2018) is that instead
of using regular grids, we fit the Poisson regression model based on clustering grids that contain similar
environmental fields. Given the sparsity of the genesis data, applying the Poisson regression model on reg-
ular grids has challenges. Applying a relatively large grid size will smooth out variations and underestimate
extremes, while applying a relatively small grid size will induce excess zeroes, leading to the zero-inflation
problem. In either situation, the magnitude of spatial and temporal variations will be reduced. On the other
hand, clustering grids can be subjectively set to avoid this dilemma, helping to reconcile the spatial continu-
ity of the environment fields and discreteness of storm occurrences.

Specifically, for each month of each year in the training dataset, first we divide the entire basin (7.5-40°N,
262.5-346°E) into regular grids at a spatial resolution of 2.5° x 2.5°, and then we group the regular grids into
clustering grids according the similarity of the monthly grid-averaged environmental fields. To do so, we
apply a graph-based clustering method proposed by Felzenszwalb and Huttenlocher (2004), rather than
the traditional k-means clustering, to ensure spatial connectivity. The clustering algorithm does not require
a predefined number of clusters but determines this number based purely on the variation in the environ-
mental fields. Technically, the algorithm takes a feature affinity (homogeneity) threshold as input to
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Figure 1. Example of graph-based segmentation over the NA basin for genesis modeling. The map shown is for the month of July in 1979. The entire basin

is clustered into 16 connected regions. Cluster 15 and cluster 5 are excluded in the modeling since they are either over land or out of the NA basin. The
environmental data is taken at a resolution of 0.75° x 0.75°, while the regular grid is at a resolution of 2.5° x 2.5°. A regular grid is considered as land if more than
half of its data is over land.

determine if two neighboring grids should be merged to form a larger grid. This affinity threshold (k = 0.01),
set as a constant for all months, is determined by cross validation. This single threshold directly measures the
environmental homogeneity and is more subjective than setting arbitrarily the number of clusters. Before
clustering, we normalized each environmental variable so that all features are numerically comparable
and contribute equally to the cluster identification. As a result, for each month, the entire basin is divided
into a set of connected clusters based on local environmental variables. The more homogeneous the
environmental fields over the basin, the fewer clusters form in the basin, and the environmental variables
are considered homogeneous within each cluster. An example of clustered grids is shown in Figure 1, in
which the entire basin is divided into 16 clustered grids. After clustering, the storm counts and averaged
environmental fields over all clustered grids and all months are collected to perform the Poisson
regression (equation 1).

To evaluate the model, we use 27 years of historical data (1979-2005) for model development and leave
the remaining 9 years (2006-2014) of data for out-of-sample evaluation. Environmental variables are
standardized by subtracting the mean and dividing by standard deviation before fitting the model. The
estimated model coefficients are shown in Table 1. As expected, PI, RH, and VO are positively correlated
to cyclogenesis, while SHR is detrimental to storm formation. The negative intercept indicates that it
is very unlikely to have storms generated when all environment variables are at their mean. This
result also helps to explain the rareness of TCs, which happen only in favorable rather than
mean-state environments.

3.1.2. Evaluation

The performance of the genesis model is evaluated by comparing model simulations with observations.
When applying the model to new data (e.g., new monthly environmental variables in 2006-2014 for model
testing), we need to divide the basin into connected clusters. More specifically, to simulate the storms in a
specific month, we first use the graph-based segmentation algorithm to divide the basin into clusters accord-
ing to the similarity among local environmental variables for the month. Then, we compute the
cluster-averaged environmental variables and then apply equation 1 to obtain the monthly Poisson rate
for each cluster. Given the count, randomly drawn from the obtained Poisson distribution, the genesis
location is drawn uniformly within the cluster and a formation date is selected uniformly during the month,
to be consistent with the Poisson theory. Repeating the above processes, we simulate TC genesis climatology
in the period of 1979-2014 by constructing 100 independent 36-year realizations.
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Table 1

Coefficients of the clustering-based genesis model

The time series of annual rates of observed and simulated storms over

Intercept PI

RH

the basin are shown in Figure 2. There are on average 15.51 storms
VO SHR per year generated in the simulation, very close to the historical

—4.084 1.334

0.725 0.942 —0.816

observation of 15.41 storms per year, over the period of 1979-2014.

The correlation coefficient between the observed and simulated (median
of the 100 realizations) annual count is relatively high (0.74 on training
set and 0.72 on testing set). The genesis model can capture the interannual variation under different
ENSO phases, simulating more storms in strong La Nina years (e.g., 1988 and 2010) than in strong El
Nino years (e.g., 1982 and 1997). The modeled magnitude of interannual fluctuations is about 14 TCs
(the median), smaller than that of 26 TCs in the observation. However, this clustering-based genesis
model outperforms the genesis model developed based on regular grids particularly at the interannual
scale, as the magnitude of interannual fluctuations is predicted as 8 TCs using regular grids (figure not
shown). While the previous GPI and TCGI models were found to have limited ability to reproduce the
amplitude of interannual variability (Menkes et al., 2011), our genesis model produces a standard devia-
tion of 4.12 for the annual rate, which is very close to that of 4.33 in observation (for both training and
testing datasets). For seasonal variability, as shown in Figure 3 for the monthly storm count, the simula-
tion captures the active and nonactive seasons, although the model slightly overestimates the storm count
in unfavorable seasons, especially in July, while it underestimates the storm counts from August to
December. Such a relatively weak variability on the seasonal scale of the model is also seen in the GPI
and TCGI models (Menkes et al., 2011).

A comparison of spatial distribution of the genesis in the observation and in one selected simulation is
shown in Figure 4. The local counts are normalized by the maximum grid count over the entire basin.
The simulation generally captures the observed spatial pattern and has local maxima in approximately the
right locations, although it has lower peak values, especially in the main development region (10°N-20°N,
80°W-20°W). The spatial extension of the simulation is also wider than the observation, with some
simulated storms occurring 40°N, which is rarely seen in the observation. The genesis model may predict
a nonzero probability of storm formation in a location or month where no TC genesis events have been
observed in the history. Similar to results from previous TC index models, the simulated genesis locations
are also slightly shifted equatorward, probably because the influence of the Coriolis term on TC genesis is
not well represented in the environmental variables (there is no explicit location term in our model).

3.2. Track

Given the genesis formation, the track model determines the storm's movement and landfall location. In
previous studies, the simplest track models propagate storms by resampling translation speed and
changes in the direction of movement from historical TCs that are close to the storm's current position
(Rumpf et al., 2007, 2009). Since storm persistence is shown to be an important predictor, several auto-
regressive models and their variations have been developed by Vickery
et al. (2000, 2009), James and Mason (2005), and Hall and
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Jewson (2007) to generate synthetic tracks. Another important category
of track models based on TC predictors is hurricane analog models.
Hurricane  Analog (HURRAN), developed by Hope and
Neumann (1970), is such an example that has been applied to opera-
tional track forecasting. In this model, historical tracks that meet the
requirements of both appearing in the similar region and time of the
year and having similar heading and translation speed are selected as
analog tracks, to inform the displacement of the current storm. These
above-mentioned models rely on historical storm tracks and may
perform well under the current climate, but they are unsuitable for

1980 1990

Figure 2. Comparison of simulated (black) and observed (red) TC annual
frequency. The solid black line represents the median of 100 simulations,

Year

2000 2010 track simulation under a changing climate.

Emanuel et al. (2006) applied a beta-advection model (BAM; Marks, 1992)
coupled with local synthetic wind, under the assumption that storms

and dashed black lines represent the one standard deviation from the move with vertical mean advection plus the effect of beta drift. The model

median of the 100 simulations.

has been adopted by Lee et al. (2018), where they revised the constant beta

JING AND LIN

6 of 18



)\nl

N\JI Journal of Advances in Modeling Earth Systems 10.1029/2019MS001975
5 [mistacs | drift to be location dependent. BAM works well with synthetic winds, as
Simulation shown in Emanuel et al. (2006); however, a direct regression of historical
4 track movement on observed winds does not perform well, probably due
3 to the large temporal-spatial variation in local winds. In this work, we
aim to develop a new track model that follows the steering wind assump-
2 tion in BAM but overcomes the challenge of large local-wind variation by

also incorporating analog track patterns.
3.2.1. Model Developments
1 We develop our track model with predictors based on both similar histor-
ical tracks and local winds. However, in contrast to HURRAN, where

Figure 3. Comparison of seasonal variation of simulated (blue) and
observed (red) genesis. The black error bar represents the one standard
deviation range of 100 independent 36-year simulations.

Jul Sep Nov similarity is defined mainly based on storm location and date in the year,

we define similarity based on only the two-step (12-hr) track shape. Thus,
although the model depends on historical tracks (over the entire basin), it
does not depend on the storm location (as in, e.g., Vickery et al., 2009).
Since TCs are driven mostly by background steering wind, the similarity
among TC tracks in return implies similar steering winds. Thus, TCs that share a similar existing trajectory
would be more likely to move in a similar pattern in the next step.

We firstly develop an analog track model that depends purely on track analog predictors. Then, we incorpo-
rate in situ winds as additional environmental predictors to further improve the model. Intuitively, the ana-
log predictors generated from past track data reflect the mean background steering winds, while the wind
predictors govern the variation due to real-time in situ winds.

3.21.1. Analog Track Model

To generate analog predictors, we first prepare a track segment pool from historical TCs to be used for simi-
larity matching. We discretize full TC tracks into 6 hourly segments and obtain ~10,000 two-step track seg-
ments from 415 observed TCs in the period of 1948-1978. Then, for each new storm, its current location and
previous two locations form a two-step query of track segments. We search similar segments in the segment
pool based on the Euclidean distance between the vectors, and the best-matching track segments are
selected as guidance for propagating the storm in the next step.

Specifically, we build a random forest regression model to map analog track predictors to real storm displa-
cement. The analog track predictors are selected as the mean and standard deviation values of best-matching
track segments. Each mean displacement represents a hypothetic movement and its standard deviation is a
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Figure 4. Comparison of spatial distribution of genesis in (a,b) simulations and (c,d) observations, in the (a,c) training dataset and (b,d) testing dataset. Genesis
number is shown as the number of storms in each 0.75° x 0.75° grid box normalized by the highest grid count over the entire basin (so the values are in the
range of 0 and 1). The data are then smoothed with a Gaussian low-pass filter.
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Table 2

Performance of analog track model and analog-wind track model. The num-
bers shown are percent of the variance explained by the model (RZ) for
6-hourly displacement in zonal and meridional directions, using training
dataset and testing dataset

Zonal Meridional

Train Test Train Test
Analog 0.95 0.93 0.89 0.83
Analog-wind 0.95 0.93 0.90 0.84

-80

-20 0

40

20

Mbservation: IBTrACS
-40 -20 0

0 L
-120 -100 -80
Figure 5. Sixty randomly selected tracks from (a) analog track model simu-
lation, (b) analog-wind track model simulation, and (c) IBTrACS. To be
consistent with the simulations, the historical tracks are terminated when

they hit land.

measurement of the confidence for this hypothetic movement. For exam-
ple, if the observed next step displacements from 10 best-matching track
segments are close to each other, accordingly the standard deviation is
small. On the other hand, if the observed next step displacements are quite
random, the large standard deviation indicates a low confidence in follow-
ing the mean pattern. In practice, we select a series number of
best-matching track segments, from the most similar one track segment
to the most similar 10% track segments, and calculate the mean and stan-
dard deviation values of the series of suggested movements as the analog
predictors. A sensitivity test indicates that the model is not very sensitive
to the number of selected best-matching storms, and any selections that
can well represent the population of the most similar <10% tracks can
be good analog predictors.

3.2.1.2. Analog-Wind Track Model

In the analog model, we use only analog predictors from the historical data;
no direct wind data is included. To account for the impact of real-time in
situ winds, we build an analog-wind model by adding meridional and
zonal winds at 850 and 250 hPa (similar to Emanuel et al., 2006) as four
additional dependent variables in the random forest regression model.

This analog-wind model improves over previous studies in several aspects.
First, since in situ real-time winds vary the greatest in space and time
among all meteorological variables, we manage to reduce this uncertainty
by representing steering winds partially with analog predictors. Second,
we select two-step track segments instead of longer segments to empha-
size the effect of the local wind, since storms may not respond to winds
earlier than 12 hour before. Lastly, through TC analogs, we manage to
take movement inertia into consideration as it takes time for storms to
respond to the winds.

Both the analog track model and the analog-wind model are built on 417
TCsin the period of 1979-2005 and are tested on the 138 TCs in the period
of 2006-2014. The results for both training dataset and testing dataset are
shown in Table 2. The R* values are between 0.83 and 0.93 for the testing
dataset. As a comparison, the R for the track model with only the local
wind predictors is around 0.6 in both directions, and thus adding analog
predictors improves track model dramatically. Similar to Emanuel
et al. (2006), in both analog and analog-wind models, the prediction of
the movement for the meridional direction is slightly better than that
for the zonal direction. Adding in situ wind predictors only slightly
increases the statistical R% however, the wind components are of great
importance in controlling the meandering behavior of storms over the
ocean, as discussed in the next subsection.

3.2.2. Evaluation

To evaluate the track component, we simulate the track of 555 historical
storms during 1979-2014 (initiated from historical locations) in 40 inde-
pendent runs and compare simulated tracks with observational tracks.
We simulate the first two steps of the track using only the local wind, as
in the track component in Emanuel et al. (2006). Then the analog model
and analog-wind model are applied respectively for the rest of the trajec-
tories until the storm center hits land.

Figure 5 shows the comparison of 60 randomly selected tracks generated
by the analog track model and analog-wind track model, with the same
initial locations in IBTrACS. We find that although only a slight
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Figure 6. Comparison of observed (blue) and simulated (red) probability density function of 6-hr (a) meridional and
(b) zonal displacements of storms in 1979-2014. Used for this comparison are 5,550 simulated tracks from 10 independent
simulations.

difference appears between the R* values of the models (Table 2), the synthetic tracks from the analog track
model are much smoother (with even straight lines) than observations, but this problem is largely resolved
in the analog-wind model. In general, the analog-wind model produces more realistic tracks with more
tracks executing turnings, meanderings, and crossings. It is noted that the model is relatively robust to
initialization; however, it is possible to generate storms that hit South America (where no storm has ever
been observed) if the movement in the first two steps is drawn randomly. This observation indicates that
the wind-driven initialization is necessary.

A comparison of the 6-hourly meridional and zonal displacements of simulated and observed tracks is
shown in Figure 6. The simulation results are largely in good agreement with observations. There exists a
slightly positive bias for the negative meridional displacement, a negative bias for the positive meridional
displacement, and an overestimation for negative zonal displacements. These biases may induce less recur-
vation in simulated storm tracks, as can be seen in the comparison of the track density between simulations
and observations, shown in Figure 7.

In Figure 7, the colors show the spatial track density normalized by the basin maximum. The simulations
capture relatively well the spatial variation of TC tracks in terms of the maxima occurring at the
Caribbean Sea, Gulf of Mexico, and U.S. East Coast and near the main development region of TCs.
However, the analog-wind model tends to have a negative bias in the magnitude of the local maximum in
the Gulf of Mexico. Also, some simulated tracks recurve earlier than historical storms, and the hot spot close
to Florida and South Carolina is further off the U.S. coast in the simulation.

3.3. Intensity

In this work, the Markov environment-dependent intensity model, MeHiM, is applied to simulate storm
intensity evolution. The development of this model is described in our previous studies, Lin et al. (2017)
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% (@) §Tmu|;,£on ' and Jing and Lin (2019), and we refer the reader to these studies for
50 detailed discussions. Here we describe the basic structure and advantages

w0l %’ of this model.

[0}

E 30 The MeHiM is developed to simulate TC intensity evolution dependent on
5 the surrounding large-scale environment. The model considers three
207 unobserved (hidden) discrete states of intensification and associates each
10- A state with a probability distribution of intensity change. The three unob-
o ‘ served discrete states, including “static,” “moderate,” and “extreme”
-120 -100 -80 Longttude -40 states, represent the storm's slow, normal, and rapid intensity change,
respectively. The storm's transit from one state to another is described as
60 o ‘ a Markov chain. In addition to the storm variables (i.e., V and DV}, both
(b) Obser\{gtion the intensity change and state transit components of the model are depen-
s0r ‘%) dent on environmental variables including PI, SHR, RH, and OCN. In the
a0 ° = . simulation, the storm'’s initial state is initialized by a multinomial logistic
§30 regression. Then, MeHiM is used to simulate storm intensity evolution
E when the storm is over the ocean, and a simplified land model (similar
20| to Kaplan & DeMaria, 1995) is added to estimate intensity decay when
10l the storm moves over land. As evaluated extensively by Jing and
Lin (2019), the MeHiM improves over previous models including linear
.0120 -100 -80 -40 and mixture models, as it can better simulate rapid intensification (RI)
Longitude of storms, which are essential in better capturing the tail of the distribu-

Figure 7. Comparison of track density from (a) one simulation with
(b) observation in IBTrACS. Track density is calculated as the accumulated
number of TC passes into each 0.75° X 0.75° grid box normalized by the

tion of the life time maximum intensity (LMI; Lee et al., 2016a, 2016b).
The MeHiM provides a “lock-in” mechanism that supports continuous
large intensification once the storm enters the extreme state and when

maximum grid value of the basin, smoothed with a Gaussian low-pass filter. ~ the environment is favorable, so that it can simulate a realistic fraction
To be consistent with the simulations, the historical tracks are terminated of RI storms, comparable to the observation.

when they hit land.

4. Integrated TC Model PepC

The three model components are coupled together to form the TC modeling system, PepC. We simulate TCs
for the NA basin in the period of 1979-2014 and compare simulated results with historical data to evaluate
the performance of PepC. For each year in the simulation, we use the hierarchical Poisson genesis model to
estimate the number of storms and location and time of their formation. Then, each storm is propagated by
the analog-wind track model. Along the track, the storm's intensity (sustained maximum wind) is initialized
by random sampling from the historical data and then simulated with MeHiM, until the storm's intensity
becomes lower than 10 kt. To account for the uncertainty in a stochastic modeling system, we conduct
100 realizations of the 36-year simulation (1979-2014). We obtain a total of 55,117 tropical storm seeds,
and among the seeds, there are around 66% + 2% that can intensify and reach TC strength (LMI > 34 kt;
36,311 storms in total). To form a fair comparison with IBTrACS, we remove storms with LMI less than
25 kt, and the remaining 43,979 storms are used for evaluation in the following subsections.

4.1. Genesis Density and ENSO States

After removing tropical storm seeds that cannot grow to 25 kt, the spatial distribution of the remaining gen-
esis (not shown) is similar to that initiated by the genesis component, as shown in Figure 4. This similarity
indicates that coupling the track and intensity components with the genesis component do not largely
change the spatial distribution of the genesis. A large negative bias still exists in the main development
region, which has a significant impact on simulated TC track density in that region, as will be discussed in
section 4.2.

As ENSO is a major driver of TC interannual variations, we further examine the phase variability linked to
ENSO, especially the shift in genesis location under different ENSO states. Simulations for strong or very
strong El Nino years (1982-1983, 1987-1988, 1991-1992, 1997-1998) and La Nina years (1988-1989,1998-
2000, 2007-2008, 2010-2011) are compared in Figure 8. In addition to a decrease in the TC rate from El
Nino years to La Nina years, different shifts in the genesis location also exist in the two contrasting ENSO
phases. As discussed by Elsner et al. (1999), TC genesis tends to move away from the Gulf of Mexico in
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Figure 8. Comparison of observed and PepC simulated TC genesis in (a,c,e) El Nino years and (b,d,f) La Nina years. The shifts in simulated and observed
genesis locations are compared moving from (a,b) early season (May and June) to (c,d) mid season (July and August) and (e,f) late season (September and October).
Black dots represent observed genesis events in 1979-2014. The shades show the simulated genesis density, calculated in the same way as in Figure 4.

the early season to the Caribbean Sea in the late season during El Nino years. However, in La Nina years, the
genesis locations are found off the southeast U.S. coast early in the season, moving toward the Gulf of Mexico
in the midseason, and shifting equator-ward over the Caribbean Sea in the late season. On average, TCs tend
to form in lower latitudes during La Nina years compared to El Nino years. These historical features are
captured by our probabilistic TC model although the model does not directly depend on ENSO indices.

4.2. Track Density and Landfall Frequency

We compare simulated and observed track density in Figure 9. As a land model has been applied to simulate
intensity decay over land, we use observed full tracks in this comparison (rather than only the parts over the
ocean as shown in Figure 7). Simulations compare relatively well with observations, with the simulated
tracks mimicking the typical recurving pattern in observed tracks. However, the area of peak density close
to the U.S. coast is larger in the simulation, and the peak density extends farther into the Gulf of Mexico.
On the other hand, the large negative bias in the main development region still exist, and it is mostly due
to the negative bias in this region of the genesis model.

We further examine regional annual landfall frequency at coastal locations along the NA coastline. To help
indicate locations, a total of 186 mileposts (MPs) are defined following Vickery et al. (2000), as shown in
Figure 10, to cover the coastline with 100-km spacing along the Mexican coastline and 50-km spacing along
the U.S. coastline. As shown in Figure 11, the simulated landfall frequency is in good agreement with obser-
vations for almost all mileposts. A slight negative bias exists in the coastal regions near MP 21-31 (lower Gulf
of Mexico) and MP 76-91 (west Florida coast), where the observed frequency is near or beyond the
upper-75th-percentile bound of the simulated spread. There is also slight positive bias around MP 36-45
(Gulf of Mexico, near the border of United States and Mexico). These biases also appear in the track density
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® @ gfmufa&on plot in Figure 9. However, even though we see denser tracks in the
501 % Caribbean in the observation, the analog-wind model estimates the land-
sl * = . fall frequency well for this region (MP 10-13), as landfall is defined as a
§ crossing of the track and coastline segment and many historical tracks
§ %0 passing this region did not hit land. Another interesting result is, though
20 simulated tracks recurve earlier than observations, the landfall frequency
1ol is not affected much except for missing the peak around MP 117-120 (near
the border of South Carolina and North Carolina), where some historical
%% 100 80 50 40 20 o ° recurving storms did make landfall. The landfall frequencies for
Longitude MPs > 125 (Ocean, MA) are in good agreement with observations, except
for a slight underestimation near MP 162 and MP 175 (near
60 — S Portland, ME).
(b) Obser\égtion
50 % 4.3. LMI and Landfall Intensity
o100 h > s Next, we evaluate the intensity of simulated storms. Based on the
2 Saffir-Simpson hurricane wind scale, there are 141 =+ 1.6%,
g 6.4 + 1.1%, 5.1 + 1.0%, 3.2 + 0.9%, and 0.9 + 0.4% Category 1-5 hurri-
200 canes, respectively, in the simulation, compared to 14.1%, 5.6%, 6.3%,
10+ 6.1%, and 2.2% in the observation. Our TC model generates a realistic
o fraction of Cat 1-3 hurricanes, though it underestimates the fraction
-120 -100 -80 -60 -40 of Cat 4-5 hurricanes by around 50%. In Figure 12, we further examine

Longitude

Figure 9. Comparison of (a) simulated track density from PepC and
(b) observed track density in IBTrACS. Normalized track density is
calculated as in Figure 7.

the LMI distribution for non-RI and RI storms separately. Among all
storms, there are 21.5% =+ 1.8% storms undergoing RI in the simulation,
which is close to the observation of 24.9% RI storms. Our TC model
captures the LMI distribution for both subsets of storms relatively well.
A slight shift to larger LMI values exists for non-RI storms in the simu-

lation, which is probably because in MeHiM storms still have a chance to grow and intensify even in
moderate environments, while in reality these storms are more likely to stay weak. As for RI storms,
the simulated density peak of LMI is about 15 kt underestimated, leading to the underestimation of the
most extreme storms, i.e., Cat 4-5 storms. This negative bias in simulating Cat 4-5 hurricanes may come
from the limitation of the MeHiM, as discussed in Jing and Lin (2019). It may also come from the bias in
genesis and track components. For example, the negative bias of cyclogenesis in the main development
region and the positive bias near the coast may result in more TCs with shorter lifespan and less chance
for RI toward Cat 4-5 intensities.

g

50 -
40
30|
20 -

ey

-100

Figure 10. Locations of considered mileposts along Mexico (every 100 km)
and U.S. (every 50 km) coastline.

Figure 13 shows a comparison of observed and simulated maximum land-
fall intensity along the NA coastline. The maximum intensity is defined as
the maximum wind speed of all simulated or observed storms that
approach within 250 km of each coastal milepost shown in Figure 10.
The median of all the 100 simulations is very close to the observations
especially in the north of MP 80 (the U.S. coast), and the range of 25th-
75th percentiles can mostly cover the observations. The maximum land-
fall intensity is underestimated in the Caribbean and the Gulf of Mexico
(MP <20), likely due to the fact that the MeHiM has a negative bias in
simulating the most extreme storms, which often occur in these regions.

4.4. Return Period

To discuss about TC hazard potential on regional scales, we divide the NA
coastline into three subregions (North-East United States, South-East
United States, and Gulf Coast of Mexico) and calculate the return periods
of landfall intensities for the entire NA coastline and for each subregion,
as shown in Figure 14. In all four regions, the historic and simulated
return period curves compare quite well. As expected, the Gulf of
Mexico region has the greatest hazard potential, with the 100-yr landfall
intensity greater than 130 kt, in both the observation and simulation.
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Figure 11. Observed (black curve) and simulated (red curve) landfall frequency at each of 186 mileposts (shown in
Figure 10) along the NA coastline. The red curve shows the mean and shading represents 25th-75th percentile range
based on 100 realizations.

To display the local hazard potential, Figure 15 shows the 100-year return level of the landfall intensity for
each of the 186 MPs along the NA coastline. In this plot, all simulated tracks that approach the coastline and
are within 250 km of each milepost are used to compute return level for that milepost. The simulation results
compare relatively well with observations. The model tends to overestimate the 100-year intensity level
along the coastline of Gulf of Mexico, that is, MP 20-100. This positive bias in the return level is induced
by an overestimation in simulated track counts in this region. Although the simulation has a similar number
of storms crossing the coastline in this region (Figure 11), more simulated tracks pass within 250 km of the
mileposts in the region (Figure 9).

5. Discussion on Humidity Variables

The TC modeling system is dependent on ambient environmental variables including relative humidity
(RH) in both genesis and intensity components. Some of previous studies have suggested using the satura-
tion deficit, rather than RH, to represent the dependence of TC genesis on humidity, for both theoretical
and modeling considerations (Emanuel et al., 2008). Saturation deficit (SD) is defined by Emanuel (1995):

Sh— Sm

SD = @)

* )
So— Sb

where s,,, and s, are the entropies of the middle troposphere and boundary
layer, respectively, and s, is the saturation entropy of the sea surface. This
thermal parameter regulates the time scale of an initial disturbance to

moisten the middle troposphere so that intensification can occur, and
thus, it may play an important role in regulating TC genesis and thus
storm frequency.

Though the seasonal and spatial variations in s, — s,, are dominated by
RH under the current climate, this is not the case under global warming
(Emanuel et al., 2008). Different choices between RH and SD may even
yield conflicting results in simulating TC frequency in a warmer climate.
For example, in a recent study, by statistically downscaling six Fifth
Coupled Model Intercomparison Project (CMIP5, Taylor et al., 2012) mod-
els, Lee et al. (2019) obtained an increasing trend in projected annual
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Figure 12. Probability density function (PDF) of LMI from historical record
(black) and from 100 model simulations (red). Solid and dash lines are PDFs
based on subsets of non-RI and RI storms.

mean TC frequency using RH as the humidity predictor and a decreasing
trend using SD under Representative Concentration Pathway (RCP) 8.5
scenario. However, by statistical-deterministically downscaling six
CMIP5 models for the RCP8.5 scenario, Emanuel (2013) obtained an
increasing trend using GPI based on SD.
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Figure 14. Return period curves of landfall intensity in (a) NA coastline (all 186 MPs), (b) North-East United States from Maine to Virginia (MP 128-186),
(c) South-East United States from North Carolina to Florida plus Gulf Coast of the United States (MP 41-128), and (d) Gulf Coast of Mexico (MP 1-40). The
black dash curves are estimations from the historical record. The red curves show the median and shadings represent 0 to 100 percentiles from 100 simulations over

Figure 13. Observed (black) and simulated (red) maximum landfall intensity at 186 mileposts (shown in Figure 10) along
the NA coastline. The red curve shows the median and shading represents 25th-75th percentile range based on 100
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To evaluate if SD performs better in TC statistical modeling for the current climate, we develop an alterna-
tive TC genesis model using SD in replacement of RH. The simulated annual rates are shown in Figure 16.
Simulated TC annual frequency using SD has a correlation of 0.57 with the observation (on testing dataset),
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Figure 15. Comparison of simulated (red) and observed (black) 100-year landfall intensity at 186 mileposts (shown in
Figure 10) along the NA coastline. The red curve shows the median and shading shows the 25th-75th percentile range
of 100 simulations.

compared to a correlation of 0.72 using RH. The correlation using RH is significantly higher than that using
SD based on Williams’ test (Williams, 1959), with a p value less than 0.02. A comparison between Figures 2
and 16 also shows that the model using SD is not as good as the one using RH in simulating the peak values
in historical TC frequency. Although SD is preferred over RH for climate change studies given its theoretical
basis (Emanuel et al., 2008), in this study, for the current climate simulations, we use RH as it is simpler and
renders better simulation results. We suggest further investigation on this matter when applying PepC for
future climate simulations.

6. Summary

In this work, we have developed an environment-dependent probabilistic TC model, PepC, to simulate
synthetic TCs for risk analysis. PepC consists of three model components: a hierarchical Poisson genesis
model, an analog-wind track model, and a Markov intensity model, which are integrated to simulate storm's
complete lifecycle, from genesis to lysis. The hierarchical Poisson genesis model simulates TC temporal and
spatial variations using Poisson regression on clustered grids, where the basin is divided into connected
regions such that the environmental conditions are similar within each region. The analog-wind track model
is developed based on the BAM assumption in Emanuel et al. (2006) but improved by incorporating storm

analog predictors that represent effects of both storm's inertia and

301

background winds. The intensity model, MeHiM, adopted from Jing and
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Lin (2019), simulates the storm's intensity evolution using a dependent
hidden Markov model, where the storm is assumed to transit among three
unobserved states that represent the storm'’s slow, moderate, and rapid
intensity change. The three model components are dependent on local
climate variables including absolute vorticity, relative humidity, potential
intensity, vertical shear, local winds, and an ocean feedback parameter,
which may be taken from either reanalysis data or climate
model estimations.
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PepC has been evaluated by comparing simulated TC climatology with
observations, in the period of 1979-2014 for the NA basin. Simulated
TC formations are in good agreement with observations in multiple
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Figure 16. Same with Figure 2, but developed based on SD, rather than RH, aspects of climatology statistics including cyclogenesis interannual

as the humidity parameter in the genesis model.

variation. The differences in TC formation locations under different
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ENSO phases are also captured. However, there exists a negative bias in simulated TC genesis in the main
development region, which leads to a noticeable negative bias in simulated track density near this region.
Nevertheless, the bias over this region has relatively little impact on the landfall frequency. Coupled with
the hierarchical Poisson genesis model and analog-wind track model, the MeHiM can simulate a similar
RI rate as in the observation. While the LMI distribution of simulated storms is in good agreement with
observations, including the tail, PepC slightly underestimates the most extreme storms, that is, Cat 4-5
hurricanes. We have further evaluated PepC in terms of estimating regional and local TC hazard poten-
tial. The comparison between observations and simulations shows that the model performs well in repro-
ducing landfall frequency, landfall intensity distribution, and return periods of landfall intensities.
Therefore, PepC can be used to support TC risk assessment for coastal regions, including those with very
limited observational data.

For future work, we plan to further improve the three model components, especially the track component,
which partially depends on historical tracks. We also plan to incorporate a size component (Chavas
et al., 2016; Chavas & Lin, 2016). The full modeling system will then be coupled with TC hazard models to
assess TC-related multihazards, including wind, surge, rainfall, and flooding. Future studies may also include
a comparison between the probabilistic TC model and dynamical models, such as the newly developed global
climate model, the High-resolution Forecast-Oriented Low Ocean Resolution (HiFLOR; Murakami
et al., 2015) of the NOAA Geophysical Fluid Dynamics Laboratory. Ultimately, we will investigate TC
hazards and risks in different climates by downscaling the state-of-the-art climate models, such as those from
the CMIP5. To do so, we will further investigate the role of RH and SD in regulating TC frequency under the
future climate.

DATA AVAILABILITY STATEMENT

The data used for model development are described in section 2. The hurricane dataset IBTrACS can be
accessed from the National Climatic Data Center (https://www.ncdc.noaa.gov/ibtracs/). The atmospheric
and oceanic reanalysis data are downloaded from the European Centre for Medium-Range Weather
Forecasts (ERA-Interim: https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/and Ocean
Reanalysis System 4: ftp://ftp-icdc.cen.uni-hamburg.de/EASYInit/ORA-S4/). The generated synthetic storm
datasets are deposited to the NSF DesignSafe-CI and can be accessed online (https://www.designsafe-ci.org/
data/browser//projects/6938064123887349270-242ac116-0001-012/).
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